Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp AD822-EP Supports defense and aerospace applications (AQEC standard) Military temperature range (−55°C to +125°C) Controlled manufacturing baseline One assembly/test site One fabrication site Enhanced product change notification Qualification data available on request APPLICATIONS Photodiode preamps Active filters 12-bit to 14-bit data acquisition systems Low power references and regulators 8 V+ OUT1 1 –IN1 2 7 OUT2 +IN1 3 6 –IN2 V– 4 AD822-EP 5 +IN2 Figure 1. 8-Lead SOIC_N (R Suffix) GENERAL DESCRIPTION The AD822-EP is a dual precision, low power FET input op amp that can operate from a single supply of 5 V to 30 V or dual supplies of ±2.5 V to ±15 V. It has true single-supply capability with an input voltage range extending below the negative rail, allowing the AD822 to accommodate input signals below ground in the single-supply mode. Output voltage swing extends to within 10 mV of each rail, providing the maximum output dynamic range. 100 10 1 10 100 1k FREQUENCY (Hz) 10k 09208-002 ENHANCED PRODUCT FEATURES CONNECTION DIAGRAM INPUT VOLTAGE NOISE (nV/√Hz) True single-supply operation Input voltage range extends below ground Output swings rail-to-rail Single-supply capability from 5 V to 30 V Dual-supply capability from ±2.5 V to ±15 V High load drive Capacitive load drive of 350 pF, G = +1 Minimum output current of 15 mA Excellent ac performance for low power 800 μA maximum quiescent current per amplifier Unity-gain bandwidth: 1.8 MHz Slew rate of 3 V/μs Good dc performance 800 μV maximum input offset voltage 2 μV/°C typical offset voltage drift 25 pA maximum input bias current Low noise 13 nV/√Hz @ 10 kHz No phase inversion 09208-001 FEATURES Figure 2. Input Voltage Noise vs. Frequency Offset voltage of 800 μV maximum, offset voltage drift of 2 μV/°C, input bias currents below 25 pA, and low input voltage noise provide dc precision with source impedances up to a gigaohm. The 1.8 MHz unity-gain bandwidth, –93 dB THD at 10 kHz, and 3 V/μs slew rate are provided with a low supply current of 800 μA per amplifier. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved. AD822-EP TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ......................................................... 10 Enhanced Product Features ............................................................ 1 Thermal Resistance .................................................................... 10 Applications....................................................................................... 1 ESD Caution................................................................................ 10 Connection Diagram ....................................................................... 1 Typical Performance Characteristics ........................................... 11 General Description ......................................................................... 1 Outline Dimensions ....................................................................... 18 Revision History ............................................................................... 2 Ordering Guide .......................................................................... 18 Specifications..................................................................................... 4 REVISION HISTORY 6/10—Revision 0: Initial Version Rev. 0 | Page 2 of 20 AD822-EP The AD822-EP drives up to 350 pF of direct capacitive load as a follower and provides a minimum output current of 15 mA. This allows the amplifier to handle a wide range of load conditions. Its combination of ac and dc performance, plus the outstanding load drive capability, results in an exceptionally versatile amplifier for the single-supply user. 1V 100 5V 90 VOUT 10 0V (GND) Rev. 0 | Page 3 of 20 .... .... .... .... .... .... .... .... .... .... 1V Figure 3. Gain-of-2 Amplifier; VS = 5 V, 0 V, VIN = 2.5 V Sine Centered at 1.25 V, RL = 100 Ω 09208-003 0% Full details about this enhanced product are available in the AD822 data sheet, which should be consulted in conjunction with this data sheet. 20µs . The AD822-EP operates over the military temperature range of −55°C to +125°C. The AD822-EP is offered in an 8-lead SOIC_N package. 1V .... .... .... .... .... .... .... .... .... .... AD822-EP SPECIFICATIONS VS = 0 V, 5 V @ TA = 25°C, VCM = 0 V, VOUT = 0.2 V, unless otherwise noted. Table 1. Parameter DC PERFORMANCE Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current At TMAX Input Offset Current At TMAX Open-Loop Gain Test Conditions/Comments VOUT = 0.2 V to 4 V RL = 100 kΩ RL = 10 kΩ TMIN to TMAX RL = 1 kΩ T Grade Typ 0.1 0.5 2 2 0.5 2 0.5 VCM = 0 V to 4 V TMIN to TMAX TMIN to TMAX NOISE/HARMONIC PERFORMANCE Input Voltage Noise f = 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz Input Current Noise f = 0.1 Hz to 10 Hz f = 1 kHz Harmonic Distortion f = 10 kHz DYNAMIC PERFORMANCE Unity-Gain Frequency Full Power Response Slew Rate Settling Time To 0.1% To 0.01% MATCHING CHARACTERISTICS Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current Crosstalk @ f = 1 kHz Crosstalk @ f = 100 kHz Min 500 400 80 80 15 10 Max Unit 0.8 1.2 mV mV μV/°C pA nA pA nA 25 6 20 1000 V/mV V/mV V/mV V/mV V/mV V/mV 150 30 2 25 21 16 13 μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz 18 0.8 fA p-p fA/√Hz −93 dB VOUT p-p = 4.5 V 1.8 210 3 MHz kHz V/μs VOUT = 0.2 V to 4.5 V VOUT = 0.2 V to 4.5 V 1.4 1.8 μs μs RL = 10 kΩ to 2.5 V VOUT = 0.25 V to 4.75 V 1.0 1.6 3 20 RL = 5 kΩ RL = 5 kΩ Rev. 0 | Page 4 of 20 −130 −93 mV mV μV/°C pA dB dB AD822-EP Parameter INPUT CHARACTERISTICS Input Voltage Range 1 , TMIN to TMAX Common-Mode Rejection Ratio (CMRR) TMIN to TMAX Input Impedance Differential Common Mode OUTPUT CHARACTERISTICS Output Saturation Voltage 2 VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL – VEE TMIN to TMAX VCC − VOH TMIN to TMAX Operating Output Current TMIN to TMAX Capacitive Load Drive POWER SUPPLY Quiescent Current, TMIN to TMAX Power Supply Rejection TMIN to TMAX Test Conditions/Comments Min VCM = 0 V to 2 V VCM = 0 V to 2 V −0.2 66 66 T Grade Typ Max Unit +4 80 V dB dB 1013||0.5 1013||2.8 Ω||pF Ω||pF ISINK = 20 μA 5 ISOURCE = 20 μA 10 ISINK = 2 mA 40 ISOURCE = 2 mA 80 ISINK = 15 mA 300 ISOURCE = 15 mA 800 7 10 14 20 55 80 110 160 500 1000 1500 1900 mV mV mV mV mV mV mV mV mV mV mV mV mA mA pF 1.6 mA dB dB 15 12 350 V+ = 5 V to 15 V 1 66 66 1.24 80 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply. 2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference between the highest possible output voltage (VOH) and the positive supply voltage (VCC). Rev. 0 | Page 5 of 20 AD822-EP VS = ±5 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise noted. Table 2. Parameter DC PERFORMANCE Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current At TMAX Input Offset Current At TMAX Open-Loop Gain Test Conditions/Comments VOUT = −4 V to +4 V RL = 100 kΩ RL = 10 kΩ TMIN to TMAX RL = 1 kΩ T Grade Typ 0.1 0.5 2 2 0.5 2 0.5 VCM = −5 V to +4 V TMIN to TMAX TMIN to TMAX NOISE/HARMONIC PERFORMANCE Input Voltage Noise f = 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz Input Current Noise f = 0.1 Hz to 10 Hz f = 1 kHz Harmonic Distortion f = 10 kHz DYNAMIC PERFORMANCE Unity-Gain Frequency Full Power Response Slew Rate Settling Time to 0.1% to 0.01% MATCHING CHARACTERISTICS Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current Crosstalk @ f = 1 kHz Crosstalk @ f = 100 kHz INPUT CHARACTERISTICS Input Voltage Range 1 , TMIN to TMAX Common-Mode Rejection Ratio (CMRR) TMIN to TMAX Input Impedance Differential Common Mode Min 400 400 80 80 20 10 Max Unit 0.8 1.5 mV mV μV/°C pA nA pA nA 25 6 20 1000 V/mV V/mV V/mV V/mV V/mV V/mV 150 30 2 25 21 16 13 μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz 18 0.8 fA p-p fA/√Hz −93 dB VOUT p-p = 9 V 1.9 105 3 MHz kHz V/μs VOUT = 0 V to ±4.5 V VOUT = 0 V to ±4.5 V 1.4 1.8 μs μs RL = 10 kΩ VOUT = ±4.5 V 1.0 3 3 25 RL = 5 kΩ RL = 5 kΩ VCM = −5 V to +2 V VCM = −5 V to +2 V Rev. 0 | Page 6 of 20 −130 −93 −5.2 66 66 +4 mV mV μV/°C pA dB dB 80 V dB dB 1013||0.5 1013||2.8 Ω||pF Ω||pF AD822-EP Parameter OUTPUT CHARACTERISTICS Output Saturation Voltage 2 VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX Operating Output Current TMIN to TMAX Capacitive Load Drive POWER SUPPLY Quiescent Current, TMIN to TMAX Power Supply Rejection TMIN to TMAX 1 2 Test Conditions/Comments Min T Grade Typ ISINK = 20 μA 5 ISOURCE = 20 μA 10 ISINK = 2 mA 40 ISOURCE = 2 mA 80 ISINK = 15 mA 300 ISOURCE = 15 mA 800 Max Unit 7 10 14 20 55 80 110 160 500 1000 1500 1900 mV mV mV mV mV mV mV mV mV mV mV mV mA mA pF 1.6 mA dB dB 15 12 350 VSY = ±5 V to ±15 V 66 66 1.3 80 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply. VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference between the highest possible output voltage (VOH) and the positive supply voltage (VCC). Rev. 0 | Page 7 of 20 AD822-EP VS = ±15 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise noted. Table 3. Parameter DC PERFORMANCE Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current At TMAX Input Offset Current At TMAX Open-Loop Gain Test Conditions/Comments VOUT = −10 V to +10 V RL = 100 kΩ RL = 10 kΩ TMIN to TMAX RL = 1 kΩ T Grade Typ 0.4 0.5 2 2 40 0.5 2 0.5 VCM = 0 V VCM = −10 V VCM = 0 V TMIN to TMAX TMIN to TMAX NOISE/HARMONIC PERFORMANCE Input Voltage Noise f = 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz Input Current Noise f = 0.1 Hz to 10 Hz f = 1 kHz Harmonic Distortion f = 10 kHz DYNAMIC PERFORMANCE Unity-Gain Frequency Full Power Response Slew Rate Settling Time to 0.1% to 0.01% MATCHING CHARACTERISTICS Initial Offset Maximum Offset Over Temperature Offset Drift Input Bias Current Crosstalk @ f = 1 kHz Crosstalk @ f = 100 kHz INPUT CHARACTERISTICS Input Voltage Range 1 , TMIN to TMAX Common-Mode Rejection Ratio (CMRR) TMIN to TMAX Input Impedance Differential Common Mode Min 500 500 100 100 30 20 Max Unit 2 3 mV mV μV/°C pA pA nA pA nA 25 6 20 2000 V/mV V/mV V/mV V/mV V/mV V/mV 500 45 2 25 21 16 13 μV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz 18 0.8 fA p-p fA/√Hz −85 dB VOUT p-p = 20 V 1.9 45 3 MHz kHz V/μs VOUT = 0 V to ±10 V VOUT = 0 V to ±10 V 4.1 4.5 μs μs RL = 10 kΩ VOUT = ±10 V 3 4 3 25 RL = 5 kΩ RL = 5 kΩ VCM = −15 V to +12 V VCM = −15 V to +12 V Rev. 0 | Page 8 of 20 −130 −93 −15.2 70 70 +14 mV mV μV/°C pA dB dB 80 V dB dB 1013||0.5 1013||2.8 Ω||pF Ω||pF AD822-EP Parameter OUTPUT CHARACTERISTICS Output Saturation Voltage 2 VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX VOL − VEE TMIN to TMAX VCC − VOH TMIN to TMAX Operating Output Current TMIN to TMAX Capacitive Load Drive POWER SUPPLY Quiescent Current, TMIN to TMAX Power Supply Rejection TMIN to TMAX 1 2 Test Conditions/Comments Min T Grade Typ ISINK = 20 μA 5 ISOURCE = 20 μA 10 ISINK = 2 mA 40 ISOURCE = 2 mA 80 ISINK = 15 mA 300 ISOURCE = 15 mA 800 Max Unit 7 10 14 20 55 80 110 160 500 1000 1500 1900 mV mV mV mV mV mV mV mV mV mV mV mV mA mA pF 1.8 mA dB dB 20 15 350 VSY = ±5 V to ±15 V 70 70 1.4 80 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply. VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference between the highest possible output voltage (VOH) and the positive supply voltage (VCC). Rev. 0 | Page 9 of 20 AD822-EP ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Supply Voltage Internal Power Dissipation 8-Lead SOIC_N (R) Input Voltage Output Short-Circuit Duration Differential Input Voltage Storage Temperature Range (R) Operating Temperature Range Maximum Junction Temperature Lead Temperature (Soldering, 60 sec) θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Rating ±18 V Table 5. Thermal Resistance Observe Maximum Junction Temperature ((V+) + 0.2 V) to ((V−) − 20 V) Indefinite ±30 V –65°C to +150°C −55°C to +125°C 150°C 260°C Package Type 8-lead SOIC_N (R) ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. 0 | Page 10 of 20 θJA 160 θJC 43 Unit °C/W AD822-EP TYPICAL PERFORMANCE CHARACTERISTICS 70 5 VS = 0V, 5V INPUT BIAS CURRENT (pA) NUMBER OF UNITS 60 50 40 30 20 0 VS = 0V, +5V AND ±5V VS = ±5V –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 OFFSET VOLTAGE (mV) 0.3 0.4 0.5 –5 –5 09208-004 0 –0.5 Figure 4. Typical Distribution of Offset Voltage (390 Units) –3 –2 –1 0 1 2 COMMON-MODE VOLTAGE (V) 4 3 5 Figure 7. Input Bias Current vs. Common-Mode Voltage; VS = 5 V, 0 V, and VS = ±5 V 16 1k VS = ±5V VS = ±15V INPUT BIAS CURRENT (pA) 14 12 10 % IN BIN –4 09208-007 10 8 6 4 100 10 1 –8 –6 –4 –2 0 2 4 6 OFFSET VOLTAGE DRIFT (µV/°C) 8 10 0.1 –16 09208-005 0 –12 –10 Figure 5. Typical Distribution of Offset Voltage Drift (100 Units) –8 –4 0 4 8 COMMON-MODE VOLTAGE (V) –12 12 16 09208-008 2 Figure 8. Input Bias Current vs. Common-Mode Voltage; VS = ±15 V 50 100k 45 10k INPUT BIAS CURRENT (pA) 35 30 25 20 15 10 1k 100 10 1 0 0 1 2 3 4 5 6 7 INPUT BIAS CURRENT (pA) 8 9 10 Figure 6. Typical Distribution of Input Bias Current (213 Units) 0.1 20 40 60 80 100 TEMPERATURE (°C) 120 140 Figure 9. Input Bias Current vs. Temperature; VS = 5 V, VCM = 0 V Rev. 0 | Page 11 of 20 09208-009 5 09208-006 NUMBER OF UNITS 40 AD822-EP 40 INPUT ERROR VOLTAGE (µV) OPEN-LOOP GAIN (V/V) 10M VS = ±15V 1M VS = 0V, +5V VS = 0V, +3V 100k RL = 20kΩ 20 POS RAIL RL = 2kΩ NEG RAIL POS RAIL 0 POS RAIL –20 NEG RAIL RL = 100kΩ 100k NEG RAIL –40 60 120 180 240 OUTPUT VOLTAGE FROM SUPPLY RAILS (mV) 300 Figure 13. Input Error Voltage with Output Voltage Within 300 mV of Either Supply Rail for Various Resistive Loads; VS = ±5 V Figure 10. Open-Loop Gain vs. Load Resistance 10M INPUT VOLTAGE NOISE (nV/√Hz) 1k RL = 100kΩ OPEN-LOOP GAIN (V/V) 0 09208-013 1k 10k LOAD RESISTANCE (Ω) 09208-010 10k 100 VS = ±15V 1M VS = 0V, +5V VS = ±15V RL = 10kΩ VS = 0V, +5V 100k VS = ±15V RL = 600Ω 100 10 –20 0 20 40 60 80 TEMPERATURE (°C) 100 120 140 1 1 1k 10k Figure 14. Input Voltage Noise vs. Frequency Figure 11. Open-Loop Gain vs. Temperature 300 –40 –50 200 RL = 10kΩ ACL = –1 –60 100 RL = 10kΩ RL = 100kΩ THD (dB) INPUT ERROR VOLTAGE (V) 100 FREQUENCY (Hz) 10 09208-014 –40 09208-011 VS = 0V, +5V 10k –60 0 –70 VS = 0V, +3V; VOUT = 2.5V p-p –80 VS = ±15V; VOUT = 20V p-p –100 –90 RL = 600Ω –200 VS = ±5V; VOUT = 9V p-p –100 –8 –4 0 4 OUTPUT VOLTAGE (V) 8 12 16 Figure 12. Input Error Voltage vs. Output Voltage for Resistive Loads –110 100 1k 10k FREQUENCY (Hz) 100k Figure 15. Total Harmonic Distortion (THD) vs. Frequency Rev. 0 | Page 12 of 20 09208-015 –12 09208-012 VS = 0V, +5V; VOUT = 4.5V p-p –300 –16 AD822-EP 100 100 80 80 90 GAIN 40 40 20 20 PHASE MARGIN (Degrees) 60 60 0 0 RL = 2kΩ CL = 100pF 60 50 40 30 20 10 1k 100 10k 100k FREQUENCY (Hz) –20 10M 1M 0 10 Figure 16. Open-Loop Gain and Phase Margin vs. Frequency 100 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 19. Common-Mode Rejection vs. Frequency 1k 5 COMMON-MODE ERROR VOLTAGE (mV) ACL = +1 VS = ±15V 100 OUTPUT IMPEDANCE (Ω) VS = 0V, +5V VS = 0V, +3V 09208-019 –20 10 VS = ±15V 70 09208-016 OPEN-LOOP GAIN (dB) PHASE COMMON-MODE REJECTION (dB) 80 10 1 0.1 NEGATIVE RAIL 4 POSITIVE RAIL 3 +25°C 2 +125°C –55°C 1 –55°C 10k 100k FREQUENCY (Hz) 1k 1M 10M 0 –1 3 Figure 20. Absolute Common-Mode Error vs. Common-Mode Voltage from Supply Rails (VS − VCM) Figure 17. Output Impedance vs. Frequency 1000 8 OUTPUT SATURATION VOLTAGE (mV) 12 1% 4 0.01% ERROR 0.1% 0 0.01% –4 1% –8 –16 0 1 2 3 SETTLING TIME (µs) 4 5 09208-018 –12 Figure 18. Output Swing and Error vs. Settling Time 100 VS – VOH VOL – VS 10 0 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 Figure 21. Output Saturation Voltage vs. Load Current Rev. 0 | Page 13 of 20 100 09208-021 16 OUTPUT SWING FROM 0 TO ±VOLTS 0 1 2 COMMON-MODE VOLTAGE FROM SUPP LY RAILS (V) 09208-020 0.01 100 09208-017 +125°C AD822-EP 100 90 POWER SUPPLY REJECTION (dB) ISOURCE = 10mA ISINK = 10mA 100 ISOURCE = 1mA ISINK = 1mA 10 ISOURCE = 10µA ISINK = 10µA 80 70 +PSRR 60 50 40 –PSRR 30 20 1 –60 –40 –20 0 60 20 40 80 TEMPERATURE (°C) 100 120 140 0 10 100 10k 100k FREQUENCY (Hz) 1M 10M Figure 25. Power Supply Rejection vs. Frequency Figure 22. Output Saturation Voltage vs. Temperature 30 80 70 VS = ±15V RL = 2kΩ 25 VS = ±15V 60 50 OUTPUT VOLTAGE (V) SHORT-CIRCUIT CURRENT LIMIT (mA) 1k 09208-025 10 09208-022 OUTPUT SATURATION VOLTAGE (mV) 1000 –OUT VS = ±15V 40 VS = 0V, +5V 30 + VS = 0V, +3V – – 20 VS = 0V, +5V 10 + + VS = 0V, +3V 20 15 10 5 VS = 0V, +5V –20 0 20 40 60 80 TEMPERATURE (°C) 100 120 140 Figure 23. Short-Circuit Current Limit vs. Temperature T = +125°C 1400 T = –55°C 1000 800 600 400 200 4 8 12 16 20 24 28 TOTAL SUPPLY VOLTAGE (V) 32 36 09208-024 QUIESCENT CURRENT (µA) T = +25°C 1200 0 100k 1M FREQUENCY (Hz) Figure 26. Large Signal Frequency Response 1600 0 0 10k Figure 24. Quiescent Current vs. Supply Voltage vs. Temperature Rev. 0 | Page 14 of 20 10M 09208-026 –40 09208-023 VS = 0V, +3V 0 –60 AD822-EP –70 5V 5µs –80 100 90 CROSSTALK (dB) –90 –100 –110 –120 10 0% –140 300 1k 3k 10k 30k FREQUENCY (Hz) 100k 300k 09208-028 09208-032 –130 1M Figure 31. Large Signal Response Unity-Gain Follower; VS = ±15 V, RL = 10 kΩ Figure 27. Crosstalk vs. Frequency 10mV V+ 0.01µF 100 90 8 + VIN 500ns 1/2 AD822-EP VOUT 100pF RL – 09208-029 0.01µF 4 10 Figure 28. Unity-Gain Follower 09208-033 0% 5V Figure 32. Small Signal Response Unity-Gain Follower; VS = ±15 V, RL = 10 kΩ 10µs 100 90 1V 2µs 100 90 10 09208-030 0% 10 GND VOUT Figure 33. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 4 V Step V+ 20kΩ 20V p-p 3 AD822-EP 0.01µF 7 1 + 5kΩ 1/2 AD822-EP 5kΩ 8 6 VIN + 1/2 AD822-EP 5 RL – 100pF 4 CROSSTALK = 20 log VOUT 10VIN 0.1µF V– 1µF 09208-031 VIN Figure 30. Crosstalk Test Circuit Rev. 0 | Page 15 of 20 VOUT 09208-035 1/2 V+ 1µF + – 2.2kΩ – 2 8 0.1µF 09208-034 Figure 29. 20 V p-p, 25 kHz Sine Wave Input; Unity-Gain Follower; VS = ±15 V, RL = 600 Ω 0% Figure 34. Unity-Gain Follower AD822-EP VIN 10kΩ 20kΩ VOUT V+ 10mV 2µs 0.01µF 100 8 90 – 1/2 AD822-EP + 100pF 09208-036 RL 4 10 Figure 35. Gain-of-Two Inverter 0% 09208-039 GND 1V 2µs Figure 38. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 20 mV Step, Centered 20 mV Below Ground, RL = 10 kΩ 100 90 1V 2µs 100 10 0% 09208-037 GND 10 Figure 36. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 5 V Step 09208-040 GND 10mV Figure 39. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 2.5 V Step, Centered −1.25 V Below Ground, RL = 10 kΩ 2µs 100 90 500mV 10µs 100 90 10 0% 09208-038 GND 10 Figure 37. VS = 5 V, 0 V; Unity-Gain Follower Response to 40 mV Step, Centered 40 mV above Ground, RL = 10 kΩ 0% 09208-041 GND Figure 40. VS = 3 V, 0 V; Gain-of-2 Inverter, VIN = 1.25 V, 25 kHz, Sine Wave Centered at −0.75 V, RL = 600 Ω Rev. 0 | Page 16 of 20 AD822-EP 1V 100 10µs .... .... .... .... .... .... .... .... .... .... 90 10 GND 0% .... .... .... .... .... .... .... .... .... .... 1V (a) 1V +Vs 100 10µs 1V .... .... .... .... ... ... .... .... .... .... 90 10 0% .... .... .... .... .... .... .... .... .... .... 1V (b) 5V RP VIN VOUT 09208-042 GND Figure 41. (a) Response with RP = 0; VIN from 0 V to +VS (b) VIN = 0 V to +VS + 200 mV VOUT = 0 V to +VS RP = 49.9 kΩ Rev. 0 | Page 17 of 20 AD822-EP OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 012407-A 8 4.00 (0.1574) 3.80 (0.1497) Figure 42. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model 1 AD822TRZ-EP AD822TRZ-EP-R7 1 Temperature Range −55°C to +125°C −55°C to +125°C Package Description 8-Lead SOIC_N 8-Lead SOIC_N Z = RoHS Compliant Part. SPICE model is available at www.analog.com. Rev. 0 | Page 18 of 20 Package Option R-8 R-8 AD822-EP NOTES Rev. 0 | Page 19 of 20 AD822-EP NOTES ©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09208-0-6/10(0) Rev. 0 | Page 20 of 20