AN-1270 APPLICATION NOTE One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com ADV7511-/ADV7511W-/ADV7513-Based Video Generators By Witold Kaczurba INTRODUCTION This application note shows a basic configuration in which a fieldprogrammable gate array (FPGA) is used as a signal source, producing sync timing and a video pattern, and the ADV7511/ ADV7511W/ADV7513 are configured to output a valid HighDefinition Multimedia Interface (HDMI®) or digital visual interface (DVI) stream. The application note focuses on the most basic example to illustrate ways of generating a valid video stream. Interlaced video standards carry information for even and odd video lines divided into even and odd video fields. Because two types of fields exist, additional information about the vertical parameters of even and odd fields is required. The following provides all the information needed to describe the sync information of interlaced video standards: BASIC REQUIREMENTS To output in HDMI or DVI format, the ADV751x must be programmed with the appropriate I2C register writes (see List 4) and fed with a valid video sync signal accompanied by a clock. Connect the ADV751x to a valid HDMI sink with terminated transmission-minimized differential signaling (TMDS) lines. The video stream is the critical element of an HDMI transmission. It defines the bandwidth of the stream and allows for the insertion of data islands carrying HDMI packets and audio information. SYNC INFORMATION Video standards can be divided into two main categories: interlaced and noninterlaced. Noninterlaced standards are also known as progressive video standards. Progressive video standards carry video information for consecutive video lines. Their timing can be described using vertical and horizontal synchronization parameters, such as: Total horizontal line length Horizontal front and back porch Horizontal sync pulse Total number of vertical lines in even fields Vertical front and back porch of even fields Vertical sync pulse in even fields Total number of vertical lines in odd fields Vertical front and back porch of odd fields Vertical sync pulse length in odd fields HV offset Pixel clock frequency List 1 is the Verilog code generated for the required video standard. Total horizontal line length Horizontal front and back porch Horizontal sync pulse Total number of vertical lines Vertical front and back porch Vertical sync pulse HV offset Pixel clock frequency Rev. 0 | Page 1 of 8 AN-1270 Application Note VERILOG LISTINGS List 1. Generated Video Sync Verilog Module module sync_vg #( parameter X_BITS=12, Y_BITS=12 ) ( input wire clk, input wire reset, input wire interlaced, input wire [Y_BITS-1:0] input wire [Y_BITS-1:0] input wire [Y_BITS-1:0] input wire [Y_BITS-1:0] input wire [Y_BITS-1:0] input wire [Y_BITS-1:0] input wire [Y_BITS-1:0] input wire [Y_BITS-1:0] input wire [X_BITS-1:0] input wire [X_BITS-1:0] input wire [X_BITS-1:0] input wire [X_BITS-1:0] input wire [X_BITS-1:0] input wire [X_BITS-1:0] output reg vs_out, output reg hs_out, output reg de_out, output reg [Y_BITS:0] output reg [X_BITS-1:0] output reg [X_BITS-1:0] output reg [Y_BITS:0] output reg field_out, output wire clk_out ); reg reg reg reg reg reg reg reg v_total_0, v_fp_0, v_bp_0, v_sync_0, v_total_1, v_fp_1, v_bp_1, v_sync_1, h_total, h_fp, h_bp, h_sync, hv_offset_0, hv_offset_1, v_count_out, h_count_out, x_out, y_out, [X_BITS-1:0] h_count; [Y_BITS-1:0] v_count; field; [Y_BITS-1:0] v_total; [Y_BITS-1:0] v_fp; [Y_BITS-1:0] v_bp; [Y_BITS-1:0] v_sync; [X_BITS-1:0] hv_offset; assign clk_out = !clk; /* horizontal counter */ always @(posedge clk) if (reset) h_count <= 0; else if (h_count < h_total - 1) h_count <= h_count + 1; else h_count <= 0; /* vertical counter */ always @(posedge clk) if (reset) v_count <= 0; else if (h_count == h_total - 1) begin if (v_count == v_total - 1) v_count <= 0; else v_count <= v_count + 1; end /* field */ always @(posedge if (reset) begin field <= 0; v_total <= v_fp <= field0 v_bp <= v_sync <= hv_offset <= end clk) v_total_0; interlaced ? v_fp_1 : v_fp_0; // In the interlaced mode this value must be inverted as v_fp_1 is still in v_bp_0; v_sync_0; hv_offset_0; Rev. 0 | Page 2 of 8 Application Note AN-1270 else if ((interlaced) && ((v_count == v_total - 1) && (h_count == h_total - 1))) begin field <= field + interlaced; v_total <= field ? v_total_0 : v_total_1; v_fp <= field ? v_fp_1 : v_fp_0; // This order is inverted as v_fp_1 is still in field0 v_bp <= field ? v_bp_0 : v_bp_1; v_sync <= field ? v_sync_0 : v_sync_1; hv_offset <= field ? hv_offset_0 : hv_offset_1; end always @(posedge clk) if (reset) { vs_out, hs_out, de_out, field_out } <= 4'b0; else begin hs_out <= ((h_count < h_sync)); de_out <= (((v_count >= v_sync + v_bp) && (v_count <= v_total - v_fp - 1)) && \ ((h_count >= h_sync + h_bp) && (h_count <= h_total - h_fp - 1))); if ((v_count == 0) && (h_count == hv_offset)) vs_out <= 1'b1; else if ((v_count == v_sync) && (h_count == hv_offset)) vs_out <= 1'b0; /* H_COUNT_OUT and V_COUNT_OUT */ h_count_out <= h_count; if (field) v_count_out <= v_count + v_total_0; else v_count_out <= v_count; /* X and Y coords – for a backend pattern generator */ x_out <= h_count - (h_sync + h_bp); if (interlaced) y_out <= { (v_count - (v_sync + v_bp)) , field }; else y_out <= { 1'b0, (v_count - (v_sync + v_bp)) }; field_out <= field; end endmodule Rev. 0 | Page 3 of 8 AN-1270 Application Note List 2. Generated Video Patterns Verilog Module module pattern_vg #( parameter B=8, // number of bits per channel X_BITS=13, Y_BITS=13, FRACTIONAL_BITS = 12 ) (input reset, clk_in, input wire [X_BITS-1:0] x, input wire [Y_BITS-1:0] y, input wire vn_in, hn_in, dn_in, input wire [B-1:0] r_in, g_in, b_in, output reg vn_out, hn_out, den_out, output reg [B-1:0] r_out, g_out, b_out, input wire [X_BITS-1:0] total_active_pix, input wire [Y_BITS-1:0] total_active_lines, input wire [7:0] pattern, input wire [B+FRACTIONAL_BITS-1:0] ramp_step); reg [B+FRACTIONAL_BITS-1:0] ramp_values; // 12-bit fractional end for ramp values always @(posedge clk_in) begin vn_out <= vn_in; hn_out <= hn_in; den_out <= dn_in; if (reset) ramp_values <= 0; else if (pattern == 8'b0) // no pattern begin r_out <= r_in; g_out <= g_in; b_out <= b_in; end else if (pattern == 8'b1) // border begin if (dn_in && ((y == 12'b0) || (x == 12'b0) || (x == total_active_pix - 1) || (y == total_active_lines - 1))) begin r_out <= 8'hFF; g_out <= 8'hFF; b_out <= 8'hFF; end else begin r_out <= r_in; g_out <= g_in; b_out <= b_in; end end else if (pattern == 8'd2) // moireX begin if ((dn_in) && x[0] == 1'b1) begin r_out <= 8'hFF; g_out <= 8'hFF; b_out <= 8'hFF; end else begin r_out <= 8'b0; g_out <= 8'b0; b_out <= 8'b0; end end else if (pattern == 8'd3) // moireY begin if ((dn_in) && y[0] == 1'b1) begin r_out <= 8'hFF; g_out <= 8'hFF; b_out <= 8'hFF; end else begin r_out <= 8'b0; g_out <= 8'b0; b_out <= 8'b0; end end else if (pattern == 8'd4) // Simple RAMP begin Rev. 0 | Page 4 of 8 Application Note AN-1270 r_out <= ramp_values[B+FRACTIONAL_BITS-1:FRACTIONAL_BITS]; g_out <= ramp_values[B+FRACTIONAL_BITS-1:FRACTIONAL_BITS]; b_out <= ramp_values[B+FRACTIONAL_BITS-1:FRACTIONAL_BITS]; if ((x == total_active_pix - 1) && (dn_in)) ramp_values <= 0; else if ((x == 0) && (dn_in)) ramp_values <= ramp_step; else if (dn_in) ramp_values <= ramp_values + ramp_step; end end endmodule Rev. 0 | Page 5 of 8 AN-1270 Application Note List 3. Generated Video Sync Generator Connected with Pattern Generator Verilog Top Module module top_sync_vg_pattern ( input wire clk_in, input wire resetb, output reg adv7511_hs, // HS output to ADV7511 output reg adv7511_vs, // VS output to ADV7511 output wire adv7511_clk, // ADV7511: CLK output reg [35:0] adv7511_d, // data output reg adv7511_de, // ADV7511: DE input wire [5:0] pb ); /* ************************************* */ /* SELECT ONE OF MODES: */ `define MODE_1080p //`define MODE_1080i //`define MODE_720p `ifdef MODE_1080p /* FORMAT 16 */ parameter INTERLACED = 1'b0; parameter V_TOTAL_0 = 12'd1125; parameter V_FP_0 = 12'd4; parameter V_BP_0 = 12'd36; parameter V_SYNC_0 = 12'd5; parameter V_TOTAL_1 = 12'd0; parameter V_FP_1 = 12'd0; parameter V_BP_1 = 12'd0; parameter V_SYNC_1 = 12'd0; parameter H_TOTAL = 12'd2200; parameter H_FP = 12'd88; parameter H_BP = 12'd148; parameter H_SYNC = 12'd44; parameter HV_OFFSET_0 = 12'd0; parameter HV_OFFSET_1 = 12'd0; parameter PATTERN_RAMP_STEP = 20'h0222; parameter PATTERN_TYPE = 8'd4; // RAMP //parameter PATTERN_TYPE = 8'd1; // OUTLINE `endif `ifdef MODE_1080i /* FORMAT 5 */ parameter INTERLACED = 1'b1; parameter V_TOTAL_0 = 12'd562; parameter V_FP_0 = 12'd2; parameter V_BP_0 = 12'd15; parameter V_SYNC_0 = 12'd5; parameter V_TOTAL_1 = 12'd563; parameter V_FP_1 = 12'd2; parameter V_BP_1 = 12'd16; parameter V_SYNC_1 = 12'd5; parameter H_TOTAL = 12'd2200; parameter H_FP = 12'd88; parameter H_BP = 12'd148; parameter H_SYNC = 12'd44; parameter HV_OFFSET_0 = 12'd0; parameter HV_OFFSET_1 = 12'd1100; parameter PATTERN_RAMP_STEP = 20'h0222; // 20'hFFFFF / 1920 act_pixels per line = 20'h0222 parameter PATTERN_TYPE = 8'd4; // RAMP //parameter PATTERN_TYPE = 8'd1; // OUTLINE `endif `ifdef MODE_720p /* FORMAT 4 */ parameter INTERLACED = 1'b0; parameter V_TOTAL_0 = 12'd750; parameter V_FP_0 = 12'd5; parameter V_BP_0 = 12'd20; parameter V_SYNC_0 = 12'd5; parameter V_TOTAL_1 = 12'd0; parameter V_FP_1 = 12'd0; parameter V_BP_1 = 12'd0; parameter V_SYNC_1 = 12'd0; parameter H_TOTAL = 12'd1650; parameter H_FP = 12'd110; parameter H_BP = 12'd220; parameter H_SYNC = 12'd40; parameter HV_OFFSET_0 = 12'd0; parameter HV_OFFSET_1 = 12'd0; parameter PATTERN_RAMP_STEP = 20'h0333; // 20'hFFFFF / 1280 act_pixels per line = 20'h0333 //parameter PATTERN_TYPE = 8'd1; // BORDER. parameter PATTERN_TYPE = 8'd4; // RAMP `endif wire reset; assign reset = !resetb; Rev. 0 | Page 6 of 8 Application Note wire wire wire wire wire AN-1270 [11:0] x_out; [12:0] y_out; [7:0] r_out; [7:0] g_out; [7:0] b_out; /* ********************* */ sync_vg #(.X_BITS(12), .Y_BITS(12)) sync_vg ( .clk(clk_in), .reset(reset), .interlaced(INTERLACED), .clk_out(), // inverted output clock - unconnected .v_total_0(V_TOTAL_0), .v_fp_0(V_FP_0), .v_bp_0(V_BP_0), .v_sync_0(V_SYNC_0), .v_total_1(V_TOTAL_1), .v_fp_1(V_FP_1), .v_bp_1(V_BP_1), .v_sync_1(V_SYNC_1), .h_total(H_TOTAL), .h_fp(H_FP), .h_bp(H_BP), .h_sync(H_SYNC), .hv_offset_0(HV_OFFSET_0), .hv_offset_1(HV_OFFSET_1), .de_out(de), .vs_out(vs), .v_count_out(), .h_count_out(), .x_out(x_out), .y_out(y_out), .hs_out(hs), .field_out(field) ); pattern_vg #( .B(8), // Bits per channel .X_BITS(12), .Y_BITS(12), .FRACTIONAL_BITS(12)) // Number of fractional bits for ramp pattern pattern_vg ( .reset(reset), .clk_in(clk_in), .x(x_out), .y(y_out[11:0]), .vn_in(vs), .hn_in(hs), .dn_in(de), .r_in(8'h0), // default red channel value .g_in(8'h0), // default green channel value .b_in(8'h0), // default blue channel value .vn_out(vs_out), .hn_out(hs_out), .den_out(de_out), .r_out(r_out), .g_out(g_out), .b_out(b_out), .total_active_pix(H_TOTAL - (H_FP + H_BP + H_SYNC)), // (1920) // h_total - (h_fp+h_bp+h_sync) .total_active_lines(INTERLACED ? (V_TOTAL_0 - (V_FP_0 + V_BP_0 + V_SYNC_0)) + (V_TOTAL_1 - (V_FP_1 + V_BP_1 + V_SYNC_1)) : (V_TOTAL_0 - (V_FP_0 + V_BP_0 + V_SYNC_0))), // originally: 13'd480 .pattern(PATTERN_TYPE), .ramp_step(PATTERN_RAMP_STEP)); assign adv7511_clk = ~clk_in; always @(posedge clk_in) begin adv7511_d[35:24] <= { r_out, 4'b0 }; adv7511_d[23:12] <= { g_out, 4'b0 }; adv7511_d[11:0] <= { b_out, 4'b0 }; adv7511_hs <= hs_out; adv7511_vs <= vs_out; adv7511_de <= de_out; end endmodule Rev. 0 | Page 7 of 8 AN-1270 Application Note List 4. ADV7511/ADV7511W/ADV7513 Script 72 01 00 ; Set N Value(6144) 72 02 18 ; Set N Value(6144) 72 03 00 ; Set N Value(6144) 72 15 00 ; Input 444 (RGB or YCrCb) with Separate Syncs 72 16 61 ; 44.1kHz fs, YPrPb 444 72 18 46 ; CSC disabled 72 40 80 ; General Control Packet Enable 72 41 10 ; Power Down control 72 48 48 ; Reverse bus, Data right justified 72 48 A8 ; Set Dither_mode - 12-to-10 bit 72 4C 06 ; 12 bit Output 72 55 00 ; Set RGB444 in AVinfo Frame 72 55 08 ; Set active format Aspect 72 96 20 ; HPD Interrupt clear 72 98 03 ; ADI required Write 72 98 02 ; ADI required Write 72 9C 30 ; ADI required Write 72 9D 61 ; Set clock divide 72 A2 A4 ; ADI required Write 72 43 A4 ; ADI required Write 72 AF 16 ; Set HDMI Mode 72 BA 60 ; No clock delay 72 DE 9C ; ADI required write 72 E4 60 ; ADI required Write 72 FA 7D ; Nbr of times to search for good phase VIDEO GENERATOR Connect the video sync generator detailed in List 1 to a video pattern generator. The pattern generator assigns a pixel color value to a particular location (X, Y) on screen indicated by counters (H_CNT, V_CNT), respectively. DESIRED PIXEL CLOCK FREQUENCY CLK VS, HS, DE P[35:0] ADV751x CLK TOP MODULE SDA SCL HDMI 11863-002 VS, HS, DE SYNC X_OUT, Y_OUT PATTERN GEN. GEN. CLK 11863-001 RESET Figure 1. Simplified Block Diagram All ADV751x contain color space conversion blocks, upconverters, and downconverters. Therefore, it is sufficient to use a video pattern generator that generates a RGB 444 signal to output other standards, such as YCbCr 422 and YCbCr 444 from the ADV7511. Figure 2. FPGA-Generated 720p at 60 Hz Ramp Pattern Video Stream REFERENCES ADV7511 Data Sheet. Analog Devices, Inc. ADV7511W Data Sheet. Analog Devices, Inc. ADV7513 Data Sheet. Analog Devices, Inc. Keith Jack, Video Demystified: A Handbook for the Digital Engineer, 5th Edition. Newnes, 2007. CEA-861-D Specification. Consumer Electronics Association. REVISION HISTORY 11/13—Revision 0: Initial Version ©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. AN11863-0-11/13(0) Rev. 0 | Page 8 of 8