Data Sheet

TEA1995T
GreenChip dual synchronous rectifier controller
Rev. 1 — 30 July 2015
Product data sheet
1. General description
The TEA1995T is the first product of a new generation of Synchronous Rectifier (SR)
controller ICs for switched mode power supplies. It incorporates an adaptive gate drive
method for maximum efficiency at any load.
The TEA1995T is a dedicated controller IC for synchronous rectification on the secondary
side of resonant converters. It has two driver stages for driving the SR MOSFETs, which
rectify the outputs of the central tap secondary transformer windings. The two gate driver
stages have their own sensing inputs and operate independently.
The TEA1995T can also be used in multi-output flyback converters with the SR MOSFET
placed at the low side.
The TEA1995T is fabricated in a Silicon-On-Insulator (SOI) process.
2. Features and benefits
2.1 Efficiency features
 Adaptive gate drive for maximum efficiency at any load
 Supply current in energy save operation below 200 A
2.2 Application features





Wide supply voltage range from 4.5 V to 38 V
Dual synchronous rectification for LLC resonant in SO8 package
Synchronous rectification for multi-output flyback converters
Supports 5 V operation with logic level SR MOSFETs
Differential inputs for sensing the drain and source voltages of each SR MOSFET
2.3 Control features
 SR control without minimum on-time
 Adaptive gate drive for fast turn-off at the end of conduction
 UnderVoltage LockOut (UVLO) protection with active gate pull-down
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
3. Applications
The TEA1995T is intended for resonant power supplies. In such applications, it can drive
two external synchronous rectifier MOSFETs for the rectification of the voltages on the two
secondary windings of the transformer. These MOSFETs replace diodes. It can be used in
all power supplies requiring high efficiency:
 Adapters
 Power supplies for desktop PC and all-in-one PC
 Power supplies for television
 Power supplies for servers
4. Ordering information
Table 1.
Ordering information
Type number
TEA1995T/N1
TEA1995T
Product data sheet
Package
Name
Description
Version
SO8
plastic small outline package; 8 leads; body width 3.9 mm
SOT96-1
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
2 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
5. Block diagram
9&&
9$1',
5()(5(1&(
81'(5
92/7$*(
/2&.287
9
5(*8/$725
'5,9(5
6833/<
9
(1(5*<6$9(
&21752/
,&
/2*,&
WXUQRQ
HQDEOH
785121
RQUHJXODWLRQ
RIIUHJXODWLRQ
*'$
'6$
6:,7&+2))
P9
P9
P9
P9
66$
WXUQRQ
785121
RQUHJXODWLRQ
RIIUHJXODWLRQ
*'%
'6%
6:,7&+2))
P9
P9
P9
P9
66%
*1'
DDD
Fig 1.
TEA1995T
Product data sheet
TEA1995T block diagram
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
3 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
6. Pinning information
6.1 Pinning
*'%
*'$
*1'
9&&
'6%
'6$
66%
66$
,&
DDD
Fig 2.
TEA1995T pin configuration (SO8)
6.2 Pin description
Table 2.
TEA1995T
Product data sheet
Pin description
Symbol
Pin
Description
GDB
1
gate drive output MOSFET B
GND
2
ground
DSB
3
drain sense input for synchronous timing MOSFET B
SSB
4
source sense input MOSFET B
SSA
5
source sense input MOSFET A
DSA
6
drain sense input for synchronous timing MOSFET A
VCC
7
supply voltage
GDA
8
gate drive output MOSFET A
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
4 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
7. Functional description
7.1 Introduction
The TEA1995T is a controller IC for synchronous rectification. It is perfectly suited to be
used in resonant applications. It can drive two synchronous rectifier MOSFETs on the
secondary side of the central tap transformer winding. Figure 3 shows a typical
configuration.
9LQ
4SULP
35,0$5<
6,'(
&21752//(5
&+%
75
4SULP
9RXW
&RXW
4VHF
,&
9&&
'6$
*'$
66$
4VHF
'6%
,&
*'%
66%
*1'
DDD
Fig 3.
TEA1995T typical configuration
7.2 Start-up and undervoltage lockout (VCC pin)
When the voltage on the VCC pin exceeds Vstart, the IC leaves the UVLO state and
activates the SR circuitry. When the voltage drops to below Vstop, the IC reenters the
UVLO state. The SR MOSFET gate driver outputs are actively kept low. For proper
operation, the VCC pin must be decoupled with an extra capacitor (not only with Cout)
between the VCC pin and the GND pin. To reduce inductance effects because of high gate
driver currents, the extra capacitor must be connected as close as possible to the IC.
7.3 Drain sense (DSA and DSB pins)
The drain sense pins are input pins capable of handling input voltages up to 100 V. At
positive drain sense voltages, the gate driver is in off-mode with pulled-down gate driver
pins (pins GDA or GDB). At negative drain sense voltages, the IC enables the SR through
sensing the drain source differential voltage.
TEA1995T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
5 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
7.4 Synchronous Rectification (SR; DSA, SSA, DSB, and SSB pins)
The IC senses the voltage difference between the drain sense (pins DSA and DSB) and
the source sense (pins SSA and SSB) connections. The drain source differential voltage
of the SR MOSFET is used to drive the gate of the SR MOSFET.
When this absolute voltage difference is higher than Vact(drv), the corresponding gate
driver output turns on the external SR MOSFET. When the external SR MOSFET is
switched on, the absolute voltage difference between the drain and the source sense
connections drops to below Vact(drv). The regulation phase follows the turn-on phase.
In the regulation phase, the IC regulates the difference between the drain and the source
sense inputs to an absolute level (Vreg(drv)). When the absolute difference is higher than
Vreg(drv), the gate driver output increases the gate voltage of the external SR MOSFET
until the Vreg(drv) level is reached. The SR MOSFET does not switch off at low currents.
The IC operates without minimum on-time.
When the absolute difference is lower than Vdeact(drv), the gate driver output decreases the
gate voltage of the external SR MOSFET. The voltage waveform on the gate of the SR
MOSFET follows the waveform of the current through the SR MOSFET. When the current
through the external SR MOSFET reaches zero, the SR MOSFET is quickly switched off.
After the SR MOSFET switch-off, the drain voltage increases. For a drain voltage above
Vswoff, a low ohmic gate pull-down of Rpd(G) keeps the gate of the SR MOSFET switched
off.
TEA1995T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
6 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
KLJK
FXUUHQW
ORZ
FXUUHQW
VHFRQGDU\
FXUUHQW
$
GUDLQVHQVH
VRXUFHVHQVH
YROWDJH
9
9UHJGUY
9DFWGUY
WGDFWGUY
9WKUHVKROG
65VZLWFK
JDWH
GULYHU
Fig 4.
DDD
9
Synchronous rectification signals
7.5 Gate driver (GDA and GDB pins)
The gate driver circuit charges the gate of the external SR MOSFET during the rising part
of the current. The driver circuit discharges the gate during the falling part of the current.
The gate driver has a source capability of typically Isource and a sink capability of typically
Isink. The source and sink capability allow a fast turn-on and a fast turn-off of the external
SR MOSFET.
The maximum driver output voltage is limited to VG(max). This high output voltage drives all
MOSFET brands to the minimum on-state resistance.
In applications where the IC is supplied with 5 V, the maximum output voltage of the driver
is limited to 5 V and logic level SR MOSFETs can be used.
During start-up conditions (VCC < Vstart) and UVLO, the driver output voltage is actively
pulled low.
TEA1995T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
7 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
7.6 Source sense connection (SSA and SSB pins)
The IC is equipped with additional source sense pins (SSA and SSB). These pins are
used for the measurement of the SR MOSFET drain-to-source voltage. The source sense
input must be connected as close as possible to the source pin of the external SR
MOSFET. It minimizes errors caused by voltage difference on PCB tracks because of
parasitic inductance in combination with large dI/dt values.
8. Limiting values
Table 3.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
Voltages
VCC
supply voltage
0.4
+38
V
Vsense(D)A
drain sense voltage A
DC
0.8
+100
V
Vsense(D)B
drain sense voltage B
DC
0.8
+100
V
Vsense(S)A
source sense voltage A
DC
0.4
+0.4
V
Vsense(S)B
source sense voltage B
DC
0.4
+0.4
V
VGDA
voltage on pin GDA
DC
[1]
0.4
+13.0 V
VGDB
voltage on pin GDB
DC
[1]
0.4
+13.0 V
General
Ptot
total power dissipation
fmax
maximum frequency
-
0.5
W
-
500
kHz
Tstg
storage temperature
55
+150
C
Tj
junction temperature
40
+150
C
-
2000
V
-
500
V
if not limited by
Ptot
ElectroStatic Discharge (ESD)
VESD
electrostatic discharge
voltage
Human Body
Model (HBM)
[2]
Charged Device
Model (CDM)
[1]
[3]
These pins are output pins that are forced by the IC (see Table 5)
[2]
Human body model: Equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
[3]
Charged device model: Equivalent to charging the IC and discharging each pin over a 1  resistor.
9. Thermal characteristics
Table 4.
TEA1995T
Product data sheet
Thermal characteristics
Symbol
Parameter
Conditions
Typ
Unit
Rth(j-a)
thermal resistance from junction
to ambient
JEDEC test board
140
K/W
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
8 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
10. Characteristics
Table 5.
Characteristics
Tamb = 25 C; VCC = 12 V; CGDA/CGDB = 10 nF (capacitors between GDA and GND and between GDB and GND). All voltages
are measured with respect to ground (pin 2). Currents are positive when flowing into the IC, unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Supply voltage management (pin VCC)
Vstart
start voltage
4.35
4.55
4.75
V
Vstop
stop voltage
4.0
4.2
4.4
V
ICC(oper)
operating supply current
energy-save
140
160
180
A
normal operation (without gate
charge)
0.9
1.1
1.3
mA
85
110
135
s
tact(es)
energy save mode activation time
Synchronous rectification sense input (pins DSA, SSA, DSB, and SSB)
Vact(drv)
driver activation voltage
Vsense(S)A/Vsense(S)B = 0 V
450
400
350
mV
Vreg(drv)
driver regulation voltage
Vsense(S)A/Vsense(S)B = 0 V
60
55
50
mV
Vswoff
switch-off voltage
Vsense(S)A/Vsense(S)B = 0 V
90
150
200
mV
td(act)(drv)
driver activation delay time
Vsense(S)A/Vsense(S)B = 0 V;
normal operation;
time from step on VDSA/VDSB
(2 V to 0.5 V) to rising of VGDA/VGDB
at 10 % of end value
-
80
-
ns
Vsense(S)A/Vsense(S)B = 0 V;
normal operation;
time from step on VDSA/VDSB
(0.5 V to 2 V) to falling of VGDA/VGDB
at 90 % of begin value
-
40
-
ns
peak current at VCC = 5 V;
VDS = 0.5 V; VG = 0 V
-
0.4
-
A
peak current at VCC = 12 V;
VDS = 0.5 V; VG = 0 V
-
1.0
-
A
regulation current at VCC = 5 V;
VDS = 0 V; VG = 5 V
-
90
-
mA
regulation current at VCC = 12 V;
VDS = 0 V; VG = 10 V
-
100
-
mA
peak current at VCC = 5 V; VDS = 4 V;
VG = 4 V
-
0.6
-
A
peak current at VCC = 12 V;
VDS = 4 V; VG = 4 V
-
1.0
-
A

td(deact)(drv) driver deactivation delay time
Gate driver (pins GDA and GDB)
Isource
Isink
source current
sink current
Rpd(G)
gate pull-down resistance
in off-state; VDSA/VDSB = 4 V;
IGDA/IGDB = 30 mA; VCC = 12 V
3.2
4
5
VG(max)
maximum gate voltage
VGDA/VGDB at VCC = 5 V
4.9
4.95
5.0
V
VGDA/VGDB at VCC = 12 V
10.5
10.75
11.0
V
VGDA/VGDB at VCC = 15 V to 38 V
11
12
13
V
TEA1995T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
9 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
11. Application information
A resonant switched mode power supply with the TEA1995T consists of a primary side
half-bridge, a transformer, a resonant capacitor, and an output stage. To obtain low
conduction loss rectification, SR MOSFETs are used in the output stage. The TEA1995T
controls these SR MOSFETs.
The gate drive voltage for the SR switch is derived from the voltage difference between
the corresponding drain sense and source sense pins.
Special attention must be paid to the connection of the drain sense and source sense
pins. The voltages measured on these pins are used for gate drive voltage. Wrong
measurement results in a less efficient gate drive because the gate voltage is either too
low or too high. The connections to these pins must not interfere with the power wiring.
The power wiring conducts currents with high dI/dt values. It can easily cause
measurement errors resulting from induced voltages due to parasitic inductances. The
separate source-sense pins enable the direct sensing of the source voltage of the external
MOSFETs. Using the current carrying power ground tracks is not allowed.
11.1 Application diagram resonant application
9LQ
4SULP
35,0$5<
6,'(
&21752//(5
&+%
75
4SULP
9RXW
&RXW
4VHF
,&
9&&
'6$
*'$
66$
4VHF
'6%
,&
*'%
66%
*1'
DDD
Fig 5.
TEA1995T
Product data sheet
Typical resonant application with TEA1995T
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
10 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
11.2 Application diagram multi-output flyback application
9RXW
75
9LQ
&RXW
9RXW
&RXW
4SULP
4VHF
,&
9&&
'6$
35,0$5<
6,'(
&21752//(5
*'$
66$
4VHF
'6%
,&
*'%
66%
*1'
DDD
Fig 6.
TEA1995T
Product data sheet
Multi-output flyback application with TEA1995T
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
11 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
12. Package outline
62SODVWLFVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP
627
'
(
$
;
F
\
+(
Y 0 $
=
4
$
$
$
$
SLQLQGH[
ș
/S
/
H
GHWDLO;
Z 0
ES
PP
VFDOH
',0(16,216LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV
81,7
$
PD[
$
$
$
ES
F
'
(
H
+(
/
/S
4
Y
Z
\
=
PP
LQFKHV ș
R
R
1RWHV
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
3ODVWLFRUPHWDOSURWUXVLRQVRIPPLQFKPD[LPXPSHUVLGHDUHQRWLQFOXGHG
Fig 7.
5()(5(1&(6
287/,1(
9(56,21
,(&
-('(&
627
(
06
-(,7$
(8523($1
352-(&7,21
,668('$7(
Package outline SOT96-1 (SO8)
TEA1995T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
12 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
13. Abbreviations
Table 6.
TEA1995T
Product data sheet
Abbreviations
Acronym
Description
SR
Synchronous Rectification
MOSFET
Metal-Oxide-Semiconductor Field-Effect Transistor
SOI
Silicon-On-Insulator
UVLO
UnderVoltage LockOut
ESD
ElectroStatic Discharge
HBM
Human Body Model
CDM
Charged Device Model
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
13 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
14. Revision history
Table 7.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
TEA1995T v.1
20150730
Product data sheet
-
-
TEA1995T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
14 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
15. Legal information
15.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
15.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
15.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
TEA1995T
Product data sheet
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
15 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
15.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
GreenChip — is a trademark of NXP Semiconductors N.V.
16. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
TEA1995T
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 30 July 2015
© NXP Semiconductors N.V. 2015. All rights reserved.
16 of 17
TEA1995T
NXP Semiconductors
GreenChip dual synchronous rectifier controller
17. Contents
1
2
2.1
2.2
2.3
3
4
5
6
6.1
6.2
7
7.1
7.2
7.3
7.4
7.5
7.6
8
9
10
11
11.1
11.2
12
13
14
15
15.1
15.2
15.3
15.4
16
17
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Efficiency features . . . . . . . . . . . . . . . . . . . . . . 1
Application features . . . . . . . . . . . . . . . . . . . . . 1
Control features . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pinning information . . . . . . . . . . . . . . . . . . . . . . 4
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
Functional description . . . . . . . . . . . . . . . . . . . 5
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Start-up and undervoltage lockout (VCC pin) . . 5
Drain sense (DSA and DSB pins). . . . . . . . . . . 5
Synchronous Rectification (SR; DSA, SSA,
DSB, and SSB pins) . . . . . . . . . . . . . . . . . . . . . 6
Gate driver (GDA and GDB pins) . . . . . . . . . . . 7
Source sense connection (SSA and SSB pins) 8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal characteristics . . . . . . . . . . . . . . . . . . 8
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Application information. . . . . . . . . . . . . . . . . . 10
Application diagram resonant application . . . . 10
Application diagram multi-output flyback
application . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 12
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 14
Legal information. . . . . . . . . . . . . . . . . . . . . . . 15
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 15
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Contact information. . . . . . . . . . . . . . . . . . . . . 16
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP Semiconductors N.V. 2015.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 30 July 2015
Document identifier: TEA1995T