E12108

Intelligent Panel Controller Pro for Standard Frame System
CXD4732R
1. Description
The CXD4732R performs picture quality enhancement signal processing for post-scaling full-HD and WXGA progressive
scan signals. This IC can achieve high-end picture quality easily, and provides even further added value in end products.
The CXD4732R has high-performance MC-3DNR functions, Super resolution functions, dynamic contrast functions, and
color representation improvement functions.
The device is provided a 128-pin LQFP package. Neither external DRAM nor any special firmware is required.
(Applications: LCD TV, Panel Module)
2. Features
◆ High performance video processing
◆ 3D
noise reduction combined with motion compensation(MC-3DNR)
◆ MPEG-NR,
◆ Gradation
◆ Super
especially effective for mosquito noise, block noise
creation
Resolution
◆ Screen
division contrast enhancement
◆ Chromaticity
◆ 2D
diagram based color conversion
Sharpness
◆ Basic
user controls : static contrast, color saturation, brightness
◆ Digital
Gamma Function with two selectable 12bit GBR independent LUT
◆ Dither
Function for 8bit panel system
◆ IC Interface
◆ LVDS
receiver and transmitter which support single/dual links 8bit GBR or 10bit GBR
◆ Tolerates
◆ SSCG
Spread Spectrum clock at the LVDS input
(Spread Spectrum Clock Generator) for LVDS Tx clock
◆ Support
display resolutions WXGA(1366x768p) or Full-HD(1920x1080p)
◆ Support
I2C Slave Interface for external host CPU (100kHz~400kHz)
◆ Support
I2C Master Interface for stand-alone startup with 64kbit or 128kbit external EEPROM (optional)
1
E12108
CXD4732R
Contents
1.
Description --------------------------------------------------------------------------------------------------------------------------------------- 1
2.
Features ------------------------------------------------------------------------------------------------------------------------------------------ 1
Contents----------------------------------------------------------------------------------------------------------------------------------------------------- 2
3.
Package ------------------------------------------------------------------------------------------------------------------------------------------ 5
4.
Structure ------------------------------------------------------------------------------------------------------------------------------------------ 5
5.
Block Diagram----------------------------------------------------------------------------------------------------------------------------------- 5
6.
Pin Configuration ------------------------------------------------------------------------------------------------------------------------------- 6
7.
Pin Description ---------------------------------------------------------------------------------------------------------------------------------- 7
8.
Electrical Characteristics ------------------------------------------------------------------------------------------------------------------- 12
8.1.
Absolute Maximum Ratings ------------------------------------------------------------------------------------------------------------ 12
8.2.
Recommended Operating Conditions ----------------------------------------------------------------------------------------------- 12
8.3.
DC characteristics ------------------------------------------------------------------------------------------------------------------------ 13
8.3.1.
Digital In/Out Terminal---------------------------------------------------------------------------------------------------------------- 13
8.3.2.
LVDS Receiver ------------------------------------------------------------------------------------------------------------------------- 13
8.3.3.
LVDS Transmitter---------------------------------------------------------------------------------------------------------------------- 14
8.4.
AC characteristics ------------------------------------------------------------------------------------------------------------------------ 15
8.4.1.
System Clock and Reset Input ----------------------------------------------------------------------------------------------------- 15
8.4.2
I C Slave Interface -------------------------------------------------------------------------------------------------------------------- 16
8.4.3.
I C Master Interface ------------------------------------------------------------------------------------------------------------------ 17
8.4.4.
LVDS Receiver ------------------------------------------------------------------------------------------------------------------------- 18
8.4.5.
LVDS Transmitter---------------------------------------------------------------------------------------------------------------------- 19
9.
2
2
Description of Functions -------------------------------------------------------------------------------------------------------------------- 20
9.1.
LVDS Receiver ---------------------------------------------------------------------------------------------------------------------------- 20
9.1.1.
Picture Size ----------------------------------------------------------------------------------------------------------------------------- 21
9.1.2.
Link Swap Function,
9.1.3.
Video Clock Selector ----------------------------------------------------------------------------------------------------------------- 21
9.1.4.
8-bit /10-bit Input Mode Selector -------------------------------------------------------------------------------------------------- 21
9.1.5.
Support Frequency Range ---------------------------------------------------------------------------------------------------------- 22
9.1.6.
Video Sync Mode---------------------------------------------------------------------------------------------------------------------- 22
Master/Slave Link --------------------------------------------------------------------------------------- 21
9.1.6.1.
Sync through Mode---------------------------------------------------------------------------------------------------------------- 22
9.1.6.2.
Sync through Mode---------------------------------------------------------------------------------------------------------------- 22
9.1.7.
LVDS Data Format -------------------------------------------------------------------------------------------------------------------- 23
9.1.8.
[Important] Restrictions for VS,HS,DE ------------------------------------------------------------------------------------------- 24
9.2.
LVDS Transmitter ------------------------------------------------------------------------------------------------------------------------- 26
9.2.1.
Link Swap Function ------------------------------------------------------------------------------------------------------------------- 26
9.2.2.
8-bit / 10-bit Output Mode Selector ----------------------------------------------------------------------------------------------- 27
9.2.3.
LVDS Tx Output Differential Voltage Adjusting -------------------------------------------------------------------------------- 27
9.2.4.
LVDS Tx Output Disable ------------------------------------------------------------------------------------------------------------- 27
2
CXD4732R
9.2.5.
Spread-spectrum Clock Generator (SSCG) for LVDS Tx ------------------------------------------------------------------- 27
9.2.6.
Spread-spectrum Clock Tracking Capability of LVDS Rx ------------------------------------------------------------------- 28
9.3.
Color Management ----------------------------------------------------------------------------------------------------------------------- 29
9.3.1.
Color Control Algorithm -------------------------------------------------------------------------------------------------------------- 29
9.3.2.
Gray Out Function--------------------------------------------------------------------------------------------------------------------- 30
9.4.
Intelligent Contrast Enhancer(iCE) ----------------------------------------------------------------------------------------------- 31
9.4.1
Brightness Contrast Gain Control ------------------------------------------------------------------------------------------------- 31
9.4.2
Color Contrast Gain Control -------------------------------------------------------------------------------------------------------- 32
9.4.3.
Black level Control -------------------------------------------------------------------------------------------------------------------- 33
9.5.
2D-Sharpness ----------------------------------------------------------------------------------------------------------------------------- 35
9.6.
Basic user Controls----------------------------------------------------------------------------------------------------------------------- 37
9.7.
MC-3DNR ----------------------------------------------------------------------------------------------------------------------------------- 37
9.8.
Basic user Controls----------------------------------------------------------------------------------------------------------------------- 37
9.9.
SUPER RESOLUTON ------------------------------------------------------------------------------------------------------------------- 38
9.10.
Digital Gamma Function ---------------------------------------------------------------------------------------------------------------- 39
9.11.
Dither----------------------------------------------------------------------------------------------------------------------------------------- 40
9.11.1.
FRC (Frame rate conversion)--------------------------------------------------------------------------------------------------- 40
9.11.2.
Pattern Dither ----------------------------------------------------------------------------------------------------------------------- 40
10.
Description of Operation -------------------------------------------------------------------------------------------------------------------- 41
10.1.
Power and Reset Sequence ----------------------------------------------------------------------------------------------------------- 41
10.1.1.
Turn on Sequence without External EEPROM ----------------------------------------------------------------------------- 41
10.1.2.
Turn on Sequence with External EEPROM --------------------------------------------------------------------------------- 42
10.2.
Gamma Correction Look-up Table Setup ------------------------------------------------------------------------------------------- 43
10.2.1.
Initializing Gamma LUT Group-A ---------------------------------------------------------------------------------------------- 43
10.2.2.
Initializing Gamma LUT Group-B ---------------------------------------------------------------------------------------------- 44
10.3.
Host I/F -------------------------------------------------------------------------------------------------------------------------------------- 45
2
10.3.1.
I C Slave Interface----------------------------------------------------------------------------------------------------------------- 45
10.3.2.
I C Slave Write Cycle ------------------------------------------------------------------------------------------------------------- 45
10.3.3.
I C Slave Read Cycle ------------------------------------------------------------------------------------------------------------- 45
10.3.4.
I C Slave Page Address---------------------------------------------------------------------------------------------------------- 46
10.3.5.
I C Master Interface --------------------------------------------------------------------------------------------------------------- 47
10.3.6.
I C Bus through mode ------------------------------------------------------------------------------------------------------------ 48
11.
2
2
2
2
2
Control Register Map ------------------------------------------------------------------------------------------------------------------------ 49
2
11.1.
I C Slave Address ------------------------------------------------------------------------------------------------------------------------ 49
11.2.
I C Page Address Map ------------------------------------------------------------------------------------------------------------------ 49
11.3.
I C Sub Address Map -------------------------------------------------------------------------------------------------------------------- 51
2
2
11.3.1.
Common Registers (No Page Address, Sub Address = E0h~FFh) --------------------------------------------------- 51
11.3.2.
EXPRESSION Control Registers (Page Address = 00h, Sub Address = 00h~DFh) ------------------------------ 51
11.3.3.
Digital Gamma Function Look-up Table Registers (Page Address = 01h~18h, Sub Address = 00h~BFh) - 53
3
CXD4732R
11.3.4.
Video Input Control Registers (Page Address = 1Ah, Sub Address = 00h~7Fh) ---------------------------------- 56
11.3.5.
Video Output Control Registers (Page Address = 1Ah, Sub Address = 80h~DFh) ------------------------------- 56
11.3.6.
MC-3DNR Control Registers (Page Address = 1Bh, Sub Address = 00h~DFh) ----------------------------------- 57
11.3.7.
Super Resolution Control Registers (Page Address = 1Ch, Sub Address = 00h~DFh) -------------------------- 58
11.3.8.
GRC Control Registers (Page Address = 1Dh, Sub Address = 00h~DFh) ------------------------------------------ 59
11.3.9.
Gamma and Dither Control Registers (Page Address = 1Fh, Sub Address = 00h~3Fh) ------------------------ 59
11.3.10.
Other System Control Registers-1 (Page Address = 1Dh, Sub Address = 40h~DFh) ---------------------------- 60
11.3.11.
Other System Control Registers-2 (Page Address = 1Eh, Sub Address = 00h~DFh) ---------------------------- 60
11.3.12.
Other System Control Registers-3 (Page Address = 1Fh, Sub Address = 40h~DFh) ---------------------------- 60
11.4.
2
I C Register Description----------------------------------------------------------------------------------------------------------------- 61
11.4.1.
Common Registers (No Page Address) -------------------------------------------------------------------------------------- 61
11.4.2.
EXPRESSION Registers--------------------------------------------------------------------------------------------------------- 61
11.4.3.
Video Input Control Registers (Page Address = 1Ah) -------------------------------------------------------------------- 64
11.4.4.
Video Output Control Registers (Page Address = 1Ah) ------------------------------------------------------------------ 65
11.4.5.
Gamma and Dither Control Registers (Page Address = 1Fh) ---------------------------------------------------------- 66
11.4.6.
MC-3DNR Control Registers (Page Address = 1Bh) --------------------------------------------------------------------- 66
12.
Example of Application Circuit ------------------------------------------------------------------------------------------------------------ 69
13.
Package Outline ------------------------------------------------------------------------------------------------------------------------------ 70
14.
Marking ----------------------------------------------------------------------------------------------------------------------------------------- 71
Note -------------------------------------------------------------------------------------------------------------------------------------------------------- 72
4
CXD4732R
3. Package
QFP 128pin (0.5mm pin pitch, body size 20mm×14mm)
4. Structure
Silicon gate CMOS IC
5. Block Diagram
RXBCK
(clock)
clock
5ch LVDS-Tx
sync
SSCG
PLL
clock
Dither
R
G
B
sync
5ch LVDS-Tx
RGB Double Gamma Correction
2D-Sharpness
B
Basic User Controls
(Static Contrast, Color Saturation,
Brightness)
sync
Screen Division Contrast Enhancement
(iCE)
B
Chrominance Diagram based
Color Conversion
(Color Management)
G
Super Resolution
R
Gradation Creation
PLL
MPEG Noise Reduction
sync
3-D Noise Reduction w/MC
5ch LVDS-Tx
R
G
B
clock
5ch LVDS-Tx
Expression
Clear
R
G
PLL
Register Interface Block
I2C Slave Interface
I2C Master Interface
Clock Circuits
I2C Bus Through Path
SCL/SDA
2bits
SCL/SDA
Slave
Address
Selector
Host I/F
Master
Address
Selector
Master
Busy
Signal
Clock Input
20MHz to 30MHz
(25MHz for I2C Master I/F use)
EEPROM for self start-up
(Optional)
Figure 5.1
CXD4732R Block Diagram
5
Reset Input
TXACK
(clock)
TXBCK
(clock)
TXB0~TXB4(8bit/10bit)
RXB0~RXB4(8bit/10bit)
RXACK
(clock)
LVDS
Transmitter
CXD4732R
TXA0~TXA4(8bit/10bit)
RXA0~RXA4(8bit/10bit)
LVDS
Receiver
CXD4732R
128
VSS
125
120
115
110
105
TXAVDD33
TXDVDD
VDDIO
VSSIO
IIC_MST_EN
VDDIO
VSSIO
VDD
VSS
TESTMODE
IIC_SLV_SADSEL1
N.C
VSSIO
VDDIO
N.C
N.C
N.C
N.C
N.C
VSSIO
VDDIO
VDD
VSS
N.C
N.C
VDD
6. Pin Configuration
103
TXA0N
1
RXDVDD
TXA0P
Pin1 index
RXDVSS
100
RXA0N
RXA0P
TXA1P
TXA2N
5
RXA1N
TXA2P
RXA1P
TXACKN
RXA2N
95
RXA2P
RXACKN
TXDVSS
TXDVDD
RXA3N
TXDVDD33
RXA3P
90
RXA4N
TXA4N
TXA4P
CXD4732R
RXAVDD
VDD
VSS
TXAVDD33
85
TXPLLAVDD
TXPLLAVSS
RXB0N
TXAVDD33
RXB0P
80
RXB1N
TXB1N
TXB1P
RXB2P
TXB2N
RXBCKN
75
RXBCKP
TXBCKP
TXAVDD33
RXB4N
TXDVSS
RXB4P
70
RXAVSS
TXDVDD
TXDVDD33
TXB3N
35
VSS
TXB3P
VSSIO
TXB4N
38
65
Note) Exposed Pad must be connected to GND and soldered to PCB.
Figure 6.1
CXD4732R Pin Configuration
6
TXDVDD
VSSIO
VDDIO
64
VSS
VDD
VSSIO
IIC_SLV_BUSY
VDDIO
IIC_MST_SCL
60
IIC_MST_SDA
RST_X
IIC_MST_SADSEL
N.C.
SCLKI
PLLVSSA
55
PLLVDDA
VSS
VDD
50
VSSIO
VDDIO
IIC_SLV_SCL
VSSIO
IIC_SLV_SDA
45
VDDIO
VDD
40
VDDIO
IIC_SLV_SADSEL0
TXB2P
TXBCKN
30
RXB3P
RXAVDD
TXB0N
TXB0P
25
RXB2N
RXB3N
CMCT
TXPLLDVDD
(Package Top View)
20
RXDVSS
RXB1P
TXA3N
TXA3P
15
RXAVSS
RXDVDD
TXACKP
TXAVDD33
10
RXACKP
RXA4P
TXA1N
TXB4P
CXD4732R
7. Pin Description
Pin #
Pin Name
Type
Pin Descriptions
Condition at Hard Reset
Note
4
RXA0N
LVDS IN
LVDS receiver data input, Link A, Channel 0 (-)
(1)
5
RXA0P
LVDS IN
LVDS receiver data input, Link A, Channel 0 (+)
(1)
6
RXA1N
LVDS IN
LVDS receiver data input, Link A, Channel 1 (-)
(1)
7
RXA1P
LVDS IN
LVDS receiver data input, Link A, Channel 1 (+)
(1)
8
RXA2N
LVDS IN
LVDS receiver data input, Link A, Channel 2 (-)
(1)
9
RXA2P
LVDS IN
LVDS receiver data input, Link A, Channel 2 (+)
(1)
10
RXACKN
LVDS IN
LVDS receiver clock input for Link A (-)
(1)
11
RXACKP
LVDS IN
LVDS receiver clock input for Link A (+)
(1)
12
RXA3N
LVDS IN
LVDS receiver data input, Link A, Channel 3 (-)
(1)
13
RXA3P
LVDS IN
LVDS receiver data input, Link A, Channel 3 (+)
(1)
14
RXA4N
LVDS IN
LVDS receiver data input, Link A, Channel 4 (-)
(1)
In 8bit input mode, this pin is disabled.
LVDS receiver data input, Link A, Channel 4 (+)
15
RXA4P
LVDS IN
(1)
In 8bit input mode, this pin is disabled.
22
RXB0N
LVDS IN
LVDS receiver data input, Link B, Channel 0 (-)
(1)
23
RXB0P
LVDS IN
LVDS receiver data input, Link B, Channel 0 (+)
(1)
24
RXB1N
LVDS IN
LVDS receiver data input, Link B, Channel 1 (-)
(1)
25
RXB1P
LVDS IN
LVDS receiver data input, Link B, Channel 1 (+)
(1)
26
RXB2N
LVDS IN
LVDS receiver data input, Link B, Channel 2 (-)
(1)
27
RXB2P
LVDS IN
LVDS receiver data input, Link B, Channel 2 (+)
(1)
28
RXBCKN
LVDS IN
LVDS receiver clock input for Link B (-)
(1)
29
RXBCKP
LVDS IN
LVDS receiver clock input for Link B (+)
(1)
30
RXB3N
LVDS IN
LVDS receiver data input, Link B, Channel 3 (-)
(1)
31
RXB3P
LVDS IN
LVDS receiver data input, Link B, Channel 3 (+)
(1)
32
RXB4N
LVDS IN
LVDS receiver data input, Link B, Channel 4 (-)
(1)
In 8bit input mode, this pin is disabled.
LVDS receiver data input, Link B, Channel 4 (+)
33
RXB4P
LVDS IN
(1)
In 8bit input mode, this pin is disabled.
102
TXA0N
LVDS OUT
LVDS transmitter data output, Link A, Channel 0 (-)
Uncertain value (high or low)
(2)
101
TXA0P
LVDS OUT
LVDS transmitter data output, Link A, Channel 0 (+)
Uncertain value (high or low)
(2)
100
TXA1N
LVDS OUT
LVDS transmitter data output, Link A, Channel 1 (-)
Uncertain value (high or low)
(2)
99
TXA1P
LVDS OUT
LVDS transmitter data output, Link A, Channel 1 (+)
Uncertain value (high or low)
(2)
98
TXA2N
LVDS OUT
LVDS transmitter data output, Link A, Channel 2 (-)
Uncertain value (high or low)
(2)
97
TXA2P
LVDS OUT
LVDS transmitter data output, Link A, Channel 2 (+)
Uncertain value (high or low)
(2)
7
CXD4732R
Pin #
Pin Name
Type
Pin Descriptions
Condition at Hard Reset
Note
96
TXACKN
LVDS OUT
LVDS transmitter clock output for Link A (-)
Uncertain value (high or low)
(2)
95
TXACKP
LVDS OUT
LVDS transmitter clock output for Link A (+)
Uncertain value (high or low)
(2)
90
TXA3N
LVDS OUT
LVDS transmitter data output, Link A, Channel 3 (-)
Uncertain value (high or low)
(2)
89
TXA3P
LVDS OUT
LVDS transmitter data output, Link A, Channel 3 (+)
Uncertain value (high or low)
(2)
88
TXA4N
LVDS OUT
Uncertain value (high or low)
(2)
Uncertain value (high or low)
(2)
LVDS transmitter data output, Link A, Channel 4 (-)
In 8bit output mode, this pin is disabled.
LVDS transmitter data output, Link A, Channel 4 (+)
87
TXA4P
LVDS OUT
In 8bit output mode, this pin is disabled.
80
TXB0N
LVDS OUT
LVDS transmitter data output, Link B, Channel 0 (-)
Uncertain value (high or low)
(2)
79
TXB0P
LVDS OUT
LVDS transmitter data output, Link B, Channel 0 (+)
Uncertain value (high or low)
(2)
78
TXB1N
LVDS OUT
LVDS transmitter data output, Link B, Channel 1 (-)
Uncertain value (high or low)
(2)
77
TXB1P
LVDS OUT
LVDS transmitter data output, Link B, Channel 1 (+)
Uncertain value (high or low)
(2)
76
TXB2N
LVDS OUT
LVDS transmitter data output, Link B, Channel 2 (-)
Uncertain value (high or low)
(2)
75
TXB2P
LVDS OUT
LVDS transmitter data output, Link B, Channel 2 (+)
Uncertain value (high or low)
(2)
74
TXBCKN
LVDS OUT
LVDS transmitter clock output for Link B (-)
Uncertain value (high or low)
(2)
73
TXBCKP
LVDS OUT
LVDS transmitter clock output for Link B (+)
Uncertain value (high or low)
(2)
68
TXB3N
LVDS OUT
LVDS transmitter data output, Link B, Channel 3 (-)
Uncertain value (high or low)
(2)
67
TXB3P
LVDS OUT
LVDS transmitter data output, Link B, Channel 3 (+)
Uncertain value (high or low)
(2)
66
TXB4N
LVDS OUT
Uncertain value (high or low)
(2)
Uncertain value (high or low)
(2)
LVDS transmitter data output, Link B, Channel 4 (-)
In 8bit output mode, this pin is disabled.
LVDS transmitter data output, Link B, Channel 4 (+)
65
TXB4P
LVDS OUT
In 8bit output mode, this pin is disabled.
51
SCLKI
52
N.C.
53
RST_X
3.3V IN
System Reset input. This signal is active low.
38
IIC_SLV_SADSEL0
3.3V IN
I2C address selector bit 0 for I2C slave interface
113
IIC_SLV_SADSEL1
3.3V IN
I2C address selector bit 1 for I2C slave interface
3.3V IN
3.3V OUT
System clock input.
Do not Connect this terminal.
(3)
43
IIC_SLV_SDA
Open Drain
I2C data signal for I2C slave interface
(4)
44
IIC_SLV_SCL
Open Drain
I2C clock signal for I2C slave interface
(4)
54
IIC_MST_SADSEL
3.3V IN
2
2
I C address selector for I C master interface
I2C data signal for I2C master interface. If external EEPROM
55
IIC_MST_SCL
Open Drain
is not used (IIC_MST_EN = Low), connect this pin to the
(4)
GND.
I2C clock signal for I2C master interface. If external EEPROM
56
IIC_MST_SDA
Open Drain
is not used (IIC_MST_EN = Low), connect this pin to the
GND.
8
(4)
CXD4732R
Pin #
59
Pin Name
IIC_SLV_BUSY
Type
3.3V OUT
Pin Descriptions
Condition at Hard Reset
2
I C slave interface busy signal output. High: busy
2
107
IIC_MST_EN
3.3V IN
I C master interface enable, High: enable, Low: disable
112
TESTMODE
3.3V IN
Always Connect this terminal to digital ground (VSSIO).
114
117
118
119
N.C
Do not Connect this terminal.
120
121
126
127
17
RXAVDD
3.3V POWER
RXAVSS
GND
RXDVDD
1.2V POWER
RXDVSS
GND
Analog power (3.3V) for LVDS receiver
35
16
Ground for LVDS receiver
34
2
Digital power (1.2V) for LVDS receiver
20
3
Ground for LVDS receiver
21
72
TXAVDD33
3.3V POWER
Analog power (3.3V) for LVDS transmitter
83
TXPLLAVDD
1.2V POWER
PLL analog power (1.2V) for LVDS transmitter
82
TXPLLAVSS
GND
84
TXPLLDVDD
1.2V POWER
85
CMCT
81
86
94
103
PLL ground for LVDS transmitter
PLL digital power (1.2V) for LVDS transmitter
Connect external Capacitance (>0.1uF) to this terminal and
Analog IN
GND
64
TXDVDD
1.2V POWER
Digital power (1.2V) for LVDS transmitter
TXDVDD33
3.3V POWER
Digital power (3.3V) for LVDS transmitter
70
92
104
69
91
9
Low
Note
(5)
CXD4732R
Pin #
Pin Name
Type
Pin Descriptions
TXDVSS
GND
Ground for LVDS transmitter
50
PLLVDDA
1.2V POWER
49
PLLVSSA
Analog IN
71
Condition at Hard Reset
93
PLL analog power (1.2V) for core circuits
See the 12. Example Application Circuit. Do not connect
this terminal to PCB GND.
18
VDD
1.2V POWER
VSS
GND
Digital power (1.2V) for core circuit
40
47
60
110
124
128
1
Ground for core circuit
19
36
48
61
111
125
39
VDDIO
3.3V POWER
VSSIO
GND
Digital power (3.3V) for I/O
41
45
57
62
105
108
116
123
37
Ground for I/O
42
46
58
63
106
109
115
122
10
Note
CXD4732R
Pin #
-
Pin Name
Type
Pin Descriptions
Condition at Hard Reset
Exposed Pad
GND
Ground for LVDS transmitter
Note)
(1) Unused pins must be fixed to high (3.3V) or OPEN for LVDS Rx.
(2) Unused pins must be OPEN for LVDS Tx.
(3) Active low reset is required after turn on.
(4) External pull-up registers are required.
(5) At the releasing RST_X, if the terminal “IIC_MST_EN” is high, this terminal “IIC_SLV_BUSY” becomes high till an I2C Master Reading
Operation is completed.
(6) Exposed Pad must be connected to GND and soldered to PCB.
11
Note
(6)
CXD4732R
8. Electrical Characteristics
8.1. Absolute Maximum Ratings
Item
Symbol
Min.
Max.
Unit
Power Supply
Digital I/O
VDDIO
-0.5
+4.6
V
Voltage
LVDS Rx, Tx I/O
RXAVDD, TXAVDD33,
-0.5
+4.6
V
TXDVDD33
Core Logic
VDD
-0.5
+1.6
V
LVDS Rx, Tx Logic
RXDVDD, TXDVDD
-0.5
+1.6
V
PLL
PLLVDDA, TXPLLAVDD,
-0.5
+1.6
V
-10
+115
℃
TXPLLDVDD
Operating Junction Temperature
Tj
8.2. Recommended Operating Conditions
Item
Symbol
Min.
Typ.
Max.
Unit
Power Supply
3.3V Digital I/O
VDDIO
3.0
3.3
3.6
V
Voltage
I2C Bus DC supply voltage for
VI2C-BUS
3.0
3.3
5.0
V
RXAVDD, TXAVDD33,
3.0
3.3
3.6
V
output pull-up termination
LVDS Rx, Tx I/O
TXDVDD33
Core Logic
VDD
1.1
1.2
1.3
V
LVDS Rx Logic
RXDVDD
1.1
1.2
1.3
V
LVDS Tx Logic
TXDVDD
*1)1.1
1.2
1.3
V
PLL
PLLVDDA, TXPLLAVDD,
1.1
1.2
1.3
V
75
℃
TXPLLDVDD
Operating Ambient Temperature
Ta
0
*1) If you use SSCG (LVTX_SSEN =1 ), this value is 1.15V.
12
CXD4732R
8.3. DC characteristics
8.3.1.
Digital In/Out Terminal
(VDDIO = 3.3V+/-0.3V)
Item
Symbol
Digital Input High Voltage
Applicable pins / Condition
VIH
*1), 2)
Digital Input High Voltage(I C pin)
VIH-I2C
*3)
Digital Input Low Voltage
VIL
*1), 2)
Digital Input Low Voltage(I2C pin)
VIL-I2C
Digital Output High Voltage
Min.
Typ.
Unit
3.6
V
VI2C-BUS
V
-0.3
0.8
V
*3)
-0.3
0.3*VI2C-BUS
VOH
*4)
2.4
Digital Output High Voltage(I2C pin)
VOH-I2C
*3)
Digital Output Low Voltage
VOL
*4)
0.4
V
Digital Output Low Voltage(I2C pin)
VOL-I2C
*3)
0.4
V
Operating current for 1.2V VDD
IOP_1.2
*5),LVDS Clock = 74.25MHz,
700
800
mA
200
220
mA
2
2
Max.
0.7*VI2C-BUS
VI2C-BUS
V
Output is not driven high by CXD4732R
Full-HD
Operating current for 3.3V VDD
IOP_3.3
*6),LVDS Clock = 74.25MHz,
Full-HD
*1) SCLKI
*2) IIC_MST_EN, IIC_MST_SADSEL, IIC_SLV_SADSEL0, IIC_SLV_SADSEL1, RST_X
*3) IIC_MST_SDA, IIC_MST_SCL, IIC_SLV_SDA, IIC_SLV_SCL
*4) IIC_MST_SCL, IIC_SLV_BUSY
*5) 1.2V VDD includes RXDVDD, TXPLLAVDD, TXPLLDVDD, TXDVDD, PLLVDDA, VDD
*6) 3.3V VDD includes RXAVDD, TXAVDD33, TXDVDD33, VDDIO
8.3.2.
LVDS Receiver
(RXAVDD = 3.3V+/-0.3V, RXDVDD = 1.2V+/-0.1V)
Item
Symbol
Applicable pins / Condition
Differential Input High Threshold
VRXTH
*1), *2) VCM = 1.2V
Differential Input Low Threshold
VRXTL
*1), *2) VCM = 1.2V
Input Voltage Range
VRXIN
*1)
Min.
Typ.
Max.
Unit
100
mV
-100
0
mV
2.4
V
*1) RXB0N, RXB0P, RXB1N, RXB1P, RXB2N, RXB2P, RXBCKN, RXBCKP, RXB3N, RXB3P, RXB4N, RXB4P, RXA0N, RXA0P, RXA1N,
RXA1P, RXA2N, RXA2P, RXACKN, RXACKP, RXA3N, RXA3P, RXA4N, RXA4P
*2) VCM : LVDS Common Voltage
13
CXD4732R
8.3.3.
LVDS Transmitter
(TXAVDD33 = TXDVDD33 = 3.3V+/-0.3V, TXDVDD = 1.2V+/-0.1V)
Item
Differential Output Voltage
Offset Voltage
Symbol
VTXOD
VTXOS
Applicable pins / Condition
Min.
Typ.
Max.
*1), *2) RL = 100Ω, ILVDS = 3.5mA,
280
350
420
mV
*1), *2) RL = 100Ω, ILVDS = 2.5mA,
200
250
300
mV
1.125
1.25
1.375
*1), *2) RL = 100Ω
Unit
V
*1) TXA4P, TXA4N, TXA3P, TXA3N, TXACKP, TXACKN, TXA2P, TXA2N, TXA1P, TXA1N, TXA0P, TXA0N, TXB4P, TXB4N, TXB3P, TXB3N,
TXBCKP, TXBCKN, TXB2P, TXB2N, TXB1P, TXB1N, TXB0P, TXB0N
*2) RL: Load Condition, ILVDS: LVDS Driver Current on LVDS Tx Bus
14
CXD4732R
8.4. AC characteristics
8.4.1.
System Clock and Reset Input
(VDDIO = 3.3V+/-0.3V)
Item
Symbol
System Clock Frequency
1/TSYSCLK
Duty Cycle
Reset Low Period
TRST
Applicable pins / Condition
Min.
Typ.
Max.
Unit
SCLKI *1)
20
25
30
MHz
SCLKI
40
50
60
%
RST_X
250
2
*1) It is desirable to set frequency to 25MHz if the I C master interface is enabled.
TSYSCLK
SCLKI
50%
Figure 8.4.1.1
System Clock SCLKI Timing Definition
TRST
RST_X
50%
Figure 8.4.1.2
System Reset Input Waveform
15
ns
CXD4732R
8.4.2
I2C Slave Interface
(VDDIO = 3.3V+/-0.3V)
Item
Symbol
Applicable pins / Condition
Min.
Typ.
Max.
Unit
400
kHz
Input Clock Frequency
1/TSLC
IIC_SLV_SCL
Clock Pulse Width High
TSLCHL
IIC_SLV_SCL
600
ns
Clock Pulse Width Low
TSLCLL
IIC_SLV_SCL
1300
ns
Data In Set Up Time
TSLDIS
IIC_SLV_SDA
100
ns
Slave Data In Hold Time
TSLDIH
IIC_SLV_SDA
0
ns
Start Condition Hold Time
TSLSTH
IIC_SLV_SDA
600
ns
Stop Condition Set Up Time
TSLSPS
IIC_SLV_SDA
600
ns
Time between Stop and Next Start
TSLSSH
IIC_SLV_SDA
1300
ns
Data Out Hold Time
TSLDOH
IIC_SLV_SDA
0
900
ns
TSLC
IIC_SLV_SCL
(Input)
70%
70%
30%
IIC_SLV_SDA
(Input)
70%
30%
70%
70%
30%
70%
30%
30%
TSLDIS
IIC_SLV_SCL
(Input)
TSLSPS
TSLCLL
TSLCHL
TSLSTH
TSLDIH
30%
70%
IIC_SLV_SDA
(Output)
30%
TSLDOH
Figure 8.4.2
I2C Slave Interface Timing Definition
16
TSLSSH
CXD4732R
8.4.3.
I2C Master Interface
(VDDIO = 3.3V+/-0.3V)
Item
Symbol
Applicable pins /
Min.
Typ.
Max.
Unit
Condition
Output Clock Frequency
1/TMAC
IIC_MST_SCL, *1)
391
kHz
Clock Pulse Width High
TMACHL
IIC_MST_SCL
600
ns
Clock Pulse Width Low
TMACLL
IIC_MST_SCL
1300
ns
Data Out Set Up Time
TMADOS
IIC_MST_SDA
100
ns
Data Out Hold Time
TMADOH
IIC_MST_SDA
0
Start Condition Hold Time
TMASTH
IIC_MST_SDA
600
ns
Stop Condition Set Up Time
TMASPS
IIC_MST_SDA
600
ns
Time between Stop and Next Start
TMASSH
IIC_MST_SDA
1300
ns
Data In Set Up Time
TMADIS
IIC_MST_SDA
100
ns
900
ns
*1) System Clock Frequency (SCLKI) = 25MHz.
TMAC
IIC_MST_SCL
70%
70%
(Output)
30%
IIC_MST_SDA
70%
70%
30%
TMADOS
IIC_MST_SCL
(Output)
TMADOH
70%
70%
30%
TMADIS
Figure 8.4.3
70%
30%
30%
(Output)
IIC_MST_SDA
(Input)
TMASPS
TMACLL
TMACHL
TMASTH
I2C Master Interface Timing Definition
17
70%
30%
TMASSH
CXD4732R
8.4.4.
LVDS Receiver
(RXAVDD = 3.3V+/-0.3V, RXDVDD = 1.2V+/-0.1V)
Item
Symbol
Condition
Min.
Receiver Clock Period
TRCP
*1)
14.70
Input Data Position for Bit 1
TRIP1
*2)
- TRSKM
Input Data Position for Bit 0
TRIP0
*2)
Input Data Position for Bit 6
TRIP6
Input Data Position for Bit 5
Typ.
Max.
Unit
11.77
ns
0
+ TRSKM
ns
(1/7) TRCP - TRSKM
(1/7) TRCP
(1/7) TRCP + TRSKM
ns
*2)
(2/7) TRCP - TRSKM
(2/7) TRCP
(2/7) TRCP + TRSKM
ns
TRIP5
*2)
(3/7) TRCP - TRSKM
(3/7) TRCP
(3/7) TRCP + TRSKM
ns
Input Data Position for Bit 4
TRIP4
*2)
(4/7) TRCP - TRSKM
(4/7) TRCP
(4/7) TRCP + TRSKM
ns
Input Data Position for Bit 3
TRIP3
*2)
(5/7) TRCP - TRSKM
(5/7) TRCP
(5/7) TRCP + TRSKM
ns
Input Data Position for Bit 2
TRIP2
*2)
(6/7) TRCP - TRSKM
(6/7) TRCP
(6/7) TRCP + TRSKM
ns
Receiver Skew Margin
TRSKM
*2)
-0.35
0.35
ns
*1) RXBCKN, RXBCKP, RXACKN, RXACKP
*2) RXB0N, RXB0P, RXB1N, RXB1P, RXB2N, RXB2P, RXB3N, RXB3P, RXB4N, RXB4P, RXA0N, RXA0P, RXA1N, RXA1P, RXA2N,
RXA2P, RXA3N, RXA3P, RXA4N, RXA4P
TRCP
RXACKN / RXBCKN
50%
RXACKP / RXBCKP
Next Cycle
Previous Cycle
RXA0N / RXB0N
RXA0P / RXB0P
RXA1N / RXB1N
RXA1P / RXB1P
RXA2N / RXB2N
RXA2P / RXB2P
RXA3N / RXB3N
RXA3P / RXB3P
RXA4N / RXB4N
RXA4P / RXB4P
TRIP1
TRIP0
TRIP6
TRIP5
TRIP4
TRIP3
TRIP2
TRCP
RXACKN / RXBCKN
RXACKP / RXBCKP
TRCP/7
TRCP/7
TRCP/7
TRCP/7
TRCP/7
TRCP/7
TRCP/7
RXAxN, RXBxN,
RXAxP, RXBxP
(x=0, 1, 2, 3, 4)
+/-TRSKM
+/-TRSKM
+/-TRSKM
+/-TRSKM
+/-TRSKM
Figure 8.4.4 LVDS Receiver Timing Definition
18
+/-TRSKM
+/-TRSKM
CXD4732R
8.4.5.
LVDS Transmitter
(TXAVDD33 = TXDVDD33 = 3.3V+/-0.3V, TXDVDD = 1.2V+/-0.1V)
Item
Symbol
Condition
Min.
Transmitter Clock Period
TTCP
*1)
14.70
Input Data Position for Bit 1
TTOP1
*2)
- TRSK
Input Data Position for Bit 0
TTOP0
*2)
Input Data Position for Bit 6
TTOP6
Input Data Position for Bit 5
Typ.
Max.
Unit
11.77
ns
0
+ TRSK
ns
(1/7) TRCP - TRSK
(1/7) TRCP
(1/7) TRCP + TRSK
ns
*2)
(2/7) TRCP - TRSK
(2/7) TRCP
(2/7) TRCP + TRSK
ns
TTOP5
*2)
(3/7) TRCP - TRSK
(3/7) TRCP
(3/7) TRCP + TRSK
ns
Input Data Position for Bit 4
TTOP4
*2)
(4/7) TRCP - TRSK
(4/7) TRCP
(4/7) TRCP + TRSK
ns
Input Data Position for Bit 3
TTOP3
*2)
(5/7) TRCP - TRSK
(5/7) TRCP
(5/7) TRCP + TRSK
ns
Input Data Position for Bit 2
TTOP2
*2)
(6/7) TRCP - TRSK
(6/7) TRCP
(6/7) TRCP + TRSK
ns
Transmitter Skew
TTSK
*2)
-0.35
0.35
ns
*1) TXACKP, TXACKN, TXBCKP, TXBCKN
*2) TXA4P, TXA4N, TXA3P, TXA3N, TXA2P, TXA2N, TXA1P, TXA1N, TXA0P, TXA0N, TXB4P, TXB4N, TXB3P, TXB3N, TXB2P, TXB2N,
TXB1P, TXB1N, TXB0P, TXB0N
TTCP
TXACKN / TXBCKN
50%
TXACKP / TXBCKP
Next Cycle
Previous Cycle
TXA0N / TXB0N,
TXA0P / TXB0P
TXA1N / TXB1N,
TXA1P / TXB1P
TXA2N / TXB2N,
TXA2P / TXB2P
TXA3N / TXB3N,
TXA3P / TXB3P
TXA4N / TXB4N,
TXA4P / TXB4P
TTOP1
TTOP0
TTOP6
TTOP5
TTOP4
TTOP3
TTOP2
TTCP
TXACKN / TXBCKN
TXACKP / TXBCKP
TTCP/7
TTCP/7
TTCP/7
TTCP/7
TTCP/7
TTCP/7
TTCP/7
TXAxN / TXBxN,
TXAxP / TXBxP
(x=0, 1, 2, 3, 4)
+/-TTSK
+/-TTSK
Figure 8.4.5
+/-TTSK
+/-TTSK
+/-TTSK
LVDS Transmitter Timing Definition
19
+/-TTSK
+/-TTSK
CXD4732R
9.
Description of Functions
9.1.
LVDS Receiver
The CXD4732R has two links of LVDS Receiver for 8bit/10bit video input. The external termination registers (100 Ω) are
needed for each differential pair. Place them near each pin.
RXA0P
RXA0N
100
Green_A
RXA1P
RXA1N
Blue_A
100
100
Red_A
LVDS Rx
Link-A
RXA2P
RXA2N
Hsync_A
Vsync_A
RXA3P
RXA3N
DE_A
100
100
RXACKP
RXACKN
CLK_A
PLL
100
Link
Swap
Function
RXB0P
RXB0N
Core Circuits
RXA4P
RXA4N
100
RXB2P
RXB2N
Green_B
Blue_B
100
100
Red_B
LVDS Rx
Link-B
RXB1P
RXB1N
Hsync_B
Vsync_B
RXB3P
RXB3N
DE_B
100
RXB4P
RXB4N
100
RXBXKP
RXBXKN
CLK_B
PLL
100
Clock Selector
Register CLK_RXCLK_SEL
Figure 9.1
Input Link Swap Function
Register VIN_LNKMS_SEL
LVDS Receiver Block Diagram
20
CXD4732R
9.1.1.
Picture Size
This LSI supports two video formats as follows. That mode is applied to both LVDS Rx and Tx. To change the mode, refer
to Application note.
Mode
Active Video Size
Number of Link
WXGA
1366×768
Single Link (default link is Link-A)
FHD
1920×1080
Dual Link (default master link is Link-A, slave link is Link-B)
Master Link: pixel 1, 3, 5, 7, …, 1919
Slave Link: pixel 2, 4, 6, 8, …, 1920
9.1.2.
Link Swap Function,
Master/Slave Link
LVDS Rx link swap function can replace Link-B with Link-A. For single link (WXGA), choose Link-A or B by this function. If
st
Link-B is used, change the link by the VIN_LNKMS_SEL. For dual link (FHD), 1 link (1, 3, 5, …, 1919) is Master link, and
2
nd
link (2, 4, 6, …, 1920) is Slave link.
9.1.3.
Master/Slave link can be swapped by this function.
Video Clock Selector
One of LVDS Rx links is selected for the internal video clock as shown in Figure 9.1. For single link, select to active link.
For dual link, choose from the Link A or B. To select the clock, use the CLK_RXCLK_SEL.
9.1.4.
8-bit /10-bit Input Mode Selector
This LSI supports both 8-bit and 10-bit inputs. In 8-bit mode, Channel 4 of each link is disabled. The LVDS bit assignment
is shown in chapter “9.1.7 LVDS Data Format”. This setting is applied to both Link A and B. To change this mode, see
application note.
21
CXD4732R
9.1.5.
Support Frequency Range
WXGA / Single Link Input
Mode
Item
Symbol
Min.
LVDS Rx Clock Frequency
1/Tc_wxga
Frame Rate
Fv_wxga
-
Vertical Total
Tv_wxga
785
Vertical Active
Tvact_wxga
Blanking Total
Tvblank_wxga
Horizontal Total
Th_wxga
Horizontal Active
Thact_wxga
Blanking Total
Thblank_wxga
84
LVDS Rx Clock Frequency
1/Tc_fhd
68
Frame Rate
Fv_fhd
-
Vertical Total
Tv_fhd
1100
Vertical Active
Tvact_fhd
Blanking Total
Tvblank_fhd
Horizontal Total
Th_fhd
Horizontal Active
Thact_fhd
Blanking Total
Thblank_fhd
Vertical Section
Typ.
Typ.
50Hz
60Hz
System
System
68
82.86
Max.
85
50
60
838
950
768
20
1450
Unit
MHz
Hz
Th_wxga
Th_wxga
70
1978
1648
182
Th_wxga
2050
Tc_wxga
Horizontal
1366
Tc_wxga
FHD / Dual Link Input
Section
Vertical Section
612
282
74.25
50
60
1125
684
Tc_wxga
80
MHz
1200
1080
20
2150 / 2
Th_fhd
Th_fhd
45
2640 / 2
Hz
2200 / 2
120
Th_fhd
2690 / 2
Tc_fhd
Horizontal
1920 / 2
Tc_fhd
Section
9.1.6.
230 / 2
720 / 2
280 / 2
770 / 2
Tc_fhd
Video Sync Mode
This LSI supports the following two video sync modes.
9.1.6.1.
Sync through Mode
If input video signal is associated with V-Sync, H-Sync and DataEnable, this LSI works on the Sync through mode. In this
mode, this LSI operates with V-Sync, H-Sync and DataEnable and outputs them with processed video signals.
This mode
is set by SYNC_MODE =1h, VIN_SYNC1 =13h, VIN_SYNC2 =13h, VIN_SYNC3 =13h and VOT_SYNC1 =1h.
9.1.6.2.
Sync through Mode
If there is neither V-Sync nor H-Sync in input video signal, but the input signal is associated with DataEnable (DE), this LSI
operates on the DE-only mode. In this mode, only DE is used for video sync. V-Sync and H-Sync are disregarded and there
is neither V-Sync output nor H-Sync output from this LSI. This mode is set by SYNC_MODE =0h, VIN_SYNC1 =14h,
VIN_SYNC2 =14h, VIN_SYNC3 =14h and VOT_SYNC1 =0h.
22
CXD4732R
9.1.7.
LVDS Data Format
This LSI supports two modes, VESA and JEIDA. Bit assignment is shown in the Figure 9.1.7. To change this format, see
Application note. Selected format is applied to both Link A and B, and LVDS Rx and Tx.
Format: VESA, 8bit
Current Cycle
RXACK
RXA0
G0
R5
R4
R3
R2
R1
R0
RXA1
B1
B0
G5
G4
G3
G2
G1
RXA2
DE
VS(*)
HS(*)
B5
B4
B3
B2
B7
B6
G7
G6
R7
R6
0
0
0
0
0
0
RXA3
reserved
0
RXA4
(Not used)
Format: VESA, 10bit
Current Cycle
RXACK
RXA0
G0
R5
R4
R3
R2
R1
R0
RXA1
B1
B0
G5
G4
G3
G2
G1
RXA2
DE
VS(*)
HS(*)
B5
B4
B3
B2
RXA3
reserved
B7
B6
G7
G6
R7
R6
RXA4
reserve
B9
B8
G9
G8
R9
R8
d
Format: JEIDA, 8bit
Current Cycle
RXACK
RXA0
G2
R7
R6
R5
R4
R3
R2
RXA1
B3
B2
G7
G6
G5
G4
G3
RXA2
DE
VS(*)
HS(*)
B7
B6
B5
B4
B1
B0
G1
G0
R1
R0
0
0
0
0
0
0
RXA3
RXA4
reserved
0
(Not used)
23
CXD4732R
Format: JEIDA, 10bit
Current Cycle
RXACK
RXA0
G4
R9
R8
R7
R6
R5
R4
RXA1
B5
B4
G9
G8
G7
G6
G5
RXA2
DE
VS(*)
HS(*)
B9
B8
B7
B6
RXA3
reserved
B3
B2
G3
G2
R3
R2
RXA4
reserve
B1
B0
G1
G0
R1
R0
Figure 9.1.7
9.1.8.
d
LVDS Formats
(reserved bit is not used, VS(*) and HS(*) are don’t care in DE-only mode)
[Important] Restrictions for VS,HS,DE
Input signal VS,HS,DE must be satisfied following three restrictions.
①
Logical cycles of
VS,HS,DE
both Link-A and Link-B must be synchronized. (see Figure 9.1.8)
Link-A HS
Link-A HS
Link-A VS
Link-A VS
Link-A DE
Link-A DE
Link-B HS
Link-B HS
-2≦n≦2
RX(A/B)CK
n
Link-B VS
Link-B VS
Link-B DE
Link-B DE
n
OK
OK
Link-A HS
Link-A HS
Link-A VS
Link-A VS
Link-A DE
Link-A DE
n≠m
n
n≠m
Link-B HS
Link-B HS
m
n
Link-B VS
Link-B VS
m
n
Link-B DE
Link-B DE
NG
NG
Figure 9.1.8
24
LVDS input Restriction 1
CXD4732R
②First data must be started from Master link.
(see Figure 9.1.9)
Master link : Link-A
DE
DE
Link-A
D1
D3
D5
Link-A
D2
D4
D6
Link-B
D2
D4
D6
Link-B
D1
D3
D5
OK
NG
Master link : Link-B
DE
DE
Link-A
D1
D3
D5
Link-A
D2
D4
D6
Link-B
D2
D4
D6
Link-B
D1
D3
D5
OK
NG
Figure 9.1.9
LVDS input Restriction 2
③DE must be 0 when VS and HS are rising. (see Figure 9.1.10)
HS
(Except DE-only Mode)
HS
VS
VS
DE
DE
OK
NG
Figure 9.1.10
LVDS input Restriction 3
25
CXD4732R
9.2.
LVDS Transmitter
This LSI has also two links of LVDS Transmitter for 8bit/10bit video output.
TXA0P
TXA0N
Green_A
Red_A
TXA1P
TXA1N
LVDS Tx
Link-A
Blue_A
TXA2P
TXA2N
Hsync_A
TXA3P
TXA3N
Vsync_A
DE_A
TXA4P
TXA4N
iPC Core Circuits
PLL
SSCG
TXACKP
TXACKN
Link
Swap
Function
TXB0P
TXB0N
Green_B
TXB1P
TXB1N
Blue_B
Hsync_B
LVDS Tx
Link-B
Red_B
Vsync_B
DE_B
TXB2P
TXB2N
TXB3P
TXB3N
TXB4P
TXB4N
TXBCKP
TXBCKN
Output Link Swap Function
Register VOT_LNKSWP
Figure 9.2
9.2.1.
LVDS Transmitter Block Diagram
Link Swap Function
As shown Figure 9.2, LVDS Tx link swap function can replace Link-B with Link-A. For single link (WXGA), choose Link-A
st
or B by this function. For dual link (FHD), 1 link (1, 3, 5… 1919) and 2
nd
link (2, 4, 6… 1920) can be swapped by this
function. The VOT_LNKSWP is used to control this function. The LVDS Tx link swap function operates independently from
the LVDS Rx link swap function.
26
CXD4732R
9.2.2.
8-bit / 10-bit Output Mode Selector
This LSI supports both 8-bit and 10-bit outputs. In 8-bit mode, Channel 4 of each link is disabled. The LVDS bit
assignment is shown in chapter “9.1.7 LVDS Data Format”. This setting is applied to both Link-A and B. To change this mode,
see application note. This function works independently from LVDS Rx.
9.2.3.
LVDS Tx Output Differential Voltage Adjusting
LVDS Tx differential voltage is selectable from 250mV or 350mV. This is selected by register LVTX_SWING.
9.2.4.
LVDS Tx Output Disable
The registers LVTX_ENA for LVDS Tx Link-A, LVTX_ENB for LVDS Tx Link-B are used to disable the LVDS Tx all signals
which include both clock and data. If those signals are disabled, the differential voltages of each pair for all clock and data
are set at common voltage. The initial value of this registers are “0” (it is disabled at reset).
9.2.5.
Spread-spectrum Clock Generator (SSCG) for LVDS Tx
This LSI includes the SSCG to reduce EMI. It supports Center Spreading as shown in Figure 9.2.5.1. To enable this
SSCG function, set to LVTX_SSEN.
Output Clock
Frequency
F0 : Reference frequency ( if SS = OFF, output frequency = F0. )
F0
Modulation
Depth
time
Modulation Frequency
Center Spreading
Figure 9.2.5.1
SSCG Modulation Frequency and Depth
The modulation frequency is calculated by the expression of reference frequency / N. N is selected from 4 conditions by
setting LVTX_FRSEL. For example, at the Reference frequency = 74.25MHz and N = 512, then Modulation Frequency =
145 kHz.
LVTX_FRSEL
N
00h
N/A
01h
512
02h
640
03h
1024
Modulation depth is selected from 8 conditions by setting LVTX_SSEL and LVTX_SRSEL.
27
CXD4732R
LVTX_SSEL
LVTX_SRSEL
Modulation Depth
(Center Spreading)
00h
00h
±0.625 %
00h
01h
±1.25 %
00h
02h
N/A
00h
03h
N/A
01h
00h
N/A
01h
01h
N/A
01h
02h
N/A
01h
03h
N/A
Note) This SSCG uses the LVDS Rx clock for source clock. In case of the internal SSCG is enabled, non-SS clock is
required for the LVDS Rx clock. If the LVDS Rx clock is SSC (Spread-spectrum Clock), internal SSCG must be disabled.
9.2.6.
Spread-spectrum Clock Tracking Capability of LVDS Rx
Internal SSCG is OFF and the LVDS Rx clock is SSC, the tracking range of that SSC is shown the following table (Note:
these values are only for reference).
Tracking Frequency Range
Tracking Depth Range
70~150kHz
(Tracking Frequency Range * Tracking Depth Range(%)) ≦±150kHz ・%
28
CXD4732R
9.3.
Color Management
The Color Management function can tune the color reproduction for user's liking.
9.3.1.
Color Control Algorithm
The color area which a user wants to adjust is selectable from nine color area independently. The colors are Green, Pale
Orange1, Red, Blue, Yellow, Magenta, Cyan, Pink, and White when COM_MODE =0h. When COM_MODE =1h, the colors
are Green, Pale Orange1, Pale Orange2 (fix area), Red, Blue, Yellow, Magenta, Cyan and White.
The Figure 9.3.1.1 shows the concept of the Color Management. This function changes a normalized chromaticity (x, y)
only in that color area to an arbitrary chromaticity by setting the direction (dx, dy) and quantity of movement (gain). Maximum
chromaticity ranges of each nine color area are fixed and those color area are not overlapped each other. This is to keep
color consecutiveness between different color areas after a color changes.
Color Change Gain
y
COM_(color)_GAIN
dy
k
COM_(color)_DY
Fixed size
Color Change Direction(y)
(x, y)
dx
Target Color Center Location
(COM_(color)_SX, COM_(color)_SY)
Color Change Direction(x)
COM_(color)_DX
Fixed size
Fixed size
Fixed size
sy
sx
Example
White is adjustable
Figure 9.3.1.1 Color Management
29
x
CXD4732R
The Table 9.3.1 shows the Registers to control colors in this function, there is only 45 parameters.
Color
Target Color Coordinates(-8~+7)
Color Change Direction (-8~+7) and Gain (0~31)
sx
sy
dx
dy
gain (x & y)
White
COM_W_SX
COM_W_SY
COM_W_DX
COM_W_DY
COM_W_GAIN
Green
COM_G_SX
COM_G_SY
COM_G_DX
COM_G_DY
COM_G_GAIN
Pale Orange1
COM_PO_SX
COM_PO_SY
COM_PO_DX
COM_PO_DY
COM_PO_GAIN
Red
COM_R_SX
COM_R_SY
COM_R_DX
COM_R_DY
COM_R_GAIN
Blue
COM_B_SX
COM_B_SY
COM_B_DX
COM_B_DY
COM_B_GAIN
Yellow
COM_Y_SX
COM_Y_SY
COM_Y_DX
COM_Y_DY
COM_Y_GAIN
Magenta
COM_M_SX
COM_M_SY
COM_M_DX
COM_M_DY
COM_M_GAIN
Cyan
COM_C_SX
COM_C_SY
COM_C_DX
COM_C_DY
COM_C_GAIN
COM_P_SX
COM_P_SY
COM_P_DX
COM_P_DY
COM_P_GAIN
-
-
COM_P_DX
COM_P_DY
COM_P_GAIN
Pink
(COM_MODE=0)
Pale Orange2
(COM_MODE=1)
Table 9.3.1
9.3.2.
Color
Management
registers (Page 00h for all registers. See the register map for details)
Gray Out Function
The Gray Out function can drop a color ingredient except a selected color to confirm a chosen color area. The
COM_GO_EN is used to enable/disable this function. A color is selected by the COM_GON_COL.
Gray Out Enable (example: red is selected)
Normal Mode
Figure 9.3.2
Gray Out Function
30
CXD4732R
9.4. Intelligent Contrast Enhancer(iCE)
The iCE function improves contrast feeling depending on picture content adaptively.
The iCE function measures histogram of brightness signals for every frame, and a characteristic of a picture is extracted.
The contrast gain result is calculated for every frame. The contrast gain level can be adjusted by the ICE_A, ICE_B, and
ICE_C. ICE_A and ICE_B decide compensation quantity of gain compensation characteristic A, B determined by histogram
of a brightness signal for the whole picture. ICE_C decides quantity of gain compensation determined by calculating
histogram of a partial brightness signal for a picture
9.4.1
Brightness Contrast Gain Control
ICE_A :iCE A function gain
When the brightness histogram of all the pictures concentrates on a center or sides as shown in Figure
9.4.1.1 (a) and (b), iCE adjusts contrast with gain compensation curve where compensation quantity
turns over with the center gray level.
The ICE_A adjusts quantity of gain compensation for the
histogram. If the ICE_A value is high, the quantity of gain compensation increases.
For example, when brightness of all the pictures concentrates on a center level and contrast lacks
generally as shown in Figure 9.4.1.1 (a), iCE expands brightness distribution to the level shown in the
dashed line.
When brightness of all the pictures concentrates to the sides (black and white) as shown in Figure
9.4.1.1 (b),iCE also expands brightness distribution to the level shown in dashed line.
Output
Gray
Code
Gain
compensation
curve
Output
Gray
Code
Histogram
Histogram
Input Gray Code
Input Gray Code
(a)
Figure 9.4.1.1
(b)
iCE example histogram, case A
ICE_B:iCE B function gain
When the brightness histogram of all the pictures concentrates on a black or white such as Figure 9.4.1.2 (a) and (b), iCE
adjusts contrast with gain compensation curve which connects a white level from a black level smoothly. The ICE_B
adjusts quantity of gain compensation for such histogram. If the ICE_B value is high, the quantity of gain compensation
increases. For example, when brightness of all the pictures concentrates to high level and contrast lacks on white as
shown in Figure 9.4.1.2 (a), iCE expands brightness distribution to low gray level shown in the dashed line. When
brightness of all the pictures concentrates to low level and contrast lacks on black as shown in Figure 9.4.1.2 (b), iCE
expands brightness distribution to high gray level shown in the dashed line. Therefore, average brightness level (APL or
31
CXD4732R
DC level) of a picture is adjusted by this function automatically.
Output
Gray
Code
Gain
compensation
curve
Output
Gray
Code
Histogram
Histogram
Input Gray Code
Input Gray Code
(a)
(b)
Figure 9.4.1.2
iCE example histogram, case B
ICE_C:iCE C function gain
ICE_C controls the signal gain to improve the contrast to react accordingly to the histogram condition of a brightness
signal on the each part of the picture. The characteristics of the ICE_C gain compensation is faithful to the histogram of a
brightness signal which is shown in Figure 9.4.1.3.
Same as ICE_A/ICE_B, the user can adjust how much compensate when checking the result of this control on the real
picture to set the register setting.
Output
Gray
Code
Gain
compensation
curve
Histogram
Input Gray Code
Figure 9.4.1.3
9.4.2
iCE example histogram for type C
Color Contrast Gain Control
ICE_COLOR_GAIN_A:iCE Color gain compensation(DC gain)
This register sets the levels of chroma signal values to match the brightness signal values. When brightness signal
contrast is enhanced, the balance between brightness signal and chroma signal may be unbalanced. Especially, when the
brightness signal distribution after enhancing the contrast by ICE_B setting would be closer to the black level, the average
level of luminance (APL) is increased. It makes the picture to be whiter as close as being lacking of chroma signal value.
32
CXD4732R
The setting of the ICE_COLOR_GAIN_A is made as shown in Figure 9.4.1.2 (b). The better setting would be available
only by user's eyes checking at the effects after changing the value ICE_B. When setting “0” to this register, the function
can be set to “Off”.
ICE_COLOR_GAIN_B
iCE Color gain compensation(Differential gain)
Same as ICE_COLOR_GAIN_A, the ICE_COLOR_GAIN_B can adjust the signal balance between brightness and
chroma. Especially this register is effective to improve balance in case of histogram which is shown for Figure 9.4.1.1 (a).
In other words this register is effective in a case without much change in average level of brightness (APL).The setting of
the ICE_COLOR_GAIN_B would be made as shown in Figure 9.4.1.1 (a). Same as ICE_COLOR_GAIN_A, the better
setting would be available only by user's eyes checking at the effects after changing the value ICE_A. When setting “0” to
this register, the function can be set to “Off”.
ICE_SCENE_CHDET
iCE Scene change detect sense
The iCE function measures histogram of a brightness signal for every frame, and contrast gain is calculated by using this
result for every frame. When the gain control speed is fast, brightness level change of a picture can be seen, and the
picture seems unnatural. Therefore a gain control circuit has a time constant so that gain change speed becomes slow. In
case of “scene change”, brightness histogram of a picture changes greatly and quantity of gain compensation changes
greatly. Then, an image just after scene change becomes unnatural by the influence of time constant. The iCE can detect
“scene change” by calculating quantity of change in the histogram, iCE makes time constant fast. The
ICE_SCENE_CHDET controls threshold of brightness histogram change quantity to detect scene change. When this
register is set to low, scene change detection sensitivity is high.
ICE_COLOR_GAIN_LMT
iCE Color Gain Compensation Limiter
The ICE_COLOR_GAIN_LMT limits quantity of color gain compensation set with the ICE_COLOR_GAIN_A,
ICE_COLOR_GAIN_B. A color gain does not become too large with this register because it is difficult to decide quantity of
color gain compensation corresponding to quantity of brightness gain compensation theoretically. The limiter value is
shown in the Table 9.4.1.
Table 9.4.1
9.4.3.
ICE_COLOR_GAIN_LMT register definition
ICE_COLOR_GAIN_LMT
Limiter Level (dB)
ICE_COLOR_GAIN_LMT
Limiter Level (dB)
0
0.0
4
3.5
1
0.5
5
6.0
2
1.0
6
8.0
3
2.0
7
9.0
Black level Control
ICE_A_BLACKLEV1
iCE_A Black level compensation knee down point
33
CXD4732R
knee down point
ICE_A_BLAC
KLEV1=0
ICE_A_BLA
CKLEV1=3
Figure 9.4.3.1
When ICE_A works, if the value of ICE_A_BLACKLEV1 is increased, minus gain versus linear go up.
ICE_A_BLACKLEV1 controls knee down point as shown Figure 9.4.3.1.
ICE_A_BLACKLEV2
iCE_A Black level compensation level
ICE_A_BLAC
KLEV2=0
ICE_A_BLA
CKLEV2=7
compensation level
Figure 9.4.3.2
When ICE_A works, if the value of ICE_A_BLACKLEV2 is increased, minus gain versus linear go up.
ICE_A_BLACKLEV2 controls minus gain level as shown Figure 9.4.3.2.
34
CXD4732R
9.5. 2D-Sharpness
This LSI includes two sharpness functions; Y sharpness (Frequency ingredient emphasis of a brightness signal) and CTI
(Chrominance Transient Improvement).
The Y sharpness function can improve sharpness independently (show Figure 9.5.1) by using a filter of the optimum
band-pass, high-pass type for a vertical, horizontal and diagonal of Y signal. Horizontal is 11-tap filter and it has 5 kinds of
coefficient. Vertical is 5-tap filter with 4-line memory and it has 2 kinds of coefficient. Those characteristics are changed by
the registers of YHSHP_HBAND, YHSHP_VBAND, YVSHP_HBAND and YVSHP_VBAND. The emphasis level can adjust it
to ±2 times by using each register YHSHP for horizontal, YVSHP for vertical, and YTSHP for diagonal. The emphasis
waveform can be adjusted as shown in Figure. 9.5.2. The YSHP_WB is used for it.
Vertical
Diagonal
Horizontal
Figure 9.5.1
Y sharpness control area
This function has coring; it can control noise increase more than it for a picture with many noises. Coring level is changed
to four phases with register YSHP_CORE.
15: black side/min,
white side max
Original Y Signal
+
Emphasis
ingredient
8: top and bottom is
symmetric
Selectable
Output Y Signal
YSHP_WB = 0:
black side/max,
white side min
Figure 9.5.2
Y sharpness over, under balance
35
CXD4732R
For color-difference signal (Cb/Cr), CTI function can improve a through rate of a color edge part of a picture. Edge
detection has horizontal filter only. Center frequency can be changed by CTI_F0 and level can be changed by CTI_LEV.
Input color-difference signal
After improvement
Figure 9.5.3
Color transient improvement
36
CXD4732R
9.6. Basic user Controls
As other video signal processing, there are Brightness for GBR signals, Color saturation for Cb/Cr signals, and Static
contrast for GBR signals.
G out
B out
R out
G in
B in
R in
+
Limiter
Register BRIGHT
-128 ~ +127, step 1 @8bit
-512 ~ +508, step 4 @10bit
(a) Brightness control
Cb in
Cr in
Cb out
Cr out
×
Limiter
Register COLOR
0 ~ 255/128
(b) Color saturation control
G in
B in
R in
×
G out
B out
R out
Limiter
Register CONTRAST
0 ~ 255/128
(c)Static Contrast control
Figure 9.6
9.7. MC-3DNR
This is MC-3DNR function for luminance signal. This function has following features, then reduces random noise in
luminance signal. MC-3DNR uses compensation picture optimally according to reliability of motion estimation.
MC-3DNR is basically controlled by 3 registers. YNR controls MC-3DNR ON/OFF. FBHISTTH and NLFB control time
constant of MC-3DNR filter.
And the effort of MC-3DNR is controlled by registers combination. Now 5 levels setting from weakest to strongest are
available. For more information, see application note.
9.8. Basic user Controls
GRC(GRadation Creation) includes following two functions.
・Adaptive horizontal smoothing
・Adaptive horizontal and vertical coring
・Mosquito noise reduction (MNR)
When GRC_EN is enabled, adaptive horizontal smoothing function works for only low frequency component in input
signal. For only high frequency component in input signal, adaptive horizontal and vertical coring is prepared.
GRC_HCORE and GRC_VCORE are controlling registers. These three functions work to reduce pseudo outline.
MNR is mosquito noise reduction. For mosquito noise around edge signals, MNR_FLAT_LEV is used. If mosquito noise
also exists in flat area, MNR_FLAT_LEV is more used.
37
CXD4732R
9.9. SUPER RESOLUTON
This function achieves super resolution with noise inhibiting. It adjusts the most appropriate effect automatically by analyzing
input picture pixel by pixel.
You can also adjust the effect of super resolution with the following items. If you want to control everything, there is manual
control mode, too.
[Whole gain adjustment]
Relative I2C register: VOLE_BVD, NSHIFT
Increasing this gain, the effect of super resolution and noise reducing is up.
[Adjustment around TEXT]
Relative I2C register: VOLERATIOMAX, VOLERATIOMIN
This is used to control effect around text. If you don’t like shoots around text or line, turn down this value.
[Control in pale orange area]
Relative I2C register: HADAON, HADA_EFFECT, NLIMIT
When you use this function, the effect of Super Resolution in pale orange area is reduced. And its degree is controllable.
[Manual control]
Relative I2C register: ICONTON, VOLN, VOLR, VOLE
You can stop Super Resolution automatic adjustment, and you can control the effect of super resolution and noise
reducing according to your preference. Whole gain is able to be controlled.
Even if you select manual control mode, “Adjustment around TEXT” and “Control in pale orange area” are available.
About register’s relation see Figure 9.9.1.
VOLE_BVD
NSHIFT
VOLE
VOLN
VOLR
Automatic
Control
ICONTON
Select
control
type
Manual
Control
Video
Signal in
Super
Resolution
Core
SPCOFF
HADAON
HADA_EFFECT
NLIMIT
VOLERATIOMIN
VOLERATIOMAX
Figure 9.9.1
Super Resolution Block
38
Video
Signal out
CXD4732R
9.10. Digital Gamma Function
This LSI includes digital gamma function with two look-up tables (Group A and B). Each group has GBR independent 12bit
2
Full-Size LUT. While one group works, another group can be updated to arbitrary 12 bits curve by I C interface. Active group
and inactive/updating group are changed by GMTBL_SEL.
All digital gamma function can be disabled by GMTBL_EN. At the power-on reset, GMTBL_EN is 0 (default is disabled).
Change to enable this register after setup was completed.
Refer to the register map about details of LUT data transfer format (Chapter 11.3.3
Table Registers) and setup sequence (Chapter 10.2
Digital Gamma Function Look-up
Digital Gamma Function Look-up Table Setup).
GBR Data In
G (10bit)
B (10bit)
R (10bit)
GBR independent gamma LUT
Group A
12bit × 1024word
12bit × 1024word
10 x 3
A
12bit × 1024word
LUT
GBR independent gamma LUT
ON
Group B
12bit × 1024word
12bit × 1024word
Dither
Block
B
12bit × 1024word
LUT
12 x 3
OFF
(Through)
Delay
Vsync
Latch
Group ON/OFF(through) Selection
Register GMTBL_EN
Group A/B Selection
Register GMTBL_SEL
Figure 9.10
GBR Data Out
G (12bit)
B (12bit)
R (12bit)
Digital Gamma Function and Dither Block
Diagram
39
G
B
R
8bit x 3 or
10bit x 3
CXD4732R
9.11. Dither
This function includes four methods to reduce the video data width from 12bit to 8 (or 10) bit. Those methods are
Rounding, FRC (Frame rate conversion), 2 x 2 matrix pattern dithers, and 4 x 4 matrix pattern dithers. FRC and dither
methods provide good gradation performance for 8bit/10bit panel. See the register map for details to control this function.
9.11.1.
FRC (Frame rate conversion)
FRC is a time sharing process for lower 2bit of 12bit. As shown in Figure 9.11.1, the yellow frame means round-up and
gray frame mean round-down.
Time
(Frame)
error = 0
error = 1
error = 2
Figure 9.11.1
9.11.2.
error = 3
FRC Bit Processing
Pattern Dither
Pattern dither is a space error spreading process for lower 2bit/4bit of 12bit. As shown in Figure 9.11.2, the number in the
box is threshold value for error. For example, in 2 x 2 pattern dither, if error = 2 then “0” and “1” pixels are round-up, “2” and
“3” pixels are round-down. In 4 x 4 pattern dither, same procedure is used. Here the yellow box means round-up and gray
box means round-down.
Horizontal
0
0
3
2
Horizontal
1
Vertical
8
2
10
12
4
14
6
3
11
1
9
15
7
13
5
Vertical
(a) 2 x 2 pattern
(b) 4 x 4 pattern
Figure 9.11.2
40
Pattern Dither
CXD4732R
10. Description of Operation
10.1.
Power and Reset Sequence
There is no constraint about the turn-on/off order of two power supply voltages (1.2V and 3.3V). But it is preferable to apply
both voltages at the same time.
10.1.1. Turn on Sequence without External EEPROM
3.3V
Power
Supply
3.0V
1.2V
Power
Supply
1.1V
0V
SCLKI
Unstable
External clock is stable
External
System Clock
Release reset
RST_X
Hard Reset
>250ns
IIC_MST_EN
Fixed Low (Master I/F is disabled)
I2C Master Enable
IIC_SCL
IIC_SDA
I 2C
Bus Disable
I2C Slave I/F bus enable
Slave I/F
External I2C Host can access to CXD4732 registers
(~350m sec for minimum setup)
Registers for clock system are written.
LVDS Rx
Unstable/Unknown
Video Clock In
Data In
LVDS Tx
Frame n
Unstable
n+2
Circuites are starting
LVDS Tx clock is stable
Video Clock Out
LVDS Tx
Frame n+1
~6ms
(PLL and LVDS-Tx lock time after setting registers)
Unknown
Frame n+1
Video Data Out
Figure 10.1.1
Power On and Reset Sequence (I2C Slave I/F Only)
41
n+2
CXD4732R
10.1.2. Turn on Sequence with External EEPROM
If the terminal IIC_MST_EN is high when the reset RST_X is released, the registers are initialized automatically by reading
2
an initial value from an external EEPROM. (See the Chapter 10.3.5 I C Master Interface for details)
3.3V
Power
Supply
3.0V
1.2V
Power
Supply
1.1V
0V
SCLKI
Unstable
External clock is stable
External
System Clock
Release reset
RST_X
Hard Reset
>250ns
Fixed High (Master I/F is enabled)
IIC_MST_EN
I2C Master Enable
Internal I2C Master I/F access to External EEPROM
~400ms for maximum setup (SCLKI=25MHz)
IIC_SCL
IIC_SDA
I2C Master I/F enable
I2C Master I/F
I2C system
Slave I/Fare
buswritten.
enable
Registers for clock
IIC_SLV_BUSY
Output signal
IIC_SCL
IIC_SDA
Bus Disable
I2C Slave I/F bus enable
I2C Slave I/F
LVDS Rx
External I2C Host can access to
CXD4732 registers
Unstable/Unknown
Video Clock In
Data In
LVDS Tx
Frame n
n+2
~6ms
(PLL and LVDS-Tx lock time after setting registers)
Circuites are starting
Unstable
LVDS Tx clock is stable
Video Clock Out
LVDS Tx
Frame n+1
Unknown
Frame n+1
Video Data Out
Figure 10.1.1
Power On and Reset Sequence (I2C Slave I/F Only)
42
n+2
CXD4732R
10.2. Gamma Correction Look-up Table Setup
The following sequence is required when writing/updating the gamma correction look-up table (LUT).
10.2.1.
Initializing Gamma LUT Group-A
(1) Gamma correction function control registers setup: write registers as below,
Sub address FFh, data 1Fh
// page change to 1Fh.
Sub address 03h, data 00h
// gamma function disable
Sub address 00h, data 00h
// Group-A I2C write enable
Sub address 01h, data 00h
// Group-A I2C write enable
Sub address 02h, data 00h
// Group-A I2C write enable
Sub address 04h, data 01h
// Group-B Normal mode
Sub address 05h, data 01h
// Group-B Normal mode
Sub address 06h, data 01h
// Group-B Normal mode
Sub address 07h, data 00h
// Group-A/B select
If the table for Group-B is already initialized, it is possible to use the Gamma LUT Group-B while writing Group-A. In this
case, Sub address 03h > data 01h, Sub address 07h > data 01h.
(2) Look-up table for Group A
(3) Exit LUT setup mode and go to Normal mode.
Sub address FFh, data 1Fh
// page change to 1Fh.
Sub address 00h, data 01h
// Group-A Normal mode
Sub address 01h, data 01h
// Group-A Normal mode
Sub address 02h, data 01h
// Group-A Normal mode
Sub address 04h, data 01h
// Group-B Normal mode
Sub address 05h, data 01h
// Group-B Normal mode
Sub address 06h, data 01h
// Group-B Normal mode
Sub address 07h, data 00h
// Group-A is selected
Sub address 03h, data 01h
// gamma function enable
43
CXD4732R
10.2.2.
Initializing Gamma LUT Group-B
(1) Gamma correction function control registers setup: write registers as below,
Sub address FFh, data 1Fh
// page change to 1Fh.
Sub address 03h, data 00h
// gamma function disable
Sub address 00h, data 01h
// Group-A Normal mode
Sub address 01h, data 01h
// Group-A Normal mode
Sub address 02h, data 01h
// Group-A Normal mode
Sub address 04h, data 00h
// Group-B I2C write enable
Sub address 05h, data 00h
// Group-B I2C write enable
Sub address 06h, data 00h
// Group-B I2C write enable
Sub address 07h, data 01h
// Group-A/B select
If the table for Group-A is already initialized, it is possible to use the Gamma LUT Group-A while writing Group-B. In this
case, Sub address 03h > data 01h, Sub address 07h > data 00h.
(2) Look-up table for Group B
(3) Exit LUT setup mode and go to Normal mode.
Sub address FFh, data 1Fh
// page change to 1Fh.
Sub address 00h, data 01h
// Group-A Normal mode
Sub address 01h, data 01h
// Group-A Normal mode
Sub address 02h, data 01h
// Group-A Normal mode
Sub address 04h, data 01h
// Group-B Normal mode
Sub address 05h, data 01h
// Group-B Normal mode
Sub address 06h, data 01h
// Group-B Normal mode
Sub address 07h, data 01h
// Group-B is selected
Sub address 03h, data 01h
// gamma function enable
44
CXD4732R
10.3. Host I/F
10.3.1.
I2C Slave Interface
2
This LSI has an I C bus slave transceiver. This supports 7 bits slave address and fast transfer mode (400kbit / sec). Slave
address can be selectable from four addresses by setting external pin.
10.3.2. I2C Slave Write Cycle
After sending slave address from the external master interface to this slave interface, the write start sub- address is set by
the master. The next cycle is 1st data to write control register and the write cycle is repeated by host I/F. When data is
written in continually, the internal sub-address is automatically incremented.
S
Slave Address
W
[7:1] (7bit)
“0”
A
Start Sub Address
A
Write Data
(8bit)
A
Last Write Data
(8bit)
A
P
(8bit)
Note)
Gray: From Master (External Host) to Slave (CXD4732R).
White: From Slave to Master
S: Start Bit P: Stop Bit A: Acknowledge
10.3.3. I2C Slave Read Cycle
Before reading control registers, set the read start sub-address by the same method as write cycle. After then, the
external master interface sends the slave address with read command and the internal slave interface returns the read data
after next cycle. When data is read in continually, internal sub-address is automatically incremented.
S
S
Slave Address
W
[7:1] (7bit)
“0”
Slave Address
R
[7:1] (7bit)
“1”
A
Start Sub Address
A
P
(8bit)
A
Read Data
A
Last Read Data
(8bit)
(8bit)
Note)
Gray: From Master (External Host) to Slave (CXD4732R).
White: From Slave to Master
S: Start Bit P: Stop Bit A: Acknowledge
N: No Acknowledge
45
N
P
CXD4732R
10.3.4. I2C Slave Page Address
This LSI can transfer more than 256 bytes of register by using the Page Addressing method. The last 32bytes (E0h~FFh)
of sub-address are used for common registers that include page address. Sub-address 00h~DFh are used for function
registers. It have some pages (00h~1Fh pages) and the page is changed by common register PAGE (sub address: FFh, bit
[4:0]). Total function registers are 224 address x 32 pages.
2
Refer to Chapter 11.2 I C Page Address Map.
To change the page address, the following sequence is required.
New page writing:
(1) Set/Change page
S
Slave Address
W
[7:1] (7bit)
“0”
A
Page Sub Address
A
Write Page
FFh
A
P
(new page)
(2) Write register
S
Slave Address
W
[7:1] (7bit)
“0”
A
Start Sub Address
A
Write Data
(8bit)
A
Last Write Data
(8bit)
(8bit)
New page reading:
(1) Set/Change page
S
Slave Address
W
[7:1] (7bit)
“0”
A
Page Sub Address
A
Write Page
FFh
A
P
N
P
(new page)
(2) Set start address for reading
S
Slave Address
W
[7:1] (7bit)
“0”
A
Start Sub Address
A
P
(8bit)
(3) Read register
S
Slave Address
R
[7:1] (7bit)
“1”
A
Read Data
A
Last Read Data
(8bit)
(8bit)
Note)
Gray: From Master (External Host) to Slave (CXD4732R).
White: From Slave to Master
S: Start Bit P: Stop Bit A: Acknowledge
46
A
P
CXD4732R
10.3.5. I2C Master Interface
2
This LSI includes I C master interface. It operates once automatically after releasing hard reset to initialize the internal
registers.
2
When the IIC_MST_EN pin is held High, I C master I/F is enabled. After the hard reset pin RST_X becomes High from
2
Low, I C master interface automatically reads the initial register settings from external serial EEPROM which is connected to
2
2
the I C master interface, and write it to the internal registers. If it cannot read data correctly, the I C master interface is
2
stopped and the I C slave interface is enabled.
CXD4732R
Internal Registers
CXD4732R
Internal Registers
Once after releasing reset.
IIC_MST_SCL
IIC_MST_SDA
IIC_MST_EN
IIC_SLV_SDA
IIC_MST_SDA
IIC_MST_EN
IIC_MST_SCL
External
Host CPU, etc.
Serial
EEPROM
I2C Master I/F
IIC_SLV_BUSY (Open)
External
Host CPU, etc.
VDDIO
IIC_SLV_SCL
I2C Slave I/F
I2C Master I/F
IIC_SLV_BUSY
IIC_SLV_SCL
IIC_SLV_SDA
I2C Slave I/F
VSSIO
Recommended EEPROM:
M24128 or Equivalent
2
(b) I C Slave interface only
(a) Using Serial EEPROM
Figure 10.3.5.1
I2C Interface
2
2
This LSI supports 128 Kbit I C serial EEPROM. As shown in Figure 10.3.5.1(a), the I C master interface operates
2
2
2
independently of I C slave interface. While the I C master interface operates, the I C slave interface can only read.
2
Therefore, before writing registers from external master device such as Host CPU through the I C slave interface of this LSI,
2
2
check the status by status register or the IIC_SLV_BUSY pin. (While the I C master interface is operating, the I C slave
interface accepts write command and returns Acknowledge. Note that the internal data path is disconnected.)
In case of no external EEPROM as shown in Figure 10.3.5.1(b), all registers must be written by external host device to
initialize this LSI.
RST_X
IIC_SLV_BUSY
I2C Master I/F
I2C Slave I/F
IDLE
Read EEPROM data
IDLE
Normal Operation
Read only
Normal operation
Figure 10.3.5.2
47
Startup sequence
CXD4732R
10.3.6. I2C Bus through mode
2
2
2
This LSI connects I C master interface and I C slave interface in I C Bus through mode, as shown in Figure 10.3.6.1.
2
Host CPU can access EEPROM in this mode. When the IIC_MUST_BTHR = 1, it becomes I C Bus through mode.
2
Note) Please check the status of I C master interface by the status register IIC_MST_BUSY or the IIC_SLV_BUSY pin
2
before switching into the I C Bus through mode.
CXD4732R
Internal Registers
External
Host CPU, etc.
IIC_MST_SCL
IIC_MST_SDA
IIC_MST_EN
I2C Master I/F
IIC_SLV_BUSY
IIC_SLV_SCL
Status Register
Read Only
IIC_SLV_SDA
I2C Slave I/F
Serial
EEPROM
M24128 or Equivalent
Figure 10.3.6.1
48
I2C Bus through mode
VDDIO
~
7Fh
80h
~
BFh
FFh
49
Lower 8bit LUT 080h~0FFh
Lower 8bit LUT 100h~17Fh
Lower 8bit LUT 180h~1FFh
Lower 8bit LUT 200h~27Fh
Lower 8bit LUT 280h~2FFh
Lower 8bit LUT 300h~37Fh
Upper 4bit
Upper 4bit
Upper 4bit
Upper 4bit
Upper 4bit
Upper 4bit
(reserved)
(reserved)
(reserved)
(reserved)
(reserved)
(reserved)
06h
Lower 8bit LUT 000h~07Fh
05h
Upper 4bit
04h
(reserved)
03h
Lower 8bit LUT 380h~3FFh
02h
Upper 4bit
Lower 8bit LUT 280h~2FFh
Upper 4bit
(reserved)
01h
(reserved)
Lower 8bit LUT 200h~27Fh
Upper 4bit
(reserved)
Sub
Lower 8bit LUT 300h~37Fh
Lower 8bit LUT 180h~1FFh
Upper 4bit
(reserved)
IIC_MST_SADSEL
Upper 4bit
Lower 8bit LUT 100h~17Fh
Upper 4bit
(reserved)
IIC_SLV_SADSEL1
(reserved)
Lower 8bit LUT 080h~0FFh
DFh
Upper 4bit
~
(reserved)
00h
Lower 8bit LUT 000h~07Fh
C0h
00h
Upper 4bit
Address
(reserved)
11.
EXPRESSION Control Registers
CXD4732R
Control Register Map
11.1. I C Slave Address
2
Slave address in CXD4732R can be selected from four (for slave interface), two (for Master interface) in the list below by the
combination of the IIC_SLV_SADSEL0, IIC_SLV_SADSEL1, and IIC_MST_SADSEL pins.
IIC_SLV_SADSEL0
07h
I2C Slave Address
I2C Slave Address
(write)
(read)
0
0
90h
91h
0
1
92h
93h
1
0
94h
95h
1
1
96h
97h
EEPROM Slave Address
EEPROM Slave Address
(write)
(read)
0
ACh
ADh
1
AEh
AFh
11.2. I C Page Address Map
2
Page Address
08h
09h
E0h
~
Common Registers
(FFh: Page Address Setting)
0Ah
Digital Gamma Table (Green)
0Bh
0Ch
Digital Gamma
0Dh
0Eh
0Fh
Table (Blue)
Lower 8bit LUT 200h~27Fh
Lower 8bit LUT 280h~2FFh
Upper 4bit
Upper 4bit
(reserved)
(reserved)
FFh
50
E0h
~
Common Registers
(FFh: Page Address Setting)
(reserved)
1Fh
Gamma/Dither
Control
Registers
00h
System Control
Registers
)
1Eh
System Control
Registers
Digital Gamma Table (Red)
1Dh
GRC
Control
Registers
1Ch
(reserved)
1Bh
System Control Registers
1Ah
(reserved)
19h
Super Resolution Control Registers
18h
Control Registers
17h
MC-3DNR
16h
Video Input Control Registers
15h
Video Output Control Registers
14h
Lower 8bit LUT 380h~3FFh
(Blue
13h
Upper 4bit
12h
(reserved)
11h
Lower 8bit LUT 300h~37Fh
10h
Upper 4bit
Sub
(reserved)
(reserved)
Lower 8bit LUT 180h~1FFh
Upper 4bit
(reserved)
DFh
Lower 8bit LUT 100h~17Fh
~
Upper 4bit
C0h
(reserved)
BFh
Lower 8bit LUT 080h~0FFh
~
Upper 4bit
80h
(reserved)
7Fh
Lower 8bit LUT 000h~07Fh
~
Upper 4bit
40h
(reserved)
3Fh
Lower 8bit LUT 380h~3FFh
~
Upper 4bit
Address
(reserved)
CXD4732R
Page Address (Continued)
CXD4732R
2
11.3. I C Sub Address Map
Explanatory note: when the fixed value is written in the list, the value with "h" indicates hexadecimal number and the other
value of "0" or "1" indicates the binary number.
The “-“means “don’t care”. The register with “*” requires to write the default settings values in accordance with a system.
11.3.1. Common Registers (No Page Address, Sub Address = E0h~FFh)
Page
Addr.
-
E0h
-
E1h
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
****
Bit [ 2 ]
Bit [ 1 ]
***
CLK_RXCLK_SEL
~
Bit [ 0 ]
********
E5h
-
E6h
-
E7h
-
E8h
***
LVTX_SWING
**
LVTX_SRSEL
~
1
LVTX_ENB
LVTX_ENA
0
LVTX_SSEL
LVTX_SSEN
0
0
0
IIC_MST_BTHR
LVTX_FRSEL
********
E9h
-
EAh
-
EBh
0
0
0
0
~
********
F1h
-
F2h
-
-
-
-
-
-
-
VREG_VLTEN
F3h
-
-
-
-
-
-
--
0
-
IIC_MST_NVM_ERR
F4h~
F6h
-
F7h
-
F8 ~
-
-
-
-
IIC_MST_BUSY
FEh
-
FFh
0
0
PAGE
0
11.3.2. EXPRESSION Control Registers (Page Address = 00h, Sub Address = 00h~DFh)
Page
Addr.
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
Bit [ 2 ]
Bit [ 1 ]
Bit [ 0 ]
00h
00h
-
*
00h
01h
*******
I_GBR_RANGE
00h
02h~
********
13h
00h
14h
*******
51
O_GBR_RANGE
CXD4732R
00h
15h
CONTRAST
00h
16h
BRIGHT
00h
17h
COLOR
00h
18h~
19h
00h
1Ah
-
*
00h
1Bh
-
*
00h
1Ch
COM_GON_COL
00h
1Dh
COM_W_SX
COM_W_SY
00h
1Eh
COM_G_SX
COM_G_SY
00h
1Fh
COM_PO_SX
COM_PO_SY
00h
20h
COM_R_SX
COM_R_SY
00h
21h
COM_B_SX
COM_B_SY
00h
22h
COM_Y_SX
COM_Y_SY
00h
23h
COM_M_SX
COM_M_SY
00h
24h
COM_C_SX
COM_C_SY
00h
25h
COM_P_SX
COM_P_SY
00h
26h
COM_W_DX
COM_W_DY
00h
27h
COM_G_DX
COM_G_DY
00h
28h
COM_PO_DX
COM_PO_DY
00h
29h
COM_R_DX
COM_R_DY
00h
2Ah
COM_B_DX
COM_B_DY
00h
2Bh
COM_Y_DX
COM_Y_DY
00h
2Ch
COM_M_DX
COM_M_DY
00h
2Dh
COM_C_DX
COM_C_DY
00h
2Eh
COM_P_DX
COM_P_DY
00h
2Fh
***
COM_W_GAIN
00h
30h
***
COM_G_GAIN
00h
31h
***
COM_PO_GAIN
00h
32h
***
COM_R_GAIN
00h
33h
***
COM_B_GAIN
00h
34h
***
COM_Y_GAIN
00h
35h
***
COM_M_GAIN
00h
36h
***
COM_C_GAIN
00h
37h
***
COM_P_GAIN
00h
38h
-
COM_MODE
00h
39h
-
*
00h
3Ah
-
ICE__A
COMACT_SEL
ICE_B
52
COM_GO_EN
COM_EN
CXD4732R
00h
3Bh
-
ICE_C
00h
3Ch
-
00h
3Dh
-
ICE_COLOR_GAIN_A
00h
3Eh
***
ICE_COLOR_GAIN_B
00h
3Fh
00h
40h
00h
41h
00h
42h
00h
43h
YHSHP
00h
44h
YVSHP
00h
45h
YTSHP
00h
46h
00h
47h
00h
48h
00h
49h
00h
4A ~
*****
ICE_SCENE_CHDET
ICE_A_BLACKLEV1
ICE_FILT_TC
-
ICE_COLOR_GAIN_LMT
-
ICE_BGFACT
ICE_A_BLACKLEV2
ICE_B_BALANCE
-
YHSHP_HBAND
**
YHSHP_VBAND
YVSHP_HBAND
YSHP_WB
YVSHP_VBAND
-
YSHP_CORE
-
CTI_LEV
********
-
CTI_F0
DFh
11.3.3. Digital Gamma Function Look-up Table Registers (Page Address = 01h~18h, Sub Address =
00h~BFh)
Page
Addr.
01h
00 ~
Bit [ 7 ]
BFh
02h
Digital Gamma
03h
04h
Digital Gamma
Bit [ 1 ]
Bit [ 0 ]
LUT Upper 4bit [11:8] for Green <Even Code>
Gamma table address = ((Sub Address - 80h + 000h) * 2 + 0)
LUT Lower 8bit [7:0] for Green
LUT Upper 4bit [11:8] for Green <Odd Code>
Digital Gamma
LUT Upper 4bit [11:8] for Green <Even Code>
Gamma table address = ((Sub Address - 80h + 080h) * 2 + 0)
Digital Gamma
LUT Lower 8bit [7:0] for Green
Gamma table address = (Sub Address + 100h)
Digital Gamma
LUT Upper 4bit [11:8] for Green <Odd Code>
Digital Gamma
Gamma table address = ((Sub Address - 80h + 100h) * 2 + 1)
LUT Upper 4bit [11:8] for Green <Even Code>
Gamma table address = ((Sub Address - 80h + 100h) * 2 + 0)
Digital Gamma
7Fh
BFh
Digital Gamma
Gamma table address = ((Sub Address - 80h + 080h) * 2 + 1)
00 ~
80 ~
Bit [ 2 ]
Gamma table address = (Sub Address + 080h)
7Fh
BFh
LUT Upper 4bit [11:8] for Green <Odd Code>
Digital Gamma
00 ~
80 ~
Bit [ 3 ]
LUT Lower 8bit [7:0] for Green
Gamma table address = ((Sub Address - 80h + 000h) * 2 + 1)
7Fh
BFh
Bit [ 4 ]
Gamma table address = (Sub Address +000h)
00 ~
80 ~
Bit [ 5 ]
Digital Gamma
7Fh
80 ~
Bit [ 6 ]
LUT Lower 8bit [7:0] for Green
Gamma table address = (Sub Address + 180h)
Digital Gamma
LUT Upper 4bit [11:8] for Green <Odd Code>
Gamma table address = ((Sub Address - 80h + 180h) * 2 + 1)
Digital Gamma
LUT Upper 4bit [11:8] for Green <Even Code>
Gamma table address = ((Sub Address - 80h + 180h) * 2 + 0)
53
CXD4732R
05h
00 ~
Digital Gamma
7Fh
80 ~
BFh
06h
Gamma table address = (Sub Address + 200h)
Digital Gamma
07h
Digital Gamma
08h
09h
Digital Gamma
Gamma table address = ((Sub Address - 80h + 300h) * 2 + 1)
Digital Gamma
Gamma table address = (Sub Address + 380h)
Digital Gamma
LUT Upper 4bit [11:8] for Green <Odd Code>
Gamma table address = ((Sub Address - 80h + 380h) * 2 + 1)
Digital Gamma
Digital Gamma
LUT Upper 4bit [11:8] for Blue <Odd Code>
Gamma table address = ((Sub Address - 80h + 000h) * 2 + 1)
LUT Lower 8bit [7:0] for Blue
Digital Gamma
LUT Upper 4bit [11:8] for Blue <Odd Code>
Gamma table address = ((Sub Address - 80h + 080h) * 2 + 1)
LUT Lower 8bit [7:0] for Blue
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 100h)
LUT Upper 4bit [11:8] for Blue <Odd Code>
Gamma table address = ((Sub Address - 80h + 100h) * 2 + 1)
LUT Lower 8bit [7:0] for Blue
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 180h)
BFh
LUT Upper 4bit [11:8] for Blue <Odd Code>
Gamma table address = ((Sub Address - 80h + 180h) * 2 + 1)
LUT Lower 8bit [7:0] for Blue
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 200h)
BFh
Digital Gamma
LUT Upper 4bit [11:8] for Blue <Even Code>
Gamma table address = ((Sub Address - 80h + 180h) * 2 + 0)
00 ~
80 ~
LUT Upper 4bit [11:8] for Blue <Even Code>
Gamma table address = ((Sub Address - 80h + 100h) * 2 + 0)
00 ~
Digital Gamma
LUT Upper 4bit [11:8] for Blue <Even Code>
Gamma table address = ((Sub Address - 80h + 080h) * 2 + 0)
00 ~
Digital Gamma
LUT Upper 4bit [11:8] for Blue <Even Code>
Gamma table address = ((Sub Address - 80h + 000h) * 2 + 0)
Gamma table address = (Sub Address + 080h)
Digital Gamma
LUT Upper 4bit [11:8] for Green <Even Code>
Gamma table address = ((Sub Address - 80h + 380h) * 2 + 0)
7Fh
80 ~
0Eh
LUT Lower 8bit [7:0] for Green
Digital Gamma
BFh
LUT Upper 4bit [11:8] for Green <Even Code>
Gamma table address = ((Sub Address - 80h + 300h) * 2 + 0)
00 ~
80 ~
0Dh
Digital Gamma
Gamma table address = (Sub Address + 000h)
BFh
0Ch
LUT Upper 4bit [11:8] for Green <Odd Code>
7Fh
80 ~
0Bh
LUT Lower 8bit [7:0] for Green
Digital Gamma
BFh
LUT Upper 4bit [11:8] for Green <Even Code>
Gamma table address = ((Sub Address - 80h + 280h) * 2 + 0)
00 ~
80 ~
0Ah
Digital Gamma
Gamma table address = (Sub Address + 300h)
7Fh
BFh
LUT Upper 4bit [11:8] for Green <Odd Code>
Digital Gamma
00 ~
80 ~
LUT Lower 8bit [7:0] for Green
Gamma table address = ((Sub Address - 80h + 280h) * 2 + 1)
7Fh
BFh
LUT Upper 4bit [11:8] for Green <Even Code>
Gamma table address = (Sub Address + 280h)
00 ~
80 ~
Digital Gamma
Gamma table address = ((Sub Address - 80h + 200h) * 2 + 0)
Digital Gamma
7Fh
BFh
LUT Upper 4bit [11:8] for Green <Odd Code>
Gamma table address = ((Sub Address - 80h + 200h) * 2 + 1)
00 ~
80 ~
LUT Lower 8bit [7:0] for Green
LUT Upper 4bit [11:8] for Blue <Odd Code>
Gamma table address = ((Sub Address - 80h + 200h) * 2 + 1)
LUT Lower 8bit [7:0] for Blue
Digital Gamma
LUT Upper 4bit [11:8] for Blue <Even Code>
Gamma table address = ((Sub Address - 80h + 200h) * 2 + 0)
00 ~
Digital Gamma
7Fh
Gamma table address = (Sub Address + 280h)
54
LUT Lower 8bit [7:0] for Blue
CXD4732R
80 ~
BFh
0Fh
Gamma table address = (Sub Address + 300h)
14h
15h
16h
17h
LUT Upper 4bit [11:8] for Blue <Odd Code>
Gamma table address = ((Sub Address - 80h + 300h) * 2 + 1)
LUT Lower 8bit [7:0] for Blue
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 380h)
Digital Gamma
LUT Upper 4bit [11:8] for Blue <Odd Code>
Gamma table address = ((Sub Address - 80h + 380h) * 2 + 1)
LUT Lower 8bit [7:0] for Blue
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 000h)
Digital Gamma
BFh
Gamma table address = ((Sub Address - 80h + 000h) * 2 + 1)
LUT Upper 4bit [11:8] for Red <Odd Code>
LUT Lower 8bit [7:0] for Red
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 080h)
Digital Gamma
BFh
Gamma table address = ((Sub Address - 80h + 080h) * 2 + 1)
LUT Upper 4bit [11:8] for Red <Odd Code>
LUT Lower 8bit [7:0] for Red
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 100h)
Digital Gamma
BFh
Gamma table address = ((Sub Address - 80h + 100h) * 2 + 1)
LUT Upper 4bit [11:8] for Red <Odd Code>
LUT Lower 8bit [7:0] for Red
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 180h)
Digital Gamma
BFh
Gamma table address = ((Sub Address - 80h + 180h) * 2 + 1)
LUT Upper 4bit [11:8] for Red <Odd Code>
LUT Lower 8bit [7:0] for Red
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 200h)
Digital Gamma
BFh
Gamma table address = ((Sub Address - 80h + 200h) * 2 + 1)
LUT Upper 4bit [11:8] for Red <Odd Code>
LUT Lower 8bit [7:0] for Red
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 280h)
Digital Gamma
BFh
Gamma table address = ((Sub Address - 80h + 280h) * 2 + 1)
LUT Upper 4bit [11:8] for Red <Odd Code>
LUT Lower 8bit [7:0] for Red
Digital Gamma
Digital Gamma
7Fh
Gamma table address = (Sub Address + 300h)
Digital Gamma
BFh
Gamma table address = ((Sub Address - 80h + 300h) * 2 + 1)
LUT Upper 4bit [11:8] for Red <Even Code>
Gamma table address = ((Sub Address - 80h + 280h) * 2 + 0)
00 ~
80 ~
LUT Upper 4bit [11:8] for Red <Even Code>
Gamma table address = ((Sub Address - 80h + 200h) * 2 + 0)
00 ~
80 ~
LUT Upper 4bit [11:8] for Red <Even Code>
Gamma table address = ((Sub Address - 80h + 180h) * 2 + 0)
00 ~
80 ~
LUT Upper 4bit [11:8] for Red <Even Code>
Gamma table address = ((Sub Address - 80h + 100h) * 2 + 0)
00 ~
80 ~
LUT Upper 4bit [11:8] for Red <Even Code>
Gamma table address = ((Sub Address - 80h + 080h) * 2 + 0)
00 ~
80 ~
LUT Upper 4bit [11:8] for Red <Even Code>
Gamma table address = ((Sub Address - 80h + 000h) * 2 + 0)
00 ~
80 ~
LUT Upper 4bit [11:8] for Blue <Even Code>
Gamma table address = ((Sub Address - 80h + 380h) * 2 + 0)
00 ~
80 ~
LUT Upper 4bit [11:8] for Blue <Even Code>
Gamma table address = ((Sub Address - 80h + 300h) * 2 + 0)
00 ~
BFh
13h
Digital Gamma
LUT Upper 4bit [11:8] for Blue <Even Code>
Gamma table address = ((Sub Address - 80h + 280h) * 2 + 0)
7Fh
80 ~
12h
Gamma table address = ((Sub Address - 80h + 280h) * 2 + 1)
Digital Gamma
Digital Gamma
BFh
11h
LUT Upper 4bit [11:8] for Blue <Odd Code>
00 ~
80 ~
10h
Digital Gamma
LUT Upper 4bit [11:8] for Red <Odd Code>
LUT Lower 8bit [7:0] for Red
Digital Gamma
LUT Upper 4bit [11:8] for Red <Even Code>
Gamma table address = ((Sub Address - 80h + 300h) * 2 + 0)
55
CXD4732R
18h
00 ~
Digital Gamma
7Fh
Gamma table address = (Sub Address + 380h)
80 ~
Digital Gamma
BFh
Gamma table address = ((Sub Address - 80h + 380h) * 2 + 1)
LUT Lower 8bit [7:0] for Red
LUT Upper 4bit [11:8] for Red <Odd Code>
Digital Gamma
LUT Upper 4bit [11:8] for Red <Even Code>
Gamma table address = ((Sub Address - 80h + 380h) * 2 + 0)
11.3.4. Video Input Control Registers (Page Address = 1Ah, Sub Address = 00h~7Fh)
Page
Addr.
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
Bit [ 2 ]
Bit [ 1 ]
Bit [ 0 ]
1Ah
00h
0
0
0
0
0
0
VIN_LNKMS_SEL *
VIN_LINK_MD *
1Ah
01h
*
*
*
*
*
*
*
*
1Ah
02h
*
*
VIN_SYNC1
1Ah
03h
*
*
VIN_SYNC2
1Ah
04h
*
*
VIN_SYNC3
1Ah
05h
*
*
*
*
*
*
DEVALID
*
1Ah
06~
*
*
*
*
*
*
*
*
VIN_LVRMP_8BSFT *
*
*
*
*
*
*
0Fh
1Ah
10h
1Ah
11h
1Ah
12h
1Ah
13 ~
00h
-
VIN_LVRM_LVFMTSEL*
*
00h
48h
1Ah
49 ~
7Fh
11.3.5. Video Output Control Registers (Page Address = 1Ah, Sub Address = 80h~DFh)
Page
Addr.
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
Bit [ 2 ]
Bit [ 1 ]
1Ah
80h
1Ah
81h
*
*
*
*
*
*
*
*
1Ah
82h
*
*
*
*
*
*
*
*
1Ah
83h
*
*
*
*
*
1Ah
84 ~
*
*
*
*
*
*
*
00h
*
VOT_SYNC1
*
*
*
Bit [ 0 ]
VOT_LINK_MD
86h
1Ah
87h
VOT_LVTMP_8BSFT *
00h
1Ah
88h
*
*
*
*
*
*
*
*
1Ah
89h
*
*
*
*
*
*
*
*
1Ah
8Ah
VOT_LNKSWP
*
*
*
1Ah
8Bh
*
*
*
*
00h
*
*
*
*
56
CXD4732R
1Ah
8Ch
1Ah
8Dh
1Ah
8E ~
*
*
*
00h
*
*
*
VOT_LVTMP_LVFMTSEL *
*
*
*
SYNC_MODE
Bit [ 1 ]
Bit [ 0 ]
00h
00h
AFh
1Ah
B0 ~
********
B3h
1Ah
B4h
*
1Ah
B5h
*
1Ah
B6h
*
1Ah
B7 ~
*
*
*
VWIDTH
HWIDTH
*
*
*
*
*
*******
DFh
11.3.6. MC-3DNR Control Registers (Page Address = 1Bh, Sub Address = 00h~DFh)
Page
Addr.
1Bh
00h~
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
Bit [ 2 ]
*******
0Bh
1Bh
0Ch
1Bh
0Dh
*******
YNR
*******
~
21h
1Bh
22h
*******
MINALFA
1Bh
23h
*******
MAXALFA
1Bh
24h~
*******
2Ch
1Bh
2Dh
1Bh
2Eh
1Bh
2Fh~
*******
PNR_PK
CLIPKMAX
*******
*******
32h
1Bh
33h
*******
FBHISTTH
1Bh
34h
*******
NLFB
1Bh
35h~
*******
57h
1Bh
58h
1Bh
59h~
*******
BKYCTRL_DEFVOL
*******
5Ah
1Bh
5Bh
1Bh
5Ch
*******
BKYCTRL_VP
BKYCTRL_GRDV_H
57
CXD4732R
1Bh
5Dh
1Bh
5Eh
BKYCTRL_GRDV_L
~
*******
B9h
1Bh
BAh
~
-
DFh
Sony provides the register setting sets corresponding to the intensity of noise reduction.
11.3.7. Super Resolution Control Registers (Page Address = 1Ch, Sub Address = 00h~DFh)
Page
Addr.
1Ch
00h~
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
Bit [ 2 ]
Bit [ 1 ]
*******
0Fh
1Ch
10h
VOLN
1Ch
11h
VOLR
1Ch
12h
VOLE
1Ch
13h~
*******
1Ah
1Ch
1Bh
VOLERATIOMIN
1Ch
1Ch
VOLERATIOMAX
1Ch
1Dh
*******
~
23h
1Ch
24h
1Ch
25h~
*******
NSHIFT
*******
3Dh
1Ch
3Eh
VOLE_BVD
1Ch
3Fh~
********
6Ch
1Ch
6Dh
1Ch
6Eh
NLIMIT
****
*******
~
7Fh
1Ch
80h
1Ch
81h~
HADAON
*******
*******
85h
1Ch
86h
SPCOFF
*******
58
Bit [ 0 ]
CXD4732R
1Ch
87h
1Ch
88h
1Ch
89h~
*******
ICONTON
*******
*******
8Ah
1Ch
8Bh
1Ch
8Ch
*******
HADA_EFFECT
*******
~
DFh
11.3.8. GRC Control Registers (Page Address = 1Dh, Sub Address = 00h~DFh)
Page
Addr.
1Dh
00h~
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
Bit [ 2 ]
Bit [ 1 ]
Bit [ 0 ]
*******
2Dh
1Dh
2Eh
1Dh
2Fh
1Dh
30h
1Dh
31h
1Dh
32h~
*******
*******
GRC_EN
GRC_VCORE
*******
GRC_HCORE
*******
MNR_FLAT_LEV
*******
MNR_EDGE_LEV
*******
DFh
11.3.9. Gamma and Dither Control Registers (Page Address = 1Fh, Sub Address = 00h~3Fh)
Page
Addr.
Bit [ 7 ]
1Bh
00h
00h
TBLA_SCLK_MSK
1Bh
01h
00h
TBLA_RDEN
1Bh
02h
00h
TBLA_VCLK_EN
1Bh
03h
00h
GMTBL_EN
1Bh
04h
00h
TBLB_SCLK_MSK
1Bh
05h
00h
TBLB_RDEN
1Bh
06h
00h
TBLB_VCLK_EN
1Bh
07h
00h
GMTBL_SEL
1Bh
08h
1Bh
09h
1Bh
0Ah
1Bh
0B ~
0
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
DITH_BIT
Bit [ 2 ]
Bit [ 1 ]
DITH_MODE
00h
DITH_EN
DITH_INC
********
3Fh
59
Bit [ 0 ]
CXD4732R
11.3.10. Other System Control Registers-1 (Page Address = 1Dh, Sub Address = 40h~DFh)
Page
Addr.
1Dh
40h
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
~
Bit [ 3 ]
Bit [ 2 ]
Bit [ 1 ]
Bit [ 0 ]
*******
BFh
1Dh
C0h
~
-
DFh
11.3.11. Other System Control Registers-2 (Page Address = 1Eh, Sub Address = 00h~DFh)
Page
Addr.
1Eh
00h
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
~
Bit [ 3 ]
Bit [ 2 ]
Bit [ 1 ]
Bit [ 0 ]
*******
3Fh
1Eh
40h
~
-
DFh
11.3.12. Other System Control Registers-3 (Page Address = 1Fh, Sub Address = 40h~DFh)
Page
Addr.
1Fh
40 ~
Bit [ 7 ]
Bit [ 6 ]
Bit [ 5 ]
Bit [ 4 ]
Bit [ 3 ]
*******
6Fh
1Fh
70h
~
-
DFh
60
Bit [ 2 ]
Bit [ 1 ]
Bit [ 0 ]
CXD4732R
2
11.4. I C Register Description
Explanatory note: The value with "h" indicates hexadecimal number, the value of "0" or "1" indicates the binary number,
and other value indicates decimal number. In a row of Direction, “R” means Read Only Register, “W” means Write Only
register, and “W/R” means both Write and Read Register. The registers with “*” are V-latched registers. Those register
values are reflected by every V-sync.
11.4.1. Common Registers (No Page Address)
Function
Page
Addr.
bit
Direction
Register Name
Description
-
FFh
[4:0]
W/R
PAGE
Page select from 00h~1Bh
-
EAh
[0]
W/R
IIC_BTHR
I2C slave port to master port through operation
Category
I2C Function
0:disable
-
F7h
[0]
R
1:through operation enable
I2C master busy flag. 0: master is not busy, so accessing to I2C slave is not
IIC_MST_BUSY
inhibited
1: master is busy, so accessing to I2C slave port is inhibited.
-
F7h
[2:1]
R
IIC_MST_NVM_ERR
NVM access error status
Clock Path
-
E0h
[3]
LVDS Tx and
-
E6h
SSCG control
-
0: no error
other: error
W/R
CLK_RXCLK_SEL
Video clock source select
[4]
W/R
LVTX_SWING
LVDS Tx all clocks and all data swing voltage select
E6h
[1]
W/R
LVTX_ENA
LVDS Tx Link-A output enable
0: disable
1: enable
-
E6h
[2]
W/R
LVTX_ENB
LVDS Tx Link-B output enable
0: disable
1: enable
-
E7h
[2]
W/R
LVTX_SSEN
LVDS Tx spread spectrum clock (SSCG) enable
-
E7h
[1:0]
W/R
LVTX_FRSEL
LVDS Tx SSCG modulation frequency select
-
E7h
[3]
W/R
LVTX_SSEL
LVDS Tx SSCG
-
E7h
[5:4]
W/R
LVTX_SRSEL
LVDS Tx SSCG spread ratio select
F2h
[0]
W/R
VREG_VLTEN
0: LVDS Rx Link-A
spread spectrum select
1: LVDS Rx Link-B
0: 250mV 1: 350mV
0: disable
0: center
1: enable
1: N/A
Image control register’s sync latch enable
The registers that control video processing parameters are reflect every V-sync at
only VREG_VLTEN=1. If VREG_VLTEN=0, the video processing registers are not
reflect but written values are kept. If you change the video processing registers,
set VREG_VLTEN=0 first, next update the video processing registers, and finally
set VREG_VLTEN=1.
0:V-sync latch disable(default)
1:V-sync latch enable
11.4.2. EXPRESSION Registers
Function
Page
Addr.
bit
Direction
Register Name
Description
00h
1Ch
[0]
W*/R
COM_EN
Color Management Function Enable
0: disable, 1: enable
00h
1Dh
[7:4]
W*/R
COM_W_SX
White area location x
0:-max ~ 8:+/-0 ~ 15:+max
00h
1Dh
[3:0]
W*/R
COM_W_SY
White area location y
0:-max ~ 8:+/-0 ~ 15:+max
00h
1Eh
[7:4]
W*/R
COM_G_SX
Green area location x
0:-max ~ 8:+/-0 ~ 15:+max
00h
1Eh
[3:0]
W*/R
COM_G_SY
Green area location y
0:-max ~ 8:+/-0 ~ 15:+max
Category
Color Management
61
CXD4732R
00h
1Fh
[7:4]
W*/R
COM_PO_SX
Pale orange area location x
0:-max ~ 8:+/-0 ~ 15:+max
00h
1Fh
[3:0]
W*/R
COM_PO_SY
Pale orange area location y
0:-max ~ 8:+/-0 ~ 15:+max
00h
20h
[7:4]
W*/R
COM_R_SX
Red area location x
0:-max ~ 8:+/-0 ~ 15:+max
00h
20h
[3:0]
W*/R
COM_R_SY
Red are location y
0:-max ~ 8:+/-0 ~ 15:+max
00h
21h
[7:4]
W*/R
COM_B_SX
Blue area location x
0:-max ~ 8:+/-0 ~ 15:+max
00h
21h
[3:0]
W*/R
COM_B_SY
Blue area location y
0:-max ~ 8:+/-0 ~ 15:+max
00h
22h
[7:4]
W*/R
COM_Y_SX
Yellow area location x
0:-max ~ 8:+/-0 ~ 15:+max
00h
22h
[3:0]
W*/R
COM_Y_SY
Yellow area location y
0:-max ~ 8:+/-0 ~ 15:+max
00h
23h
[7:4]
W*/R
COM_M_SX
Magenta area location x
0:-max ~ 8:+/-0 ~ 15:+max
00h
23h
[3:0]
W*/R
COM_M_SY
Magenta area location y
0:-max ~ 8:+/-0 ~ 15:+max
00h
24h
[7:4]
W*/R
COM_C_SX
Cyan area location x
0:-max ~ 8:+/-0 ~ 15:+max
00h
24h
[3:0]
W*/R
COM_C_SY
Cyan area location y
0:-max ~ 8:+/-0 ~ 15:+max
00h
25h
[7:4]
W*/R
COM_P_SX
Pink area location x (COM_MODE=0 only)
0:-max ~ 8:+/-0 ~ 15:+max
00h
25h
[3:0]
W*/R
COM_P_SY
Pink area location y(COM_MODE=0 only)
0:-max ~ 8:+/-0 ~ 15:+max
00h
26h
[7:4]
W*/R
COM_W_DX
Vector for White of x direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
26h
[3:0]
W*/R
COM_W_DY
Vector for White of y direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
27h
[7:4]
W*/R
COM_G_DX
Vector for Green of x direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
27h
[3:0]
W*/R
COM_G_DY
Vector for Green of y direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
28h
[7:4]
W*/R
COM_PO_DX
Vector for Pale orange of x direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
28h
[3:0]
W*/R
COM_PO_DY
Vector for Pale orange of y direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
29h
[7:4]
W*/R
COM_R_DX
Vector for Red of x direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
29h
[3:0]
W*/R
COM_R_DY
Vector for Red of y direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Ah
[7:4]
W*/R
COM_B_DX
Vector for Blue of x direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Ah
[3:0]
W*/R
COM_B_DY
Vector for Blue of y direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Bh
[7:4]
W*/R
COM_Y_DX
Vector for Yellow of x direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Bh
[3:0]
W*/R
COM_Y_DY
Vector for Yellow of y direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Ch
[7:4]
W*/R
COM_M_DX
Vector for Magenta of x direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Ch
[3:0]
W*/R
COM_M_DY
Vector for Magenta of y direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Dh
[7:4]
W*/R
COM_C_DX
Vector for Cyan of x direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Dh
[3:0]
W*/R
COM_C_DY
Vector for Cyan of y direction
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Eh
[7:4]
W*/R
COM_P_DX
Vector for Pink(COM_MODE=0) or Pale orange2 (COM_MODE=1)
direction
00h
2Eh
[3:0]
W*/R
COM_P_DY
0:-max ~ 8:+/-0 ~ 15:+max
Vector for Pink(COM_MODE=0) or Pale orange2 (COM_MODE=1)
direction
of y
0:-max ~ 8:+/-0 ~ 15:+max
00h
2Fh
[4:0]
W*/R
COM_W_GAIN
Vector gain for White
0:0 ~ 63:max
00h
30h
[4:0]
W*/R
COM_G_GAIN
Vector gain for Green
0:0 ~ 63:max
00h
31h
[4:0]
W*/R
COM_PO_GAIN
Vector gain for Pale orange
0:0 ~ 63:max
00h
32h
[4:0]
W*/R
COM_R_GAIN
Vector gain for Red
0:0 ~ 63:max
62
of x
CXD4732R
00h
33h
[4:0]
W*/R
COM_B_GAIN
Vector gain for Blue
0:0 ~ 63:max
00h
34h
[4:0]
W*/R
COM_Y_GAIN
Vector gain for Yellow
0:0 ~ 63:max
00h
35h
[4:0]
W*/R
COM_M_GAIN
Vector gain for Magenta
0:0 ~ 63:max
00h
36h
[4:0]
W*/R
COM_C_GAIN
Vector gain for Cyan
0:0 ~ 63:max
00h
37h
[4:0]
W*/R
COM_P_GAIN
Vector gain for Pink
0:0 ~ 63:max
00h
1Ch
[1]
W*/R
COM_GO_EN
Evaluation
purpose
only.
Highlight
display
selected
color
area
by
COM_GON_COL
0: disable,
00h
1Ch
[7:4]
W*/R
COM_GON_COL
1: enable
Evaluation purpose only, valid only when COM_GO_EN=1. Select a color
0:White,
1:Green, 2:Pale orange, 3:Red, 4:Blue, 5:Yellow, 6:Magenta, 7:Cyan, 8:Pink
00h
38h
[0]
W*/R
COM_MODE
Set color area select mode
0: Select from 9-color area
1: Select from 8-color area and 1 fixed area
iCE
00h
3Ah
[7:4]
W*/R
ICE_A
iCE A function gain.
0: Off ~ 15: Max.
00h
3Ah
[3:0]
W*/R
ICE_B
iCE B function gain.
0: Off ~ 15: Max.
00h
3Bh
[3:0]
W*/R
ICE_C
iCE C function gain
0: Off ~ 15: Max.
00h
3Ch
[0]
W*/R
ICE_FILT_TC
iCE filter time constant
0: Slow 1:Fast
00h
3Dh
[5:0]
W*/R
ICE_COLOR_GAIN_A
iCE color gain compensation (DC)
00h
3Eh
[5:0]
W*/R
ICE_COLOR_GAIN_B
iCE color gain compensation (differential gain) 0: Off ~ 63: Max.
00h
3Fh
[7:4]
W*/R
ICE_SCENE_CHDET
iCE scene change detection sensitivity
00h
3Fh
[2:0]
W*/R
ICE_COLOR_GAIN_LMT
iCE color gain compensation (Limiter)
0: Off ~ 63: Max.
0: High ~ 15: Low
0: 0dB, 1: 0.5dB, 2: 1.0dB, 3: 2.0dB, 4: 3.5dB, 5: 6.0dB, 6: 8.0dB, 7: 9.ddB
00h
40h
[7:6]
W*/R
ICE_A_BLACKLEV1
Set black level correction curve fold point.
0: 30IRE 1: 30IRE 2: 50IRE 3: 60IRE
2-D Sharpness
00h
40h
[4:0]
W*/R
ICE_BGFACT
Background processing
0: Off ~ 31Max
00h
41h
[7:4]
W*/R
ICE_A_BLACKLEV2
iCE A black level correction
0: Off ~ 7 Max. (8 ~15: N/A)
00h
41h
[3:0]
W*/R
ICE_B_BALANCE
iCE B negative gain reduction 0: Off ~ 7 Max. (8 ~15: N/A)
00h
43h
[7:0]
W*/R
YHSHP
Y horizontal sharpness level
0: -max ~ 128: OFF(0dB) ~ 255: +max(about +10dB)
00h
44h
[7:0]
W*/R
YVSHP
Y vertical sharpness level
0: -max ~ 128: OFF(0dB) ~ 255: +max(about +10dB)
00h
45h
[7:0]
W*/R
YTSHP
Y diagonal sharpness level
0: -max ~ 128: OFF(0dB) ~ 255: +max(about +10dB)
00h
46h
[7:5]
W*/R
YHSHP_HBAND
Horizontal frequency band to apply Y horizontal sharpness
0: min. ~ 4: max
00h
46h
[4]
W*/R
YHSHP_VBAND
(5~7: N/A)
Vertical frequency band to apply Y horizontal sharpness.
63
0: low ~ 1: high
CXD4732R
00h
46h
[3:1]
W*/R
YVSHP_HBAND
Horizontal frequency band to apply Y vertical sharpness
0: min. ~ 4: max
(5~7: N/A)
00h
46h
[0]
W*/R
YVSHP_VBAND
Vertical frequency band to apply Y vertical sharpness
00h
47h
[7:4]
W*/R
YSHP_WB
Top and bottom characteristic of Y sharpness
0: low ~ 1: high
0: black side/max, white side min
~ 8: top and bottom is symmetric ~ 15: black side/min, white side max
00h
47h
[1:0]
W*/R
YSHP_CORE
Quantity of coring of Y sharpness
0: OFF ~ 3: max
00h
49h
[6:4]
W*/R
CTI_F0
CTI F0
0: f0=min. ~ 7: f0=max.
00h
49h
[1:0]
W*/R
CTI_LEV
CTI level
0: OFF ~ 3: max.
Other Image
00h
15h
[7:0]
W*/R
CONTRAST
Output Contrast Control
0: x0 ~ 128: x1 ~ 255: x255/128
Control Registers
00h
16h
[7:0]
W*/R
BRIGHT
Output Brightness Control
0: -128 ~ 128: +/-0 ~ 255: +127 (8bit)
At 10bit, this value becomes quadruple.
00h
17h
[7:0]
W*/R
COLOR
Output Color Saturation Control
00h
01h
[0]
W/R
I_GBR_RANGE
GBR Video Input Dynamic Range
0: 0~1023 (10bit), 0~255 (8bit)
00h
14h
[0]
W/R
O_GBR_RANGE
0: x0 ~ 128: x1 ~ 255: x255/128
1: 64-940 (10bit), 16~235 (8bit)
GBR Video Output Dynamic Range
0: 0~1023 (10bit) 0~255 (8bit)
1: 64-940 (10bit) 16~235 (8bit)
11.4.3. Video Input Control Registers (Page Address = 1Ah)
Function
Page
Addr.
bit
Direction
Register Name
Description
Video Input
1Ah
00h
[0]
W/R
VIN_LINK_MD
LVDS Rx Dual/Single Link Select
Control
1Ah
00h
[1]
W/R
VIN_LNKMS_SEL
LVDS Rx master link select (Link swap function)
Category
0:FHD (dual link)
1:WXGA (single link)
Note) this function selects only
data and data enable. Clock is selected by other register.
0: 1st pixel input to link-A, 2nd pixel input to link-B
1: 2nd pixel input to link-A, 1st pixel input to link-B
1Ah
02h
[5:0]
W/R
VIN_SYNC1
Trigger
signal
Select
from
of
LVDS Rx master link select
{
lvrx_ch0[6:0],
lvrx_ch1[6:0],
lvrx_ch2[6:0],
lvrx_ch3[6:0],
lvrx_ch4[6:0] }
Ex.
for
JEIDA,VASA
19: VS-rise
20 : DE-rise
When you select 20 , DEVALID ( page 1Ah sub address=05h, data[1] ) must be
set to 1 .
1Ah
03h
[5:0]
W/R
VIN_SYNC2
Trigger
signal
Select
from
of
{
LVDS Rx slave link select
lvrx_ch0[6:0],
lvrx_ch1[6:0],
lvrx_ch2[6:0],
lvrx_ch4[6:0] }
Ex.
64
for
JEIDA,VASA
19: VS-rise
20 : DE-rise
lvrx_ch3[6:0],
CXD4732R
When you select 20 , DEVALID ( page 1Ah sub address=05h, data[1] ) must be
set to 1 .
1Ah
04h
[5:0]
W/R
VIN_SYNC3
Trigger
signal of
VIN fifo read start select
Select
from
lvrx_ch0[6:0],
{
lvrx_ch1[6:0],
lvrx_ch2[6:0],
lvrx_ch3[6:0],
lvrx_ch4[6:0] }
Ex.
for
JEIDA,VASA
19: VS-rise
20 : DE-rise
When you select 20 , DEVALID ( page 1Ah sub address=05h, data[1] ) must be
set to 1 .
1Ah
05h
[1]
W/R
DEVALID
DE valid signal enable
0: disenable (for Sync through mode)
1: enable (for DE-only mode)
1Ah
10h
[7:6]
W/R
VIN_LVRMP_8BSFT
LVDS Rx format and bit width
0: VESA 10bit, JEIDA 10 and 8bit
3: VESA 8bit
1Ah
12h
[2:1]
W/R
VIN_LVRM_LVFMTSEL
Other value is N/A.
LVDS Rx format Select
0: VESA
1: JEIDA
Other value is N/A.
11.4.4. Video Output Control Registers (Page Address = 1Ah)
Function
Page
Addr.
bit
Direction
1Ah
80h
[0]
W/R
Register Name
Description
Category
Video Output
VOT_LINK_MD
LVDS Tx Dual/Single Link Select.
Control
1Ah
83h
[6:4]
W/R
VOT_SYNC1
Note) set the same value as VIN_LINK_MD.
0:FHD (dual link)
1:WXGA (single link)
Trigger
VOT fifo read start select
signal of
000:DE-rise 001:VS-rise 010:HS-rise 011:ExternalTrigger-rise 100:sreset-fall
1Ah
87h
[7:6]
W/R
VOT_LVTMP_8BSFT
LVDS Tx format and bit width
0: VESA 10bit, JEIDA 10 and 8bit
2: VESA 8bit
1Ah
8Ah
[3]
W/R
VOT_LNKSWP
Other value is N/A.
LVDS Tx link swap
0: swap disable (input A->output A, input B -> output B)
1: swap enable (input A->output B, input B -> output A)
1Ah
8Dh
[5:4]
W/R
VOT_LVTMP_LVFMTSEL
LVDS Tx format
0: VESA
1Ah
B4h
[3:0]
W/R
VWIDTH
1: JEIDA
Other value is N/A.
Output VSYNC width select (For only Sync through mode)
Unit:Line
0-: prohibited
15: 15Line
1Ah
B5h
[6:0]
W/R
HWIDTH
Output VSYNC width select (For only Sync through mode)
0,1 : prohibited
65
Unit:VCLK
CXD4732R
127: 127VCLK
If you use SSCG (LVTX_SSEN=1),
1Ah
B6h
[0]
W/R
SYNC_MODE
HWIDTH must be set over 44.
Output synchronous signal select
0: For DE only mode、 1: For Sync through mode
11.4.5. Gamma and Dither Control Registers (Page Address = 1Fh)
Function
Page
Addr.
bit
Direction
Register Name
Description
1Fh
03h
[0]
W*/R
GMTBL_EN
Gamma block output select
1Fh
07h
[0]
W*/R
GMTBL_SEL
Gamma look up table A or B select
1Fh
00h
[0]
W/R
TBLA_SCLK_MSK
Gamma Table-A I2C clock mask enable (*1)
0:clock run
1:clock stop
1Fh
04h
[0]
W/R
TBLB_SCLK_MSK
Gamma Table-B I2C clock mask enable (*1)
0:clock run
1:clock stop
1Fh
01h
[0]
W/R
TBLA_RDEN
Gamma Table-A mode switch (*1)
0: I2C write mode
1:Normal mode
1Fh
05h
[0]
W/R
TBLB_RDEN
Gamma Table-B mode switch (*1)
0: I2C write mode
1:Normal mode
1Fh
02h
[0]
W/R
TBLA_VCLK_EN
Gamma Table-A video clock run enable (*1)
0:clock stop
1:clock run
1Fh
06h
[0]
W/R
TBLB_VCLK_EN
Gamma Table-B video clock run enable (*1)
0:clock stop
1:clock run
1Fh
08h
[0]
W/R
DITH_EN
Dither enable
0:diable
1Fh
08h
[3:1]
W/R
DITH_MODE
Dither mode select
0:Reserved
Category
Gamma Function
Dither Function
3:Reserved
0:input through
0:select table A 1:select table B
4:2x2 matrix pattern 1
6:4x4 matrix pattern 1
1Fh
08h
[5:4]
W/R
DITH_BIT
Operation bits 0: 10bit
1Fh
09h
[2:0]
W/R
DITH_INC
Pattern Increment mode
1:look up table read output
1:enable
1:round
2:Framerate conversion
5:2x2 matrix pattern 2
7:4x4 matrix pattern 2
2: 8bit
Other value is N/A.
0: increment by pixel
1: increment by line
2: increment by frame
3: Reserved
11.4.6. MC-3DNR Control Registers (Page Address = 1Bh)
Function
Page
Addr.
bit
Direction
Register Name
Description
1Bh
0Ch
[0]
W/R
YNR
NR function enable
0: disable
1Bh
33h
[5:0]
W/R
FBHISTTH
Time constant of noise detector
0: fast
63: slow
1Bh
34h
[5:0]
W/R
NLFB
Time constant of noise filter
0: fast
63: slow
1Bh
22h
[5:0]
W/R
MINALFA
NR level control registers see application note
1Bh
23h
[5:0]
W/R
MAXALFA
1Bh
2Dh
[4:0]
W/R
PNR_PK
1Bh
2Eh
[7:4]
W/R
CLIPKMAX
1Bh
58h
[5:0]
W/R
BKYCTRL_DEFVOL
Category
MC-3DNR
1: enable
Function
66
CXD4732R
1Bh
5Bh
[5:0]
W/R
BKYCTRL_VP
1Bh
5Ch
[7:0]
W/R
BKYCTRL_GRDV_H
1Bh
5Dh
[7:0]
W/R
BKYCTRL_GRDV_L
11.4.7. GRC Control Registers (Page Address = 1Fh)
Function
Page
Addr.
bit
Direction
Register Name
Description
1Dh
2Eh
[0:0]
W/R
GRC_EN
Adaptive horizontal smoothing
1Dh
2Fh
[2:0]
W/R
GRC_HCORE
Adaptive coring for horizontal high frequency component
Category
GRC
Function
0: off
1Dh
2Fh
[6:4]
W/R
GRC_VCORE
0: disable
1: enable
7: max
Adaptive coring for vertical high frequency component
0: off
7: max
1Dh
31h
[1:0]
W/R
MNR_EDGE_LEV
Mosquito NR for signal edge
1Dh
31h
[7:4]
W/R
MNR_FLAT_LEV
Mosquito NR for all area
0: off
3: max
0: off
15: max
11.4.8. Super Resolution Control Registers (Page Address = 1Fh)
Function
Page
Addr.
bit
Direction
Register Name
Description
1Ch
10h
[7:0]
W/R
VOLN
2DNR(ICONTON=0 only)
0 : min
255: max
1Ch
11h
[7:0]
W/R
VOLR
Super Resolution (ICONTON=0 only)
0: min
255 : max
1Ch
12h
[7:0]
W/R
VOLE
2DNR+ Super Resolution gain (ICONTON=0 only)
1Ch
1Bh
[7:0]
W/R
VOLERATIOMIN
Effect around text data
Category
Super
Resolution
Function
32: min
255: max
Base data is changed by value of VOLE_BVD or VOLE.
Recommended value = 128*32 / VOLE_BVD
(ICONTON=0 :
128*32/ VOLE )
Must be set more than recommended value
255:
1Ch
1Ch
[7:0]
W/R
max
Effect control around text data
VOLERATIOMAX
Sony recommends 96d~128d
1Ch
24h
[3:0]
W/R
Control active noise range (ICONTON=1 only) 3: for net images , 4: for other
NSHIFT
images
1Ch
3Eh
[7:0]
W/R
VOLE_BVD
2DNR+ Super Resolution gain(ICONTON=1 only)
32 : min
1Ch
6Dh
[7:4]
W/R
NLIMIT
limit block noise level. (HADAON-=1 only)
F: max
1Ch
80h
[7:7]
W/R
HADAON
Reduce Super Resolution
0: OFF
1Ch
86h
[7:7]
W/R
1: ON
Super Resolution enable
SPCOFF
0: enable
67
1: disable
0: min
effect in pale orange area
255 : max
CXD4732R
1Ch
88h
[7:7]
W/R
SUPER RESOLUTION automatic control
ICONTON
0: OFF
1Ch
8Bh
[1:0]
W/R
1: ON
Reduce level for SUPER RESOLUTION effect in pale orange area
HADA_EFFECT
0 : max
Note *1) refer to Chapter 10.2 “Gamma Look-up Table Setup” for details.
68
3:
min
CXD4732R
12.
Example of Application Circuit
Capacitance is placed near each terminal every
one or two power supply terminals
Capacitance is placed near each terminal every
one or two power supply terminals
DVDD1.2V
100nF
100ohm
6
100ohm
100ohm
9
10
100ohm
11
12
100ohm
13
14
100ohm
15
TXA1N
TXA1P
RXA2N
RXA2P
22
100ohm
24
100ohm
25
26
LVDS Rx
Link-B
Inputs
100ohm
27
28
29
30
100ohm
32
100ohm
33
0.01uF
100
99
98
97
TXACKN
TXACKP
95
RXA3N
RXA3P
TXA3N
TXA3P
89
RXA4N
RXA4P
TXA4N
TXA4P
RXACKN
RXACKP
CMCT
90
88
87
85
79
RXB1N
RXB1P
TXB1N
TXB1P
77
RXB2N
RXB2P
TXB2N
TXB2P
75
RXB3N
RXB3P
RXB4N
RXB4P
0.1uF
80
TXB0N
TXB0P
RXBCKN
RXBCKP
LVDS Tx
Link-A
Outputs
96
RXB0N
RXB0P
100ohm
31
102
101
TXA2N
TXA2P
CXD4732R
23
TXA0N
TXA0P
49pin PLLVSSA
Do not connect this terminal to PCB GND
RXA1N
RXA1P
(3.3V for Digital)
VDDIO
TXDVDD33
TXPLLAVDD
VDD
83
TXPLLDVDD
50
TXDVDD
49
PLLVDDA
0.1uF
DVDD3.3V
7
8
LVDS Rx
Link-A
Inputs
+
PLLVSSA
RXA0N
RXA0P
TXAVDD33
4
5
RXAVDD
0.1uF
(3.3V for Analog)
RXDVDD
22uF
AVDD3.3V
(1.2V for Digiral)
0.01uF
100ohm
0.1uF
0.01uF
0.1uF
(1.2V for Analog)
0.01uF
AVDD1.2V
78
76
LVDS Tx
Link-B
Outputs
74
TXBCKN
TXBCKP
73
TXB3N
TXB3P
67
TXB4N
TXB4P
65
68
66
DVDD3.3V
1Kohm
1Kohm
51
53
112
TXPLLAVSS
59
RXAVSS
IIC_SLV_SCL
TXDVSS
44
VSSIO
IIC_SLV_SDA
RXDVSS
43
VSS
External
Host I/F
1Kohm
TESTMODE
1Kohm
RST_X
1Kohm DVDD3.3V
IIC_MST_EN
N.C.
IIC_SLV_SADSEL0
SCLKI
IIC_SLV_SADSEL1
113
IIC_SLV_BUSY
128
107
IIC_MST_SADSEL
54
IIC_MST_SDA
56
IIC_MST_SCL
55
1Kohm
DVDD3.3V
1Kohm
Exposed Pad
1Kohm
External
EEPROM
(128kbit)
External Active Low
Oscillator
Reset
(24~25MHz)
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent
and other right due to same.
69
CXD4732R
13.
Package Outline
(Unit: mm)
70
CXD4732R
14.
Marking
71
CXD4732R
Note
Sony reserves the right to change products and specifications without prior notice.
This information does not convey any license by any implication or otherwise under any patents or other right.
Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume
responsibility for any problems arising out of the use of these circuits.
72