N EW IL221AT/IL222AT/IL223AT FEATURES PHOTODARLINGTON SMALL OUTLINE SURFACE MOUNT OPTOCOUPLER Package Dimensions in Inches (mm) • High Current Transfer Ratio, IF=1 mA, • • • • • • • IL221AT, 100% Minimum IL222AT, 200% Minimum IL223AT, 500% Minimum Withstand Test Voltage, 2500 VACRMS Electrical Specifications Similar to Standard 6 Pin Coupler Industry Standard SOIC-8 Surface Mountable Package Standard Lead Spacing, .05" Available in Tape and Reel (suffix T) (Conforms to EIA Standard RS481A) Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering Underwriters Lab File #E52744 (Code Letter P) 8 NC Anode 1 .120±.005 (3.05 ±.13) .240 (6.10) .154±.005 CL (3.91 ±.13) 7 Base Cathode 2 NC 3 6 Collector NC 4 5 Emitter .016 (.41) Pin One ID .015±.002 (.38 ±.05) .192±.005 (4.88 ±.13) .004 (.10) .008 (.20) 40° .008 (.20) 5° max. .050 (1.27) typ. .040 (1.02) 7° .058±.005 (1.49 ±.13) .125±.005 (3.18 ±.13) R.010 Lead (.25) max. Coplanarity ±.0015 (.04) max. .020±.004 (.15 ±.10) 2 plcs. TOLERANCE: ±.005 (unless otherwise noted) DESCRIPTION The IL221AT/IL222AT/IL223AT is a high current transfer ratio (CTR) optocoupler with a Gallium Arsenide infrared LED emitter and a silicon NPN photodarlington transistor detector. This device has a CTR tested at an 1 mA LED current. This low drive current permits easy interfacing from CMOS to LSTTL or TTL. This optocoupler is constructed in a standard SOIC8 foot print which makes it ideally suited for high density applications. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices. Maximum Ratings Emitter Peak Reverse Voltage ............................................ 6.0 V Continuous Forward Current ............................... 60 mA Power Dissipation at 25°C .................................. 90 mW Derate Linearly from 25°C ............................ 1.2 mW/°C Detector Collector-Emitter Breakdown Voltage ..................... 30 V Emitter-Collector Breakdown Voltage ....................... 5 V Collector-Base Breakdown Voltage ........................ 70 V Power Dissipation ............................................. 150 mW Derate Linearly from 25°C ........................... 2.0 mW/°C Package Total Package Dissipation at 25°C Ambient (LED + Detector) ........................................... 240 mW Derate Linearly from 25°C ........................... 3.3 mW/°C Storage Temperature ......................... –55°C to +150°C Operating Temperature ..................... –55°C to +100°C Soldering Time at 260°C .................................... 10 sec. Semiconductor Group Characteristics (TA=25°C) Symbol Min. Typ. Emitter Forward Voltage Reverse Current Capacitance Detector Breakdown Voltage Collector-Emitter Emitter-Collector Collector-Base Voltage Collector-Emitter Capacitance Package DC Current Transfer Ratio IL221AT IL222AT IL223AT Collector-Emitter Saturation Voltage Isolation Test Voltage Capacitance, Input to Output Resistance, Input to Output 1.0 0.1 25 VF IR CO Max. Unit Condition 1.5 100 V µA pF I F =1mA VR=6.0 V VF=0 V, F=1 MHz 30 5 70 BVCEO BVECO BV CBO 3.4 CCE V V IC=100 µA IE=100 µA IC=10 µA pF VCE=10 V IF=1 mA, VCE=5 V CTR DC 100 200 500 1 V CE sat V IO 2500 V ICE=0.5 mA, IF=1 mA VAC RMS t=1 sec. C IO 0.5 pF R IO 100 GΩ Specifications subject to change. 4–10 10.95 Figure 1. Forward voltage versus forward current Figure 2. Peak LED current versus duty factor, Tau 10000 τ 1.3 Ta = -55°C Duty Factor If(pk) - Peak LED Current - mA VF - Forward Voltage - V 1.4 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 85°C 0.8 0.7 .1 .005 .01 .02 1000 10 10-5 2 1 10 If - LED Current - mA 10-2 10-1 10 0 10 1 Ta = -20°C Ta = 25°C Ta = 50°C Ta = 70°C 10 Normalized to: If = 1mA, Vce = 5V Ta = 25°C 1 .1 100 .1 Figure 5. CTR C B versus LED current 1 10 If - LED Current - mA 100 Figure 6. CTR versus LED current 0.10 0.05 Ta = -20°C Ta = 25°C Ta = 50°C Ta = 70°C 0.00 .1 1 10 If - LED Current - mA Semiconductor Group 100 CTRce - Current Transfer Ratio -% 2000 VCB =10 V If/Icb - CTRcb - % 10-3 100 Normalized to: If = 1mA, Ta = 25°C Vcb = 10V 1 0 .1 10-4 Figure 4. Normalized CTRCE versus LED current Normalized CTRce Normalized CTRcb Ta = -20°C Ta = 25°C Ta = 50°C Ta =70°C = τ /t t - LED Pulse Duration - s Figure 3. Normalized CTR CB versus I F 3 τ DF = /t .5 100 10010-6 1 10 IF - Forward Current - mA t .05 .1 .2 1500 Ta = -20°C Ta = 25°C Ta = 50°C Ta = 70°C Vce = 10V 1000 500 0 .1 1 10 If - LED Current - mA 4–11 100 y Figure 7. Collector current versus LED current 100 Ta -20°C Ta Ta = 25°C Ta Ta = 50°C Ta Ta = 70°C Ta 100 = = = = 20°C 25°C 50°C 70°C Vce = 10V 10 10 = = = = 20°C 25°C 50°C 70°C 1 .1 1 .1 1 10 If - LED Current - mA .1 100 100 100 IF 1000 Ta = -20°C Ta = 25°C Ta = 50°C Ta =70°C 1 10 If - LED Current - mA Figure 10. Switching Timing Figure 9. Normalized ICB versus IF Normalized Icb Icb-20°CTa Icb 25°CTa Icb 50°CTa Icb 70°CTa Vce = 5V Icb - Photocurrent - µA 1000 Ice - Collector Current - mA Figure 8. Photocurrent versus LED current Normalized to: IF = 1mA, Ta =25°C Vcb = 10V 10 VO tD tR tPLH 1 .1 .1 1 10 If - LED Current - mA tPHL 100 Figure 11. Switching schematic VCC =10 V F=10 KHz, DF=50% RL VO IF=5 mA Semiconductor Group 4–12 tS VTH =1.5 V tF