3 nV/√Hz, Low Power Instrumentation Amplifier AD8421-EP Enhanced Product PIN CONNECTION DIAGRAM Supports defense and aerospace applications (AQEC standard) Military temperature range (−55°C to +125°C) Controlled manufacturing baseline One assembly/test site One fabrication site Enhanced product change notification Qualification data available on request GENERAL DESCRIPTION The AD8421-EP is a low cost, low power, extremely low noise, ultralow bias current, high speed instrumentation amplifier that is ideally suited for a broad spectrum of signal conditioning and data acquisition applications. This product features extremely high CMRR, allowing it to extract low level signals in the presence of high frequency common-mode noise over a wide temperature range. The 10 MHz bandwidth, 35 V/μs slew rate, and 0.6 μs settling time to 0.001% (G = 10) allow the AD8421-EP to amplify high speed signals and excel in applications that require high channel count, multiplexed systems. Even at higher gains, the current feedback architecture maintains high performance; for example, at G = 100, the bandwidth is 2 MHz and the settling time is 0.8 μs. The AD8421-EP has excellent distortion performance, making it suitable for use in demanding applications such as vibration analysis. Rev. 0 1 8 +VS RG 2 7 VOUT RG 3 6 REF +IN 4 5 –VS Figure 1. 10µ G = 100 BEST AVAILABLE 7mA LOW NOISE IN-AMP 1µ 100n 10n BEST AVAILABLE 1mA LOW POWER IN-AMP AD8421 RS NOISE ONLY 1n 100 1k 10k 100k SOURCE RESISTANCE, RS (Ω) 1M 11139-078 ENHANCED PRODUCT FEATURES AD8421-EP –IN TOP VIEW (Not to Scale) TOTAL NOISE DENSITY AT 1kHz (V/√Hz) Specified from −55°C to 125°C 0.9 μV/°C maximum input offset voltage drift 5 ppm/°C maximum gain drift (G = 1) Low power 2.3 mA maximum supply current Low noise 3.2 nV/√Hz maximum input voltage noise at 1 kHz 200 fA/√Hz current noise at 1 kHz Excellent ac specifications 2 MHz bandwidth (G = 100) 0.6 μs settling time to 0.001% (G = 10) 80 dB minimum CMRR at 20 kHz (G = 1) High precision dc performance 84 dB CMRR minimum (G = 1) 2 nA maximum input bias current Inputs protected to 40 V from opposite supply Gain set with a single resistor (G = 1 to 10,000) 11139-001 FEATURES Figure 2. Noise Density vs. Source Resistance The AD8421-EP delivers 3 nV/√Hz input voltage noise and 200 fA/√Hz current noise with only 2 mA quiescent current, making it an ideal choice for measuring low level signals. For applications with high source impedance, the AD8421-EP employs innovative process technology and design techniques to provide noise performance that is limited only by the sensor. The AD8421-EP uses unique protection methods to ensure robust inputs while still maintaining very low noise. This protection allows input voltages up to 40 V from the opposite supply rail without damage to the part. A single resistor sets the gain from 1 to 10,000. The reference pin can be used to apply a precise offset to the output voltage. The AD8421-EP is specified over the military temperature range of −55°C to +125°C. It is available in an 8-lead MSOP package. Additional application and technical information can be found in the AD8421 data sheet. Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD8421-EP Enhanced Product TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................6 General Description ......................................................................... 1 Pin Configuration and Function Descriptions..............................7 Revision History ............................................................................... 2 Typical Performance Characteristics ..............................................8 Specifications..................................................................................... 3 Outline Dimensions ....................................................................... 18 Absolute Maximum Ratings ............................................................ 6 Ordering Guide .......................................................................... 18 Thermal Resistance ...................................................................... 6 REVISION HISTORY 5/13—Revision 0: Initial Version Rev. 0 | Page 2 of 20 Enhanced Product AD8421-EP SPECIFICATIONS VS = ±15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted. Table 1. Parameter COMMON-MODE REJECTION RATIO (CMRR) CMRR DC to 60 Hz with 1 kΩ Source Imbalance G=1 G = 10 G = 100 G = 1000 Over Temperature, G = 1 CMRR at 20 kHz G=1 G = 10 G = 100 G = 1000 NOISE Voltage Noise, 1 kHz 1 Input Voltage Noise, eni Output Voltage Noise, eno Peak to Peak, RTI G=1 G = 10 G = 100 to 1000 Current Noise Spectral Density Peak to Peak, RTI VOLTAGE OFFSET 2 Input Offset Voltage, VOSI Over Temperature Average TC Output Offset Voltage, VOSO Over Temperature Average TC Offset RTI vs. Supply (PSR) G=1 G = 10 G = 100 G = 1000 INPUT CURRENT Input Bias Current Over Temperature Average TC Input Offset Current Over Temperature Average TC Test Conditions/ Comments Min Typ Max Unit VCM = −10 V to +10 V TA = −55°C to +125°C VCM = −10 V to +10 V 84 104 124 134 80 dB dB dB dB dB 80 90 100 100 dB dB dB dB VIN+, VIN− = 0 V 3 3.2 60 nV/√Hz nV/√Hz f = 0.1 Hz to 10 Hz f = 1 kHz f = 0.1 Hz to 10 Hz 2 0.5 0.07 µV p-p µV p-p µV p-p 200 18 fA/√Hz pA p-p VS = ±5 V to ±15 V TA = −55°C to +125°C 70 160 0.9 600 1.5 9 TA = −55°C to +125°C µV µV µV/°C µV mV µV/°C VS = ±2.5 V to ±18 V 90 110 124 130 120 120 130 140 1 TA = −55°C to +125°C 50 0.5 TA = −55°C to +125°C 1 Rev. 0 | Page 3 of 20 dB dB dB dB 2 8 2 3 nA nA pA/°C nA nA pA/°C AD8421-EP Parameter DYNAMIC RESPONSE Small Signal Bandwidth G=1 G = 10 G = 100 G = 1000 Settling Time 0.01% G=1 G = 10 G = 100 G = 1000 Settling Time 0.001% G=1 G = 10 G = 100 G = 1000 Slew Rate G = 1 to 100 GAIN 3 Gain Range Gain Error G=1 G = 10 to 1000 Gain Nonlinearity G=1 G = 10 to 1000 Gain vs. Temperature3 G=1 G>1 INPUT Input Impedance Differential Common Mode Input Operating Voltage Range 4 Over Temperature OUTPUT Output Swing Over Temperature Short-Circuit Current REFERENCE INPUT RIN IIN Voltage Range Reference Gain to Output Enhanced Product Test Conditions/ Comments Min Typ Max Unit −3 dB 10 10 2 0.2 MHz MHz MHz MHz 0.7 0.4 0.6 5 µs µs µs µs 1 0.6 0.8 6 µs µs µs µs 35 V/µs 10 V step 10 V step G = 1 + (9.9 kΩ/RG) 1 10,000 V/V 0.05 0.3 % % 1 3 50 10 ppm ppm ppm ppm 5 −80 ppm/°C ppm/°C −VS + 2.3 −VS + 2.5 −VS + 2.1 +VS − 1.8 +VS − 2.0 +VS − 1.8 GΩ||pF GΩ||pF V V V −VS + 1.2 −VS + 1.4 +VS − 1.7 +VS − 1.9 VOUT = ±10 V VOUT = −10 V to +10 V RL ≥ 2 kΩ RL = 600 Ω RL ≥ 600 Ω VOUT = −5 V to +5 V 1 30 5 30||3 30||3 VS = ±2.5 V to ±18 V TA = −55°C TA = +125°C RL = 2 kΩ VS = ±2.5 V to ±18 V TA = −55°C to +125°C 65 20 20 VIN+, VIN− = 0 V −VS 1± 0.0001 Rev. 0 | Page 4 of 20 24 +VS V V mA kΩ µA V V/V Enhanced Product Parameter POWER SUPPLY Operating Range Quiescent Current Over Temperature TEMPERATURE RANGE For Specified Performance AD8421-EP Test Conditions/ Comments Min Dual supply Single supply ±2.5 5 Typ 2 TA = −55°C to +125°C −55 Max Unit ±18 36 2.3 2.8 V V mA mA +125 °C Total voltage noise = √(eni2 + (eno/G)2 + eRG2). See the AD8421 data sheet for more information. Total RTI VOS = (VOSI) + (VOSO/G). 3 These specifications do not include the tolerance of the external gain setting resistor, RG. For G > 1, add RG errors to the specifications given in this table. 4 Input voltage range of the AD8421-EP input stage only. The input range can depend on the common-mode voltage, differential voltage, gain, and reference voltage. See the Typical Performance Characteristics section for more information. 1 2 Rev. 0 | Page 5 of 20 AD8421-EP Enhanced Product ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter Supply Voltage Output Short-Circuit Current Duration Maximum Voltage at −IN or +IN1 Minimum Voltage at −IN or +IN Maximum Voltage at REF2 Minimum Voltage at REF Storage Temperature Range Operating Temperature Range Maximum Junction Temperature ESD Human Body Model Charged Device Model Machine Model θJA is specified for a device in free air using a 4-layer JEDEC printed circuit board (PCB). Rating ±18 V Indefinite −VS + 40 V +VS − 40 V +VS + 0.3 V −VS − 0.3 V −65°C to +150°C −55°C to +125°C 150°C Table 3. Package 8-Lead MSOP ESD CAUTION 2 kV 1.25 kV 0.2 kV For voltages beyond these limits, use input protection resistors. See the AD8421 data sheet for more information. 2 There are ESD protection diodes from the reference input to each supply, so REF cannot be driven beyond the supplies in the same way that +IN and −IN can. See the AD8421 data sheet for more information. 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. 0 | Page 6 of 20 θJA 138.6 Unit °C/W Enhanced Product AD8421-EP –IN 1 RG AD8421-EP 8 +VS 2 7 VOUT RG 3 6 REF +IN 4 5 –VS TOP VIEW (Not to Scale) 11139-002 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 3. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1 2, 3 4 5 6 7 8 Mnemonic −IN RG +IN −VS REF VOUT +VS Description Negative Input Terminal. Gain Setting Terminals. Place resistor across the RG pins to set the gain. G = 1 + (9.9 kΩ/RG). Positive Input Terminal. Negative Power Supply Terminal. Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level shift the output. Output Terminal. Positive Power Supply Terminal. Rev. 0 | Page 7 of 20 AD8421-EP Enhanced Product TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VS = ±15 V, VREF = 0 V, RL = 2 kΩ, unless otherwise noted. 600 600 500 500 300 300 200 200 100 100 –40 –20 0 20 40 60 INPUT OFFSET VOLTAGE (µV) 0 –400 1000 1200 800 UNITS 1500 900 400 300 200 –0.5 0 0.5 1.0 1.5 0 100 200 300 400 600 600 2.0 INPUT BIAS CURRENT (nA) 0 –2.0 11139-004 UNITS 1200 –1.0 –100 Figure 7. Typical Distribution of Output Offset Voltage 1800 –1.5 –200 OUTPUT OFFSET VOLTAGE (µV) Figure 4. Typical Distribution of Input Offset Voltage 0 –2.0 –300 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 INPUT OFFSET CURRENT (nA) 11139-007 0 –60 11139-006 UNITS 400 11139-003 UNITS 400 Figure 8. Typical Distribution of Input Offset Current Figure 5. Typical Distribution of Input Bias Current 1600 1400 1400 1200 1200 1000 UNITS 600 400 400 200 200 –15 –10 –5 0 5 10 PSRR (µV/V) 15 20 0 –120 –90 –60 –30 0 30 60 90 CMRR (µV/V) Figure 9. Typical Distribution of CMRR (G = 1) Figure 6. Typical Distribution of PSRR (G = 1) Rev. 0 | Page 8 of 20 120 11139-008 0 –20 800 600 11139-005 UNITS 1000 800 Enhanced Product AD8421-EP 15 4 G=1 G = 100 VS = ±15V 3 COMMON-MODE VOLTAGE (V) VS = ±12V 5 0 –5 –10 0 5 10 15 –1 –2 –4 –4 –3 –2 –1 0 1 2 3 4 OUTPUT VOLTAGE (V) Figure 10. Input Common-Mode Voltage vs. Output Voltage; VS = ±12 V and ±15 V (G = 1) Figure 13. Input Common-Mode Voltage vs. Output Voltage; VS = ±2.5 V and ±5 V (G = 100) 40 G=1 VS = ±5V 3 30 VS = 5V G=1 20 2 INPUT CURRENT (mA) VS = ±2.5V 1 0 –1 10 0 –10 –20 –2 –30 –3 –2 –1 0 1 2 3 4 OUTPUT VOLTAGE (V) –40 –35 –30 –25 –20 –15 –10 –5 11139-010 –3 –4 0 5 10 15 20 25 30 35 40 INPUT VOLTAGE (V) Figure 11. Input Common-Mode Voltage vs. Output Voltage; VS = ±2.5 V and ±5 V (G = 1) 11139-013 COMMON-MODE VOLTAGE (V) VS = ±2.5V 0 11139-012 –5 11139-009 –10 OUTPUT VOLTAGE (V) Figure 14. Input Overvoltage Performance; G = 1, +VS = 5 V, −VS = 0 V 15 30 VS = ±15V G=1 VS = ±15V G = 100 20 10 INPUT CURRENT (mA) VS = ±12V 5 0 –5 –15 –15 10 0 –10 –20 –10 –10 –5 0 5 10 15 OUTPUT VOLTAGE (V) 11139-011 COMMON-MODE VOLTAGE (V) 1 –3 –15 –15 4 VS = ±5V 2 Figure 12. Input Common-Mode Voltage vs. Output Voltage; VS = ±12 V and ±15 V (G = 100) –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 INPUT VOLTAGE (V) Figure 15. Input Overvoltage Performance; G = 1, VS = ±15 V Rev. 0 | Page 9 of 20 11139-014 COMMON-MODE VOLTAGE (V) 10 AD8421-EP Enhanced Product 160 40 GAIN = 1000 140 GAIN = 100 POSITIVE PSRR (dB) 120 GAIN = 10 10 0 –10 100 GAIN = 1 80 60 –20 40 –30 20 –40 –35 –30 –25 –20 –15 –10 –5 0 5 10 15 20 25 30 35 40 INPUT VOLTAGE (V) 0 0.1 11139-015 INPUT CURRENT (mA) 20 1 100 1k FREQUENCY (Hz) 10k 100k 1M 100k 1M Figure 19. Positive PSRR vs. Frequency Figure 16. Input Overvoltage Performance; +VS = 5 V, −VS = 0 V, G = 100 160 30 GAIN = 1000 VS = ±15V G = 100 140 GAIN = 100 20 GAIN = 10 NEGATIVE PSRR (dB) 120 INPUT CURRENT (mA) 10 11139-018 30 VS = 5V G = 100 10 0 –10 GAIN = 1 100 80 60 40 –20 –10 –5 0 5 10 15 20 25 INPUT VOLTAGE (V) 0 0.1 1 2.0 60 1.5 50 1.0 40 0.5 30 GAIN (dB) 70 0 –0.5 20 0 –1.5 –10 –2.0 –20 –4 –2 0 2 4 6 8 10 12 COMMON-MODE VOLTAGE (V) 14 10k GAIN = 1000 GAIN = 100 GAIN = 10 10 –1.0 11139-017 BIAS CURRENT (nA) 2.5 –6 100 1k FREQUENCY (Hz) Figure 20. Negative PSRR vs. Frequency Figure 17. Input Overvoltage Performance; VS = ±15 V, G = 100 –2.5 –12 –10 –8 10 11139-019 –15 GAIN = 1 –30 100 1k 10k 100k FREQUENCY (Hz) Figure 21. Gain vs. Frequency Figure 18. Input Bias Current vs. Common-Mode Voltage Rev. 0 | Page 10 of 20 1M 10M 11139-020 –20 11139-016 –30 –25 20 Enhanced Product 160 6 GAIN = 1000 120 GAIN = 100 4 GAIN = 10 2 BIAS CURRENT (nA) 140 GAIN = 1 100 80 60 REPRESENTATIVE SAMPLES 0 –2 –4 –6 1 10 100 1k 10k 100k FREQUENCY (Hz) –8 –55 –40 –25 –10 11139-021 40 0.1 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 11139-125 CMRR (dB) AD8421-EP Figure 25. Input Bias Current vs. Temperature Figure 22. CMRR vs. Frequency 100 160 GAIN = 1000 80 140 REPRESENTATIVE SAMPLES GAIN = 1 60 CMRR (dB) 120 GAIN ERROR (µV/V) GAIN = 100 GAIN = 10 100 GAIN = 1 80 40 20 0 –20 –40 –60 60 10 100 1k 10k 100k FREQUENCY (Hz) –100 –55 –40 –25 –10 20 35 50 65 80 95 110 125 110 125 TEMPERATURE (°C) Figure 26. Gain vs. Temperature (G = 1) Figure 23. CMRR vs. Frequency, 1 kΩ Source Imbalance 15 2.0 REPRESENTATIVE SAMPLES GAIN = 1 10 1.5 CMRR (µV/V) 5 1.0 0.5 0 –5 0 –0.5 –10 0 5 10 15 20 25 30 35 40 45 50 WARM-UP TIME (Seconds) 11139-023 CHANGE IN INPUT OFFSET VOLTAGE (µV) 5 11139-126 1 11139-022 40 0.1 11139-127 –80 –15 –55 –40 –25 –10 5 20 35 50 65 80 95 TEMPERATURE (°C) Figure 27. CMRR vs. Temperature (G = 1) Figure 24. Change in Input Offset Voltage (VOSI) vs. Warm-Up Time Rev. 0 | Page 11 of 20 AD8421-EP 3.0 Enhanced Product 45 VS = ±15V 40 2.5 –SR 2.0 30 SLEW RATE (V/µs) SUPPLY CURRENT (mA) 35 1.5 1.0 +SR 25 20 15 10 0.5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) 0 –55 –40 –25 –10 +VS INPUT VOLTAGE (V) REFERRED TO SUPPLY VOLTAGES 20 0 –20 –40 –60 –80 ISHORT– 5 20 35 50 65 65 80 95 110 125 –1.0 –1.5 –2.0 –2.5 +2.5 +2.0 +1.5 +1.0 +0.5 80 95 110 125 TEMPERATURE (°C) –VS 11139-129 SHORT CIRCUIT CURRENT (mA) ISHORT+ –120 –55 –40 –25 –10 50 –55°C –40°C +25°C +85°C +105°C +125°C –0.5 –100 35 Figure 31. Slew Rate vs. Temperature, VS = ±5 V (G = 1) 80 40 20 TEMPERATURE (°C) Figure 28. Supply Current vs. Temperature (G = 1) 60 5 2 4 6 8 10 12 14 16 18 SUPPLY VOLTAGE (±VS) 11139-132 5 11139-128 0 –55 –40 –25 –10 11139-131 5 Figure 32. Input Voltage Limit vs. Supply Voltage Figure 29. Short-Circuit Current vs. Temperature (G = 1) 15 40 –SR 35 10 OUTPUT VOLTAGE SWING (V) +SR 25 20 15 10 5 0 –5 +125°C +105°C +85°C +25°C –40°C –55°C –10 0 –55 –40 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) –15 100 1k 10k LOAD (Ω) Figure 33. Output Voltage Swing vs. Load Resistance Figure 30. Slew Rate vs. Temperature, VS = ±15 V (G = 1) Rev. 0 | Page 12 of 20 100k 11139-135 5 11139-130 SLEW RATE (V/µs) 30 Enhanced Product AD8421-EP +VS –2 –4 GAIN = 1000 80 60 NONLINEARITY (ppm) –6 +6 +2 –20 –40 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 –8 –6 –4 –2 0 2 4 6 8 10 OUTPUT VOLTAGE (V) 11139-072 0.01 11139-136 0 –100 –10 Figure 37. Gain Nonlinearity (G = 1000), RL = 600 Ω, VOUT = ±10 V Figure 34. Output Voltage Swing vs. Output Current 5 100 GAIN = 1 GAIN = 1000 4 80 3 60 2 40 NONLINEARITY (ppm) 1 0 –1 –2 –3 20 RL = 600Ω 0 –20 –40 –60 RL = 2kΩ RL = 10kΩ –5 –10 –8 –6 –4 –2 0 2 4 6 8 –80 10 OUTPUT VOLTAGE (V) –100 –5 11139-035 –4 VOLTAGE NOISE SPECTRAL DENSITY (nV/√Hz) 3 2 1 RL = 600Ω –1 –2 –3 –4 –2 0 2 4 6 OUTPUT VOLTAGE (V) 8 10 11139-036 –4 –6 –1 0 1 2 3 4 5 1k GAIN = 1 4 –8 –2 Figure 38. Gain Nonlinearity (G = 1000), RL = 600 Ω, VOUT = ±5 V 5 –5 –10 –3 OUTPUT VOLTAGE (V) Figure 35. Gain Nonlinearity (G = 1), RL = 10 kΩ, 2 kΩ 0 –4 11139-073 NONLINEARITY (ppm) RL = 600Ω 0 –80 OUTPUT CURRENT (A) NONLINEARITY (ppm) 20 –60 +4 –VS 40 Figure 36. Gain Nonlinearity (G = 1), RL = 600 Ω 100 GAIN = 1 GAIN = 10 10 GAIN = 100 GAIN = 1000 1 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 39. RTI Voltage Noise Spectral Density vs. Frequency Rev. 0 | Page 13 of 20 11139-037 OUTPUT VOLTAGE SWING (V) REFERRED TO SUPPLY VOLTAGES 100 –55°C –40°C +25°C +85°C +105°C +125°C AD8421-EP Enhanced Product 30 G = 1000, 40nV/DIV OUTPUT VOLTAGE (V p-p) 25 G = 1, 1µV/DIV 15 10 0 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 40. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1, G = 1000) Figure 43. Large Signal Frequency Response 1k 5V/DIV 720ns TO 0.01% 1.12µs TO 0.001% 100 1 10 100 1k 10k 100k FREQUENCY (Hz) 1µs/DIV 11139-039 10 0.1 11139-041 0.002%/DIV Figure 41. Current Noise Spectral Density vs. Frequency Figure 44. Large Signal Pulse Response and Settling Time (G = 1), 10 V Step, VS = ±15 V, RL = 2 kΩ, CL = 100 pF 5V/DIV 420ns TO 0.01% 604ns TO 0.001% 5pA/DIV 1s/DIV 1µs/DIV Figure 42. 0.1 Hz to 10 Hz Current Noise 11139-042 0.002%/DIV 11139-040 CURRENT NOISE (fA/√Hz) 10k Figure 45. Large Signal Pulse Response and Settling Time (G = 10), 10 V Step, VS = ±15 V, RL = 2 kΩ, CL = 100 pF Rev. 0 | Page 14 of 20 11139-045 5 11139-038 1s/DIV 20 Enhanced Product AD8421-EP GAIN = 1 5V/DIV 704ns TO 0.01% 764ns TO 0.001% 50mV/DIV Figure 46. Large Signal Pulse Response and Settling Time (G = 100), 10 V Step, VS = ±15 V, RL = 2 kΩ, CL = 100 pF 1µs/DIV 11139-046 1µs/DIV 11139-043 0.002%/DIV Figure 49. Small Signal Pulse Response (G = 1), RL = 600 Ω, CL = 100 pF GAIN = 10 5V/DIV 3.8µs TO 0.01% 5.76µs TO 0.001% 50mV/DIV Figure 47. Large Signal Pulse Response and Settling Time (G = 1000), 10 V Step, VS = ±15 V, RL = 2 kΩ, CL = 100 pF 1µs/DIV 11139-047 4µs/DIV 11139-044 0.002%/DIV Figure 50. Small Signal Pulse Response (G = 10), RL = 600 Ω, CL = 100 pF 2500 GAIN = 100 1500 SETTLED TO 0.001% 1000 20mV/DIV GAIN = 1 0 2 4 6 8 10 12 14 16 18 20 STEP SIZE (V) Figure 48. Settling Time vs. Step Size (G = 1), RL = 2 kΩ, CL = 100 pF 1µs/DIV 11139-048 SETTLED TO 0.01% 500 11139-054 SETTLING TIME (ns) 2000 Figure 51. Small Signal Pulse Response (G = 100), RL = 600 Ω, CL = 100 pF Rev. 0 | Page 15 of 20 AD8421-EP Enhanced Product –40 GAIN = 1000 –50 –60 NO LOAD RL = 2kΩ RL = 600Ω VOUT = 10V p-p AMPLITUDE (dBc) –70 –80 –90 –100 –110 –120 11139-049 –130 2µs/DIV –140 –150 10 100 1k 10k FREQUENCY (Hz) Figure 52. Small Signal Pulse Response (G = 1000), RL = 600 Ω, CL = 100 pF 20pF 50pF NO LOAD 100pF 11139-056 20mV/DIV Figure 55. Third Harmonic Distortion vs. Frequency (G = 1) –40 G=1 –50 NO LOAD RL = 2kΩ RL = 600Ω VOUT = 10V p-p AMPLITUDE (dBc) –60 –70 –80 –90 1µs/DIV –110 –120 10 RL ≥ 600Ω Figure 56. Second Harmonic Distortion vs. Frequency (G = 1000) –40 VOUT = 10V p-p –70 –60 AMPLITUDE (dBc) –80 –90 –100 –110 –120 –70 –80 –90 –100 –130 –110 –140 100 1k 10k FREQUENCY (Hz) 11139-055 AMPLITUDE (dBc) VOUT = 10V p-p RL ≥ 600Ω –50 –60 –150 10 10k Figure 54. Second Harmonic Distortion vs. Frequency (G = 1) –120 10 100 1k 10k FREQUENCY (Hz) Figure 57. Third Harmonic Distortion vs. Frequency (G = 1000) Rev. 0 | Page 16 of 20 11139-076 –50 1k FREQUENCY (Hz) Figure 53. Small Signal Response with Various Capacitive Loads (G = 1), RL = Infinity –40 100 11139-075 50mV/DIV 11139-053 –100 Enhanced Product –20 –30 –40 G G G G AD8421-EP =1 = 10 = 100 = 1000 VOUT = 10V p-p RL = 2kΩ –60 –70 –80 –90 –100 –110 –120 –130 –140 10 100 1k FREQUENCY (Hz) 10k 11139-077 AMPLITUDE (dBc) –50 Figure 58. THD vs. Frequency Rev. 0 | Page 17 of 20 AD8421-EP Enhanced Product OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 6° 0° 0.23 0.09 0.80 0.55 0.40 COMPLIANT TO JEDEC STANDARDS MO-187-AA 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 Figure 59. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters ORDERING GUIDE Model 1 AD8421TRMZ-EP AD8421TRMZ-EP-R7 1 Temperature Range −55°C to +125°C −55°C to +125°C Package Description 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] Z = RoHS Compliant Part. Rev. 0 | Page 18 of 20 Package Option RM-8 RM-8 Branding Y4T Y4T Enhanced Product AD8421-EP NOTES Rev. 0 | Page 19 of 20 AD8421-EP Enhanced Product NOTES ©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11139-0-5/12(0) Rev. 0 | Page 20 of 20