PDF Data Sheet Rev. B

Data Sheet
Multiformat Video Encoder Six 14-Bit
Noise Shaped Video DACs
ADV7344
FEATURES
74.25 MHz 20-/30-bit high definition input support
Compliant with SMPTE 274M (1080i), 296M (720p),
and 240M (1035i)
6 Noise Shaped Video® (NSV) 14-bit video DACs
16× (216 MHz) DAC oversampling for SD
8× (216 MHz) DAC oversampling for ED
4× (297 MHz) DAC oversampling for HD
37 mA maximum DAC output current
NTSC M, PAL B/D/G/H/I/M/N, PAL 60 support
NTSC and PAL square pixel operation (24.54 MHz/29.5 MHz)
Multiformat video input support
4:2:2 YCrCb (SD, ED, and HD)
4:4:4 YCrCb (ED and HD)
4:4:4 RGB (SD, ED, and HD)
Multiformat video output support
Composite (CVBS) and S-Video (Y-C)
Component YPrPb (SD, ED, and HD)
Component RGB (SD, ED, and HD)
Macrovision Rev 7.1.L1 (SD) and Rev 1.2 (ED) compliant
Simultaneous SD and ED/HD operation
EIA/CEA-861B compliance support
Copy generation management system (CGMS)
Closed captioning and wide screen signaling (WSS)
Integrated subcarrier locking to external video source
Complete on-chip video timing generator
On-chip test pattern generation
On-board voltage reference (optional external input)
Programmable features
Luma and chroma filter responses
Vertical blanking interval (VBI)
Subcarrier frequency (FSC) and phase
Luma delay
High definition (HD) programmable features
(720p/1080i/1035i)
4× oversampling (297 MHz)
Internal test pattern generator
Color and black bar, hatch, flat field/frame
Fully programmable YCrCb to RGB matrix
Gamma correction
Programmable adaptive filter control
Programmable sharpness filter control
CGMS (720p/1080i) and CGMS Type B (720p/1080i)
Dual data rate (DDR) input support
Enhanced definition (ED) programmable features
(525p/625p)
8× oversampling (216 MHz output)
Internal test pattern generator
Black bar, hatch, flat field/frame
Individual Y and PrPb output delay
Gamma correction
Programmable adaptive filter control
Fully programmable YCrCb to RGB matrix
Undershoot limiter
Macrovision Rev 1.2 (525p/625p)
CGMS (525p/625p) and CGMS Type B (525p)
Dual data rate (DDR) input support
Standard definition (SD) programmable features
16× oversampling (216 MHz)
Internal test pattern generator
Color and black bar
Controlled edge rates for start and end of active video
Individual Y and PrPb output delay
Undershoot limiter
Gamma correction
Digital noise reduction (DNR)
Multiple chroma and luma filters
Luma-SSAF filter with programmable gain/attenuation
PrPb SSAF
Separate pedestal control on component and
composite/S-Video output
VCR FF/RW sync mode
Macrovision Rev 7.1.L1
Copy generation management system (CGMS)
Wide screen signaling (WSS)
Closed captioning
Serial MPU interface with I2C compatibility
3.3 V analog operation
1.8 V digital operation
1.8 V or 3.3 V I/O operation
Temperature range: −40°C to +85°C
APPLICATIONS
DVD recorders and players
High definition Blu-ray DVD players
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2006-2012 Analog Devices, Inc. All rights reserved.
ADV7344
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
ED/HD Timing Reset ................................................................ 54
Applications ....................................................................................... 1
Revision History ............................................................................... 4
SD Subcarrier Frequency Lock, Subcarrier Phase Reset,
and Timing Reset ....................................................................... 54
General Description ......................................................................... 5
SD VCR FF/RW Sync ................................................................ 54
Functional Block Diagram .............................................................. 6
Vertical Blanking Interval ......................................................... 55
Specifications..................................................................................... 7
SD Subcarrier Frequency Control ............................................ 55
Power Supply and Voltage Specifications .................................. 7
SD Noninterlaced Mode ............................................................ 55
Voltage Reference Specifications ................................................ 7
SD Square Pixel Mode ............................................................... 55
Input Clock Specifications .......................................................... 7
Filters............................................................................................ 56
Analog Output Specifications ..................................................... 8
ED/HD Test Pattern Color Controls ....................................... 57
Digital Input/Output Specifications—3.3 V ............................. 8
Color Space Conversion Matrix ............................................... 58
Digital Input/Output Specifications—1.8 V ............................. 8
SD Luma and Color Scale Control ........................................... 59
Digital Timing Specifications—3.3 V ........................................ 9
SD Hue Adjust Control.............................................................. 59
Digital Timing Specifications—1.8 V ...................................... 10
SD Brightness Detect ................................................................. 60
MPU Port Timing Specifications ............................................. 11
SD Brightness Control ............................................................... 60
Power Specifications .................................................................. 11
SD Input Standard Autodetection ............................................ 60
Video Performance Specifications ........................................... 12
Double Buffering ........................................................................ 61
Timing Diagrams ............................................................................ 13
Programmable DAC Gain Control .......................................... 61
Absolute Maximum Ratings.......................................................... 20
Gamma Correction .................................................................... 61
Thermal Resistance .................................................................... 20
ED/HD Sharpness Filter and Adaptive Filter Controls ......... 63
ESD Caution ................................................................................ 20
ED/HD Sharpness Filter and Adaptive Filter Application
Examples ...................................................................................... 64
Pin Configuration and Function Descriptions ........................... 21
Typical Performance Characteristics ........................................... 23
MPU Port Description ................................................................... 28
I2C Operation .............................................................................. 28
Register Map Access ....................................................................... 30
Register Programming ............................................................... 30
Subaddress Register (SR7 to SR0) ............................................ 30
Input Configuration ....................................................................... 48
Standard Definition Only .......................................................... 48
Enhanced Definition/High Definition Only .......................... 50
Simultaneous Standard Definition and Enhanced
Definition/High Definition ....................................................... 50
Enhanced Definition Only (at 54 MHz) ................................. 51
Output Configuration .................................................................... 52
Design Features ............................................................................... 53
Output Oversampling ................................................................ 53
HD Interlace External P_HSYNC and P_VSYNC
Considerations ............................................................................ 54
SD Digital Noise Reduction ...................................................... 65
SD Active Video Edge Control ................................................. 67
External Horizontal and Vertical Synchronization
Control ......................................................................................... 68
Low Power Mode ........................................................................ 69
Cable Detection .......................................................................... 69
DAC Autopower-Down ............................................................. 69
Sleep Mode .................................................................................. 69
Pixel and Control Port Readback ............................................. 69
Reset Mechanism........................................................................ 69
SD Teletext Insertion ................................................................. 69
Printed Circuit Board Layout and Design .................................. 71
Unused Pins ................................................................................ 71
DAC Configurations .................................................................. 71
Voltage Reference ....................................................................... 71
Video Output Buffer and Optional Output Filter .................. 71
Printed Circuit Board (PCB) Layout ....................................... 72
Typical Application Circuit ....................................................... 74
Rev. B | Page 2 of 108
Data Sheet
ADV7344
Copy Generation Management System ........................................75
Video Output Levels ....................................................................... 87
SD CGMS .....................................................................................75
SD YPrPb Output Levels—SMPTE/EBU N10 ........................ 87
ED CGMS.....................................................................................75
ED/HD YPrPb Output Levels ................................................... 88
HD CGMS ....................................................................................75
SD/ED/HD RGB Output Levels ................................................ 89
CGMS CRC Functionality .........................................................75
SD Output Plots .......................................................................... 90
SD Wide Screen Signaling ..............................................................78
Video Standards .............................................................................. 91
SD Closed Captioning ....................................................................79
Configuration Scripts ..................................................................... 93
Internal Test Pattern Generation ...................................................80
Standard Definition .................................................................... 93
SD Test Patterns ...........................................................................80
Enhanced Definition .................................................................. 97
ED/HD Test Patterns ..................................................................80
High Definition .........................................................................101
SD Timing ........................................................................................81
Outline Dimensions ......................................................................105
HD Timing .......................................................................................86
Ordering Guide .........................................................................105
Rev. B | Page 3 of 108
ADV7344
Data Sheet
REVISION HISTORY
2/12—Rev. A to Rev. B
Change to Features Section ............................................................. 1
Moved Revision History Section .................................................... 4
Changes to Table 1 ............................................................................ 5
Changes to Digital Input/Output Specifications—
1.8 V Section ..................................................................................... 8
Changes to Table 21 ........................................................................ 34
Changes to Table 24 ........................................................................ 37
Changes to Table 29 ........................................................................ 42
Changes to 24-/30-Bit 4:4:4 RGB Mode Section ........................ 50
Deleted ED/HD Nonstandard Timing Mode Section, Figure 58,
and Table 42, Renumbered Sequentially ..................................... 54
Added External Sync Polarity Section ......................................... 57
Changed SD Subcarrier Frequency Lock, Subcarrier Phase
Reset, and Timing Reset Section to SD Subcarrier Frequency
Lock Section .................................................................................... 58
Deleted Subaddress 0x84, Bits[2:1] Section, Timing Reset (TR)
Mode Section, Subcarrier Phase Reset (SCR) Mode Section,
and Figure 59 ................................................................................... 55
Deleted Figure 60 ............................................................................ 56
Changes to ED/HD Test Patterns Section ................................... 87
3/09—Rev. 0 to Rev. A
Changes to Features Section............................................................ 1
Deleted Detailed Features Section, Changes to Table 1............... 4
Changes to Figure 1 .......................................................................... 5
Changes to Table 6 ............................................................................ 7
Added Digital Input/Output Specifications—1.8 V Section and
Table 7 ................................................................................................ 7
Changes to Digital Timing Specifications—3.3 V Section and
Table 8 ................................................................................................ 8
Added Table 9.................................................................................... 9
Changes to MPU Port Timing Specifications Section,
Default Conditions ......................................................................... 10
Added Power Specifications Section, Default Conditions ........ 10
Added Video Performance Specifications, Default
Conditions ....................................................................................... 11
Changes to Table 13 ........................................................................ 19
Changes to Table 15 ........................................................................ 20
Changes to MPU Port Description Section ................................ 27
Changes to I2C Operation Section ............................................... 27
Added Table 16 ............................................................................... 27
Changes to Table 17 ....................................................................... 29
Changes to Table 18 ....................................................................... 30
Changes to Table 21, 0x30 Bit Description ................................. 33
Changes to Table 22, 0x31, Bit Description ................................ 34
Changes to Table 23 ....................................................................... 35
Changes to Table 29 ....................................................................... 40
Changes to Table 30 ....................................................................... 41
Changes to Table 31 ....................................................................... 43
Changes to Table 32 ....................................................................... 45
Added Table 33 ............................................................................... 45
Added Table 34 ............................................................................... 46
Changes to Standard Definition Only Section ........................... 47
Added Figure 52 ............................................................................. 49
Changes to Figure 56...................................................................... 50
Renamed Features Section to Design Features Section............. 52
Changes to ED/HD Nonstandard Timing Mode Section ......... 52
Added HD Interlace External P_HSYNC and P_VSYNC
Considerations Section .................................................................. 53
Changes to SD Subcarrier Frequency Lock, Subcarrier Phase
Reset, and Timing Reset Section .................................................. 53
Changes to Subaddress 0x8C to Subaddress 0x8F Section ....... 55
Changes to Programming the FSC Section................................... 55
Changes to Subaddress 0x82, Bit 4 Section ................................. 55
Added SD Manual CSC Matrix Adjust Feature Section ............ 58
Changes to Subaddress 0x9C to Subaddress 0x9F Section ....... 59
Changes to SD Brightness Detect Section................................... 60
Changes to Figure 70...................................................................... 62
Added Sleep Mode Section ........................................................... 69
Changes to Pixel and Control Port Readback Section .............. 69
Added SD Teletext Insertion Section ........................................... 69
Added Unused Pins Section .......................................................... 71
Added Figure 85 and Figure 86 .................................................... 71
Changes to Power Supply Sequencing Section ........................... 73
Changes to Figure 93...................................................................... 76
Changes to SD Wide Screen Signaling Section .......................... 78
Changes to Internal Test Pattern Generation Section ............... 80
Changes to SD Timing, Mode 0 (CCIR-656)—Slave Option
(Subaddress 0x8A = XXXXX000) Section .................................. 81
Added Configuration Scripts Section .......................................... 93
10/06—Revision 0: Initial Version
Rev. B | Page 4 of 108
Data Sheet
ADV7344
GENERAL DESCRIPTION
Table 1. Standards Directly Supported by the ADV7344
The ADV7344 is a high speed, digital-to-analog video encoder
in a 64-pin LQFP package. Six high speed, NSV, 3.3 V, 14-bit
video DACs provide support for composite (CVBS), S-Video
(YC), and component (YPrPb/RGB) analog outputs in standard
definition (SD), enhanced definition (ED), or high definition
(HD) video formats.
Active
Resolution
720 × 240
720 × 288
720 × 480
I/P 1
P
P
I
Frame
Rate (Hz)
59.94
50
29.97
Clock Input
(MHz)
27
27
27
720 × 576
I
25
27
640 × 480
I
29.97
24.54
768 × 576
I
25
29.5
In addition, simultaneous SD and ED/HD input and output is
supported. Full-drive DACs ensure that external output buffering
is not required, while 216 MHz (SD and ED) and 297 MHz
(HD) oversampling ensures that external output filtering is not
required.
720 × 483
720 × 483
720 × 483
720 × 576
720 × 483
720 × 576
1920 × 1035
1920 × 1035
1280 × 720
P
P
P
P
P
P
I
I
P
27
27
27
27
27
27
74.25
74.1758
74.25
Cable detection and DAC autopower-down features keep power
consumption to a minimum.
1280 × 720
P
74.1758
SMPTE 296M
1920 × 1080
1920 × 1080
1920 × 1080
1920 × 1080
I
I
P
P
74.25
74.1758
74.25
74.1758
SMPTE 274M
SMPTE 274M
SMPTE 274M
SMPTE 274M
1920 × 1080
P
59.94
59.94
59.94
50
59.94
50
30
29.97
60, 50, 30,
25, 24
23.97,
59.94,
29.97
30, 25
29.97
30, 25, 24
23.98,
29.97
24
ITU-R
BT.601/656
ITU-R
BT.601/656
NTSC Square
Pixel
PAL Square
Pixel
SMPTE 293M
BTA T-1004
ITU-R BT.1358
ITU-R BT.1358
ITU-R BT.1362
ITU-R BT.1362
SMPTE 240M
SMPTE 240M
SMPTE 296M
74.25
ITU-R BT.709-5
The ADV7344 has a 30-bit pixel input port that can be configured
in a variety of ways. SD video formats are supported over an
SDR interface and ED/HD video formats are supported over
SDR and DDR interfaces. Pixel data can be supplied in either
the YCrCb or RGB color space.
The ADV7344 also supports embedded EAV/SAV timing codes,
external video synchronization signals, and I2C® communication
protocol.
Table 1 lists the video standards directly supported by the
ADV7344.
1
I = interlaced, P = progressive.
Rev. B | Page 5 of 108
Standard
ADV7344
Data Sheet
FUNCTIONAL BLOCK DIAGRAM
SCL
SDA
ALSB
VIDEO
DATA
4:2:2 TO 4:4:4
SD
DEINTERLEAVE
R
G/B
8-/10-/16-/20-/
24-/30-BIT
ED/HD
VIDEO
DATA
POWER
MANAGEMENT
CONTROL
VAA
SUBCARRIER FREQUENCY
LOCK (SFL)
MPU PORT
RGB
TO
YCrCb
MATRIX
RGB
ASYNC
BYPASS
ADD
SYNC
PROGRAMMABLE
LUMINANCE
FILTER
ADD
BURST
PROGRAMMABLE
CHROMINANCE
FILTER
YCrCb
TO
RGB
SIN/COS DDS
BLOCK
16×
FILTER
16×
FILTER
RGB
YCbCr
SDR/DDR
ED/HD INPUT
4:2:2 TO 4:4:4
DEINTERLEAVE
AGND
ADV7344
VBI DATA SERVICE
INSERTION
VDD_IO
8-/10-/16-/20-/
24-/30-BIT
SD
SFL
PROGRAMMABLE
HDTV FILTERS
HDTV
TEST
PATTERN
GENERATOR
YCbCr
TO
RGB MATRIX
SHARPNESS AND
ADAPTIVE FILTER
CONTROL
VIDEO TIMING GENERATOR
P_HSYNC P_VSYNC P_BLANK S_HSYNC S_VSYNC
Figure 1.
Rev. B | Page 6 of 108
4×
FILTER
16x/4x OVERSAMPLING
DAC PLL
14-BIT
DAC 1
DAC 1
14-BIT
DAC 2
DAC 2
14-BIT
DAC 3
DAC 3
14-BIT
DAC 4
DAC 4
14-BIT
DAC 5
DAC 5
14-BIT
DAC 6
DAC 6
REFERENCE
AND CABLE
DETECT
CLKIN (2) PVDD PGND EXT_LF (2) VREF COMP (2)
RSET (2)
06400-001
GND_IO
VDD (2)
MULTIPLEXER
DGND (2)
Data Sheet
ADV7344
SPECIFICATIONS
POWER SUPPLY AND VOLTAGE SPECIFICATIONS
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 2.
Parameter
SUPPLY VOLTAGES
VDD
VDD_IO
PVDD
VAA
POWER SUPPLY REJECTION RATIO
Min
Typ
Max
Unit
1.71
1.71
1.71
2.6
1.8
3.3
1.8
3.3
0.002
1.89
3.63
1.89
3.465
V
V
V
V
%/%
Min
1.186
1.15
Typ
1.248
1.235
±10
Max
1.31
1.31
Unit
V
V
μA
Max
Unit
MHz
MHz
MHz
MHz
MHz
% of one clock cycle
% of one clock cycle
% of one clock cycle
% of one clock cycle
±ns
±ns
VOLTAGE REFERENCE SPECIFICATIONS
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 3.
Parameter
Internal Reference Range, VREF
External Reference Range, VREF
External VREF Current1
1
External current required to overdrive internal VREF.
INPUT CLOCK SPECIFICATIONS
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V.
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 4.
Parameter
fCLKIN_A
fCLKIN_A
fCLKIN_A
fCLKIN_B
fCLKIN_B
CLKIN_A High Time, t9
CLKIN_A Low Time, t10
CLKIN_B High Time, t9
CLKIN_B Low Time, t10
CLKIN_A Peak-to-Peak Jitter Tolerance
CLKIN_B Peak-to-Peak Jitter Tolerance
1
Conditions1
SD/ED
ED (at 54 MHz)
HD
ED
HD
Min
Typ
27
54
74.25
27
74.25
40
40
40
40
2
2
SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition.
Rev. B | Page 7 of 108
ADV7344
Data Sheet
ANALOG OUTPUT SPECIFICATIONS
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V, VREF = 1.235 V (driven externally).
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 5.
Parameter
Full Drive Output Current (Full-Scale)
Low-Drive Output Current (Full-Scale)3
DAC-to-DAC Matching
Output Compliance, VOC
Output Capacitance, COUT
Analog Output Delay4
DAC Analog Output Skew
Conditions
RSET = 510 Ω, RL = 37.5 Ω
DAC 1, DAC 2, DAC 3 enabled1
RSET = 510 Ω, RL = 37.5 Ω
DAC 1 enabled only2
RSET = 4.12 kΩ, RL = 300 Ω
DAC 1 to DAC 6
Min
33
Typ
34.6
Max
37
Unit
mA
33
33.5
37
mA
4.1
4.3
1.0
4.5
mA
%
V
pF
pF
ns
ns
ns
ns
0
DAC 1, DAC 2, DAC 3
DAC 4, DAC 5, DAC 6
DAC 1, DAC 2, DAC 3
DAC 4, DAC 5, DAC 6
DAC 1, DAC 2, DAC 3
DAC 4, DAC 5, DAC 6
1.4
10
6
8
6
2
1
1
Applicable to full-drive capable DACs only, that is, DAC 1, DAC 2, DAC 3.
The recommended method of bringing this typical value back to the ideal value is by adjusting Register 0x0B to the recommended value of 0x12.
3
Applicable to all DACs.
4
Output delay measured from the 50% point of the rising edge of the input clock to the 50% point of the DAC output full-scale transition.
2
DIGITAL INPUT/OUTPUT SPECIFICATIONS—3.3 V
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 6.
Parameter
Input High Voltage, VIH
Input Low Voltage, VIL
Input Leakage Current, IIN
Input Capacitance, CIN
Output High Voltage, VOH
Output Low Voltage, VOL
Three-State Leakage Current
Three-State Output Capacitance
Conditions
Min
2.0
Typ
Max
0.8
±10
VIN = VDD_IO
4
ISOURCE = 400 μA
ISINK = 3.2 mA
VIN = 0.4 V, 2.4 V
2.4
0.4
±1.0
4
Unit
V
V
μA
pF
V
V
μA
pF
DIGITAL INPUT/OUTPUT SPECIFICATIONS—1.8 V
When VDD_IO is set to 1.8 V, all the digital video inputs and control inputs, such as I2C, HS, and VS, should use 1.8 V levels.
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 1.89 V.
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 7.
Parameter
Input High Voltage, VIH
Input Low Voltage, VIL
Input Capacitance, CIN
Output High Voltage, VOH
Output Low Voltage, VOL
Three-State Output Capacitance
Conditions
Min
0.7 VDD_IO
Typ
Max
0.3 VDD_IO
4
ISOURCE = 400 μA
ISINK = 3.2 mA
VDD_IO – 0.4
0.4
4
Rev. B | Page 8 of 108
Unit
V
V
pF
V
V
pF
Data Sheet
ADV7344
DIGITAL TIMING SPECIFICATIONS—3.3 V
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V.
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 8.
Parameter
VIDEO DATA AND VIDEO CONTROL PORT 2, 3
Data Input Setup Time, t11 4
Data Input Hold Time, t124
Control Input Setup Time, t114
Control Input Hold Time, t124
Control Output Access Time, t134
Control Output Hold Time, t144
PIPELINE DELAY 5
SD1
CVBS/YC Outputs (2×)
CVBS/YC Outputs (16×)
Component Outputs (2×)
Component Outputs (16×)
ED1
Component Outputs (1×)
Component Outputs (8×)
HD1
Component Outputs (1×)
Component Outputs (4×)
Conditions 1
Min
SD
ED/HD-SDR
ED/HD-DDR
ED (at 54 MHz)
SD
ED/HD-SDR
ED/HD-DDR
ED (at 54 MHz)
SD
ED/HD-SDR or ED/HD-DDR
ED (at 54 MHz)
SD
ED/HD-SDR or ED/HD-DDR
ED (at 54 MHz)
SD
ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz)
SD
ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz)
2.1
2.3
2.3
1.7
1.0
1.1
1.1
1.0
2.1
2.3
1.7
1.0
1.1
1.0
Typ
Max
12
10
4.0
3.5
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
SD oversampling disabled
SD oversampling enabled
SD oversampling disabled
SD oversampling enabled
68
67
78
84
Clock cycles
Clock cycles
Clock cycles
Clock cycles
ED oversampling disabled
ED oversampling enabled
41
46
Clock cycles
Clock cycles
HD oversampling disabled
HD oversampling enabled
40
44
Clock cycles
Clock cycles
SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.
Video data: C[9:0], Y[9:0], and S[9:0].
3
Video control: P_HSYNC, P_VSYNC, P_BLANK, S_HSYNC, and S_VSYNC.
4
Guaranteed by characterization.
5
Guaranteed by design.
1
2
Rev. B | Page 9 of 108
ADV7344
Data Sheet
DIGITAL TIMING SPECIFICATIONS—1.8 V
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 1.89 V.
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 9.
Parameter
VIDEO DATA AND VIDEO CONTROL PORT 2, 3
Data Input Setup Time, t11 4
Data Input Hold Time, t124
Control Input Setup Time, t114
Control Input Hold Time, t124
Control Output Access Time, t134
Control Output Hold Time, t144
PIPELINE DELAY 5
SD1
CVBS/YC Outputs (2×)
CVBS/YC Outputs (16×)
Component Outputs (2×)
Component Outputs (16×)
ED1
Component Outputs (1×)
Component Outputs (8×)
HD1
Component Outputs (1×)
Component Outputs (4×)
Conditions 1
Min
SD
ED/HD-SDR
ED/HD-DDR
ED (at 54 MHz)
SD
ED/HD-SDR
ED/HD-DDR
ED (at 54 MHz)
SD
ED/HD-SDR or ED/HD-DDR
ED (at 54 MHz)
SD
ED/HD-SDR or ED/HD-DDR
ED (at 54 MHz)
SD
ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz)
SD
ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz)
1.4
1.9
1.9
1.6
1.4
1.5
1.5
1.3
1.4
1.2
1.0
1.4
1.0
1.0
Typ
Max
13
12
4.0
5.0
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
SD oversampling disabled
SD oversampling enabled
SD oversampling disabled
SD oversampling enabled
68
67
78
84
Clock cycles
Clock cycles
Clock cycles
Clock cycles
ED oversampling disabled
ED oversampling enabled
41
46
Clock cycles
Clock cycles
HD oversampling disabled
HD oversampling enabled
40
44
Clock cycles
Clock cycles
SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.
Video data: C[9:0], Y[9:0], and S[9:0].
3
Video control: P_HSYNC, P_VSYNC, P_BLANK, S_HSYNC, and S_VSYNC.
4
Guaranteed by characterization.
5
Guaranteed by design.
1
2
Rev. B | Page 10 of 108
Data Sheet
ADV7344
MPU PORT TIMING SPECIFICATIONS
VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V.
All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted.
Table 10.
Parameter
MPU PORT, I2C MODE1
SCL Frequency
SCL High Pulse Width, t1
SCL Low Pulse Width, t2
Hold Time (Start Condition), t3
Setup Time (Start Condition), t4
Data Setup Time, t5
SDA, SCL Rise Time, t6
SDA, SCL Fall Time, t7
Setup Time (Stop Condition), t8
1
Conditions
See Figure 19
Min
Typ
0
0.6
1.3
0.6
0.6
100
Max
Unit
400
kHz
μs
μs
μs
μs
ns
ns
ns
μs
300
300
0.6
Guaranteed by characterization.
POWER SPECIFICATIONS
VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = 25°C.
Table 11.
Parameter
NORMAL POWER MODE1, 2
IDD3
IDD_IO
IAA5
IPLL
Conditions
Min
SD only (16× oversampling)
ED only (8× oversampling)4
HD only (4× oversampling)4
SD (16× oversampling) and ED (8× oversampling)
SD (16× oversampling) and HD (4× oversampling)
Three DACs enabled (ED/HD only)
Six DACs enabled (SD only and simultaneous modes )
SD only, ED only, or HD only modes
Simultaneous modes
SLEEP MODE
IDD
IAA
IDD_IO
IPLL
1
Typ
Rev. B | Page 11 of 108
Unit
90
65
91
95
122
1
124
140
5
10
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
5
0.3
0.2
0.1
μA
μA
μA
μA
RSET1 = 510 Ω (DAC 1, DAC 2 and DAC 3 operating in full-drive mode). RSET2 = 4.12 kΩ (DAC 4, DAC 5, and DAC 6 operating in low drive mode).
75% color bar test pattern applied to pixel data pins.
3
IDD is the continuous current required to drive the digital core.
4
Applicable to both single data rate (SDR) and dual data rate (DDR) input modes.
5
IAA is the total current required to supply all DACs including the VREF circuitry.
2
Max
ADV7344
Data Sheet
VIDEO PERFORMANCE SPECIFICATIONS
VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = 25°C, VREF driven externally.
Table 12.
Parameter
STATIC PERFORMANCE
Resolution
Integral Nonlinearity
Differential Nonlinearity 1 +ve
Differential Nonlinearity1 −ve
STANDARD DEFINTION (SD) MODE
Luminance Nonlinearity
Differential Gain
Differential Phase
SNR
SNR
ENHANCED DEFINITION (ED) MODE
Luma Bandwidth
Chroma Bandwidth
HIGH DEFINITION (HD) MODE
Luma Bandwidth
Chroma Bandwidth
1
Conditions
Min
Typ
Max
Unit
RSET1 = 510 Ω, RL1 = 37.5 Ω
RSET2 = 4.12 kΩ, RL2 = 300 Ω
RSET1 = 510 Ω, RL1 = 37.5 Ω
RSET2 = 4.12 kΩ, RL2 = 300 Ω
RSET1 = 510 Ω, RL1 = 37.5 Ω
RSET2 = 4.12 kΩ, RL2 = 300 Ω
14
3
4
1
3.2
1.7
1.4
Bits
LSBs
LSBs
LSBs
LSBs
LSBs
LSBs
NTSC
NTSC
Luma ramp
Flat field full bandwidth
0.2
0.2
0.3
64.5
79.5
±%
%
Degrees
dB
dB
12.5
5.8
MHz
MHz
30
13.75
MHz
MHz
Differential nonlinearity (DNL) measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal
step value. For −ve DNL, the actual step value lies below the ideal step value.
Rev. B | Page 12 of 108
Data Sheet
ADV7344
TIMING DIAGRAMS



The following abbreviations are used in Figure 2 to Figure 13:
t9 = clock high time
t10 = clock low time
t11 = data setup time
In addition, refer to Table 36 for the ADV7344 input configuration.
CLKIN_A
t9
CONTROL
INPUTS
t12
t10
S_HSYNC,
S_VSYNC
S9 TO S0/Y9 TO Y0*
IN SLAVE MODE
Y0
Cb0
Y1
Cr0
t11
Y2
Cb2
Cr2
t13
CONTROL
OUTPUTS
IN MASTER/SLAVE MODE
06400-002
t14
*SELECTED BY SUBADDRESS 0x01, BIT 7.
Figure 2. SD Only, 8-/10-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 000)
CLKIN_A
t9
CONTROL
INPUTS
t10
t12
S_HSYNC,
S_VSYNC
IN SLAVE MODE
S9 TO S0/Y9 TO Y0*
Y0
Y1
Y2
Y3
Y9 TO Y0/C9 TO C0*
Cb0
Cr0
Cb2
Cr2
t11
t13
CONTROL
OUTPUTS
IN MASTER/SLAVE MODE
t14
*SELECTED BY SUBADDRESS 0x01, BIT 7.
Figure 3. SD Only, 16-/20-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 000)
Rev. B | Page 13 of 108
06400-003



t12 = data hold time
t13 = control output access time
t14 = control output hold time
ADV7344
Data Sheet
CLKIN_A
t9
CONTROL
INPUTS
t12
t10
S_HSYNC,
S_VSYNC
Y9 TO Y2/Y9 TO Y0
G0
C9 TO C2/C9 TO C0
B0
G1
G2
B1
B2
R1
R2
t11
S9 TO S2/S9 TO S0
R0
CONTROL
OUTPUTS
06400-004
t14
t13
Figure 4. SD Only, 24-/30-Bit, 4:4:4 RGB Pixel Input Mode (Input Mode 000)
CLKIN_A
t9
CONTROL
INPUTS
t12
t10
P_HSYNC,
P_VSYNC,
P_BLANK
Y9 TO Y2/Y9 TO Y0
Y0
Y1
Y2
Y3
Y4
Y5
C9 TO C2/C9 TO C0
Cb0
Cr0
Cb2
Cr2
Cb4
Cr4
t11
t13
06400-005
CONTROL
OUTPUTS
t14
Figure 5. ED/HD-SDR Only, 16-/20-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 001)
CLKIN_A
t9
CONTROL
INPUTS
t12
t10
P_HSYNC,
P_VSYNC,
P_BLANK
Y9 TO Y2/Y9 TO Y0
Y0
Y1
Y2
Y3
Y4
Y5
C9 TO C2/C9 TO C0
Cb0
Cb1
Cb2
Cb3
Cb4
Cb5
Cr2
Cr3
Cr4
Cr5
t11
S9 TO S2/S9 TO S0
Cr0
Cr1
t14
t13
Figure 6. ED/HD-SDR Only, 24-/30-Bit, 4:4:4 YCrCb Pixel Input Mode (Input Mode 001)
Rev. B | Page 14 of 108
06400-006
CONTROL
OUTPUTS
Data Sheet
ADV7344
CLKIN_A
t9
CONTROL
INPUTS
t12
t10
P_HSYNC,
P_VSYNC,
P_BLANK
Y9 TO Y2/Y9 TO Y0
G0
G1
G2
G3
G4
G5
C9 TO C2/C9 TO C0
B0
B1
B2
B3
B4
B5
R2
R3
R4
R5
t11
S9 TO S2/S9 TO S0
R0
R1
CONTROL
OUTPUTS
06400-007
t14
t13
Figure 7. ED/HD-SDR Only, 24-/30-Bit, 4:4:4 RGB Pixel Input Mode (Input Mode 001)
CLKIN_A*
t9
CONTROL
INPUTS
t10
P_HSYNC,
P_VSYNC,
P_BLANK
Y9 TO Y2/Y9 TO Y0
Cb0
t11
Y0
Cr0
Y1
t12
Cb2
Y2
Cr2
t12
t11
t13
CONTROL
OUTPUTS
06400-008
t14
*LUMA/CHROMACLOCK RELATIONSHIP CAN BE INVERTED
USING SUBADDRESS 0x01, BITS 1 AND 2.
Figure 8. ED/HD-DDR Only, 8-/10-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Pixel Input Mode (Input Mode 010)
CLKIN_A*
t9
Y9 TO Y2/Y9 TO Y0
3FF
t11
t10
00
00
XY
t12
Cb0
Y0
Cr0
Y1
t12
t11
t13
t14
*LUMA/CHROMA CLOCK RELATIONSHIP CAN BE INVERTED
USING SUBADDRESS 0x01, BITS 1 AND 2.
06400-009
CONTROL
OUTPUTS
Figure 9. ED/HD-DDR Only, 8-/10-Bit, 4:2:2 YCrCb (EAV/SAV) Pixel Input Mode (Input Mode 010)
Rev. B | Page 15 of 108
ADV7344
Data Sheet
CLKIN_B
t9
CONTROL
INPUTS
t12
t10
P_HSYNC,
P_VSYNC,
P_BLANK
ED/HD INPUT
Y9 TO Y2/Y9 TO Y0
Y0
Y1
Y2
Y3
Y4
Y5
Y6
C9 TO C2/C9 TO C0
Cb0
Cr0
Cb2
Cr2
Cb4
Cr4
Cb6
Cb2
Y2
Cr2
t11
CLKIN_A
t9
CONTROL
INPUTS
t10
t12
S_HSYNC,
S_VSYNC
Y0
Cr0
Y1
06400-010
SD INPUT
Cb0
S9 TO S2/S9 TO S0
t11
Figure 10. SD, ED/HD-SDR Input Mode, 16-/20-Bit, 4:2:2 ED/HD and 8-/10-Bit, SD Pixel Input Mode (Input Mode 011)
CLKIN_B
CONTROL
INPUTS
t9
P_HSYNC,
P_VSYNC,
P_BLANK
Y9 TO Y2/Y9 TO Y0
t10
ED/HD INPUT
Cb0
t11
Y0
Cr0
Y1
t12
Y2
Cb2
Cr2
t12
t11
CLKIN_A
t9
CONTROL
INPUTS
t12
t10
S_HSYNC,
S_VSYNC
SD INPUT
Cr0
Y0
Y1
Cb2
Cr2
Y2
06400-011
Cb0
S9 TO S2/S9 TO S0
t11
Figure 11. SD, ED/HD-DDR Input Mode, 8-/10-Bit, 4:2:2 ED/HD and 8-/10-Bit, SD Pixel Input Mode (Input Mode 100)
CLKIN_A
CONTROL
INPUTS
P_HSYNC,
P_VSYNC,
P_BLANK
Y9 TO Y2/Y9 TO Y0
t11
t9
Cb0
t12
t10
Y0
Cr0
Y1
Cb2
Y2
Cr2
t13
t14
06400-012
CONTROL
OUTPUTS
Figure 12. ED Only (at 54 MHz), 8-/10-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Pixel Input Mode (Input Mode 111)
Rev. B | Page 16 of 108
Data Sheet
ADV7344
CLKIN_A
t9
Y9 TO Y2/Y9 TO Y0
t10
3FF
00
t12
t11
00
XY
Cb0
Y0
Cr0
Y1
t13
06400-013
t14
CONTROL
OUTPUTS
Figure 13. ED Only (at 54 MHz), 8-/10-Bit, 4:2:2 YCrCb (EAV/SAV) Pixel Input Mode (Input Mode 111)
Y OUTPUT
c
P_HSYNC
P_VSYNC
a
P_BLANK
Y9 TO Y2/Y9 TO Y0
Y0
Y1
Y2
Y3
C9 TO C2/C9 TO C0
Cb0
Cr0
Cb2
Cr2
b
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME
EQUAL TO THE PIPELINE DELAY.
Figure 14. ED-SDR, 16-/20-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram
Rev. B | Page 17 of 108
06400-014
a AND b AS PER RELEVANT STANDARD.
ADV7344
Data Sheet
Y OUTPUT
c
P_HSYNC
P_VSYNC
a
P_BLANK
Y9 TO Y2/Y9 TO Y0
Cb0
Cr0
Y0
Y1
b
a = 32 CLOCK CYCLES FOR 525p
a = 24 CLOCK CYCLES FOR 625p
AS RECOMMENDED BY STANDARD
b(MIN) = 244 CLOCK CYCLES FOR 525p
b(MIN) = 264 CLOCK CYCLES FOR 625p
06400-015
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME
EQUAL TO THE PIPELINE DELAY.
Figure 15. ED-DDR, 8-/10-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram
Y OUTPUT
c
P_HSYNC
P_VSYNC
a
P_BLANK
Y9 TO Y2/Y9 TO Y0
Y0
Y1
Y2
Y3
C9 TO C2/C9 TO C0
Cb0
Cr0
Cb2
Cr2
b
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT
AFTER A TIME EQUAL TO THE PIPELINE DELAY.
Figure 16. HD-SDR, 16-/20-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram
Rev. B | Page 18 of 108
06400-016
a AND b AS PER RELEVANT STANDARD.
Data Sheet
ADV7344
Y OUTPUT
c
P_HSYNC
P_VSYNC
a
P_BLANK
Y9 TO Y2/Y9 TO Y0
Cb0
Y0
Cr0
Y1
b
a AND b AS PER RELEVANT STANDARD.
06400-017
c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT
AFTER A TIME EQUAL TO THE PIPELINE DELAY.
Figure 17. HD-DDR, 8-/10-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram
S_HSYNC
S_VSYNC
Cb
Cr
Y
PAL = 264 CLOCK CYCLES
NTSC = 244 CLOCK CYCLES
*SELECTED BY SUBADDRESS 0x01, BIT 7.
Figure 18. SD Input Timing Diagram (Timing Mode 1)
t5
t3
t3
SDA
t6
t2
t7
t4
t8
2
Figure 19. MPU Port Timing Diagram (I C Mode)
Rev. B | Page 19 of 108
06400-019
t1
SCL
Y
06400-018
S9 TO S0/Y9 TO Y0*
ADV7344
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 13.
Parameter1
VAA to AGND
VDD to DGND
PVDD to PGND
VDD_IO to GND_IO
AGND to DGND
AGND to PGND
AGND to GND_IO
DGND to PGND
DGND to GND_IO
PGND to GND_IO
Digital Input Voltage to GND_IO
Analog Outputs to AGND
Maximum CLKIN Input Frequency
Storage Temperature Range (TS)
Junction Temperature (TJ)
Lead Temperature (Soldering, 10 sec)
1
Rating
−0.3 V to +3.9 V
−0.3 V to +2.3 V
−0.3 V to +2.3 V
−0.3 V to +3.9 V
−0.3 V to +0.3 V
−0.3 V to +0.3 V
−0.3 V to +0.3 V
−0.3 V to +0.3 V
−0.3 V to +0.3 V
−0.3 V to +0.3 V
−0.3 V to VDD_IO + 0.3 V
−0.3 V to VAA
80 MHz
−65°C to +150°C
150°C
260°C
The ADV7344 is a high performance integrated circuit with an
ESD rating of <1 kV, and it is ESD sensitive. Proper precautions
should be taken for handling and assembly.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 14. Thermal Resistance1
Package Type
64-Lead LQFP
1
θJC
11
Unit
°C/W
Values are based on a JEDEC 4-layer test board.
The ADV7344 is an RoHS-compliant, Pb-free product. The lead
finish is 100% pure Sn electroplate. The device is suitable for Pbfree applications up to 255°C (±5°C) IR reflow (JEDEC STD-20).
It is backward compatible with conventional SnPb soldering
processes. The electroplated Sn coating can be soldered with
Sn/Pb solder paste at conventional reflow temperatures of
220°C to 235°C.
Analog output short circuit to any power supply or common can be of an
indefinite duration.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
θJA
47
ESD CAUTION
Rev. B | Page 20 of 108
Data Sheet
ADV7344
64 63 62 61 60 59 58
S_VSYNC
S_HSYNC
S0
S1
S2
S3
S4
VDD
DGND
S5
S6
S7
S8
S9
CLKIN_B
GND_IO
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
57 56 55 54 53 52 51 50 49
VDD_IO
1
Y0
2
Y1
3
46
VREF
Y2
4
45
COMP1
Y3
5
44
DAC 1
Y4
6
43
DAC 2
Y5
7
Y6
8
Y7
9
PIN 1
ADV7344
TOP VIEW
(Not to Scale)
48
SFL
47
RSET1
42
DAC 3
41
VAA
40
AGND
VDD 10
39
DAC 4
DGND 11
38
DAC 5
DAC 6
Y8 12
37
Y9 13
36
RSET2
C0 14
35
COMP2
C1 15
34
PVDD
C2 16
33
EXT_LF1
06400-021
PGND
EXT_LF2
CLKIN_A
C9
C8
C7
C6
C5
P_BLANK
P_VSYNC
P_HSYNC
SCL
SDA
ALSB
C4
C3
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Figure 20. Pin Configuration
Table 15. Pin Function Descriptions
Pin No.
13, 12,
9 to 2
29 to 25,
18 to 14
62 to 58,
55 to 51
30
63
Mnemonic
Y9 to Y0
Input/
Output
I
Description
10-Bit Pixel Port (Y9 to Y0). Y0 is the LSB. Refer to Table 36 for input modes.
C9 to C0
I
10-Bit Pixel Port (C9 to C0). C0 is the LSB. Refer to Table 36 for input modes.
S9 to S0
I
10-Bit Pixel Port (S9 to S0). S0 is the LSB. Refer to Table 36 for input modes.
CLKIN_A
CLKIN_B
I
I
50
S_HSYNC
I/O
49
S_VSYNC
I/O
22
P_HSYNC
I
23
P_VSYNC
I
24
48
47
P_BLANK
SFL
RSET1
I
I/O
I
36
RSET2
I
45, 35
COMP1,
COMP2
DAC 1, DAC 2,
DAC 3
O
Pixel Clock Input for HD only (74.25 MHz), ED 1 only (27 MHz or 54 MHz), or SD only (27 MHz).
Pixel Clock Input for Dual Modes Only. Requires a 27 MHz reference clock for ED operation or a
74.25 MHz reference clock for HD operation.
SD Horizontal Synchronization Signal. This pin can also be configured to output an SD, ED, or HD
horizontal synchronization signal. See the External Horizontal and Vertical Synchronization
Control section.
SD Vertical Synchronization Signal. This pin can also be configured to output an SD, ED, or HD vertical
synchronization signal. See the External Horizontal and Vertical Synchronization Control section.
ED/HD Horizontal Synchronization Signal. See the External Horizontal and Vertical Synchronization
Control section.
ED/HD Vertical Synchronization Signal. See the External Horizontal and Vertical Synchronization
Control section.
ED/HD Blanking Signal. See the External Horizontal and Vertical Synchronization Control section.
Subcarrier Frequency Lock (SFL) Input.
This pin is used to control the amplitudes of the DAC 1, DAC 2, and DAC 3 outputs. For full-drive
operation (for example, into a 37.5 Ω load), a 510 Ω resistor must be connected from RSET1 to
AGND. For low-drive operation (for example, into a 300 Ω load), a 4.12 kΩ resistor must be
connected from RSET1 to AGND.
This pin is used to control the amplitudes of the DAC 4, DAC 5, and DAC 6 outputs. A 4.12 kΩ
resistor must be connected from RSET2 to AGND.
Compensation Pins. Connect a 2.2 nF capacitor from both COMP pins to VAA.
O
DAC Outputs. Full- and low -drive capable DACs.
44, 43, 42
Rev. B | Page 21 of 108
ADV7344
Pin No.
39, 38, 37
Data Sheet
Input/
Output
O
21
20
19
Mnemonic
DAC 4, DAC 5,
DAC 6
SCL
SDA
ALSB
46
41
10, 56
VREF
VAA
VDD
P
P
1
34
VDD_IO
PVDD
P
P
33
31
32
40
11, 57
64
EXT_LF1
EXT_LF2
PGND
AGND
DGND
GND_IO
I
I
G
G
G
G
1
2
I
I/O
I
Description
DAC Outputs. Low-drive only capable DACs.
I2C Clock Input.
I2C Data Input/Output.
This signal sets up the LSB 2 of the MPU I2C address (see the Power Supply Sequencing section for
more information).
Optional External Voltage Reference Input for DACs or Voltage Reference Output.
Analog Power Supply (3.3 V).
Digital Power Supply (1.8 V). For dual-supply configurations, VDD can be connected to other 1.8 V
supplies through a ferrite bead or suitable filtering.
Input/Output Digital Power Supply (1.8 V or 3.3 V).
PLL Power Supply (1.8 V). For dual-supply configurations, PVDD can be connected to other 1.8 V
supplies through a ferrite bead or suitable filtering.
External Loop Filter for On-Chip PLL 1.
External Loop Filter for On-Chip PLL 2.
PLL Ground Pin.
Analog Ground Pin.
Digital Ground Pin.
Input/Output Supply Ground Pin.
ED = enhanced definition = 525p and 625p.
LSB = least significant bit. In the ADV7344, setting the LSB to 0 sets the I2C address to 0xD4. Setting it to 1 sets the I2C address to 0xD6.
Rev. B | Page 22 of 108
Data Sheet
ADV7344
TYPICAL PERFORMANCE CHARACTERISTICS
ED Pr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4
Y RESPONSE IN ED 8× OVERSAMPLING MODE
1.0
0
0.5
–10
0
–0.5
–30
GAIN (dB)
–40
–1.0
–1.5
–50
–60
–2.0
–70
–2.5
0
20
40
60
80 100 120 140
FREQUENCY (MHz)
160
180
200
–3.0
06400-022
–80
Figure 21. ED 8× Oversampling, PrPb Filter (Linear) Response
0
2
4
6
8
FREQUENCY (MHz)
10
06400-025
GAIN (dB)
–20
12
Figure 24. ED 8× Oversampling, Y Filter Response (Focus on Pass Band)
ED Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4
HD Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4
10
0
0
–10
–10
–20
–20
GAIN (dB)
GAIN (dB)
–30
–30
–40
–40
–50
–60
–50
–70
–60
–80
–70
0
20
40
60
80 100 120 140
FREQUENCY (MHz)
160
180
200
Figure 22. ED 8× Oversampling, PrPb Filter (SSAF™) Response
0
18.5
37.0
55.5
74.0
92.5
FREQUENCY (MHz)
111.0
129.5
148.0
06400-026
–90
–100
06400-023
–80
Figure 25. HD 4× Oversampling, PrPb (SSAF) Filter Response (4:2:2 Input)
HD Pr/Pb RESPONSE. 4:4:4 INPUT MODE
Y RESPONSE IN ED 8× OVERSAMPLING MODE
0
0
–10
–10
–20
–20
GAIN (dB)
–40
–50
–40
–50
–60
–70
–60
–80
–70
–90
0
20
40
60
80 100 120 140
FREQUENCY (MHz)
160
180
Figure 23. ED 8× Oversampling, Y Filter Response
200
–100
10 20 30 40 50 60 70 80 90 100 110 120 130 140
FREQUENCY (MHz)
06400-027
–80
06400-024
GAIN (dB)
–30
–30
Figure 26. HD 4× Oversampling, PrPb (SSAF) Filter Response (4:4:4 Input)
Rev. B | Page 23 of 108
ADV7344
Data Sheet
Y RESPONSE IN HD 4× OVERSAMPLING MODE
10
0
0
–10
–10
MAGNITUDE (dB)
–20
GAIN (dB)
–30
–40
–50
–60
–20
–30
–40
–50
–70
–90
–70
0
18.5
37.0
55.5
74.0
92.5
FREQUENCY (MHz)
111.0
129.5
148.0
0
06400-028
–100
4
6
8
FREQUENCY (MHz)
10
12
Figure 30. SD PAL, Luma Low-Pass Filter Response
Figure 27. HD 4× Oversampling, Y Filter Response
Y PASS BAND IN HD 4x OVERSAMPLING MODE
3.0
2
06400-031
–60
–80
0
1.5
–10
MAGNITUDE (dB)
0
GAIN (dB)
–1.5
–3.0
–4.5
–6.0
–20
–30
–40
–50
–7.5
–9.0
–60
–70
–10
–10
–20
–20
MAGNITUDE (dB)
0
–40
–60
–60
2
4
6
8
FREQUENCY (MHz)
10
12
12
–40
–50
0
10
–30
–50
06400-030
MAGNITUDE (dB)
0
–30
4
6
8
FREQUENCY (MHz)
Figure 31. SD NTSC, Luma Notch Filter Response
Figure 28. HD 4× Oversampling, Y Filter Response (Focus on Pass Band)
–70
2
Figure 29. SD NTSC, Luma Low-Pass Filter Response
–70
0
2
4
6
8
FREQUENCY (MHz)
10
Figure 32. SD PAL, Luma Notch Filter Response
Rev. B | Page 24 of 108
12
06400-033
FREQUENCY (MHz)
0
06400-029
–12.0
27.750 30.063 32.375 34.688 37.000 39.312 41.625 43.937 46.250
06400-032
–10.5
Data Sheet
ADV7344
Y RESPONSE IN SD OVERSAMPLING MODE
5
0
4
–10
MAGNITUDE (dB)
GAIN (dB)
–20
–30
–40
–50
–60
3
2
1
0
0
20
40
60
80 100 120 140
FREQUENCY (MHz)
160
180
–1
06400-034
–80
200
0
5
6
7
Figure 36. SD Luma SSAF Filter, Programmable Gain
Figure 33. SD, 16× Oversampling, Y Filter Response
1
0
0
–10
–20
MAGNITUDE (dB)
MAGNITUDE (dB)
3
4
FREQUENCY (MHz)
2
1
06400-037
–70
–30
–40
–1
–2
–3
–50
0
2
4
6
8
FREQUENCY (MHz)
10
12
06400-035
–70
–5
0
5
7
6
Figure 37. SD Luma SSAF Filter, Programmable Attenuation
Figure 34. SD Luma SSAF Filter Response up to 12 MHz
4
0
2
–10
MAGNITUDE (dB)
0
–2
–4
–6
–20
–30
–40
–50
–8
–12
0
1
2
3
4
FREQUENCY (MHz)
5
6
7
–70
0
2
4
8
6
FREQUENCY (MHz)
10
Figure 38. SD Luma CIF Low-Pass Filter Response
Figure 35. SD Luma SSAF Filter, Programmable Responses
Rev. B | Page 25 of 108
12
06400-039
–60
–10
06400-036
MAGNITUDE (dB)
3
4
FREQUENCY (MHz)
2
1
06400-038
–4
–60
Data Sheet
0
–10
–10
–20
–20
–30
–40
–50
–60
–60
4
8
6
FREQUENCY (MHz)
10
12
–70
0
Figure 39. SD Luma QCIF Low-Pass Filter Response
–10
–10
–20
–20
MAGNITUDE (dB)
0
–30
–40
–60
–60
10
12
0
2
4
8
6
FREQUENCY (MHz)
10
Figure 43. SD Chroma 1.0 MHz Low-Pass Filter Response
0
0
–10
–10
–20
–20
MAGNITUDE (dB)
Figure 40. SD Chroma 3.0 MHz Low-Pass Filter Response
–30
–40
–40
–60
–60
2
4
8
6
FREQUENCY (MHz)
10
12
06400-042
–50
–70
Figure 41. SD Chroma 2.0 MHz Low-Pass Filter Response
–70
0
2
4
8
6
FREQUENCY (MHz)
10
Figure 44. SD Chroma 0.65 MHz Low-Pass Filter Response
Rev. B | Page 26 of 108
12
–30
–50
0
12
–70
06400-041
–70
8
6
FREQUENCY (MHz)
10
–40
–50
4
8
6
FREQUENCY (MHz)
–30
–50
2
4
Figure 42. SD Chroma 1.3 MHz Low-Pass Filter Response
0
0
2
06400-044
2
12
06400-045
0
MAGNITUDE (dB)
–40
–50
–70
MAGNITUDE (dB)
–30
06400-043
MAGNITUDE (dB)
0
06400-040
MAGNITUDE (dB)
ADV7344
ADV7344
0
–10
–10
–20
–20
–30
–40
–30
–40
–50
–50
–60
–60
–70
0
2
4
8
6
FREQUENCY (MHz)
10
12
–70
0
2
4
8
6
FREQUENCY (MHz)
10
Figure 46. SD Chroma QCIF Low-Pass Filter Response
Figure 45. SD Chroma CIF Low-Pass Filter Response
Rev. B | Page 27 of 108
12
06400-047
MAGNITUDE (dB)
0
06400-046
MAGNITUDE (dB)
Data Sheet
ADV7344
Data Sheet
MPU PORT DESCRIPTION
Devices such as a microprocessor can communicate with the
ADV7344 through a 2-wire serial l(I2C-compatible) bus. After
power-up or reset, the MPU port is configured for I2C operation.
I2C OPERATION
The ADV7344 supports a 2-wire serial (I2C-compatible)
microprocessor bus driving multiple peripherals. This port
operates in an open-drain configuration. Two wires, serial data
(SDA) and serial clock (SCL), carry information between any
device connected to the bus and the ADV7344. The slave
address of the ADV7344 depends on the operation (read or
write) and the state of the ALSB pin (0 or 1). See Table 16 and
Figure 47. The LSB sets either a read or a write operation. Logic 1
corresponds to a read operation, and Logic 0 corresponds to a
write operation. A1 is controlled by setting the ALSB pin of the
ADV7344 to Logic 0 or Logic 1.
Table 16. ADV7344 I2C Slave Addresses
Device
ALSB
Operation
Slave Address
ADV7344
0
0
1
1
Write
Read
Write
Read
0xD4
0xD5
0xD6
0xD7
1
1
0
1
0
1
A1
ADDRESS
CONTROL
SET UP BY
ALSB
06400-048
READ/WRITE
CONTROL
WRITE
READ
Logic 0 on the LSB of the first byte means that the master writes
information to the peripheral. Logic 1 on the LSB of the first byte
means that the master reads information from the peripheral.
The ADV7344 acts as a standard slave device on the bus. The
data on the SDA pin is eight bits long, supporting the 7-bit
addresses plus the R/W bit. It interprets the first byte as the
device address and the second byte as the starting subaddress.
There is a subaddress auto-increment facility. This allows data
to be written to or read from registers in ascending subaddress
sequence starting at any valid subaddress. A data transfer is
always terminated by a stop condition. The user can also access
any unique subaddress register on a one-by-one basis without
updating all the registers.
Stop and start conditions can be detected at any stage during
the data transfer. If these conditions are asserted out of
sequence with normal read and write operations, they cause an
immediate jump to the idle condition. During a given SCL high
period, the user should issue only a start condition, a stop
condition, or a stop condition followed by a start condition. If
an invalid subaddress is issued by the user, the ADV7344 does
not issue an acknowledge but returns to the idle condition. If
the user uses the auto-increment method of addressing the
encoder and exceeds the highest subaddress, the following
actions are taken:
X
0
1
responds by pulling the data line low during the ninth clock
pulse. This is known as an acknowledge bit. All other devices
withdraw from the bus at this point and maintain an idle
condition. The idle condition occurs when the device monitors
the SDA and SCL lines waiting for the start condition and the
correct transmitted address. The R/W bit determines the
direction of the data.
Figure 47. ADV7344 I2C Slave Address
•
Analog Devices, Inc., strongly recommends tying ALSB to
VDD_IO. If this is not done, a power supply sequence (PSS) may be
required. For more information on the PSS, see the Power Supply
Sequencing section. The various devices on the bus use the
following protocol. The master initiates a data transfer by
establishing a start condition, defined by a high-to-low
transition on SDA while SCL remains high. This indicates that
an address/data stream follows. All peripherals respond to the
start condition and shift the next eight bits (7-bit address plus
the R/W bit).The bits are transferred from MSB down to LSB.
The peripheral that recognizes the transmitted address
•
In read mode, the highest subaddress register contents are
output until the master device issues a no acknowledge.
This indicates the end of a read. A no acknowledge
condition occurs when the SDA line is not pulled low on
the ninth pulse.
In write mode, the data for the invalid byte is not loaded
into any subaddress register, a no acknowledge is issued by
the ADV7344, and the part returns to the idle condition.
Figure 48 shows an example of data transfer for a write sequence
and the start and stop conditions. Figure 49 shows bus write and
read sequences.
Rev. B | Page 28 of 108
Data Sheet
ADV7344
SCL
S
9
1–7
8
START ADDR R/W ACK
9
1–7
8
SUBADDRESS ACK
1–7
DATA
8
9
ACK
P
STOP
06400-049
SDA
Figure 48. I2C Data Transfer
S
SLAVE ADDR
A(S)
SUBADDR
A(S)
DATA
S
SLAVE ADDR A(S)
S = START BIT
P = STOP BIT
A(S) P
LSB = 1
LSB = 0
READ
SEQUENCE
DATA
A(S)
SUBADDR
A(S) S SLAVE ADDR
A(S) = ACKNOWLEDGE BY SLAVE
A(M) = ACKNOWLEDGE BY MASTER
A(S)
DATA
A(M)
A (S) = NO-ACKNOWLEDGE BY SLAVE
A (M) = NO-ACKNOWLEDGE BY MASTER
Figure 49. I2C Read and Write Sequence
Rev. B | Page 29 of 108
DATA
A(M) P
06400-050
WRITE
SEQUENCE
ADV7344
Data Sheet
REGISTER MAP ACCESS
A microprocessor can read from or write to all registers of the
ADV7344 via the MPU port, except for registers that are specified
as read-only or write-only registers.
The subaddress register determines which register the next
read or write operation accesses. All communication through
the MPU port starts with an access to the subaddress register.
A read/write operation is then performed from/to the target
address, which increments to the next address until the
transaction is complete.
REGISTER PROGRAMMING
Table 17 to Table 35 describe the functionality of each register.
All registers can be read from as well as written to, unless
otherwise stated.
SUBADDRESS REGISTER (SR7 TO SR0)
The subaddress register is an 8-bit write-only register. After the
MPU port is accessed and a read/write operation is selected, the
subaddress is set up. The subaddress register determines to or
from which register the operation takes place.
Table 17. Register 0x00
SR7 to
SR0
0x00
Register
Power
mode
Bit Description
Sleep mode. With this control enabled, the current consumption
is reduced to µA level. All DACs and the internal PLL circuits are
disabled. Registers can be read from and written to in sleep
mode.
7
6
Bit Number
5 4 3 2
0
1
0
1
DAC 2: power on/off.
0
1
DAC 1: power on/off.
0
1
DAC 6: power on/off.
0
1
DAC 5: power on/off.
0
1
0
1
Rev. B | Page 30 of 108
0
0
1
PLL and oversampling control. This control allows the internal
PLL 1 circuit to be powered down and the oversampling to be
switched off.
DAC 3: power on/off.
DAC 4: power on/off.
1
Register
Setting
Sleep
mode off
Sleep
mode on
PLL 1 on
PLL 1 off
DAC 3 off
DAC 3 on
DAC 2 off
DAC 2 on
DAC 1 off
DAC 1 on
DAC 6 off
DAC 6 on
DAC 5 off
DAC 5 on
DAC 4 off
DAC 4 on
Reset
Value
0x12
Data Sheet
ADV7344
Table 18. Register 0x01 to Register 0x09
SR7 to
SR0
0x01
Register
Mode select
Bit Description
Reserved.
DDR clock edge alignment (only used for ED- 2
and HD-DDR modes)
7
Reserved
Input mode (see
Subaddress 0x30,
Bits[7:3] for ED/HD
standard selection)
Y/C/S bus swap
0x02
Mode Register 0
6
Bit Number 1
5 4 3 2
1
0
0
0
1
1
1
0
1
0
0
1
1
0
0
1
1
SD input only.
ED/HD-SDR input only.
ED/HD-DDR input only.
SD and ED/HD-SDR.
SD and ED/HD-DDR.
Reserved.
Reserved.
ED only (at 54 MHz).
Allows data to be applied to data ports in
various configurations (SD feature only).
0
1
3
x
x
x
x
0x03
0xF0
x
x
x
x
x
x
x
x
x
x
LSBs for GY.
LSBs for RV.
LSBs for BU.
LSBs for GV.
LSBs for GU.
Bits[9:2 ] for GY.
Bits[9:2] for GU.
Bits[9:2] for GV.
Bits[9:2] for BU.
Bits[9:2] for RV.
0
1
0
1
SD sync output enable
2
0x20
0
1
RGB/YPrPb output select
1
0 must be written to this bit.
Default.
If using HD HSYNC/VSYNCinterlace mode,
setting this bit to 1 is recommended
(seethe HD Interlace External P_HSYNC
and P_VSYNC Considerations section for
more information).
Disabled.
Enabled.
Disable manual CSC matrix adjust.
Enable manual CSC matrix adjust.
No sync.
Sync on all RGB outputs.
RGB component outputs.
YPrPb component outputs.
No sync output.
Output SD syncs on HSYNC and VSYNC
pins.
No sync output.
Output ED/HD syncs on HSYNC and
VSYNC pins.
0
1
Sync on RGB.
0
1
0
1
ED/HD CSC Matrix 0
ED/HD CSC Matrix 1
ED/HD CSC Matrix 2
ED/HD CSC Matrix 3
ED/HD CSC Matrix 4
ED/HD CSC Matrix 5
ED/HD CSC Matrix 6
0
0
1
Manual CSC matrix adjust
0x05
0x06
0x07
0x08
0x09
Reset
Value
0x00
Chroma clocked in on rising clock edge;
luma clocked in on falling clock edge.
Reserved.
Reserved.
Luma clocked in on rising clock edge;
chroma clocked in on falling clock edge.
0
1
0
1
0
1
0
1
Test pattern black bar 3
0x03
0x04
Register Setting
0
0
0
0
0
1
1
1
1
Reserved
HD interlace external
VSYNC and HSYNC
ED/HD sync output enable
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x = Logic 0 or Logic 1.
ED = enhanced definition = 525p and 625p.
Subaddress 0x31, Bit 2 must also be enabled (ED/HD). Subaddress 0x84, Bit 6 must also be enabled (SD).
Rev. B | Page 31 of 108
0x4E
0x0E
0x24
0x92
0x7C
ADV7344
Data Sheet
Table 19. Register 0x0A to Register 0x10
SR7 to
SR0
0x0A
Register
DAC 4, DAC 5, DAC 6
output levels
Bit Description
Positive gain to
DAC output voltage
Negative gain to
DAC output voltage
0x0B
DAC 1, DAC 2, DAC 3
output levels
Positive gain to
DAC output voltage
Negative gain to
DAC output voltage
0x0D
DAC power mode
7
0
0
0
…
0
0
1
1
1
…
1
0
0
0
…
0
0
1
1
1
…
1
6
0
0
0
…
0
1
1
1
0
…
1
0
0
0
…
0
1
1
1
0
…
1
5
0
0
0
…
1
0
0
0
0
…
1
0
0
0
…
1
0
0
0
0
…
1
Bit Number
4
3
0
0
0
0
0
0
… …
1
1
0
0
0
0
0
0
0
0
… …
1
1
0
0
0
0
0
0
… …
1
1
0
0
0
0
0
0
0
0
… …
1
1
2
0
0
0
…
1
0
0
0
0
…
1
0
0
0
…
1
0
0
0
0
…
1
DAC 1 low power enable
DAC 2 low power enable
Cable detection
Reserved
DAC 1 cable detect
(read only)
Register Setting
0%
+0.018%
+0.036%
…
+7.382%
+7.5%
−7.5%
−7.382%
−7.364%
…
−0.018%
0%
+0.018%
+0.036%
…
+7.382%
+7.5%
−7.5%
−7.382%
−7.364%
…
−0.018%
DAC 1 low power disabled
DAC 1 low power enabled
DAC 2 low power disabled
DAC 2 low power enabled
DAC 3 low power disabled
DAC 3 low power enabled
0
1
Cable detected on DAC 1
DAC 1 unconnected
Cable detected on DAC 2
DAC 2 unconnected
0
1
0
0
0
0
0
1
Reserved
Unconnected DAC
autopower-down
0
0
1
0
0
0
Rev. B | Page 32 of 108
Reset
Value
0x00
0x00
0x00
0
DAC 2 cable detect
(read only)
Reserved
0
0
1
0
…
1
0
0
1
0
…
1
0
1
0
…
1
0
0
1
0
…
1
0
1
0
1
DAC 3 low power enable
0x10
1
0
0
1
…
1
0
0
0
1
…
1
0
0
1
…
1
0
0
0
1
…
1
0
DAC autopower-down
disable
DAC autopower-down
enable
0x00
Data Sheet
ADV7344
Table 20. Register 0x12 to Register 0x17
SR7 to
SR0
0x12
0x13
0x14
0x15
0x16
Register
Pixel port readback (S bus MSBs)
Pixel port readback (Y bus MSBs)
Pixel port readback (C bus MSBs)
Pixel port readback (S, Y, and C bus LSBs)
Control port readback
Bit Description
S[9:2] readback
Y[9:2] readback
C[9:2] readback
C[1:0] readback
Y[1:0] readback
S[1:0] readback
Reserved
P_BLANK
P_VSYNC
7
x
x
x
6
x
x
x
Bit Number 1
5 4 3 2
x x x x
x x x x
x x x x
x
x
0
1
Reset
Value
0xXX
0xXX
0xXX
0xXX
x
Read only.
0xXX
x
x
x
x
x
S_HSYNC
SFL
Reserved
Reserved
Software reset
Reserved
Register Setting
Read only.
Read only.
Read only.
Read only.
0
S_VSYNC
Software reset
0
x
x
x
x
x
P_HSYNC
0x17
1
x
x
x
x
x
0
0
0
0
1
0
0
0
x = Logic 0 or Logic 1.
Rev. B | Page 33 of 108
0
0
0
0x00
Writing a 1 resets the device;
this is a self-clearing bit.
ADV7344
Data Sheet
Table 21. Register 0x30
SR7 to
SR0
0x30
Register
ED/HD Mode
Register 1
Bit Description
ED/HD output standard.
7
6
Bit Number
5 4 3 2
ED/HD input
synchronization format
1
0
0
0
0
1
1
0
1
1
0
1
ED/HD standard 2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
0
0
1
1
1
1
1
1
0
1
1
1
0
0
0
0
0
0
0
1
1
1
2
0 0 1 0
10011–11111
Register Setting
EIA770.2 output
EIA770.3 output
EIA770.1 output.
Output levels for full
input range.
Reserved
External HSYNC, VSYNC
and field inputs 1
Embedded EAV/SAV
codes
SMPTE 293M,,
ITU-BT.1358
BTA-1004, ITU-BT.1362
ITU-BT.1358
ITU-BT.1362
SMPTE 296M-1,
SMPTE 274M-2
SMPTE 296M-3
SMPTE 296M-4,
SMPTE 274M-5
SMPTE 296M-6
SMPTE 296M-7,
SMPTE 296M-8
SMPTE 240M
Reserved
Reserved
SMPTE 274M-4,
SMPTE 274M-5
SMPTE 274M-6
SMPTE 274M-7,
SMPTE 274M-8
SMPTE 274M-9
SMPTE 274M-10,
SMPTE 274M-11
ITU-R BT.709Reserved
Note
ED
HD
525p at 59.94 Hz
525p at 59.94 Hz
625p at 50 Hz
625p at 50 Hz
720p at 60/59.94 Hz
720p at 50 Hz
720p at 30/29.97 Hz
720p at 25 Hz
720p at 24/23.98 Hz
1035i at 60/59.94 Hz
1080i at 30/29.97 Hz
1080i at 25 Hz
1080p at 30/29.97 Hz
1080p at 25 Hz
1080p at 24/23.98 Hz
1080Psf at 24 Hz
Synchronization can be controlled with a combination of either HSYNC and VSYNC inputs or HSYNC and field inputs, depending on Subaddress 0x34, Bit 6.
See the HD Interlace External P_HSYNC and P_VSYNC Considerations section for more information.
Rev. B | Page 34 of 108
Reset
Value
0x00
Data Sheet
ADV7344
Table 22. Register 0x31 to Register 0x33
SR7 to
SR0
0x31
Register
ED/HD Mode
Register 2
Bit Description
ED/HD pixel data valid
7
6
Bit Number
5 4 3 2
Reserved
ED/HD test pattern enable
0
1
0
1
ED/HD undershoot limiter
0
0
1
1
ED/HD sharpness filter
0
0
0
0
1
ED/HD Y delay with respect to the falling
edge of HSYNC
0
0
0
0
1
ED/HD CGMS
0
0
1
1
0
0
0
1
1
0
0
1
0
1
0
0
1
ED/HD Cr/Cb sequence
0
1
Reserved
ED/HD input format
0
0
1
Sinc compensation filter on DAC 1, DAC 2,
DAC 3
0
1
Reserved
ED/HD chroma SSAF
0
0
1
ED/HD chroma input
ED/HD double buffering
0
1
0
1
0
0
1
ED/HD CGMS CRC
ED/HD Mode
Register 4
0
1
0
1
0
1
ED/HD color delay with respect to the
falling edge of HSYNC
0x33
Register Setting
Pixel data valid off
Pixel data valid on
Reset
Value
0x00
0
ED/HD VBI open
ED/HD Mode
Register 3
0
0
1
0
1
ED/HD test pattern hatch/field
0x32
1
0
1
0
1
Rev. B | Page 35 of 108
HD test pattern off
HD test pattern on
Hatch
Field/frame
Disabled
Enabled
Disabled
−11 IRE
−6 IRE
−1.5 IRE
Disabled
Enabled
0 clock cycles
1 clock cycle
2 clock cycles
3 clock cycles
4 clock cycles
0 clock cycles
1 clock cycle
2 clock cycles
3 clock cycles
4 clock cycles
Disabled
Enabled
Disabled
Enabled
Cb after falling edge of HSYNC
Cr after falling edge of HSYNC
0 must be written to this bit
8-bit input
10-bit input
Disabled
Enabled
0 must be written to this bit
Disabled
Enabled
4:4:4
4:2:2
Disabled
Enabled
0x00
0x68
ADV7344
Data Sheet
Table 23. Register 0x34 to Register 0x35
SR7 to
SR0
0x34
Register
ED/HD Mode
Register 5
Bit Description
ED/HD timing reset
7
6
Bit Number
5 4 3 2
1
0
0
1
0
1
ED/HD HSYNC control 1
ED/HD blank polarity
0
P_BLANK active high
1
ED Macrovision® enable
0x35
ED/HD Mode
Register 6
Macrovision disabled
Macrovision enabled
0 must be written to this bit
0
0
1
ED/HD VSYNC/field input
Horizontal/vertical counters 2
0 = field input
1 = VSYNC input
0
1
Update field/line counter
Field/line counter free running
Reserved
ED/HD RGB input enable
0
0
1
ED/HD sync on PrPb
0
1
ED/HD color DAC swap
0
1
ED/HD gamma correction
curve select
0
1
ED/HD gamma correction
enable
0
1
ED/HD adaptive filter mode
ED/HD adaptive filter enable
1
2
P_BLANK active low
0
1
Reserved
Reset
Value
0x48
VSYNC output control (refer to Table 57)
0
1
ED/HD VSYNC control1
Register Setting
Internal ED/HD timing counters enabled
Resets the internal ED/HD timing counters
HSYNC output control (refer to Table 56)
0
1
0
1
0x00
Disabled
Enabled
Disabled
Enabled
DAC 2 = Pb, DAC 3 = Pr
DAC 2 = Pr, DAC 3 = Pb
Gamma correction Curve A
Gamma correction Curve B
Disabled
Enabled
Mode A
Mode B
Disabled
Enabled
Used in conjunction with ED/HD sync output enable in Subaddress 0x02, Bit 7 = 1.
When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.
Rev. B | Page 36 of 108
Data Sheet
ADV7344
Table 24. Register 0x36 to Register 0x43
SR7 to
SR0
0x36
0x37
0x38
0x39
0X3A
Register
ED/HD Y level 2
ED/HD Cr level2
ED/HD Cb level2
ED/HD Mode
Register 7
ED/HD Mode
Register 8
Bit Description
ED/HD Test Pattern Y level
ED/HD Test Pattern Cr level
ED/HD Test Pattern Cb level
Reserved
ED/HD EIA/CEA-861B
synchronization compliance
7
x
x
x
Reserved
INV_PHSYNC_POL
0
6
x
x
x
Bit Number 1
4
3
x
x
x
x
x
x
0
0
5
x
x
x
2
x
x
x
0
0x41
0x42
0x43
1
2
ED/HD CGMS
Data 0
ED/HD CGMS
Data 1
ED/HD CGMS
Data 2
Register Setting
Y level value
Cr level value
Cb level value
Reset
Value
0xA0
0x80
0x80
0x00
Disabled
Enabled
0
0
1
Disabled
Enabled
Disabled
Enabled
Disabled
Enabled
0x00
0x00
0
1
INV_PBLANK_POL
ED/HD sharpness
filter gain
0
x
x
x
0
0
1
INV_PVSYNC_POL
0x40
1
x
x
x
0
0
1
Reserved
ED/HD sharpness filter gain,
Value A
0
0
0
ED/HD sharpness filter gain,
Value B
ED/HD CGMS data bits
0
0
…
0
1
…
1
0
0
0
…
1
0
…
1
0
0
0
…
1
0
…
1
0
ED/HD CGMS data bits
C15
C14
ED/HD CGMS data bits
C7
C6
0
0
0
0
…
0
1
…
1
0
0
…
1
0
…
1
0
0
…
1
0
…
1
0
1
…
1
0
…
1
0
1
…
1
0
…
1
0
C19
C18
C17
C16
Gain A = 0
Gain A = +1
…
Gain A = +7
Gain A = −8
…
Gain A = −1
Gain B = 0
Gain B = +1
…
Gain B = +7
Gain B = −8
…
Gain B = −1
CGMS C19 to C16
C13
C12
C11
C10
C9
C8
CGMS C15 to C8
0x00
C5
C4
C3
C2
C1
C0
CGMS C7 to C0
0x00
0x00
x = Logic 0 or Logic 1.
For use with ED/HD internal test patterns only (Subaddress 0x31, Bit 2 = 1).
Table 25. Register 0x44 to Register 0x57
SR7 to
SR0
0x44
0x45
0x46
0x47
0x48
0x49
0x4A
0x4B
0x4C
0x4D
0x4E
0x4F
0x50
Register
ED/HD Gamma A0
ED/HD Gamma A1
ED/HD Gamma A2
ED/HD Gamma A3
ED/HD Gamma A4
ED/HD Gamma A5
ED/HD Gamma A6
ED/HD Gamma A7
ED/HD Gamma A8
ED/HD Gamma A9
ED/HD Gamma B0
ED/HD Gamma B1
ED/HD Gamma B2
Bit Description
ED/HD Gamma Curve A (Point 24)
ED/HD Gamma Curve A (Point 32)
ED/HD Gamma Curve A (Point 48)
ED/HD Gamma Curve A (Point 64)
ED/HD Gamma Curve A (Point 80)
ED/HD Gamma Curve A (Point 96)
ED/HD Gamma Curve A (Point 128)
ED/HD Gamma Curve A (Point 160)
ED/HD Gamma Curve A (Point 192)
ED/HD Gamma Curve A (Point 224)
ED/HD Gamma Curve B (Point 24)
ED/HD Gamma Curve B (Point 32)
ED/HD Gamma Curve B (Point 48)
7
x
x
x
x
x
x
x
x
x
x
x
x
x
Rev. B | Page 37 of 108
6
x
x
x
x
x
x
x
x
x
x
x
x
x
5
x
x
x
x
x
x
x
x
x
x
x
x
x
Bit Number 1
4
3
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
Register
Setting
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
B0
B1
B2
Reset
Value
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
ADV7344
SR7 to
SR0
0x51
0x52
0x53
0x54
0x55
0x56
0x57
1
Register
ED/HD Gamma B3
ED/HD Gamma B4
ED/HD Gamma B5
ED/HD Gamma B6
ED/HD Gamma B7
ED/HD Gamma B8
ED/HD Gamma B9
Data Sheet
Bit Description
ED/HD Gamma Curve B (Point 64)
ED/HD Gamma Curve B (Point 80)
ED/HD Gamma Curve B (Point 96)
ED/HD Gamma Curve B (Point 128)
ED/HD Gamma Curve B (Point 160)
ED/HD Gamma Curve B (Point 192)
ED/HD Gamma Curve B (Point 224)
7
x
x
x
x
x
x
x
6
x
x
x
x
x
x
x
5
x
x
x
x
x
x
x
Bit Number 1
4
3
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
Register
Setting
B3
B4
B5
B6
B7
B8
B9
0
x
x
x
x
x
x
x
Reset
Value
0x00
0x00
0x00
0x00
0x00
0x00
0x00
x = Logic 0 or Logic 1.
Table 26. Register 0x58 to Register 0x5D
SR7 to
SR0
0x58
0x59
Register
ED/HD Adaptive Filter Gain 1
ED/HD Adaptive Filter Gain 2
Bit Description
ED/HD Adaptive Filter Gain 1,
Value A
7
6
ED/HD Adaptive Filter Gain 1,
Value B
0
0
…
0
1
…
1
0
0
…
1
0
…
1
ED/HD Adaptive Filter Gain 2,
Value A
ED/HD Adaptive Filter Gain 2,
Value B
0x5A
ED/HD Adaptive Filter Gain 3
0
0
…
0
1
…
1
0
0
…
1
0
…
1
ED/HD Adaptive Filter Gain 3,
Value A
ED/HD Adaptive Filter Gain 3,
Value B
0
0
…
0
1
…
1
Rev. B | Page 38 of 108
0
0
…
1
0
…
1
Bit Number 1
5
4
3
2
0
0
0
0
… …
0
1
1
0
… …
1
1
0
0
0
1
… …
1
1
0
0
… …
1
1
0
0
0
0
… …
0
1
1
0
… …
1
1
0
0
0
1
… …
1
1
0
0
… …
1
1
0
0
0
0
… …
0
1
1
0
… …
1
1
0
0
0
1
… …
1
1
0
0
… …
1
1
1
0
0
…
1
0
…
1
0
0
1
…
1
0
…
1
0
0
…
1
0
…
1
0
1
…
1
0
…
1
0
0
…
1
0
…
1
0
1
…
1
0
…
1
Register
Setting
Gain A = 0
Gain A = +1
…
Gain A = +7
Gain A = −8
…
Gain A = −1
Gain B = 0
Gain B = +1
…
Gain B = +7
Gain B = −8
…
Gain B = −1
Gain A = 0
Gain A = +1
…
Gain A = +7
Gain A = −8
…
Gain A = −1
Gain B = 0
Gain B = +1
…
Gain B = +7
Gain B = −8
…
Gain B = −1
Gain A = 0
Gain A = +1
…
Gain A = +7
Gain A = −8
…
Gain A = −1
Gain B = 0
Gain B = +1
…
Gain B = +7
Gain B = −8
…
Gain B = −1
Reset
Value
0x00
0x00
0x00
Data Sheet
SR7 to
SR0
0x5B
0x5C
0x5D
1
Register
ED/HD Adaptive Filter
Threshold A
ED/HD Adaptive Filter
Threshold B
ED/HD Adaptive Filter
Threshold C
ADV7344
Bit Description
ED/HD Adaptive Filter Threshold A
7
x
6
x
Bit Number 1
5
4
3
2
x
x
x
x
ED/HD Adaptive Filter Threshold B
x
x
x
x
x
x
x
x
ED/HD Adaptive Filter Threshold C
x
x
x
x
x
x
x
x
1
x
0
x
Register
Setting
Threshold
A
Threshold
B
Threshold
C
Reset
Value
0x00
0x00
0x00
x = Logic 0 or Logic 1.
Table 27. Register 0x5E to Register 0x6E
SR7 to
SR0
0x5E
Register
ED/HD CGMS Type B
Register 0
Bit Description
ED/HD CGMS Type B
enable
7
6
5
Bit Number
4
3
2
ED/HD CGMS Type B
CRC enable
0x5F
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0x6A
0x6B
0x6C
0x6D
0x6E
ED/HD CGMS Type B
Register 1
ED/HD CGMS Type B
Register 2
ED/HD CGMS Type B
Register 3
ED/HD CGMS Type B
Register 4
ED/HD CGMS Type B
Register 5
ED/HD CGMS Type B
Register 6
ED/HD CGMS Type B
Register 7
ED/HD CGMS Type B
Register 8
ED/HD CGMS Type B
Register 9
ED/HD CGMS Type B
Register 10
ED/HD CGMS Type B
Register 11
ED/HD CGMS Type B
Register 12
ED/HD CGMS Type B
Register 13
ED/HD CGMS Type B
Register 14
ED/HD CGMS Type B
Register 15
ED/HD CGMS Type B
Register 16
ED/HD CGMS Type B
header bits
ED/HD CGMS Type B
data bits.
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
ED/HD CGMS Type B
data bits
1
0
0
1
0
1
Register
Setting
Disabled
Enabled
Disabled
Enabled
H5 to H0
Reset
Value
0x00
H5
H4
H3
H2
H1
H0
P7
P6
P5
P4
P3
P2
P1
P0
P7 to P0
0x00
P15
P14
P13
P12
P11
P10
P9
P8
P15 to P8
0x00
P23
P22
P21
P20
P19
P18
P17
P16
P23 to P16
0x00
P31
P30
P29
P28
P27
P26
P25
P24
P31 to P24
0x00
P39
P38
P37
P36
P35
P34
P33
P32
P39 to P32
0x00
P47
P46
P45
P44
P43
P42
P41
P40
P47 to P40
0x00
P55
P54
P53
P52
P51
P50
P49
P48
P55 to P48
0x00
P63
P62
P61
P60
P59
P58
P57
P56
P63 to P56
0x00
P71
P70
P69
P68
P67
P66
P65
P64
P71 to P64
0x00
P79
P78
P77
P76
P75
P74
P73
P72
P79 to P72
0x00
P87
P86
P85
P84
P83
P82
P81
P80
P87 to P80
0x00
P95
P94
P93
P92
P91
P90
P89
P88
P95 to P88
0x00
P103
P102
P101
P100
P99
P98
P97
P96
P103 to P96
0x00
P111
P110
P109
P108
P107
P106
P105
P104
P111 to P104
0x00
P119
P118
P117
P116
P115
P114
P113
P112
P119 to P112
0x00
P127
P126
P125
P124
P123
P122
P121
P120
P127 to P120
0x00
Rev. B | Page 39 of 108
ADV7344
Data Sheet
Table 28. Register 0x80 to Register 0x83
SR7 to
SR0
0x80
Register
SD Mode
Register 1
Bit Description
SD standard
7
6
Bit Number
5 4 3 2
SD luma filter
SD chroma filter
0x82
SD Mode
Register 2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SD PrPb SSAF
0
1
0
1
SD square pixel mode
0
1
SD VCR FF/RW sync
0
1
SD pixel data valid
SD Mode
Register 3
0
1
0
1
SD pedestal on YPrPb
output
0
1
SD Output Levels Y
0
1
SD Output Levels PrPb
0
0
1
1
SD VBI open
0
1
SD closed captioning
field control
Reserved
0
1
0
1
0
0
1
1
0
1
0
1
0
Rev. B | Page 40 of 108
Reset
Value
0x10
0x0B
Refer to Table 37
0
1
SD pedestal
Register Setting
NTSC
PAL B/D/G/H/I
PAL M
PAL N
LPF NTSC
LPF PAL
Notch NTSC
Notch PAL
SSAF luma
Luma CIF
Luma QCIF
Reserved
1.3 MHz
0.65 MHz
1.0 MHz
2.0 MHz
Reserved
Chroma CIF
Chroma QCIF
3.0 MHz
Disabled
Enabled
Refer to Table 37
0
1
SD DAC Output 2
SD active video edge
control
0
0
1
0
1
0
1
0
1
0
1
0
1
SD DAC Output 1
0x83
1
0
0
1
1
Disabled
Enabled
Disabled
Enabled
Disabled
Enabled
Disabled
Enabled
Disabled
Enabled
No pedestal on YPrPb
7.5 IRE pedestal on YPrPb
Y = 700 mV/300 mV
Y = 714 mV/286 mV
700 mV p-p (PAL), 1000 mV p-p (NTSC)
700 mV p-p
1000 mV p-p
648 mV p-p
Disabled
Enabled
Closed captioning disabled
Closed captioning on odd field only
Closed captioning on even field only
Closed captioning on both fields
Reserved
0x04
Data Sheet
ADV7344
Table 29. Register 0x84 to Register 0x89
SR7 to
SR0
0x84
Register
SD Mode
Register 4
Bit Description
Reserved
SD SFL/SCR/TR mode select
7
6
Bit Number
5 4 3 2
1
0
1
0
1
SD active video length
0
1
SD chroma
0
1
SD burst
0
1
SD color bars
SD luma/chroma swap
0x86
SD Mode
Register 5
0
1
0
1
NTSC color subcarrier adjust (delay
from the falling edge of the output
HSYNC pulse to the start of color
burst)
Reserved
SD EIA/CEA-861B synchronization
compliance
0x87
SD Mode
Register 6
0
0
1
0
1
0
1
1
0
1
Disabled.
SFL mode enabled.
720 pixels.
710 (NTSC), 702 (PAL).
Chroma enabled.
Chroma disabled.
Enabled.
Disabled.
Disabled.
Enabled.
DAC 2 = luma, DAC 3 = chroma .
DAC 2 = chroma, DAC 3 = luma.
5.17 μs.
5.31 μs.
5.59 μs (must be set for Macrovision
compliance).
Reserved.
Reset
Value
0x00
0x02
0
Disabled.
Enabled.
0
0
1
0
1
SD luma and color scale control
0
1
SD luma scale saturation
0
1
SD hue adjust
0
1
SD brightness
0
1
SD luma SSAF gain
0
1
SD input standard autodetect
Reserved.
SD RGB input enable
Register Setting
0
Reserved
SD horizontal/vertical counter
mode 1
SD RGB color swap
0
0
0
1
0
0
1
Rev. B | Page 41 of 108
Update field/line counter.
Field/line counter free running.
Normal.
Color reversal enabled.
Disabled.
Enabled.
Disabled.
Enabled.
Disabled.
Enabled.
Disabled.
Enabled.
Disabled.
Enabled.
Disabled.
Enabled.
0 must be written to this bit.
SD YCrCb input.
SD RGB input.
0x00
ADV7344
SR7 to
SR0
0x88
Register
SD Mode
Register 7
Data Sheet
Bit Description
Reserved
SD noninterlaced mode
7
6
Bit Number
5 4 3 2
SD digital noise reduction
0
0
1
0
1
0
1
1
0
1
0
1
SD undershoot limiter
0
0
1
1
Reserved
SD black burst output on DAC luma
1
0
1
0
1
0
0
1
SD chroma delay
Reserved
Disabled.
Enabled.
Disabled.
Enabled.
8-bit YCbCr input.
16-bit YCbCr input.
10-bit YCbCr input/16-/24-/30-bit
RGB input.
20-bit YCbCr input.
Disabled.
Enabled.
Disabled.
Enabled.
Gamma Correction Curve A.
Gamma Correction Curve B.
Disabled.
−11 IRE.
−6 IRE.
−1.5 IRE.
0 must be written to this bit.
Disabled.
Enabled.
Disabled.
Four clock cycles.
Eight clock cycles.
Reserved.
0 must be written to these bits.
0
1
SD gamma correction enable
SD Mode
Register 8
Register Setting
0
1
SD input format
0x89
0
0
0
1
SD double buffering
SD gamma correction curve select
1
0
0
1
1
0
0
1
0
1
0
Reset
Value
0x00
0x00
When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.
Table 30. Register 0x8A to Register 0x98
SR7 to
SR0
0x8A
Register
SD Timing Register 0
Bit Description
SD slave/master mode
7
6
Bit Number 1
5
4
3
2
1
0
0
1
1
0
1
0
1
SD timing mode
Reserved
SD luma delay
Register Setting
Slave mode.
Master mode.
Mode 0.
Mode 1.
Mode 2.
Mode 3.
1
0
0
1
1
SD minimum luma value
SD timing reset
0
0
1
0
1
0
1
0
1
0
1
Rev. B | Page 42 of 108
No delay.
Two clock cycles.
Four clock cycles.
Six clock cycles.
−40 IRE.
−7.5 IRE.
Normal operation
Freezes the counters; this bit
must be set back to zero to
reset the counters and
resume operation.
Reset
Value
0x08
Data Sheet
SR7 to
SR0
0x8B
Register
SD Timing Register 1
(applicable in master
modes only, that is,
Subaddress 0x8A,
Bit 0 = 1)
ADV7344
Bit Description
SD HSYNC width
7
6
0
0
1
1
SD HSYNC to VSYNC
delay
SD HSYNC to VSYNC
rising edge delay (Mode 1
only)
SD VSYNC width (Mode 2
only)
SD HSYNC to pixel data
adjust
0x8C
SD FSC Register 0 3
0x8D
SD FSC Register 13
0x8E
SD FSC Register 23
0x8F
SD FSC Register 33
0x90
0x91
SD FSC phase
SD closed captioning
0x92
SD closed captioning
0x93
0x94
0x95
0x96
0x97
0x98
SD closed captioning
SD closed captioning
SD Pedestal Register 0
SD Pedestal Register 1
SD Pedestal Register 2
SD Pedestal Register 3
Bit Number 1
5
4
3
2
Subcarrier Frequency
Bits[7:0]
Subcarrier Frequency
Bits[15:8]
Subcarrier Frequency
Bits[23:16]
Subcarrier Frequency
Bits[31:24]
Subcarrier Phase Bits[9:2]
Extended data on even fie
lds
Extended data on even
fields
Data on odd fields
Data on odd fields
Pedestal on odd fields
Pedestal on odd fields
Pedestal on even fields
Pedestal on even fields
X2
X2
0
1
0
0
1
1
0
1
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
1
x
0
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
17
25
17
25
x
x
16
24
16
24
x
x
15
23
15
23
x
x
14
22
14
22
x
x
13
21
13
21
x
x
12
20
12
20
x = Logic 0 or Logic 1.
X = don’t care.
3
SD subcarrier frequency registers default to NTSC subcarrier frequency values.
1
2
Rev. B | Page 43 of 108
Register Setting
ta = one clock cycle.
ta = four clock cycles.
ta = 16 clock cycles.
ta = 128 clock cycles.
tb = 0 clock cycles.
tb = four clock cycles.
tb = eight clock cycle.s
tb = 18 clock cycles.
tc = tb.
tc = tb + 32 µs.
One clock cycle.
Four clock cycles.
16 clock cycles.
128 clock cycles.
0 clock cycles.
One clock cycle.
Two clock cycles.
Three clock cycles.
Subcarrier Frequency Bits[7:0]
.
Subcarrier Frequency Bits[15:8].
Reset
Value
0x00
0x1F
0x7C
x
x
Subcarrier Frequency
Bits[23:16].
Subcarrier Frequency
Bits[31:24].
Subcarrier Phase Bits[9:2].
Extended Data Bits[7:0].
0xF0
0x00
0x00
x
x
Extended Data Bits[15:8].
0x00
x
x
11
19
11
19
x
x
10
18
10
18
Data Bits[7:0].
Data Bits[15:8].
Setting any of these bits to 1
disables pedestal on the line
number indicated by the bit
settings.
0x00
0x00
0x00
0x00
0x00
0x00
0x21
ADV7344
Data Sheet
Table 31. Register 0x99 to Register 0xA5
SR7 to
SR0
0x99
Register
SD CGMS/WSS 0
Bit Description
SD CGMS data
SD CGMS CRC
7
6
SD CGMS on odd fields
SD CGMS on even fields
SD WSS
0x9A
SD CGMS/WSS 1
SD CGMS/WSS data
0x9B
SD CGMS/WSS 2
SD CGMS data
SD CGMS/WSS data
0x9C
SD scale LSB
0x9D
0x9E
0x9F
0xA0
0xA1
SD Y scale
SD Cb scale
SD Cr scale
SD hue adjust
SD brightness/WSS
0xA2
SD luma SSAF
0xA3
SD DNR 0
LSBs for SD Y scale value
LSBs for SD Cb scale value
LSBs for SD Cr scale value
LSBs for SD FSC phase
SD Y scale value
SD Cb scale value
SD Cr scale value
SD hue adjust value
SD brightness value
SD blank WSS data
Bit Number 1
5
4
3
2
x
x
0
1
0
1
1
x
0
x
0
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
…
0
…
1
0
…
1
…
1
0
…
1
…
0
0
…
0
…
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
x
x
x
x
x
x
x
x
x
x
x
x
0
1
SD luma SSAF gain/attenuation
(only applicable if Register
0x87, Bit 4 = 1)
Reserved
Coring gain border (in DNR
mode, the values in brackets
apply)
0
Coring gain data (in DNR
mode, the values in brackets
apply)
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
Register Setting
CGMS Data Bits[C19:C16]
Disabled
Enabled
Disabled
Enabled
Disabled
Enabled
Disabled
Enabled
CGMS Data Bits[C13:C8] or
WSS Data Bits[W13:W8]
CGMS Data Bits[C15:C14]
CGMS Data Bits[C7:C0] or
WSS Data Bits[W7:W0]
SD Y Scale Bits[1:0]
SD Cb Scale Bits[1:0]
SD Cr Scale Bits[1:0]
Subcarrier Phase Bits[1:0]
SD Y Scale Bits[9:2]
SD Cb Scale Bits[9:2]
SD Cr Scale Bits[9:2]
SD Hue adjust Bits[7:0]
SD Brightness Bits[6:0]
Disabled
Enabled
−4 dB
…
0 dB
…
+4 dB
Reset
Value
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0
0
1
0
1
0
1
0
1
0
Rev. B | Page 44 of 108
No gain
+1/16 [−1/8]
+2/16 [−2/8]
+3/16 [−3/8]
+4/16 [−4/8]
+5/16 [−5/8]
+6/16 [−6/8]
+7/16 [−7/8]
+8/16 [−1]
No gain.
+1/16 [−1/8]
+2/16 [−2/8]
+3/16 [−3/8]
+4/16 [−4/8]
+5/16 [−5/8]
+6/16 [−6/8]
+7/16 [−7/8]
+8/16 [−1]
0x00
Data Sheet
SR7 to
SR0
0xA4
Register
SD DNR 1
ADV7344
Bit Description
DNR threshold
7
Border area
Block size control
0xA5
SD DNR 2
6
Bit Number 1
5
4
3
2
0
0
0
0
0
0
0
0
… … … …
1
1
1
1
1
1
1
1
0
1
0
0
0
1
DNR mode
1
0
0
1
…
0
1
0
1
DNR input select
DNR block offset
1
0
0
…
1
1
0
1
1
0
1
0
1
0
0
1
0
0
…
1
1
0
0
…
1
1
0
0
…
1
1
0
1
…
0
1
Register Setting
0
1
…
62
63
Two pixels
Four pixels
Eight pixels
16 pixels
Filter A
Filter B
Filter C
Filter D
DNR mode
DNR sharpness mode
0 pixel offset
One-pixel offset
…
14-pixel offset
15-pixel offset
Reset
Value
0x00
0x00
x = Logic 0 or Logic 1.
Table 32. Register 0xA6 to Register 0xBB
SR7 to
SR0
0xA6
0xA7
0xA8
0xA9
0xAA
0xAB
0xAC
0xAD
0xAE
0xAF
0xB0
0xB1
0xB2
0xB3
0xB4
0xB5
0xB6
0xB7
0xB8
0xB9
0xBA
Register
SD Gamma A0
SD Gamma A1
SD Gamma A2
SD Gamma A3
SD Gamma A4
SD Gamma A5
SD Gamma A6
SD Gamma A7
SD Gamma A8
SD Gamma A9
SD Gamma B0
SD Gamma B1
SD Gamma B2
SD Gamma B3
SD Gamma B4
SD Gamma B5
SD Gamma B6
SD Gamma B7
SD Gamma B8
SD Gamma B9
SD brightness detect
Bit Description
SD Gamma Curve A (Point 24)
SD Gamma Curve A (Point 32)
SD Gamma Curve A (Point 48)
SD Gamma Curve A (Point 64)
SD Gamma Curve A (Point 80)
SD Gamma Curve A (Point 96)
SD Gamma Curve A (Point 128)
SD Gamma Curve A (Point 160)
SD Gamma Curve A (Point 192)
SD Gamma Curve A (Point 224)
SD Gamma Curve B (Point 24)
SD Gamma Curve B (Point 32)
SD Gamma Curve B (Point 48)
SD Gamma Curve B (Point 64)
SD Gamma Curve B (Point 80)
SD Gamma Curve B (Point 96)
SD Gamma Curve B (Point 128)
SD Gamma Curve B (Point 160)
SD Gamma Curve B (Point 192)
SD Gamma Curve B (Point 224)
SD brightness value
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Rev. B | Page 45 of 108
6
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Bit Number 1
5 4 3 2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register
Setting
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
Read only
Reset
Value
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0xXX
ADV7344
SR7 to
SR0
0xBB
1
2
Register
Field count
Data Sheet
Bit Description
Field count
Reserved
Encoder version code
7
6
0
0
0
1
Bit Number 1
5 4 3 2
x
0 0 0
1
x
0
x
Register
Setting
Read only
Reserved
Read only; first
encoder
version 2
Read only;
second
encoder
version
Reset
Value
0x0X
x = Logic 0 or Logic 1.
See the HD Interlace External P_HSYNC and P_VSYNC Considerations section for information about the first encoder revision.
Table 33. Register 0xBD to Register 0xC8
SR7 to
SR0
0xBD
0xBE
0xBF
0xC0
0xC1
0xC2
0xC3
0xC4
0xC5
0xC6
0xC7
0xC8
1
Register
SD CSC Matrix 1
SD CSC Matrix 2
SD CSC Matrix 3
SD CSC Matrix 4
SD CSC Matrix 5
SD CSC Matrix 6
SD CSC Matrix 7
SD CSC Matrix 8
SD CSC Matrix 9
SD CSC Matrix 10
SD CSC Matrix 11
SD CSC Matrix 12
Bit Description
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
SD CSC matrix coefficient
7
x
x
x
x
x
x
x
x
x
x
x
x
6
x
x
x
x
x
x
x
x
x
x
x
x
x = Logic 0 or Logic 1.
Rev. B | Page 46 of 108
Bit Number 1
5
4
3
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2
x
x
x
x
x
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
x
x
x
x
x
Register Setting
Bits [7:0] for a1
Bits [7:0] for a2
Bits [7:0] for a3
Bits [7:0] for a4
Bits [7:0] for b1
Bits [7:0] for b2
Bits [7:0] for b3
Bits [7:0] for b4
Bits [7:0] for c1
Bits [7:0] for c2
Bits [7:0] for c3
Bits [7:0] for c4
Reset
Value
0x42
0x81
0x19
0x10
0x70
0x5E
0x12
0x80
0x26
0x4A
0x70
0x80
Data Sheet
ADV7344
Table 34. Register 0xC9 to Register 0xCE
SR7 to
SR0
0xC9
Register
Teletext control
Bit Description
Teletext enable
7
6
5
Bit Number
4
3
2
Teletext request mode
0xCB
0xCC
0xCD
0xCE
Teletext request
control
TTX Line Enable 0
TTX Line Enable 1
TTX Line Enable 2
TTX Line Enable 3
Reserved
Teletext request falling
edge position control
0
Teletext request rising
edge position control
0
0
…
1
1
22
14
22
14
Teletext on odd fields
Teletext on odd fields
Teletext on even fields
Teletext on even fields
0
0
1
0
1
Teletext input pin
select
0xCA
1
0
0
0
…
1
1
21
13
21
13
0
0
0
…
1
1
20
12
20
12
0
0
0
1
P_VSYNC.
1
1
0
1
0
0
…
1
1
0
0
…
1
1
0
0
…
1
1
0
1
…
0
1
18
10
18
10
17
9
17
9
16
8
16
8
15
7
15
7
C0.
Reserved.
Reserved.
0 clock cycles.
One clock cycle.
…
14 clock cycles.
15 clock cycles.
0 clock cycles.
One clock cycle.
…
14 clock cycles.
15 clock cycles.
Setting any of these bits
to 1 enables teletext on
the line number indicated
by the bit settings.
0
0
1
…
0
1
19
11
19
11
Register Setting
Disabled.
Enabled.
Line request signal.
Bit request signal.
S_VSYNC.
Reset
Value
0x00
0x00
0x00
0x00
0x00
0x00
Table 35. Register 0xE0 to Register 0xF1
SR7 to
SR0
0xE0
0xE1
0xE2
0xE3
0xE4
0xE5
0xE6
0xE7
0xE8
0xE9
0xEA
0xEB
0xEC
0xED
0xEE
0xEF
0xF0
0xF1
1
Register
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Macrovision
Bit Description
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
MV control bits
7
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
6
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
5
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
Bit Number 1
4
3
2
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
0
x = Logic 0 or Logic 1.
Rev. B | Page 47 of 108
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register Setting
Bits[7:1] must be 0.
Reset
Value
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
ADV7344
Data Sheet
INPUT CONFIGURATION
The ADV7344 supports a number of different input modes. The
desired input mode is selected using Subaddress 0x01, Bits[6:4].
The ADV7344 defaults to standard definition only (SD only) on
power-up. Table 36 provides an overview of all possible input
configurations. Each input mode is described in detail in the
following sections.
STANDARD DEFINITION ONLY
Subaddress 0x01, Bits[6:4] = 000
Standard definition (SD) YCrCb data can be input in 4:2:2 format.
Standard definition (SD) RGB data can be input in 4:4:4 format.
A 27 MHz clock signal must be provided on the CLKIN_A pin.
Input synchronization signals are provided on the S_HSYNC
and S_VSYNC pins.
8-/10-Bit 4:2:2 YCrCb Mode
Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bit 3 = 0
In 8-/10-bit 4:2:2 YCrCb input mode, the interleaved pixel data
is input on Pin S9 to Pin S2/S0 (or Pin Y9 to Pin Y2/Y0, depending
on Subaddress 0x01, Bit 7), with Pin S0/Y0 being the LSB in
10-bit input mode. The ITU-R BT.601/656 input standard is
supported. Embedded EAV/SAV timing codes are also
supported.
16-/20-Bit 4:2:2 YCrCb Mode
Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bit 3 = 1
In 16-/20-bit 4:2:2 YCrCb input mode, the Y pixel data is input
on Pin S9 to Pin S2/S0 (or Pin Y9 to Pin Y2/Y0, depending on
Subaddress 0x01, Bit 7), with Pin S0/Y0 being the LSB in 20-bit
input mode. The CrCb pixel data is input on Pin Y9 to Pin Y2/Y0
(or Pin C9 to Pin C2/C0, depending on Subaddress 0x01, Bit 7),
with Pin Y0/C0 being the LSB in 20-bit input mode.
Embedded EAV/SAV timing codes are not supported; therefore,
so an external synchronization is needed in this mode.
24-/30-Bit 4:4:4 RGB Mode
Subaddress 0x87, Bit 7 = 1
In 24-/30-bit 4:4:4 RGB input mode, the red pixel data is input on
Pin S9 to Pin S2/S0, the green pixel data is input on Pin Y9 to
Pin Y2/Y0, and the blue pixel data is input on Pin C9 to Pin C2/C0.
The S0, Y0, and C0 pins are the respective bus LSBs in 30-bit
input mode.
Embedded EAV/SAV timing codes are not supported with SD
RGB input mode. Also, master timing mode is not supported
for SD RGB input mode, therefore, external synchronization
must be used.
ADV7344
2
MPEG2
DECODER
S_VSYNC,
S_HSYNC
27MHz
CLKIN_A
10
S[9:0] OR Y[9:0]1
NOTES
1SELECTED BY SUBADDRESS 0x01, BIT 7.
Figure 50. SD Only Example Application
Rev. B | Page 48 of 108
06400-051
YCrCb
Data Sheet
ADV7344
Table 36. Input Configuration
S
Input Mode 1
000 SD only
8-/10-bit
YCrCb 2, 3
16-/20-bit
YCrCb2, 3, 4
9
8
7
6
5
4
001
010
24-/30-bit
RGB4
ED/HD-DDR
only
(8-/10-bit)3,
2
1
0
9
8
Y
7 6 5 4 3 2 1
Y/C/S bus swap (0x01[7]) = 0
C
0
9
8
7
6
5
4
3
2
1
YCrCb
Y
CrCb
Y/C/S bus swap (0x01[7]) = 1
YCrCb
8-/10-bit
YCrCb2, 3
16-/20-bit
YCrCb2, 3, 4
24-/30-bit
RGB4
ED/HD-SDR
only3, 5, 6, 7
16-/20-bit
YCrCb
24-/30-bit
YCrCb
3
R
Y
CrCb
SD RGB input enable (0x87[7]) = 1
G
B
ED/HD RGB input enable (0x35[1]) = 0
Y
CrCb
Cr
Y
Cb
R
ED/HD RGB input enable (0x35[1]) = 1
G
B
YCrCb
6, 7
011
100
111
SD, ED/HDSDR
(24-/30bit)3, 6, 7, 8
SD, ED/HDDDR
(16-/20bit)3, 6, 7, 8
ED Only (54
MHz) (8-/10bit)3, 6, 7
YCrCb (SD)
Y (ED/HD)
YCrCb (SD)
YCrCb (ED/HD)
CrCb (ED/HD)
YCrCb
The input mode is determined by Subaddress 0x01, Bits[6:4].
In SD only (YCrCb) mode, the format of the input data is determined by Subaddress 0x88, Bits[4:3]. See Table 29 for more information.
3
For 8-/16-/24-bit inputs, only the eight most significant bits (MSBs) of each applicable input bus are used.
4
External synchronization signals must be used in this input mode. Embedded EAV/SAV timing codes are not supported.
5
In ED/HD-SDR only (YCrCb) mode, the format of the input data is determined by Subaddress 0x33, Bit 6. See Table 22 for more information.
6
ED = enhanced definition = 525p and 625p.
7
The bus width of the ED/HD input data is determined by Subaddress 0x33, Bit 2 (0 = 8-bit input, 1 = 10-bit input). See Table 22 for more information.
8
The bus width of the SD input data is determined by Subaddress 0x88, Bits[4:] (00 = 8-bit, 11 = 16-bit, 10 = 10-bit, 11 = 20-bit). See Table 29 for more information.
1
2
Rev. B | Page 49 of 108
0
ADV7344
Data Sheet
ENHANCED DEFINITION/HIGH DEFINITION ONLY
The Cb pixel data is input on Pin C9 to Pin C2/C0, with Pin C0
being the LSB in 30-bit input mode.
Enhanced definition (ED) or high definition (HD) YCrCb data
can be input in either 4:2:2 or 4:4:4 format. If desired, dual data
rate (DDR) pixel data inputs can be employed (4:2:2 format only).
Enhanced definition (ED) or high definition (HD) RGB data
can be input in 4:4:4 format (single data rate only).
The clock signal must be provided on the CLKIN_A pin. Input
synchronization signals are provided on the P_HSYNC,
P_VSYNC, and P_BLANK pins.
24-/30-Bit 4:4:4 RGB Mode
Subaddress 0x35, Bit 1 = 1
In 24-/30-bit 4:4:4 RGB input mode, the red pixel data is input
on Pin S9 to Pin S2/S0, the green pixel data is input on Pin Y9 to
Pin Y2/Y0, and the blue pixel data is input on Pin C9 to Pin C2/C0.
The S0, Y0, and C0 pins are the respective bus LSBs in 30-bit
input mode.
MPEG2
DECODER
16-/20-Bit 4:2:2 YCrCb Mode (SDR)
Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 1
Cb 10
In 16-/20-bit 4:2:2 YCrCb input mode, the Y pixel data is input
on Pin Y9 to Pin Y2/Y0, with Pin Y0 being the LSB in 20-bit
input mode.
Cr 10
INTERLACED TO
PROGRESSIVE
The CrCb pixel data is input on Pin C9 to Pin C2/C0, with
Pin C0 being the LSB in 20-bit input mode.
C[9:0]
S[9:0]
Y[9:0]
P_VSYNC,
P_HSYNC,
P_BLANK
Figure 53. ED/HD Only Example Application
In 8-/10-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is
input on Pin Y9 to Pin Y2/Y0 on either the rising or falling edge
of CLKIN_A. Pin Y0 is the LSB in 10-bit input mode.
The CrCb pixel data is also input on Pin Y9 to Pin Y2/Y0 on the
opposite edge of CLKIN_A. Pin Y0 is the LSB in 10-bit input
mode.
Whether the Y data is clocked in on the rising or falling edge of
CLKIN_A is determined by Subaddress 0x01, Bits[2:1] (see
Figure 51 and Figure 52).
SIMULTANEOUS STANDARD DEFINITION AND
ENHANCED DEFINITION/HIGH DEFINITION
Subaddress 0x01, Bits[6:4] = 011 or 100
The ADV7344 is able to simultaneously process SD 4:2:2 YCrCb
data and ED/HD 4:2:2 YCrCb data. The 27 MHz SD clock
signal must be provided on the CLKIN_A pin. The ED/HD
clock signal must be provided on the CLKIN_B pin. SD input
synchronization signals are provided on the S_HSYNC and
S_VSYNC pins. ED/HD input synchronization signals are
provided on the P_HSYNC, P_VSYNC, and P_BLANK pins.
SD 8-/10-Bit 4:2:2 YCrCb and ED/HD-SDR 16-/20-Bit
4:2:2 YCrCb
CLKIN_A
00
00
XY
Cb0
Y0
Cr0
The SD 8-/10-bit 4:2:2 YCrCb pixel data is input on Pin S9 to
Pin S2/S0, with Pin S0 being the LSB in 10-bit input mode.
Y1
06400-052
3FF
NOTES
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 00 IN THIS CASE.
The ED/HD 16-/20-bit 4:2:2 Y pixel data is input on Pin Y9 to
Pin Y2/Y0, with Pin Y0 being the LSB in 20-bit input mode.
Figure 51. ED/HD-DDR Input Sequence (EAV/SAV)—Option A
The ED/HD 16-/20-bit 4:2:2 CrCb pixel data is input on Pin C9
to Pin C2/C0, with Pin C0 being the LSB in 20-bit input mode.
CLKIN_A
3FF
00
00
XY
Y0
Cb0
Y1
SD 8-/10-Bit 4:2:2 YCrCb and ED/HD-DDR 8-/10-Bit
4:2:2 YCrCb
Cr0
06400-053
Y[9:0]
Y 10
3
8-/10-Bit 4:2:2 YCrCb Mode (DDR)
Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 1
Y[9:0]
ADV7344
CLKIN_A
YCrCb
06400-054
Subaddress 0x01, Bits[6:4] = 001 or 010
NOTES
1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 11 IN THIS CASE.
Figure 52. ED/HD-DDR Input Sequence (EAV/SAV)—Option B
The SD 8-/10-bit 4:2:2 YCrCb pixel data is input on Pin S9
to Pin S2/S0, with Pin S0 being the LSB in 10-bit input mode.
24-/30-Bit 4:4:4 YCrCb Mode
Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 0
The ED/HD-DDR 8-/10-bit 4:2:2 Y pixel data is input on Pin Y9
to Pin Y2/Y0 upon the rising or falling edge of CLKIN_B.
Pin Y0 is the LSB in 10-bit input mode.
In 24-/30-bit 4:4:4 YCrCb input mode, the Y pixel data is input on
Pin Y9 to Pin Y2/Y0, with Pin Y0 being the LSB in 30-bit input
mode.
The ED/HD-DDR 8-/10-bit 4:2:2 CrCb pixel data is also input
on Pin Y9 to Pin Y2/Y0 on the opposite edge of CLKIN_B.
Pin Y0 is the LSB in 10-bit input mode.
The Cr pixel data is input on Pin S9 to Pin S2/S0, with Pin S0
being the LSB in 30-bit input mode.
Rev. B | Page 50 of 108
Data Sheet
ADV7344
Whether the ED/HD Y data is clocked in on the rising or falling
edge of CLKIN_B is determined by Subaddress 0x01, Bits[2:1]
(see the input sequence shown in Figure 51 and Figure 52).
2
27MHz
The interleaved pixel data is input on Pin Y9 to Pin Y2/Y0, with
Pin Y0 being the LSB in 10-bit input mode.
Y
C[9:0]
10
Y[9:0]
P_VSYNC,
P_HSYNC,
P_BLANK
3
27MHz
CLKIN_B
CLKIN_A
Y[9:0]
Figure 54. Simultaneous SD and ED Example Application
3FF
00
00
XY
Cb0
Y0
Cr0
Y1
Figure 56. ED Only (at 54 MHz) Input Sequence (EAV/SAV)
ADV7344
27MHz
YCrCb 10
HD
DECODER
1080i
OR
720p
OR
1035i
MPEG2
DECODER
54MHz
CLKIN_A
CLKIN_A
YCrCb
S[9:0]
ADV7344
YCrCb 10
CrCb 10
Y
INTERLACED TO
PROGRESSIVE
C[9:0]
10
3
74.25MHz
Y[9:0]
P_VSYNC,
P_HSYNC,
P_BLANK
CLKIN_B
3
Y[9:0]
P_VSYNC,
P_HSYNC,
P_BLANK
Figure 57. ED Only (at 54 MHz) Example Application
06400-056
SD
DECODER
S_VSYNC,
S_HSYNC
06400-058
2
Figure 55. Simultaneous SD and HD Example Application
Rev. B | Page 51 of 108
06400-057
525p
OR
625p
S[9:0]
ADV7344
CrCb 10
Enhanced definition (ED) YCrCb data can be input in an
interleaved 4:2:2 format on an 8-/10-bit bus at a rate of 54 MHz.
A 54 MHz clock signal must be provided on the CLKIN_A pin.
Input synchronization signals are provided on the P_HSYNC,
P_VSYNC, and P_BLANK pins.
CLKIN_A
YCrCb 10
ED
DECODER
S_VSYNC,
S_HSYNC
Subaddress 0x01, Bits[6:4] = 111
06400-055
SD
DECODER
ENHANCED DEFINITION ONLY (AT 54 MHz)
ADV7344
Data Sheet
OUTPUT CONFIGURATION
The ADV7344 supports a number of different output configurations. Table 37 to Table 40 list all possible output configurations.
Table 37. SD Only Output Configurations
RGB/YPrPb
Output Select 1
(Subaddress
0x02, Bit 5)
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
SD DAC
Output 2
(Subaddress
0x82, Bit 2)
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
SD DAC
Output 1
(Subaddress
0x82, Bit 1)
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
SD Luma/Chroma
Swap (Subddress
0x84, Bit 7)
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DAC 1
G
G
CVBS
CVBS
CVBS
CVBS
G
G
Y
Y
CVBS
CVBS
CVBS
CVBS
Y
Y
DAC 2
B
B
Luma
Chroma
B
B
Luma
Chroma
Pb
Pb
Luma
Chroma
Pb
Pb
Luma
Chroma
DAC 3
R
R
Chroma
Luma
R
R
Chroma
Luma
Pr
Pr
Chroma
Luma
Pr
Pr
Chroma
Luma
DAC 4
CVBS
CVBS
G
G
G
G
CVBS
CVBS
CVBS
CVBS
Y
Y
Y
Y
CVBS
CVBS
DAC 5
Luma
Chroma
B
B
Luma
Chroma
B
B
Luma
Chroma
Pb
Pb
Luma
Chroma
Pb
Pb
DAC 6
Chroma
Luma
R
R
Chroma
Luma
R
R
Chroma
Luma
Pr
Pr
Chroma
Luma
Pr
Pr
If SD RGB output is selected, a color reversal is possible using Subaddress 0x86, Bit 7.
Table 38. ED/HD Only Output Configurations
RGB/YPrPb Output Select (Subaddress
0x02, Bit 5)
0
0
1
1
ED/HD Color DAC Swap (Subaddress
0x35, Bit 3)
0
1
0
1
DAC 1
G
G
Y
Y
DAC 2
B
R
Pb
Pr
DAC 3
R
B
Pr
Pb
DAC 4
N/A
N/A
N/A
N/A
DAC 5
N/A
N/A
N/A
N/A
DAC 6
N/A
N/A
N/A
N/A
Table 39. Simultaneous SD and ED/HD Output Configurations
RGB/YPrPb Output
Select (Subaddress
0x02, Bit 5)
0
0
0
0
1
1
1
1
ED/HD Color
DAC Swap
(Subaddress
0x35, Bit 3)
0
0
1
1
0
0
1
1
SD Luma/Chroma
Swap (Subaddress
0x84, Bit 7)
0
1
0
1
0
1
0
1
DAC 1
(ED/HD)
G
G
G
G
Y
Y
Y
Y
DAC 2
(ED/HD)
B
B
R
R
Pb
Pb
Pr
Pr
DAC 3
(ED/HD)
R
R
B
B
Pr
Pr
Pb
Pb
DAC 4
(SD)
CVBS
CVBS
CVBS
CVBS
CVBS
CVBS
CVBS
CVBS
DAC 5
(SD)
Luma
Chroma
Luma
Chroma
Luma
Chroma
Luma
Chroma
DAC 6
(SD)
Chroma
Luma
Chroma
Luma
Chroma
Luma
Chroma
Luma
Table 40. ED Only (at 54 MHz) Output Configurations
RGB/YPrPb Output Select (Subaddress
0x02, Bit 5)
0
0
1
1
ED/HD Color DAC Swap (Subaddress
0x35, Bit 3)
0
1
0
1
Rev. B | Page 52 of 108
DAC 1
G
G
Y
Y
DAC 2
B
R
Pb
Pr
DAC 3
R
B
Pr
Pb
DAC 4
N/A
N/A
N/A
N/A
DAC 5
N/A
N/A
N/A
N/A
DAC 6
N/A
N/A
N/A
N/A
Data Sheet
ADV7344
DESIGN FEATURES
External Sync Polarity
OUTPUT OVERSAMPLING
The ADV7344 includes two on-chip phase-locked loops (PLLs)
that allow for oversampling of SD, ED, and HD video data.
Table 41 shows the various oversampling rates supported in the
ADV7344.
SD Only, ED Only, and HD Only Modes
PLL 1 is used in SD only, ED only, and HD only modes. PLL 2 is
unused in these modes. PLL 1 is disabled by default and can be
enabled using Subaddress 0x00, Bit 1 = 0.
SD and ED/HD Simultaneous Modes
Both PLL 1 and PLL 2 are used in simultaneous modes. The use
of two PLLs allows for independent oversampling of SD and
ED/HD video. PLL 1 is used to oversample SD video data, and
PLL 2 is used to oversample ED/HD video data. In simultaneous
modes, PLL 2 is always enabled. PLL 1 is disabled by default and
can be enabled using Subaddress 0x00, Bit 1 = 0.
For SD and ED/HD modes, the ADV7344 parts typically expect
HS and VS to be low during their respective blanking periods.
However, when the CEA861 compliance bit (0x39, Bit 5 for
ED/HD modes and 0x86, Bit 3 for SD modes) is enabled, the
part expects the HS or VS to be active low or high depending
on the input format selected (0x30 Bits [7:3]).
If a different polarity other than the default is needed for ED/HD
modes, 0x3A Bits [2:0] can be used to invert PHSYNCB,
PVSYNCB or PBLANKB individually regardless of whether
CEA-861-B mode is enabled. It is not possible to invert
S_HSYNC or S_VSYNC.
Table 41. Output Oversampling Modes and Rates
Input Mode
Subaddress 0x01 Bits[6:4]
000
SD only
000
SD only
001/010
ED only
001/010
ED only
001/010
HD only
001/010
HD only
011/100
SD and ED
011/100
SD and ED
011/100
SD and HD
011/100
SD and HD
111
ED only (at 54 MHz)
111
ED only (at 54 MHz)
PLL and Oversampling Control
Subaddress 0x00, Bit 1
1
0
1
0
1
0
1
0
1
0
1
0
Rev. B | Page 53 of 108
Oversampling Mode and Rate
SD (2×)
SD (16×)
ED (1×)
ED (8×)
HD (1×)
HD (4×)
SD (2×) and ED (8×)
SD (16×) and ED (8×)
SD (2×) and HD (4×)
SD (16×) and HD (4×)
ED only (at 54 MHz) (1×)
ED only (at 54 MHz) (8×)
ADV7344
Data Sheet
HD INTERLACE EXTERNAL P_HSYNC AND
P_VSYNC CONSIDERATIONS
SD SUBCARRIER FREQUENCY LOCK
If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 01
or higher, the user should set Subaddress 0x02, Bit 1 to high to
ensure exactly correct timing in the HD interlace modes when
using the P_HSYNC and P_VSYNC synchronization signals. If
this bit is set to low, the first active pixel on each line is masked
and Pr and Pb outputs are swapped when using the YCrCb
4:2:2 input format. Setting Subaddress 0x02, Bit 1 low causes the
encoder to behave in the same way as the first version of silicon
(that is, this setting is backward compatible).
In this mode (Subaddress 0x84, Bits[2:1] = 11), the ADV7344
can be used to lock to an external video source. The SFL mode
allows the ADV7344 to automatically alter the subcarrier
frequency to compensate for line length variations.
Subcarrier Frequency Lock (SFL) Mode
When the part is connected to a device such as an ADV7403
video decoder (see Figure 58) that outputs a digital data stream
in the SFL format, the part automatically changes to the
compensated subcarrier frequency on a line-by-line basis. This
digital data stream is 67 bits wide, and the subcarrier is
contained in Bit 0 to Bit 21. Each bit is two clock cycles long.
If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 00,
the setting of Subaddress 0x02, Bit has no effect. In this version
of the encoder, the first active pixel is masked and Pr and Pb
outputs are swapped when using the YCrCb 4:2:2 format in HD
interlace modes with the P_HSYNC and P_VSYNC synchronization signals. To avoid these limitations, use the newer
revision of silicon or a different type of synchronization.
SD VCR FF/RW SYNC
Subaddress 0x82, Bit 5
In DVD record applications where the encoder is used with a
decoder, the VCR FF/RW sync control bit can be used for
nonstandard input video, that is, in fast forward or rewind mode.
In fast forward mode, the sync information at the start of a new
field in the incoming video usually occurs before the correct
number of lines/fields is reached. In rewind mode, this sync
signal usually occurs after the total number of lines/fields is
reached. Conventionally, this means that the output video has
corrupted field signals because one signal is generated by the
incoming video and another is generated when the internal
line/field counters reach the end of a field.
These considerations apply only to the HD interlace modes
with external P_HSYNC and P_VSYNC synchronization
(EAV/SAV mode is not affected and always has exactly correct
timing). There is no negative effect in setting Subaddress 0x02,
Bit 0 to high, and this bit can remain high for all the other video
standards.
ED/HD TIMING RESET
Subaddress 0x34, Bit 0
When the VCR FF/RW sync control is enabled (Subaddress 0x82,
Bit 5), the line/field counters are updated according to the
incoming VSYNC signal and when the analog output matches
the incoming VSYNC signal. This control is available in all
slave-timing modes except Slave Mode 0.
An ED/HD timing reset is achieved by toggling the ED/HD
timing reset control bit (Subaddress 0x34, Bit 0) from 0 to 1. In
this state, the horizontal and vertical counters remain reset. When
this bit is set back to 0, the internal counters resume counting.
This timing reset applies to the ED/HD timing counters only.
ADV7344
CLKIN_A
LLC1
COMPOSITE
VIDEO1
ADV7403
VIDEO
DECODER
DAC 1
DAC 2
SFL
SFL
P19 TO P10
14 BITS
H/L TRANSITION
SUBCARRIER
COUNT START
LOW PHASE
128
13
0
DAC 3
Y9 TO Y0/
S9 TO S05
DAC 5
DAC 6
4 BITS
RESERVED
21
DAC 4
SEQUENCE
BIT3
FSC PLL INCREMENT2
0
RESET BIT4
RESERVED
RTC
TIME SLOT 01
14
6768
19
VALID INVALID
SAMPLE SAMPLE
1FOR EXAMPLE, VCR OR CABLE.
2F
SC PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV7344 FSC DDS REGISTER IS
FSC PLL INCREMENTS BITS[21:0] PLUS BITS[0:9] OF SUBCARRIER FREQUENCY REGISTERS.
3SEQUENCE BIT
8/LINE
LOCKED
CLOCK
5 BITS
RESERVED
06400-063
PAL: 0 = LINE NORMAL, 1 = LINE INVERTED
NTSC: 0 = NO CHANGE
4RESET ADV7344 DDS.
5SELECTED BY SUBADDRESS 0x01, BIT 7.
Figure 58. SD Subcarrier Frequency Lock Timing and Connections Diagram (Subaddress 0x84, Bits[2:1] = 11)
Rev. B | Page 54 of 108
Data Sheet
ADV7344
VERTICAL BLANKING INTERVAL
Typical FSC Values
Subaddress 0x31, Bit 4; Subaddress 0x83, Bit 4
Table 42 outlines the values that should be written to the
subcarrier frequency registers for NTSC and PAL B/D/G/H/I.
The ADV7344 is able to accept input data that contains VBI
data (such as CGMS, WSS, VITS) in SD, ED, and HD modes.If
VBI is disabled (Subaddress 0x31, Bit 4 for ED/HD; Subaddress
0x83, Bit 4 for SD), VBI data is not present at the output and the
entire VBI is blanked. These control bits are valid in all master
and slave timing modes.
For the SMPTE 293M (525p) standard, VBI data can be inserted
on Line 13 to Line 42 of each frame or on Line 6 to Line 43 for
the ITU-R BT.1358 (625p) standard. VBI data can be present on
Line 10 to Line 20 for NTSC and on Line 7 to Line 22 for PAL.
In SD Timing Mode 0 (slave option), if VBI is enabled, the blanking
bit in the EAV/SAV code is overwritten. It is possible to use VBI
in this timing mode as well. If CGMS is enabled and VBI is
disabled, the CGMS data is, nevertheless, available at the output.
SD SUBCARRIER FREQUENCY CONTROL
Subaddress 0x8C to Subaddress 0x8F
The ADV7344 is able to generate the color subcarrier used in
CVBS and S-Video (Y-C) outputs from the input pixel clock.
Four 8-bit registers are used to set up the subcarrier frequency.
The value of these registers is calculated using
Subcarrier Frequency Register =
Number of subcarrier periods in one video line
Number of 27 MHz clk cycles in one video line
× 2 32
where the sum is rounded to the nearest integer. For example, in
NTSC mode
227.5  32
Subcarrier Register Value = 
 × 2 = 569408543
 1716 
Table 42. Typical FSC Values
Subaddress
0x8C
0x8D
0x8E
0x8F
Description
FSC0
FSC1
FSC2
FSC3
NTSC
0x1F
0x7C
0xF0
0x21
PAL B/D/G/H/I
0xCB
0x8A
0x09
0x2A
SD NONINTERLACED MODE
Subaddress 0x88, Bit 1
The ADV7344 supports an SD noninterlaced mode. Using this
mode, progressive inputs at twice the frame rate of NTSC and
PAL (240p/59.94 Hz and 288p/50 Hz, respectively) can be input
into the ADV7344. The SD noninterlaced mode can be enabled
using Subaddress 0x88, Bit 1.
A 27 MHz clock signal must be provided on the CLKIN_A pin.
Embedded EAV/SAV timing codes or external horizontal and
vertical synchronization signals provided on the S_HSYNC and
S_VSYNC pins can be used to synchronize the input pixel data.
All input configurations, output configurations, and features
available in NTSC and PAL modes are available in SD
noninterlaced mode. For 240p/59.94 Hz input, the ADV7344
should be configured for NTSC operation, and Subaddress 0x88,
Bit 1 should be set to 1. For 288p/50 Hz input, the ADV7344
should be configured for PAL operation, and Subaddress 0x88,
Bit 1 should be set to 1.
SD SQUARE PIXEL MODE
Subaddress 0x82, Bit 4
The ADV7344 supports an SD square pixel mode (Subaddress
0x82, Bit 4). For NTSC operation, an input clock of 24.5454 MHz
is required. The active resolution is 640 × 480. For PAL
operation, an input clock of 29.5 MHz is required. The active
resolution is 768 × 576.
where:
Subcarrier Register Value = 569408543d = 0×21F07C1F
SD FSC Register 0: 0x1F
SD FSC Register 1: 0x7C
SD FSC Register 2: 0xF0
SD FSC Register 3: 0x21
Programming the FSC
The subcarrier frequency register value is divided into four FSC
registers, as shown in the previous example. The four subcarrier
frequency registers must be updated sequentially, starting with
Subcarrier Frequency Register 0 and ending with Subcarrier
Frequency Register 3. The subcarrier frequency updates only
after the last subcarrier frequency register byte has been received
by the ADV7344. The SD input standard autodetection feature
must be disabled.
For CVBS and S-Video (Y-C) outputs, the SD subcarrier
frequency registers must be updated to reflect the input clock
frequency used in SD square pixel mode. The SD input standard
autodetection feature must be disabled in SD square pixel
mode. In square pixel mode, the timing diagrams shown in
Figure 59 and Figure 60 apply.
Rev. B | Page 55 of 108
ADV7344
Data Sheet
ANALOG
VIDEO
EAV CODE
NTSC/PAL M SYSTEM
(525 LINES/60Hz)
PAL SYSTEM
(625 LINES/50Hz)
4 CLOCK
SAV CODE
0 F F A A A
0 F F B B B
C
C
8 1 8 1 F 0 0 X C Y C Y C
Y r Y b
b
r
0 0 0 0 F 0 0 Y b
ANCILLARY DATA
(HANC)
4 CLOCK
272 CLOCK
1280 CLOCK
4 CLOCK
4 CLOCK
344 CLOCK
1536 CLOCK
06400-064
INPUT PIXELS
F 0 0 X 8 1 8 1
C
Y
Y
F 0 0 Y 0 0 0 0
r
START OF ACTIVE
VIDEO LINE
END OF ACTIVE
VIDEO LINE
Figure 59. Square Pixel Mode EAV/SAV Embedded Timing
HSYNC
FIELD
Cb
Y
Cr
Y
PAL = 308 CLOCK CYCLES
NTSC = 236 CLOCK CYCLES
06400-065
PIXEL
DATA
Figure 60. Square Pixel Mode Active Pixel Timing
FILTERS
Table 43 shows an overview of the programmable filters
available on the ADV7344.
Table 43. Selectable Filters
Filter
SD Luma LPF NTSC
SD Luma LPF PAL
SD Luma Notch NTSC
SD Luma Notch PAL
SD Luma SSAF
SD Luma CIF
SD Luma QCIF
SD Chroma 0.65 MHz
SD Chroma 1.0 MHz
SD Chroma 1.3 MHz
SD Chroma 2.0 MHz
SD Chroma 3.0 MHz
SD Chroma CIF
SD Chroma QCIF
SD PrPb SSAF
ED/HD Chroma Input
ED/HD Sinc Compensation Filter
ED/HD Chroma SSAF
Subaddress
0x80
0x80
0x80
0x80
0x80
0x80
0x80
0x80
0x80
0x80
0x80
0x80
0x80
0x80
0x82
0x33
0x33
0x33
SD Internal Filter Response
Subaddress 0x80, Bits[7:2]; Subaddress 0x82, Bit 0
The Y filter supports several different frequency responses,
including two low-pass responses, two notch responses, an
extended (SSAF) response with or without gain boost
attenuation, a CIF response, and a QCIF response. The PrPb
filter supports several different frequency responses, including
six low-pass responses, a CIF response, and a QCIF response, as
shown in Figure 38 and Figure 39.
If SD SSAF gain is enabled (Subaddress 0x87, Bit 4), there are 13
response options in the −4 dB to +4 dB range. The desired response
can be programmed using Subaddress 0xA2. The variation in
frequency responses is shown in Figure 35 to Figure 37.
In addition to the chroma filters listed in Table 43, the ADV7344
contains an SSAF filter that is specifically designed for the color
difference component outputs, Pr and Pb. This filter has a cutoff
frequency of ~2.7 MHz and a gain of –40 dB at 3.8 MHz (see
Figure 61). This filter can be controlled with Subaddress 0x82,
Bit 0.
Rev. B | Page 56 of 108
Data Sheet
ADV7344
0.5
EXTENDED (SSAF) PrPb FILTER MODE
0.4
0
0.3
0.2
–20
GAIN (dB)
GAIN (dB)
–10
–30
0.1
0
–0.1
–0.2
–40
–0.3
–50
0
1
2
3
4
FREQUENCY (MHz)
5
6
06400-066
–60
0
5
10
15
20
FREQUENCY (MHz)
25
30
06400-067
–0.4
–0.5
Figure 62. ED/HD Sinc Compensation Filter Enabled
Figure 61. PrPb SSAF Filter
0.5
If this filter is disabled, one of the chroma filters shown in Table 44
can be selected and used for the CVBS or luma/chroma signal.
0.4
0.3
Table 44. Internal Filter Specifications
0.2
0.1
0
–0.1
–0.2
–0.3
–0.4
–0.5
0
5
10
15
20
FREQUENCY (MHz)
25
30
06400-068
3 dB Bandwidth (MHz)2
4.24
4.81
2.3/4.9/6.6
3.1/5.6/6.4
6.45
3.02
1.5
0.65
1
1.395
2.2
3.2
0.65
0.5
GAIN (dB)
Filter
Luma LPF NTSC
Luma LPF PAL
Luma Notch NTSC
Luma Notch PAL
Luma SSAF
Luma CIF
Luma QCIF
Chroma 0.65 MHz
Chroma 1.0 MHz
Chroma 1.3 MHz
Chroma 2.0 MHz
Chroma 3.0 MHz
Chroma CIF
Chroma QCIF
Pass-Band
Ripple (dB)1
0.16
0.1
0.09
0.1
0.04
0.127
Monotonic
Monotonic
Monotonic
0.09
0.048
Monotonic
Monotonic
Monotonic
Figure 63. ED/HD Sinc Compensation Filter Disabled
ED/HD TEST PATTERN COLOR CONTROLS
Subaddress 0x36 to Subaddress 0x38
1
Three 8-bit registers at Subaddress 0x36 to Subaddress 0x38
are used to program the output color of the internal ED/HD
test pattern generator (Subaddress 0x31, Bit 2 = 1), whether it
be the lines of the crosshatch pattern or the uniform field test
pattern. They are not functional as color controls for external
pixel data input.
ED/HD Sinc Compensation Filter Response
Subaddress 0x33, Bit 3
The values for the luma (Y) and the color difference (Cr and
Cb) signals used to obtain white, black, and saturated primary
and complementary colors conform to the ITU-R BT.601-4
standard.
Pass-band ripple is the maximum fluctuation from the 0 dB response in the
pass band, measured in decibels. The pass band is defined to have 0 Hz to fc
(Hz) frequency limits for a low-pass filter and 0 Hz to f1 (Hz) and f2 (Hz) to
infinity for a notch filter, where fc, f1, and f2 are the −3 dB points.
2
3 dB bandwidth refers to the −3 dB cutoff frequency.
The ADV7344 includes a filter designed to counter the effect of
sinc roll-off in DAC 1, DAC 2, and DAC 3 while operating in
ED/HD mode. This filter is enabled by default. It can be
disabled using Subaddress 0x33, Bit 3. The benefit of the filter is
illustrated in Figure 62 and Figure 63.
Table 45 shows sample color values that can be programmed
into the color registers when the output standard selection is set
to EIA 770.2/ EIA770.3 (Subaddress 0x30, Bits[1:0] = 00).
Rev. B | Page 57 of 108
ADV7344
Data Sheet
Pr = (b1 × R) + (b2 × G) + (b3 × B) + b4
Table 45. Sample Color Values for EIA 770.2/EIA770.3
ED/HD Output Standard Selection
Sample Color
White
Black
Red
Green
Blue
Yellow
Cyan
Magenta
Y Value
235 (0xEB)
16
(0x10)
81
(0x51)
145 (0x91)
41
(0x29)
210 (0xD2)
170 (0xAA)
106 (0x6A)
Cr Value
128 (0x80)
128 (0x80)
240 (0xF0)
34
(0x22)
110 (0x6E)
146 (0x92)
16
(0x10)
222 (0xDE)
Pb = (c1 × R) + (c2 × G) + (c3 × B) + c4
Cb Value
128 (0x80)
128 (0x80)
90
(0x5A)
54
(0x36)
240 (0xF0)
16
(0x10)
166 (0xA6)
202 (0xCA)
COLOR SPACE CONVERSION MATRIX
Subaddress 0x03 to Subaddress 0x09
The internal color space conversion (CSC) matrix automatically
performs all color space conversions based on the input mode
programmed in the mode select register (Subaddress 0x01,
Bits[6:4]). Table 46 and Table 47 show the options available in
this matrix.
An SD color space conversion from RGB-in to YPrPb-out is
possible. An ED/HD color space conversion from RGB-in to
YPrPb-out is not possible.
Table 46. SD Color Space Conversion Options
Input
YCrCb
YCrCb
RGB
RGB
1
Output1
YPrPb
RGB
YPrPb
RGB
YPrPb/RGB Out
(Subaddress 0x02,
Bit 5)
1
0
1
0
RGB In/YCrCb In
(Subaddress 0x87,
Bit 7)
0
0
1
1
CVBS/YC outputs are available for all CSC combinations.
The coefficients and their default values and register locations
are shown in Table 48.
Table 48. SD Manual CSC Matrix Default Values
Coefficient
a1
a2
a3
a4
b1
b2
b3
b4
c1
c2
c3
c4
Input
YCrCb
YCrCb
RGB
Output
YPrPb
RGB
RGB
Default
0x42
0x81
0x19
0x10
0x70
0x5E
0x12
0x80
0x26
0x4A
0x70
0x80
ED/HD Manual CSC Matrix Adjust Feature
The ED/HD manual CSC matrix adjust feature provides custom
coefficient manipulation for color space conversions and is used
in ED and HD modes only. The ED/HD manual CSC matrix
adjust feature can be enabled using Subaddress 0x02, Bit 3.
Normally, there is no need to enable this feature because the CSC
matrix automatically performs the color space conversion based
on the input mode chosen (ED or HD) and the input and output
color spaces selected (see Table 47). For this reason, the ED/HD
manual CSC matrix adjust feature is disabled by default.
If RGB output is selected, the ED/HD CSC matrix scalar uses
the following equations:
Table 47. ED/HD Color Space Conversion Options
YPrPb/RGB Out
(Subaddress 0x02,
Bit 5)
1
0
0
Subaddress
0xBD
0xBE
0xBF
0xC0
0xC1
0xC2
0xC3
0xC4
0xC5
0xC6
0xC7
0xC8
R = GY × Y + RV × Pr
RGB In/YCrCb In
(Subaddress 0x35,
Bit 1)
0
0
1
G = GY × Y − (GU × Pb) − (GV × Pr)
B = GY × Y + BU × Pb
Note that subtractions are implemented in hardware.
If YPrPb output is selected, the following equations are used:
Y = GY × Y
SD Manual CSC Matrix Adjust Feature
Pr = RV × Pr
The SD manual CSC matrix adjust feature provides custom
coefficient manipulation for RGB to YPbPr conversion (for
YPbPr to RGB conversion, this matrix adjustment is not
available).
Pb = BU × Pb
Normally, there is no need to modify the SD matrix coefficients
because the CSC matrix automatically performs the color space
conversion based on the output color space selected (see Table 46).
Note that Bit 7 in Subaddress 0x87 must be set to enable RGB
input and, therefore, use the CSC manual adjustment. The SD
CSC matrix scalar uses the following equations:
where:
GY = Subaddress 0x05, Bits[7:0] and Subaddress 0x03, Bits[1:0].
GU = Subaddress 0x06, Bits[7:0] and Subaddress 0x04, Bits[7:6].
GV = Subaddress 0x07, Bits[7:0] and Subaddress 0x04, Bits[5:4].
BU = Subaddress 0x08, Bits[7:0] and Subaddress 0x04, Bits[3:2].
RV = Subaddress 0x09, Bits[7:0] and Subaddress 0x04, Bits[1:0].
Y = (a1 × R) + (a2 × G) + (a3 × B) + a4
Rev. B | Page 58 of 108
Data Sheet
ADV7344
On power-up, the CSC matrix is programmed with the default
values shown in Table 49.
SD LUMA AND COLOR SCALE CONTROL
Table 49. ED/HD Manual CSC Matrix Default Values
When enabled, the SD luma and color scale control feature can
be used to scale the SD Y, Cb, and Cr output levels. This feature
can be enabled using Subaddress 0x87, Bit 0. This feature affects
all SD output signals, that is, CVBS, Y-C, YPrPb, and RGB.
Subaddress
0x03
0x04
0x05
0x06
0x07
0x08
0x09
Default
0x03
0xF0
0x4E
0x0E
0x24
0x92
0x7C
When the ED/HD manual CSC matrix adjust feature is enabled,
the default coefficient values in Subaddress 0x03 to Subaddress 0x09 are correct for the HD color space only. The color
components are converted according to the following 1080i and
720p standards (SMPTE 274M, SMPTE 296M):
R = Y + 1.575Pr
Subaddress 0x9C to Subaddress 0x9F
When enabled, three 10-bit registers (SD Y scale, SD Cb scale,
and SD Cr scale) control the scaling of the SD Y, Cb, and Cr
output levels. The SD Y scale register contains the scaling factor
used to the scale the Y level from 0.0 to 1.5 times its initial level.
The SD Cb scale and SD Cr scale registers contain the scaling
factors to scale the Cb and Cr levels from 0.0 to 2.0 times their
initial levels, respectively.
The values to be written to these 10-bit registers are calculated
using the following equation:
Y, Cb, or Cr Scale Value = Scale Factor × 512
For example, if Scale Factor = 1.3
G = Y − 0.468Pr − 0.187Pb
Y, Cb, or Cr Scale Value = 1.3 × 512 = 665.6
B = Y + 1.855Pb
The conversion coefficients should be multiplied by 315 before
being written to the ED/HD CSC matrix registers. This is
reflected in the default values for GY = 0x13B, GU = 0x03B,
GV = 0x093, BU = 0x248, and RV = 0x1F0.
If the ED/HD manual CSC matrix adjust feature is enabled and
another input standard (such as ED) is used, the scale values for
GY, GU, GV, BU, and RV must be adjusted according to this
input standard color space. The user should consider that the
color component conversion may use different scale values.
Subaddress 0x9C, SD scale LSB register = 0x2A
Subaddress 0x9D, SD Y scale register = 0xA6
Subaddress 0x9E, SD Cb scale register = 0xA6
Subaddress 0x9F, SD Cr scale register = 0xA6
It is recommended that the SD luma scale saturation feature
(Subaddress 0x87, Bit 1) be enabled when scaling the Y output
level to avoid excessive Y output levels.
Subaddress 0xA0
R = Y + 1.402Pr
When enabled, the SD hue adjust control register (Subaddress
0xA0) is used to adjust the hue on the SD composite and chroma
outputs. This feature can be enabled using Subaddress 0x87, Bit 2.
G = Y – 0.714Pr – 0.344Pb
B = Y + 1.773Pb
The programmable CSC matrix is used for external ED/HD pixel
data and is not functional when internal test patterns are enabled.
Programming the CSC Matrix
If custom manipulation of the ED/HD CSC matrix coefficients
is required for a YCrCb-to-RGB color space conversion, use the
following procedure:
2.
3.
4.
Y, Cb, or Cr Scale Value = 1010 0110 10b
SD HUE ADJUST CONTROL
For example, SMPTE 293M uses the following conversion:
1.
Y, Cb, or Cr Scale Value = 666 (rounded to the nearest integer)
Enable the ED/HD manual CSC matrix adjust feature
(Subaddress 0x02, Bit 3).
Set the output to RGB (Subaddress 0x02, Bit 5).
Disable sync on PrPb (Subaddress 0x35, Bit 2).
Enable sync on RGB (optional) (Subaddress 0x02, Bit 4).
Subaddress 0xA0 contains the bits required to vary the hue of
the video data, that is, the variance in phase of the subcarrier
during active video with respect to the phase of the subcarrier
during the color burst. The ADV7344 provides a range of ±22.5 in
increments of 0.17578125°. For normal operation (zero adjustment), this register is set to 0x80. Value 0xFF and Value 0x00
represent the upper and lower limits, respectively, of the attainable adjustment in NTSC mode. Value 0xFF and Value 0x01
represent the upper and lower limits, respectively, of the
attainable adjustment in PAL mode.
The GY value controls the green signal output level, the BU
value controls the blue signal output level, and the RV value
controls the red signal output level.
Rev. B | Page 59 of 108
ADV7344
Data Sheet
The hue adjust value is calculated using the following equation:
0 × (SD Brightness Value) =
0 × (IRE Value × 2.015631) =
Hue Adjust (°) = 0.17578125° (HCRd − 128)
0 × (20 × 2.015631) = 0 × (40.31262) ≈ 0x28
where HCRd = hue adjust control register (decimal).
To add a –7 IRE brightness level to a PAL signal, write 0x72 to
Subaddress 0xA1.
For example, to adjust the hue by +4°, write 0x97 to the hue
adjust control register.
0 × (SD Brightness Value) =
0 × (IRE Value × 2.075631) =
0 × (7 × 2.015631) = 0x(14.109417) ≈ 0001110b
0001110b into twos complement = 1110010b = 0x72
4

 + 128 ≈ 151d = 0 x97


 0.17578125 
where the sum is rounded to the nearest integer.
To adjust the hue by −4°, write 0x69 to the hue adjust control
register.
−4

 + 128 ≈ 105d = 0 x69


 0.17578125 
where the sum is rounded to the nearest integer.
SD BRIGHTNESS DETECT
Subaddress 0xBA
The ADV7344 allows monitoring of the brightness level of the
incoming video data. The SD brightness detect register (Subaddress 0xBA) is a read-only register.
SD BRIGHTNESS CONTROL
Subaddress 0xA1, Bits[6:0]
When this feature is enabled, the SD brightness/WSS control
register (Subaddress 0xA1) is used to control brightness by
adding a programmable setup level onto the scaled Y data. This
feature can be enabled using Subaddress 0x87, Bit 3.
For NTSC with pedestal, the setup can vary from 0 IRE to 22.5 IRE.
For NTSC without pedestal and for PAL, the setup can vary
from −7.5 IRE to +15 IRE.
The SD brightness control register is an 8-bit register. The seven
LSBs of this 8-bit register are used to control the brightness
level, which can be a positive or negative value.
Table 50. Sample Brightness Control Values1
Setup Level
(NTSC) with
Pedestal
22.5 IRE
15 IRE
7.5 IRE
0 IRE
1
Setup Level
(NTSC) Without
Pedestal
15 IRE
7.5 IRE
0 IRE
−7.5 IRE
Brightness
Control Value
0x1E
0x0F
0x00
0x71
Values in the range of 0x3F to 0x44 may result in an invalid output signal.
SD INPUT STANDARD AUTODETECTION
Subaddress 0x87, Bit 5
The ADV7344 includes an SD input standard autodetect
feature. This SD feature can be enabled by setting Subaddress
0x87, Bits[5:1].
When enabled, the ADV7344 can automatically identify an
NTSC or a PAL B/D/G/H/I input stream. The ADV7344
automatically updates the subcarrier frequency registers with
the appropriate value for the identified standard. The ADV7344
is also configured to correctly encode the identified standard.
The SD standard bits (Subaddress 0x80, Bits[1:0]) and the
subcarrier frequency registers are not updated to reflect the
identified standard. All registers retain their default or userdefined values.
For example, to add a +20 IRE brightness level to an NTSC
signal with pedestal, write 0x28 to Subaddress 0xA1.
NTSC WITHOUT PEDESTAL
+7.5 IRE
100 IRE
0 IRE
POSITIVE SETUP
VALUE ADDED
NEGATIVE SETUP
VALUE ADDED
Figure 64. Examples of Brightness Control Values
Rev. B | Page 60 of 108
06400-069
–7.5 IRE
NO SETUP
VALUE ADDED
Setup
Level
(PAL)
15 IRE
7.5 IRE
0 IRE
−7.5 IRE
Data Sheet
ADV7344
DOUBLE BUFFERING
Subaddress 0x33, Bit 7 for ED/HD;
Subaddress 0x88, Bit 2 for SD
Double-buffered registers are updated once per field. Double
buffering improves overall performance because modifications
to register settings are not made during active video but take
effect prior to the start of the active video on the next field.
Double buffering can be activated on the following ED/HD
registers using Subaddress 0x33, Bit 7: the ED/HD Gamma A
and Gamma B curves and ED/HD CGMS registers.
Double buffering can be activated on the following SD registers
using Subaddress 0x88, Bit 2: the SD Gamma A and Gamma B
curves, SD Y scale, SD Cr scale, SD Cb scale, SD brightness, SD
closed captioning, and SD Macrovision Bits[5:0] (Subaddress
0xE0, Bits[5:0]).
PROGRAMMABLE DAC GAIN CONTROL
Subaddress 0x0A to Subaddress 0x0B
It is possible to adjust the DAC output signal gain up or down
from its absolute level. This is illustrated in Figure 65.
DAC 4 to DAC 6 are controlled by Register 0x0A.
DAC 1 to DAC 3 are controlled by Register 0x0B.
CASE A
GAIN PROGRAMMED IN DAC OUTPUT LEVEL
REGISTERS, SUBADDRESS 0x0A, 0x0B
700mV
300mV
In Case B of Figure 65, the video output signal is reduced. The
absolute level of the sync tip and the blanking level decrease
with respect to the reference video output signal. The overall
gain of the signal is reduced from the reference signal.
The range of this feature is specified for ±7.5% of the nominal
output from the DACs. For example, if the output current of the
DAC is 4.33 mA, the DAC gain control feature can change this
output current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).
The reset value of the control registers is 0x00; that is, nominal
DAC current is output. Table 51 shows how the output current of
the DACs varies for a nominal 4.33 mA output current.
Table 51. DAC Gain Control
Reg. 0x0A or
Reg.0x0B
0100 0000 (0x40)
0011 1111 (0x3F)
0011 1110 (0x3E)
...
...
0000 0010 (0x02)
0000 0001 (0x01)
0000 0000 (0x00)
DAC
Current (mA)
4.658
4.653
4.648
...
...
4.43
4.38
4.33
% Gain
7.5000%
7.3820%
7.3640%
...
...
0.0360%
0.0180%
0.0000%
1111 1111 (0xFF)
1111 1110 (0xFE)
...
...
1100 0010 (0xC2)
1100 0001 (0xC1)
1100 0000 (0xC0)
4.25
4.23
...
...
4.018
4.013
4.008
−0.0180%
−0.0360%
...
...
−7.3640%
−7.3820%
−7.5000%
Note
Reset value,
nominal
GAMMA CORRECTION
Subaddress 0x44 to Subaddress 0x57 for ED/HD;
Subaddress 0xA6 to Subaddress 0xB9 for SD
CASE B
Generally, gamma correction is applied to compensate for the
nonlinear relationship between signal input and output brightness level (as perceived on a CRT). It can also be applied
wherever nonlinear processing is used.
NEGATIVE GAIN PROGRAMMED IN
DAC OUTPUT LEVEL REGISTERS,
SUBADDRESS 0x0A, 0x0B
700mV
Gamma correction uses the function
SignalOUT = (SignalIN)γ
where γ is the gamma correction factor.
06399-070
300mV
Figure 65. Programmable DAC Gain—Positive and Negative Gain
In Case A of Figure 65, the video output signal is gained. The
absolute level of the sync tip and the blanking level increase
with respect to the reference video output signal. The overall
gain of the signal is increased from the reference signal.
Gamma correction is available for SD and ED/HD video. For
both variations, there are twenty 8-bit registers. They are used
to program the Gamma Correction Curve A and Gamma
Correction Curve B.
ED/HD gamma correction is enabled using Subaddress 0x35,
Bit 5. ED/HD Gamma Correction Curve A is programmed at
Subaddress 0x44 to Subaddress 0x4D, and ED/HD Gamma
Correction Curve B is programmed at Subaddress 0x4E to
Subaddress 0x57.
Rev. B | Page 61 of 108
ADV7344
Data Sheet
SD gamma correction is enabled using Subaddress 0x88, Bit 6.
SD Gamma Correction Curve A is programmed at Subaddress
0xA6 to Subaddress 0xAF, and SD Gamma Correction Curve B
is programmed at Subaddress 0xB0 to Subaddress 0xB9.
Gamma correction is performed on the luma data only. The
user can choose one of two correction curves, Curve A or
Curve B. Only one of these curves can be used at a time. For
ED/HD gamma correction, curve selection is controlled using
Subaddress 0x35, Bit 4. For SD gamma correction, curve
selection is controlled using Subaddress 0x88, Bit 7.
The shape of the gamma correction curve is controlled by
defining the curve response at 10 different locations along the
curve. By altering the response at these locations, the shape of
the gamma correction curve can be modified. Between these
points, linear interpolation is used to generate intermediate
values. Considering that the curve has a total length of 256
points, the 10 programmable locations are at the following
points: 24, 32, 48, 64, 80, 96, 128, 160, 192, and 224. The following locations are fixed and cannot be changed: 0, 16, 240,
and 255.
To program the gamma correction registers, calculate the
10 programmable curve values using the following formula:
 n − 16  γ

γ n =  
 × (240 − 16)  + 16
  240 − 16 

where:
γn is the value to be written into the gamma correction register
for point n on the gamma correction curve.
n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224.
γ is the gamma correction factor.
For example, setting γ = 0.5 for all programmable curve data
points results in the following yn values:
y24 = [(8/224)0.5 × 224] + 16 = 58
y32 = [(16/224)0.5 × 224] + 16 = 76
y48 = [(32/224)0.5 × 224] + 16 = 101
y64 = [(48/224)0.5 × 224] + 16 = 120
y80 = [(64/224)0.5 × 224] + 16 = 136
y96 = [(80/224)0.5 × 224] + 16 = 150
y128 = [(112/224)0.5 × 224] + 16 = 174
From the curve locations, 16 to 240, the values at the
programmable locations and, therefore, the response of the
gamma correction curve, should be calculated to produce the
following result:
xDESIRED = (xINPUT)γ
y160 = [(144/224)0.5 × 224] + 16 = 195
y192 = [(176/224)0.5 × 224] + 16 = 214
y224 = [(208/224)0.5 × 224] + 16 = 232
where the sum of each equation is rounded to the nearest integer.
where:
xDESIRED is the desired gamma corrected output.
xINPUT is the linear input signal.
γ is gamma correction factor.
The gamma curves in Figure 66 and Figure 67 are examples only;
any user-defined curve in the range from 16 to 240 is acceptable.
GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR
VARIOUS GAMMA VALUES
GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT
300
SIGNAL OUTPUT
200
0.5
150
100
SIGNAL INPUT
50
0
0
50
100
150
LOCATION
200
250
Figure 66. Signal Input (Ramp) and Signal Output for Gamma 0.5
250
0.3
200
0.5
150
100
G
SI
L
NA
T
PU
IN
1.5
1.8
50
0
0
50
100
150
LOCATION
200
250
Figure 67. Signal Input (Ramp) and Selectable Output Curves
Rev. B | Page 62 of 108
06400-072
GAMMA CORRECTED AMPLITUDE
250
06400-071
GAMMA CORRECTED AMPLITUDE
300
Data Sheet
ADV7344
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER
CONTROLS
Subaddress 0x4; Subaddress 0x58 to Subaddress 0x5D
There are three filter modes available on the ADV7344, a
sharpness filter mode and two adaptive filter modes.
ED/HD Sharpness Filter Mode
The derivative of the incoming signal is compared to the three
programmable threshold values: ED/HD adaptive filter
(Threshold A, Threshold B, and Threshold C) registers
(Subaddress 0x5B, Subaddress 0x5C, and Subaddress 0x5D,
respectively). The recommended threshold range is 16 to 235,
although any value in the range of 0 to 255 can be used.
To enhance or attenuate the Y signal in the frequency ranges
shown in Figure 68, the ED/HD sharpness filter must be enabled
(Subaddress 0x31, Bit 7) and the ED/HD adaptive filter must be
disabled (Subaddress 0x35, Bit 7).
The edges can then be attenuated with the settings in the
ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers
(Subaddress 0x58, Subaddress 0x59 and Subaddress 0x5A,
respectively), and the ED/HD sharpness filter gain register
(Subaddress 0x40).
To select one of the 256 individual responses, the corresponding
gain values, which range from –8 to +7 for each filter, must be
programmed into the ED/HD sharpness filter gain register at
Subaddress 0x40.
There are two adaptive filter modes available. The mode is
selected using the ED/HD adaptive filter mode control
(Subaddress 0x35, Bit 6) as follows:
1.5
SHARPNESS AND ADAPTIVE FILTER CONTROL BLOCK
1.5
1.4
1.3
1.3
MAGNITUDE
1.4
MAGNITUDE
1.2
INPUT
SIGNAL
STEP
•
Mode A is used when the ED/HD adaptive filter mode
control is set to 0. In this case, Filter B (LPF) is used in the
adaptive filter block. In addition, only the programmed
values for Gain B in the ED/HD sharpness filter gain
register and ED/HD adaptive filter (Gain 1, Gain 2, and
Gain 3) registers are applied when needed. The Gain A
values are fixed and cannot be changed.
Mode B is used when ED/HD adaptive filter mode control
is set to 1. In this mode, a cascade of Filter A and Filter B is
used. Both settings for Gain A and Gain B in the ED/HD
sharpness filter gain register and ED/HD adaptive filter
(Gain 1, Gain 2, and Gain 3) registers become active when
needed.
1.1
1.0
0.9
1.2
1.1
1.0
0.9
0.8
0.8
0.7
0.7
0.6
0.6
0.5
0.5
FREQUENCY (MHz)
FILTER A RESPONSE (Gain Ka)
FREQUENCY (MHz)
FILTER B RESPONSE (Gain Kb)
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0
2
6
8
4
10
FREQUENCY (MHz)
12
FREQUENCY RESPONSE IN SHARPNESS
FILTER MODE WITH Ka = 3 AND Kb = 7
Figure 68. ED/HD Sharpness and Adaptive Filter Control Block
Rev. B | Page 63 of 108
06400-073
The ED/HD adaptive filter (Threshold A, Threshold B, and
Threshold C) registers, the ED/HD adaptive filter (Gain 1, Gain 2,
and Gain 3) registers, and the ED/HD sharpness filter gain
register are used in adaptive filter mode. To activate the
adaptive filter control, the ED/HD sharpness filter and the
ED/HD adaptive filter must be enabled (Subaddress 0x31, Bit 7,
and Subaddress 0x35, Bit 7, respectively).
•
MAGNITUDE RESPONSE (Linear Scale)
ED/HD Adaptive Filter Mode
ADV7344
Data Sheet
d
a
R2
1
e
b
R4
R1
f
c
1
500mV 4.00µs
M 4.00µs
1
9.99978ms
CH1
ALL FIELDS
CH1 500mV
REF A
500mV 4.00µs
1
M 4.00µs
9.99978ms
CH1
ALL FIELDS
06400-074
R2
CH1 500mV
REF A
Figure 69. ED/ HD Sharpness Filter Control with Different Gain Settings for ED/HD Sharpness Filter Gain Values
ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER
APPLICATION EXAMPLES
Sharpness Filter Application
The ED/HD sharpness filter can be used to enhance or
attenuate the Y video output signal. The register settings in
Table 52 are used to achieve the results shown in Figure 69.
Input data is generated by an external signal source.
1
Register Setting
0xFC
0x10
0x20
0x00
0x81
0x00
0x08
0x04
0x40
0x80
0x22
Reference1
a
b
c
d
e
f
The register settings in Table 53 are used to obtain the results
shown in Figure 71, that is, to remove the ringing on the input
Y signal, as shown in Figure 70. Input data is generated by an
external signal source.
Table 53. Register Settings for Figure 71
Table 52. ED/HD Sharpness Control Settings for Figure 69
Subaddress
0x00
0x01
0x02
0x30
0x31
0x40
0x40
0x40
0x40
0x40
0x40
Adaptive Filter Control Application
Subaddress
0x00
0x01
0x02
0x30
0x31
0x35
0x40
0x58
0x59
0x5A
0x5B
0x5C
0x5D
See Figure 69.
Rev. B | Page 64 of 108
Register Setting
0xFC
0x38
0x20
0x00
0x81
0x80
0x00
0xAC
0x9A
0x88
0x28
0x3F
0x64
Data Sheet
ADV7344
amount (coring gain border, coring gain data) of this noise
signal is subtracted from the original signal. In DNR sharpness
mode, if the absolute value of the filter output is less than the
programmed threshold, it is assumed to be noise. Otherwise, if
the level exceeds the threshold, now identified as a valid signal,
a fraction of the signal (coring gain border, coring gain data) is
added to the original signal to boost high frequency components
and sharpen the video image.
06400-075
In MPEG systems, it is common to process the video information
in blocks of 8 pixels × 8 pixels for MPEG2 systems or 16 pixels
× 16 pixels for MPEG1 systems (block size control). DNR can
be applied to the resulting block transition areas that are known
to contain noise. Generally, the block transition area contains
two pixels. It is possible to define this area to contain four pixels
(border area).
Figure 70. Input Signal to ED/HD Adaptive Filter
It is also possible to compensate for variable block positioning
or differences in YCrCb pixel timing with the use of the DNR
block offset.
The digital noise reduction registers are three 8-bit registers.
They are used to control the DNR processing.
DNR MODE
DNR CONTROL
06400-076
BLOCK SIZE CONTROL
BORDER AREA
BLOCK OFFSET
GAIN
Figure 71. Output Signal from ED/HD Adaptive Filter (Mode A)
NOISE
SIGNAL PATH
When the adaptive filter mode is changed to Mode B
(Subaddress 0x35, Bit 6), the output shown in Figure 72
can be obtained.
CORING GAIN DATA
CORING GAIN BORDER
INPUT FILTER
BLOCK
FILTER
OUTPUT
< THRESHOLD?
Y DATA
INPUT
FILTER OUTPUT
> THRESHOLD
–
SUBTRACT
SIGNAL IN
THRESHOLD
RANGE FROM
ORIGINAL SIGNAL
+
DNR OUT
MAIN SIGNAL PATH
DNR
SHARPNESS
MODE
DNR CONTROL
BLOCK SIZE CONTROL
BORDER AREA
BLOCK OFFSET
06400-077
GAIN
NOISE
SIGNAL PATH
CORING GAIN DATA
CORING GAIN BORDER
INPUT FILTER
BLOCK
SD DIGITAL NOISE REDUCTION
Y DATA
INPUT
Subaddress 0xA3 to Subaddress 0xA5
Digital noise reduction (DNR) is applied to the Y data only.
A filter block selects the high frequency, low amplitude components of the incoming signal (DNR input select). The absolute
value of the filter output is compared to a programmable
threshold value (DNR threshold control). There are two DNR
modes available, DNR mode and DNR sharpness mode.
In DNR mode, if the absolute value of the filter output is smaller
than the threshold, it is assumed to be noise. A programmable
Rev. B | Page 65 of 108
ADD SIGNAL
ABOVE
THRESHOLD
RANGE FROM
ORIGINAL SIGNAL
FILTER
OUTPUT
> THRESHOLD?
FILTER OUTPUT
< THRESHOLD
+
+
MAIN SIGNAL PATH
Figure 73. SD DNR Block Diagram
DNR OUT
06400-078
Figure 72. Output Signal from ED/HD Adaptive Filter (Mode B)
ADV7344
Data Sheet
Coring Gain Border—Subaddress 0xA3, Bits[3:0]
Block Size Control—Subaddress 0xA4, Bit 7
These four bits are assigned to the gain factor applied to border
areas. In DNR mode, the range of gain values is 0 to 1 in increments of 1/8. This factor is applied to the DNR filter output that
lies below the set threshold range. The result is then subtracted
from the original signal.
This bit is used to select the size of the data blocks to be
processed. Setting the block size control function to Logic 1
defines a 16 pixel × 16 pixel data block, and Logic 0 defines an
8 pixel × 8 pixel data block, where one pixel refers to two clock
cycles at 27 MHz.
In DNR sharpness mode, the range of gain values is 0 to 0.5 in
increments of 1/16. This factor is applied to the DNR filter
output that lies above the threshold range. The result is added to
the original signal.
DNR Input Select Control—Subaddress 0xA5, Bits[2:0]
These four bits are assigned to the gain factor applied to the luma
data inside the MPEG pixel block. In DNR mode, the range of
gain values is 0 to 1 in increments of 1/8. This factor is applied
to the DNR filter output that lies below the set threshold range.
The result is then subtracted from the original signal.
In DNR sharpness mode, the range of gain values is 0 to 0.5 in
increments of 1/16. This factor is applied to the DNR filter
output that lies above the threshold range. The result is added to
the original signal.
FILTER D
0.8
0
06400-079
OFFSET CAUSED
BY VARIATIONS IN
INPUT TIMING
OXXXXXXOOXXXXXXO
Figure 74. SD DNR Offset Control
DNR Threshold—Subaddress 0xA4, Bits[5:0]
These six bits are used to define the threshold value in the range
of 0 to 63. The range is an absolute value.
Border Area—Subaddress 0xA4, Bit 6
When this bit is set to Logic 1, the block transition area can be
defined to consist of four pixels. If this bit is set to Logic 0, the
border transition area consists of two pixels, where one pixel
refers to two clock cycles at 27 MHz.
TWO-PIXEL
BORDER DATA
0
1
2
3
4
FREQUENCY (MHz)
5
6
Figure 76. SD DNR Input Select
DNR Mode Control—Subaddress 0xA5, Bit 3
This bit controls the DNR mode selected. Logic 0 selects DNR
mode; Logic 1 selects DNR sharpness mode.
DNR works on the principle of defining low amplitude, high
frequency signals as probable noise and subtracting this noise
from the original signal.
In DNR mode, it is possible to subtract a fraction of the signal
that lies below the set threshold, assumed to be noise, from the
original signal. The threshold is set in DNR Register 1.
When DNR sharpness mode is enabled, it is possible to add a
fraction of the signal that lies above the set threshold to the
original signal because this data is assumed to be valid data and
not noise. The overall effect is that the signal is boosted (similar
to using the extended SSAF filter).
DNR Block Offset Control—Subaddress 0xA5, Bits[7:4]
8 × 8 PIXEL BLOCK 8 × 8 PIXEL BLOCK
06400-080
720 × 485 PIXELS
(NTSC)
FILTER B
FILTER A
OXXXXXXOOXXXXXXO
DNR27 TO DNR24 = 0x01
0.4
0.2
APPLY BORDER
CORING GAIN
OXXXXXXOOXXXXXXO
FILTER C
0.6
06400-081
APPLY DATA
CORING GAIN
1.0
MAGNITUDE
Coring Gain Data—Subaddress 0xA3, Bits[7:4]
Three bits are assigned to select the filter, which is applied to the
incoming Y data. The signal that lies in the pass band of the
selected filter is the signal that is DNR processed. Figure 76
shows the filter responses selectable with this control.
Four bits are assigned to this control, which allows a shift of the
data block of 15 pixels maximum. Consider the coring gain
positions fixed. The block offset shifts the data in steps of one
pixel such that the border coring gain factors can be applied at the
same position regardless of variations in input timing of the data.
Figure 75. SD DNR Border Area
Rev. B | Page 66 of 108
Data Sheet
ADV7344
SD ACTIVE VIDEO EDGE CONTROL
three pixels of the active video on the luma channel are scaled
so that maximum transitions on these pixels are not possible.
Subaddress 0x82, Bit 7
At the start of active video, the first three pixels are multiplied
by 1/8, 1/2, and 7/8, respectively. Approaching the end of active
video, the last three pixels are multiplied by 7/8, 1/2, and 1/8,
respectively. All other active video pixels pass through unprocessed.
The ADV7344 is able to control fast rising and falling signals at
the start and end of active video to minimize ringing.
When the active video edge control feature is enabled
(Subaddress 0x82, Bit 7 = 1), the first three pixels and the last
LUMA CHANNEL WITH
ACTIVE VIDEO EDGE
DISABLED
LUMA CHANNEL WITH
ACTIVE VIDEO EDGE
ENABLED
100 IRE
100 IRE
87.5 IRE
50 IRE
06400-082
12.5 IRE
0 IRE
0 IRE
Figure 77. Example of Active Video Edge Functionality
VOLTS
IRE:FLT
100
0.5
50
0
F2
L135
–50
0
2
4
6
8
10
12
06400-083
0
Figure 78. Example of Video Output with Subaddress 0x82, Bit 7 = 0
VOLTS
IRE:FLT
100
0.5
50
0
F2
L135
–50
–2
0
2
4
6
8
10
Figure 79. Example of Video Output with Subaddress 0x82, Bit 7 = 1
Rev. B | Page 67 of 108
12
06400-084
0
ADV7344
Data Sheet
EXTERNAL HORIZONTAL AND VERTICAL SYNCHRONIZATION CONTROL
For synchronization purposes, the ADV7344 is able to accept either time codes embedded in the input pixel data or external
synchronization signals provided on the S_HSYNC, S_VSYNC, P_HSYNC, P_VSYNC, and P_BLANK pins (see Table 54). It is also
possible to output synchronization signals on the S_HSYNC and S_VSYNC pins (see Table 55 to Table 57).
Table 54. Timing Synchronization Signal Input Options
Signal
Pin
Condition
SD HSYNC In
SD VSYNC In
ED/HD HSYNC In
ED/HD VSYNC In
ED/HD BLANK In
S_HSYNC
S_VSYNC
P_HSYNC
P_VSYNC
P_BLANK
SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0])1
SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0])1
ED/HD timing sync, inputs enabled (Subaddress 0x30, Bit 2 = 0)
ED/HD timing sync, inputs enabled (Subaddress 0x30, Bit 2 = 0)
1
SD and ED/HD timing sync. Outputs must also be disabled (Subaddress 0x02[7:6] = 00).
Table 55. Timing Synchronization Signal Output Options
Signal
SD HSYNC Out
SD VSYNC Out
ED/HD HSYNC Out
ED/HD VSYNC Out
1
Pin
S_HSYNC
S_VSYNC
S_HSYNC
S_VSYNC
Condition
SD timing sync, outputs enabled (Subaddress 0x02, Bit 6 = 1)1
SD timing sync, outputs enabled (Subaddress 0x02, Bit 6 = 1)1
ED/HD timing sync, outputs enabled (Subaddress 0x02, Bit 7 = 1)
ED/HD timing sync, outputs enabled (Subaddress 0x02, Bit 7 = 1)
ED/HD timing sync. Outputs must also be disabled (Subaddress 0x02, Bit 7 = 0).
Table 56. HSYNC Output Control1, 2
ED/HD Input Sync
Format (Subaddress
0x30, Bit 2)
X
X
0
1
ED/HD HSYNC
Control
(Subaddress
0x34, Bit 1)
X
X
0
0
ED/HD Sync
Output Enable
(Subaddress
0x02, Bit 7)
0
0
1
1
SD Sync
Output Enable
(Subaddress
0x02, Bit 6)
0
1
X
X
X
1
1
X
1
2
Signal on S_HSYNC Pin
Tristate
Pipelined SD HSYNC
Pipelined ED/HD HSYNC
Pipelined ED/HD HSYNC based
on AV Code H bit
Pipelined ED/HD HSYNC based
on the horizontal counter
Duration
N/A
See SD Timing
As per HSYNC timing
Same as line blanking interval
Same as embedded HSYNC
In all ED/HD standards where there is an HSYNC output, the start of the HSYNC pulse is aligned with the falling edge of the embedded HSYNC in the output video.
X = don’t care.
Table 57. VSYNC Output Control 1, 2
ED/HD Input
Sync Format
(0x30, Bit 2)
X
X
0
ED/HD VSYNC
Control
(0x34, Bit 2)
X
X
0
ED/HD Sync
Output Enable
(0x02, Bit 7)
0
0
1
SD Sync
Output Enable
(0x02, Bit 6)
0
1
X
1
0
1
X
1
0
1
X
X
1
1
X
X
1
1
X
1
2
Video Standard
X
Interlaced
X
All HD interlaced
standards
All ED/HD progressive
standards
All ED/HD standards
except 525p
525p
Signal on S_VSYNC Pin
Tristate.
Pipelined SD VSYNC/Field.
Pipelined ED/HD VSYNC
or field signal.
Pipelined field signal
based on AV Code F bit.
Pipelined VSYNC based on
AV Code V bit.
Pipelined ED/HD VSYNC
based on vertical counter.
Pipelined ED/HD VSYNC
based on vertical counter.
Duration
–
See SD Timing
As per VSYNC or
field signal timing
Field
Vertical blanking
interval
Aligned with
serration lines
Vertical blanking
interval
In all ED/HD standards where there is a VSYNC output, the start of the VSYNC pulse is aligned with the falling edge of the embedded VSYNC in the output video.
X = don’t care.
Rev. B | Page 68 of 108
Data Sheet
ADV7344
LOW POWER MODE
Subaddress 0x0D, Bits[2:0]
For power-sensitive applications, the ADV7344 supports an
Analog Devices proprietary low power mode of operation on
DAC 1, DAC 2, and DAC 3. To use this low power mode, these
DACs must be operating in full-drive mode (RSET1 = 510 Ω, RL =
37.5 Ω). Low power mode is not available in low-drive mode
(RSET = 4.12 kΩ, RL = 300 Ω). Low power mode can be
independently enabled or disabled on DAC 1, DAC 2, and DAC 3
using Subaddress 0x0D, Bits[2:0]. Low power mode is disabled
by default on each DAC.
In low power mode, DAC current consumption is content
dependent. On a typical video stream, it can be reduced by as
much as 40%. For applications requiring the highest possible video
performance, low power mode should be disabled.
CABLE DETECTION
Subaddress 0x10
The ADV7344 includes an Analog Devices proprietary cable
detection feature. The cable detection feature is available on
DAC 1 and DAC 2, while operating in full-drive mode (RSET1 =
510 Ω, RL1 = 37.5 Ω, assuming a connected cable). The feature is
not available in low-drive mode (RSET1 = 4.12 kΩ, RL = 300 Ω).
For a DAC to be monitored, the DAC must be powered up in
Subaddress 0x00.
The cable detection feature can be used with all SD, ED, and
HD video standards. It is available for all output configurations,
that is, CVBS, YC, YPrPb, and RGB output configurations.
For CVBS/YC output configurations, both DAC 1 and DAC 2
are monitored; that is, the CVBS and YC luma outputs are
monitored. For YPrPb and RGB output configurations, only
DAC 1 is monitored; that is, the luma or green output is
monitored.
Once per frame, the ADV7344 monitors DAC 1 and/or DAC 2,
updating Subaddress 0x10, Bit 0 and Bit 1, respectively. If a
cable is detected on one of the DACs, the relevant bit is set to 0.
If not, the bit is set to 1.
DAC AUTOPOWER-DOWN
Subaddress 0x10, Bit 4
For power-sensitive applications, a DAC autopower-down feature
can be enabled using Subaddress 0x10, Bit 4. This feature is
available only when the cable detection feature is enabled.
With this feature enabled, the cable detection circuitry monitors
DAC 1 and/or DAC 2 once per frame. If they are unconnected,
some or all of the DACs automatically power down. Which
DAC or DACs are powered down depends on the selected
output configuration.
For CVBS/YC output configurations, if DAC 1 is unconnected,
only DAC 1 powers down. If DAC 2 is unconnected, DAC 2 and
DAC 3 power down.
For YPrPb and RGB output configurations, if DAC 1 is
unconnected, all three DACs power down. DAC 2 is not
monitored for YPrPb and RGB output configurations.
Once per frame, DAC 1 and/or DAC 2 is monitored. If a cable is
detected, the appropriate DAC or DACs remain powered up for
the duration of the frame. If no cable is detected, the appropriate
DAC or DACs power down until the next frame when the
process is repeated.
SLEEP MODE
Subaddress 0x00, Bit 0
In sleep mode, most of the digital I/O pins of the ADV7340/
ADV7341 are disabled. For inputs, this means that the external
data is ignored, and internally the logic normally driven by a
given input is just tied low or high. This includes CLKINx.
For digital output pins, this means that the pin goes into tristate
(high impedance) mode.
There are some exceptions to allow the user to continue to
communicate with the part via I2C: the ALSB, SDA, and SCL
pins are kept alive.
PIXEL AND CONTROL PORT READBACK
Subaddress 0x12 to Subaddress 0x16
The ADV7344 supports the readback of most digital inputs via
the I2C MPU port. This feature is useful for board-level
connectivity testing with upstream devices.
The pixel port (S[9:0], Y[9:0], and C[9:0]), the control port
(S_HSYNC, S_VSYNC, P_HSYNC, P_VSYNC, and P_BLANK),
and the SFL pin are available for readback via the MPU port.
The readback registers are located at Subaddress 0x12 to
Subaddress 0x16.
When using this feature, apply a clock signal to the CLKIN_A
pin to register the levels applied to the input pins.
RESET MECHANISM
Subaddress 0x17, Bit 1
The ADV7344 has a software reset accessible via the I2C MPU
port. A software reset is activated by writing a 1 to Subaddress
0x17, Bit 1. This resets all registers to their default values. This
bit is self-clearing; that is, after a 1 has been written to the bit,
the bit automatically returns to 0.
The ADV7344 includes a power-on reset (POR) circuit to
ensure correct operation after power-up.
SD TELETEXT INSERTION
Subaddress 0xC9 to Subaddress 0xCE
The ADV7344 supports the insertion of teletext data, using a
2-pin interface, when operating in PAL mode. Teletext insertion
is enabled using Subaddress 0xC9, Bit 0.
In accordance with the PAL WST teletext standard, teletext data
should be inserted into the ADV7344 at a rate of 6.9375 Mbps.
The teletext data can be inserted on the S_VSYNC, P_VSYNC,
Rev. B | Page 69 of 108
ADV7344
Data Sheet
or C0 pin. The pin on which the teletext data is inserted is
selected using Subaddress 0xC9, Bits [3:2].
When teletext insertion is enabled, a teletext request signal is
output from the ADV7344 to indicate when teletext data should
be inserted. The teletext request signal is output on the SFL pin.
The position (relative to the teletext data) and width of the
request signal are configurable using Subaddress 0xCA. The
request signal can operate in either a line or bit mode. The
request signal mode is controlled using Subaddress 0xC9, Bit 1.
To account for the noninteger relationship between the teletext
insertion rate (6.9375 Mbps) and the pixel clock (27 MHz), a
teletext insertion protocol is implemented in the ADV7344. At
a rate of 6.9375 Mbps, the time taken for the insertion of 37
teletext bits equates to 144 pixel clock cycles (at 27 MHz). For
every 37 teletext bits inserted into the ADV7344, the 10th, 19th,
28th, and 37th bits are carried for three pixel clock cycles, and the
remainder are carried for four pixel clock cycles (totaling 144
pixel clock cycles). The teletext insertion protocol repeats every
37 teletext bits or 144 pixel clock cycles until all 360 teletext bits
are inserted.
45 BYTES (360 BITS) – PAL
RUN-IN CLOCK
06400-143
ADDRESS AND DATA
TELETEXT VBI LINE
Figure 80. Teletext VBI Line
tSYNTTXOUT
CVBS/Y
tPD
tPD
HSYNC
10.2µs
TTXDATA
TTXDEL
TTXREQ
PROGRAMMABLE PULSE EDGES
tSYNTTXOUT = 10.2µs.
tPD = PIPELINE DELAY THROUGH ADV7344.
TTXDEL = TTXREQ TO TTXDATA (PROGRAMMABLE RANGE = 4 BITS [0 TO 15 PIXEL CLOCK CYCLES]).
Figure 81. Teletext Functionality Diagram
Rev. B | Page 70 of 108
06400-144
TTXST
Data Sheet
ADV7344
PRINTED CIRCUIT BOARD LAYOUT AND DESIGN
UNUSED PINS
If the S_HSYNC, S_VSYNC, P_HSYNC, and P_VSYNC pins are
not used, they should be tied to VDD_IO through a pull-up resistor
(10 kΩ or 4.7 kΩ). Any other unused digital inputs should be tied
to ground. Unused digital output pins should be left floating. DAC
outputs can be either left floating or connected to GND. Disabling
these outputs is recommended.
is connected to a device that requires this filtering. The filter
specifications vary with the application. The use of 16× (SD), 8×
(ED), or 4× (HD) oversampling can remove the requirement for
a reconstruction filter altogether. For applications requiring an
output buffer and reconstruction filter, the ADA4430-1,
ADA4411-3, and ADA4410-6 integrated video filter buffers
should be considered.
Table 58. ADV7344 Output Rates
The ADV7344 contains six DACs. All six DACs can be
configured to operate in low-drive mode. Low-drive mode is
defined as 4.33 mA full-scale current into a 300 Ω load, RL.
DAC 1, DAC 2, and DAC 3 can also be configured to operate in
full-drive mode. Full-drive mode is defined as 34.7 mA fullscale current into a 37.5 Ω load, RL. Full drive is the recommended
mode of operation for DAC 1, DAC 2, and DAC 3.
The ADV7344 contains two RSET pins. A resistor connected
between the RSET1 pin and AGND is used to control the fullscale output current and, therefore, the DAC output voltage
levels of DAC 1, DAC 2, and DAC 3. For low-drive operation,
RSET1 must have a value of 4.12 kΩ, and RL must have a value of
300 Ω. For full-drive operation, RSET1 must have a value of 510 Ω,
and RL must have a value of 37.5 Ω.
A resistor connected between the RSET2 pin and AGND is used
to control the full-scale output current and, therefore, the DAC
output voltage levels of DAC 4, DAC 5, and DAC 6. RSET2 must
have a value of 4.12 kΩ, and RL must have a value of 300 Ω (that
is, low-drive operation only). The resistors connected to the
RSET1 and RSET2 pins should have a 1% tolerance.
Input Mode
(Subaddress 0x01,
Bits[6:4])
SD Only
PLL Control
(Subaddress
0x00, Bit 1)
Off
On
Off
On
Off
On
ED Only
HD Only
Output Rate
(MHz)
27
216
27
216
74.25
297
(2x)
(16x)
(1x)
(8x)
(1x)
(4x)
Table 59. Output Filter Requirements
Application
SD
SD
ED
ED
HD
HD
Cutoff
Frequency
(MHz)
>6.5
>6.5
>12.5
>12.5
>30
>30
Oversampling
2×
16×
1×
8×
1×
4×
Attenuation
–50 dB at
(MHz)
20.5
209.5
14.5
203.5
44.25
267
10µH
DAC
OUTPUT
3
600Ω
The ADV7344 contains two compensation pins, COMP1 and
COMP2. A 2.2 nF compensation capacitor should be connected
from each of these pins to VAA.
22pF
75Ω
600Ω
BNC
OUTPUT
1
4
560Ω
06400-085
DAC CONFIGURATIONS
560Ω
VOLTAGE REFERENCE
Figure 82. Example of Output Filter for SD, 16× Oversampling
4.7µH
DAC
OUTPUT
3
6.8pF
600Ω
600Ω
6.8pF
75Ω
1
BNC
OUTPUT
4
560Ω
560Ω
06400-086
The ADV7344 contains an on-chip voltage reference that can be
used as a board-level voltage reference via the VREF pin. Alternatively, the ADV7344 can be used with an external voltage
reference by connecting the reference source to the VREF pin.
For optimal performance, an external voltage reference such as
the AD1580 should be used with the ADV7344. If an external
voltage reference is not used, a 0.1 µF capacitor should be
connected from the VREF pin to VAA.
Figure 83. Example of Output Filter for ED, 8× Oversampling
VIDEO OUTPUT BUFFER AND OPTIONAL
OUTPUT FILTER
DAC
OUTPUT
3
300Ω
An optional reconstruction (anti-imaging) low-pass filter (LPF)
may be required on the ADV7344 DAC outputs if the ADV7344
Rev. B | Page 71 of 108
1
4
75Ω
390nH
BNC
OUTPUT
3
33pF
33pF
75Ω
1
4
500Ω
500Ω
Figure 84. Example of Output Filter for HD, 4× Oversampling
06400-087
An output buffer is necessary on any DAC that operates in lowdrive mode (RSETx = 4.12 kΩ, RL = 300 Ω). Analog Devices
produces a range of op amps suitable for this application, for
example, the AD8061. For more information about line driver
buffering circuits, see the relevant op amp data sheet.
ADV7344
Data Sheet
CIRCUIT FREQUENCY RESPONSE
0
24n
–30
–10
21n
MAGNITUDE (dB)
–60
–20
It is recommended to use a 4-layer printed circuit board with
ground and power planes separating the signal trace layer and
the solder side layer.
18n
–90
–30
PHASE (Degrees)
15n
–120
–40
Component Placement
12n
–150
–50
Component placement should be carefully considered to
separate noisy circuits, such as clock signals and high speed
digital circuitry, from analog circuitry.
9n
–180
GROUP DELAY (Seconds)
–60
6n
–210
–70
–80
1M
3n
–240
0
1G
10M
100M
FREQUENCY (Hz)
06400-088
GAIN (dB)
The layout should be optimized for lowest noise on the
ADV7344 power and ground planes by shielding the digital
inputs and providing good power supply decoupling.
0
Figure 85. Output Filter Plot for SD, 16× Oversampling
CIRCUIT FREQUENCY RESPONSE
0
480
It is recommended that the ADV7344 be placed as close as
possible to the output connector, with the DAC output traces as
short as possible.
18n
400
–10
MAGNITUDE (dB)
16n
320
–20
14n
GAIN (dB)
The termination resistors on the DAC output traces should be
placed as close as possible to and on the same side of the PCB as
the ADV7344. The termination resistors should overlay the
PCB ground plane.
240
–30
PHASE
(Degrees)
GROUP DELAY (Seconds)
–40
12n
160
10n
–50
80
–60
0
–70
–80
8n
6n
4n
–160
–80
10M
2n
–240
0
1G
100M
06400-089
–90
1M
FREQUENCY (Hz)
Figure 86. Output Filter Plot for ED, 8× Oversampling
CIRCUIT FREQUENCY RESPONSE
0
PHASE
(Degrees)
It is recommended that a separate regulated supply be provided
for each power domain (VAA, VDD, VDD_IO, and PVDD). For
optimal performance, linear regulators rather than switch mode
regulators should be used. If switch mode regulators must be
used, care must be taken with regard to the quality of the output
voltage in terms of ripple and noise. This is particularly true for
the VAA and PVDD power domains. Each power supply should be
individually connected to the system power supply at a single
point through a suitable filtering device, such as a ferrite bead.
–20
40
–30
–40
–40
–120
–50
–200
10
100
FREQUENCY (MHz)
Power Supply Decoupling
06400-090
GAIN (dB)
GROUP DELAY (Seconds)
PHASE (Degrees)
120
1
External filter and buffer components connected to the DAC
outputs should be placed as close as possible to the ADV7344 to
minimize the possibility of noise pickup from neighboring
circuitry and to minimize the effect of trace capacitance on
output bandwidth. This is particularly important when
operating in low-drive mode (RSETx = 4.12 kΩ, RL = 300 Ω).
Power Supplies
200
MAGNITUDE (dB)
–10
The external loop filter components and components connected
to the COMP, VREF, and RSETx pins should be placed as close as
possible to and on the same side of the PCB as the ADV7344.
Adding vias to the PCB to get the components closer to the
ADV7344 is not recommended.
Figure 87. Output Filter Plot for HD, 4× Oversampling
PRINTED CIRCUIT BOARD (PCB) LAYOUT
The ADV7344 is a highly integrated circuit containing both
precision analog and high speed digital circuitry. It is designed
to minimize interference effects on the integrity of the analog
circuitry by the high speed digital circuitry. It is imperative that
these same design and layout techniques be applied to the
system-level design so that optimal performance is achieved.
It is recommended that each power supply pin be decoupled
with 10 nF and 0.1 µF ceramic capacitors. The VAA, PVDD,
VDD_IO, and both VDD pins should be individually decoupled to
ground. The decoupling capacitors should be placed as close as
possible to the ADV7344 with the capacitor leads kept as short
as possible to minimize lead inductance.
A 1 µF tantalum capacitor is recommended across the VAA
supply in addition to the 10 nF and 0.1 µF ceramic capacitors.
Rev. B | Page 72 of 108
Data Sheet
ADV7344
Power Supply Sequencing
If the ALSB pin is tied low, a power supply sequence is required
for proper operation of the part. The VDD_IO power supply must
be established a minimum of 250 µs prior to the VDD power
supply being established. The VAA and PVDD power supplies can
be established at any time and in any order. Tying ALSB to
VDD_IO completely removes this PSS requirement.
Digital Signal Interconnect
The digital signal traces should be isolated as much as possible
from the analog outputs and other analog circuitry. Digital
signal traces should not overlay the VAA or PVDD power planes.
Due to the high clock rates used, avoid long clock traces to the
ADV7344 to minimize noise pickup.
Any pull-up termination resistors for the digital inputs should
be connected to the VDD_IO power supply.
Any unused digital inputs should be tied to ground.
Analog Signal Interconnect
DAC output traces should be treated as transmission lines with
appropriate measures taken to ensure optimal performance (for
example, impedance matched traces). The DAC output traces
should be kept as short as possible. The termination resistors on
the DAC output traces should be placed as close as possible to,
and on the same side of the PCB as, the ADV7344.
To avoid crosstalk between the DAC outputs, it is recommended that as much space as possible be left between the
traces connected to the DAC output pins. Adding ground traces
between the DAC output traces is also recommended.
Rev. B | Page 73 of 108
ADV7344
Data Sheet
TYPICAL APPLICATION CIRCUIT
FERRITE BEAD
VDD_IO
PVDD
(1.8V)
10µF
GND_IO
GND_IO
FERRITE BEAD
33µF
10µF
PGND
PGND
FERRITE BEAD
0.1µF
0.01µF
GND_IO
GND_IO
0.1µF
0.01µF
PGND
VDD
(1.8V)
10µF
0.1µF
AGND
AGND
FERRITE BEAD
33µF
DGND
AGND
10µF
0.1µF
DGND
DGND
PGND
PIXEL PORT INPUTS
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
VDD_IO
VAA
PVDD
VDD
VDD
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
VAA POWER
SUPPLY
AGND DECOUPLING
AGND
CLOCK INPUTS
I2C PORT
P_HSYNC
P_VSYNC
P_BLANK
ADI RECOMMENDS TO TIE ALSB TO VDD_IO. PLEASE
REFER TO POWER SUPPLY SEQUENCING SECTION FOR
MORE INFORMATION ON THIS.
3. THE RESISTORS CONNECTED TO THE RSET PINS SHOULD
HAVE A 1% TOLERANCE.
VDD POWER SUPPLY
DECOUPLING FOR
EACH POWER PIN
0.01µF
DGND
2.2nF
VAA
1.1kΩ
COMP2
1.235V
VREF
RSET1
ADV7344
OPTIONAL. IF THE INTERNAL VOLTAGE
REFERENCE IS USED, A 0.1µF CAPACITOR
SHOULD BE CONNECTED FROM VREF TO VAA.
VAA
2.2nF
COMP1
AD1580
0.1µF
RSET2
4.12kΩ
510Ω
AGND
AGND
AGND
OPTIONAL LPF
DAC 1
DAC 1
OPTIONAL LPF
DAC 2
DAC 3
ALSB
DAC 3
OPTIONAL LPF
75Ω
75Ω
75Ω
AGND
AGND
AGND
TIE EITHER LOW
OR HIGH
(SEE NOTE 2)
DAC1 TO DAC3 LOW DRIVE OPTION
75Ω
DAC 4
DAC 4
4.12kΩ
AGND
300Ω
ADA4411-3
DAC 1
ADA4411-3
300Ω
DAC 5
LPF
AGND
300Ω
SDA
SCL
ADA4411-3
75Ω
AGND
DAC 2
DAC 6
300Ω
LPF
170Ω
AGND
300Ω
ADA4411-3
12nF
170Ω
EXT_LF2
AGND
75Ω
DAC 3
DAC 3
LPF
AGND PGND DGND DGND GND_IO
LOOP FILTER COMPONENTS
SHOULD BE LOCATED
CLOSE TO THE EXT_LF
PIN AND ON THE
SAME SIDE OF THE PCB
AS THE ADV7344.
DAC 2
LPF
75Ω
DAC 6
EXT_LF1
150nF
DAC 1
LPF
75Ω
DAC 5
EXTERNAL LOOP FILTER
150nF
75Ω
AGND
CLKIN_A
CLKIN_B
12nF
RSET1
LPF
ADA4411-3
PVDD
DAC1 TO DAC3 FULL DRIVE OPTION
DAC 2
ADA4411-3
S_HSYNC
S_VSYNC
CONTROL
INPUTS/OUTPUTS
ALSB = 0, I2C DEVICE ADDRESS = 0xD4 OR 0x54
ALSB = 1, I2C DEVICE ADDRESS = 0xD6 OR 0x56
1µF
0.01µF
VAA
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
2. THE I2C DEVICE ADDRESS IS CONFIGURABLE USING THE
ALSB PIN:
PVDD POWER
SUPPLY
DECOUPLING
VAA
33µF
NOTES
1. FOR OPTIMUM PERFORMANCE, EXTERNAL COMPONENTS
CONNECTED TO THE COMP, RSET, VREF AND DAC OUTPUT
PINS SHOULD BE LOCATED CLOSE TO AND ON THE SAME
SIDE OF THE PCB AS THE ADV7344.
VDD_IO POWER
SUPPLY
DECOUPLING
300Ω
AGND PGND DGND DGND GND_IO
AGND
Figure 88. ADV7344 Typical Application Circuit
Rev. B | Page 74 of 108
06400-091
33µF
Data Sheet
ADV7344
COPY GENERATION MANAGEMENT SYSTEM
SD CGMS
Subaddress 0x99 to Subaddress 0x9B
The ADV7344 supports a copy generation management system
(CGMS) conforming to the EIAJ CPR-1204 and ARIB TR-B15
standards. CGMS data is transmitted on Line 20 of the odd fields
and Line 283 of even fields. Subaddress 0x99, Bits[6:5] control
whether CGMS data is output on odd or even fields or both.
SD CGMS data can only be transmitted when the ADV7344
is configured in NTSC mode. The CGMS data is 20 bits long.
The CGMS data is preceded by a reference pulse of the same
amplitude and duration as a CGMS bit (see Figure 89).
ED CGMS
Subaddress 0x41 to Subaddress 0x43;
Subaddress 0x5E to Subaddress 0x6E
525p Mode
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 1080i
CGMS data is applied to Line 19 and Line 582 of the luminance
vertical blanking interval.
The HD CGMS data registers are at Subaddress 0x41, Subaddress 0x42, and Subaddress 0x43.
The ADV7344 also supports CGMS Type B packets in HD
mode (720p and 1080i) in accordance with CEA-805-A.
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),
720p CGMS data is applied to Line 23 of the luminance vertical
blanking interval.
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),
1080i CGMS data is applied to Line 18 and Line 581 of the
luminance vertical blanking interval.
The HD CGMS Type B data registers are at Subaddress 0x5E to
Subaddress 0x6E.
The ADV7344 supports a copy generation management system
(CGMS) in 525p mode in accordance with EIAJ CPR-1204-1.
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 525p
CGMS data is inserted on Line 41. The 525p CGMS data registers
are at Subaddress 0x41, Subaddress 0x42, and Subaddress 0x43.
The ADV7344 also supports CGMS Type B packets in 525p
mode in accordance with CEA-805-A.
When ED CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1),
525p CGMS Type B data is inserted on Line 40. The 525p CGMS
Type B data registers are at Subaddress 0x5E to Subaddress 0x6E.
625p Mode
The ADV7344 supports a copy generation management system
(CGMS) in 625p mode in accordance with IEC62375 (2004).
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 625p
CGMS data is inserted on Line 43. The 625p CGMS data
registers are at Subaddress 0x42 and Subaddress 0x43.
HD CGMS
Subaddress 0x41 to Subaddress 0x43;
Subaddress 0x5E to Subaddress 0x6E
The ADV7344 supports a copy generation management system
(CGMS) in HD mode (720p and 1080i) in accordance with
EIAJ CPR-1204-2.
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 720p
CGMS data is applied to Line 24 of the luminance vertical
blanking interval.
CGMS CRC FUNCTIONALITY
If SD CGMS CRC (Subaddress 0x99, Bit 4) or ED/HD CGMS
CRC (Subaddress 0x32, Bit 7) is enabled, the upper six CGMS
data bits, C19 to C14, which comprise the 6-bit CRC check
sequence, are automatically calculated on the ADV7344. This
calculation is based on the lower 14 bits (C13 to C0) of the data
in the CGMS data registers, and the result is output with the
remaining 14 bits to form the complete 20 bits of the CGMS
data. The calculation of the CRC sequence is based on the
polynomial x6 + x + 1 with a preset value of 111111.
If SD CGMS CRC or ED/HD CGMS CRC is disabled, all 20 bits
(C19 to C0) are output directly from the CGMS registers (CRC
must be calculated by the user manually).
If ED/HD CGMS Type B CRC (Subaddress 0x5E, Bit 1) is
enabled, the upper six CGMS Type B data bits (P122 to P127)
that comprise the 6-bit CRC check sequence are automatically
calculated on the ADV7344. This calculation is based on the
lower 128 bits (H0 to H5 and P0 to P121) of the data in the
CGMS Type B data registers. The result is output with the
remaining 128 bits to form the complete 134 bits of the CGMS
Type B data. The calculation of the CRC sequence is based on
the polynomial x6 + x + 1 with a preset value of 111111.
If ED/HD CGMS Type B CRC is disabled, all 134 bits (H0 to H5
and P0 to P127) are output directly from the CGMS Type B
registers (CRC must be calculated by the user manually).
Rev. B | Page 75 of 108
ADV7344
Data Sheet
+100 IRE
CRC SEQUENCE
REF
+70 IRE
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
0 IRE
–40 IRE
06400-092
49.1µs ± 0.5µs
11.2µs
2.235µs ± 20ns
Figure 89. Standard Definition CGMS Waveform
CRC SEQUENCE
+700mV
REF
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20
70% ± 10%
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
0mV
–300mV
T = 1/(fH × 33) = 963ns
fH = HORIZONTAL SCAN FREQUENCY
T ± 30ns
06400-093
21.2µs ± 0.22µs
22T
5.8µs ± 0.15µs
6T
Figure 90. Enhanced Definition (525p) CGMS Waveform
R = RUN-IN
S = START CODE
PEAK WHITE
500mV ± 25mV
R
C0
LSB
S
C1
C2
C3
C4
C5
SYNC LEVEL
C6
C7
C8
C9
C10 C11 C12
C13
MSB
06400-094
13.7µs
5.5µs ± 0.125µs
Figure 91. Enhanced Definition (625p) CGMS Waveform
CRC SEQUENCE
+700mV
REF
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20
70% ± 10%
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
0mV
4T
3.128µs ± 90ns
17.2µs ± 160ns
22T
T = 1/(fH × 1650/58) = 781.93ns
fH = HORIZONTAL SCAN FREQUENCY
1H
Figure 92. High Definition (720p) CGMS Waveform
Rev. B | Page 76 of 108
06400-095
T ± 30ns
–300mV
Data Sheet
ADV7344
CRC SEQUENCE
+700mV
REF
BIT 1 BIT 2
BIT 20
70% ± 10%
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19
0mV
T ± 30ns
22.84µs ± 210ns
22T
T = 1/(fH × 2200/77) = 1.038µs
fH = HORIZONTAL SCAN FREQUENCY
1H
4T
4.15µs ± 60ns
06400-096
–300mV
Figure 93. High Definition (1080i) CGMS Waveform
CRC SEQUENCE
+700mV
START
70% ± 10%
BIT 1 BIT 2
H0
H1
BIT 134
H2
H3
H4
H5
P0
P1
P2
P3
P4
.
.
.
P122 P123 P124 P125 P126 P127
0mV
06400-097
–300mV
PLEASE REFERTO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION
Figure 94. Enhanced Definition (525p) CGMS Type B Waveform
CRC SEQUENCE
+700mV
START
70% ± 10%
BIT 1 BIT 2
H0
H1
BIT 134
H2
H3
H4
H5
P0
P1
P2
P3
P4
.
.
.
P122 P123 P124 P125 P126 P127
–300mV
PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION
Figure 95. High Definition (720p and 1080i) CGMS Type B Waveform
Rev. B | Page 77 of 108
06400-098
0mV
ADV7344
Data Sheet
SD WIDE SCREEN SIGNALING
Figure 96). The latter portion of Line 23 (after 42.5 µs from the
falling edge of HSYNC) is available for the insertion of video.
WSS data transmission on Line 23 can be enabled using
Subaddress 0x99, Bit 7. It is possible to blank the WSS portion
of Line 23 with Subaddress 0xA1, Bit 7.
Subaddress 0x99, Subaddress 0x9A, Subaddress 0x9B
The ADV7344 supports wide screen signaling (WSS) conforming to the ETSI 300 294 standard. WSS data is transmitted on
Line 23. WSS data can be transmitted when the device is
configured in PAL mode. The WSS data is 14 bits long. The
function of each of these bits is shown in Table 60. The WSS
data is preceded by a run-in sequence and a start code (see
Table 60. Function of WSS
Bit Description
Aspect Ratio, Format, Position
13
12
11
10
9
Bit Number
8 7 6 5
4
Mode
3
1
0
0
1
0
1
1
0
2
0
0
0
0
1
1
1
1
W8
W9
0
1
Color Encoding
0
1
Helper Signals
0
1
Reserved
Teletext Subtitles
0
0
1
Open Subtitles
0
0
1
1
Surround Sound
0
1
0
1
0
1
Copyright
0
1
Copy Protection
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
Setting
4:3, full format, N/A
14:9, letterbox, center
14:9, letterbox, top
16:9, letterbox, center
16:9, letterbox, top
>16:9, letterbox, center
14:9, full format, center
16:0, N/A, N/A
Camera mode
Film mode
Normal PAL
Motion Adaptive ColorPlus
Not present
Present
N/A
No
Yes
No
Subtitles in active image area
Subtitles out of active image area
Reserved
No
Yes
No copyright asserted or unknown
Copyright asserted
Copying not restricted
Copying restricted
500mV
RUN-IN
SEQUENCE
START
CODE
W0
W1
W2
W3
W4
W5
W6
W7
W10 W11 W12 W13
ACTIVE
VIDEO
11.0µs
06400-099
38.4µs
42.5µs
Figure 96. WSS Waveform Diagram
Rev. B | Page 78 of 108
Data Sheet
ADV7344
SD CLOSED CAPTIONING
Line 284. All pixels inputs are ignored on Line 21 and Line 284
if closed captioning is enabled.
Subaddress 0x91 to Subaddress 0x94
The ADV7344 supports closed captioning conforming to the
standard television synchronizing waveform for color
transmission. Closed captioning is transmitted during the
blanked active line time of Line 21 of the odd fields and
Line 284 of the even fields.
The FCC Code of Federal Regulations (CFR) 47 Section 15.119
and EIA-608 describe the closed captioning information for
Line 21 and Line 284.
Closed captioning consists of a seven-cycle sinusoidal burst that
is frequency- and phase-locked to the caption data. After the
clock run-in signal, the blanking level is held for two data bits
and is followed by the Logic 1 start bit. Sixteen bits of data
follow the start bit. These consist of two 8-bit bytes, seven data
bits, and one odd parity bit. The data for these bytes is stored in
the SD closed captioning registers (Subaddress 0x93 to
Subaddress 0x94).
The ADV7344 also supports the extended closed captioning
operation, which is active during even fields and encoded on
scan Line 284. The data for this operation is stored in the SD
closed captioning registers (Subaddress 0x91 to Subaddress 0x92).
The ADV7344 automatically generates all clock run-in signals
and timing that support closed captioning on Line 21 and
The ADV7344 uses a single buffering method. This means that
the closed captioning buffer is only 1-byte deep. Therefore,
there is no frame delay in outputting the closed captioning data,
unlike other 2-byte deep buffering systems. The data must
be loaded one line before it is output on Line 21 and Line 284.
A typical implementation of this method is to use VSYNC to
interrupt a microprocessor, which in turn loads the new data
(two bytes) in every field. If no new data is required for
transmission, 0s must be inserted in both data registers; this is
called nulling. It is also important to load control codes, all of
which are double bytes, on Line 21. Otherwise, a TV does not
recognize them. If there is a message such as “Hello World”
that has an odd number of characters, it is important to add a
blank character at the end to make sure that the end-of-caption,
2-byte control code lands in the same field.
12.91µs
10.5 ± 0.25µs
7 CYCLES OF
0.5035MHz
CLOCK RUN-IN
TWO 7-BIT + PARITY
ASCII CHARACTERS
(DATA)
P
A
R
I
T
Y
S
T
A D0 TO D6
R
T
50 IRE
D0 TO D6
BYTE 0
P
A
R
I
T
Y
BYTE 1
40 IRE
10.003µs
27.382µs
33.764µs
Figure 97. SD Closed Captioning Waveform, NTSC
Rev. B | Page 79 of 108
06400-100
REFERENCE COLOR BURST
(9 CYCLES)
FREQUENCY = FSC = 3.579545MHz
AMPLITUDE = 40 IRE
ADV7344
Data Sheet
INTERNAL TEST PATTERN GENERATION
SD TEST PATTERNS
ED/HD TEST PATTERNS
The ADV7344 is able to internally generate SD color bar and
black bar test patterns. For this function, a 27 MHz clock signal
must be applied to the CLKIN_A pin.
The ADV7344 is able to internally generate ED/HD black bar
and hatch test patterns. For ED test patterns, a 27 MHz clock
signal must be applied to the CLKIN_A pin. For HD test
patterns, a 74.25 MHz clock signal must be applied to the
CLKIN_A pin.
The register settings in Table 61 are used to generate an SD
NTSC 75% color bar test pattern. CVBS output is available on
DAC 4, S-Video (Y-C) output is on DAC 5 and DAC 6, and
YPrPb output is on DAC 1 to DAC 3. On power-up, the
subcarrier frequency registers default to the appropriate values
for NTSC. All other registers are set as normal/default.
Table 61. SD NTSC Color Bar Test Pattern Register Writes
Subaddress
0x00
0x82
0x84
Setting
0xFC
0xC9
0x40
To generate an SD NTSC black bar test pattern, the settings
shown in Table 61 should be used with an additional write of
0x24 to Subaddress 0x02.
For PAL output of either test pattern, the same settings are used,
except that Subaddress 0x80 is programmed to 0x11, and the
subcarrier frequency registers are programmed as shown in
Table 62.
Table 62. PAL FSC Register Writes
Subaddress
0x8C
0x8D
0x8E
0x8F
Description
FSC0
FSC1
FSC2
FSC3
The register settings in Table 63 are used to generate an ED
525p hatch test pattern. YPrPb output is available on DAC 1 to
DAC 3. All other registers are set as normal/default.
Table 63. ED 525p Hatch Test Pattern Register Writes
Subaddress
0x00
0x01
0x31
Setting
0x1C
0x10
0x05
To generate an ED 525p black bar test pattern, the settings
shown in Table 63 should be used with an additional write of
0x24 to Subaddress 0x02.
To generate an ED 525p flat field test pattern, the settings
shown in Table 63 should be used, except that 0x0D should be
written to Subaddress 0x31.
The Y, Cr, and Cb levels for the hatch and flat field test patterns
can be controlled using Subaddress 0x36, Subaddress 0x37, and
Subaddress 0x38, respectively.
For ED/HD standards other than 525p, the settings shown in
Table 63 (and subsequent comments) are used, except that
Subaddress 0x30, Bits[7:3] are updated as appropriate.
Setting
0xCB
0x8A
0x09
0x2A
Note that, when programming the FSC registers, the user must
write the values in the sequence FSC0, FSC1, FSC2, FSC3. The full
FSC value to be written is accepted only after the FSC3 write is
complete.
Rev. B | Page 80 of 108
Data Sheet
ADV7344
SD TIMING
Mode 0 (CCIR-656)—Slave Option (Subaddress 0x8A = X X X X X 0 0 0)
The ADV7344 is controlled by the SAV (start of active video) and EAV (end of active video) time codes embedded in the pixel data. All
timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before and after
each line during active picture and retrace. If the S_VSYNC and S_HSYNC pins are not used, they should be tied to VDD_IO during this
mode.
ANALOG
VIDEO
EAV CODE
C
C
8 1 8 1 F 0 0 X C Y C Y C
Y r Y b
b
0 0 0 0 F 0 0 Y b
r
0 F F A A A
0 F F B B B
ANCILLARY DATA
(HANC)
4 CLOCK
4 CLOCK
4 CLOCK
4 CLOCK
PAL SYSTEM
(625 LINES/50Hz)
1440 CLOCK
268 CLOCK
NTSC/PAL M SYSTEM
(525 LINES/60Hz)
1440 CLOCK
280 CLOCK
06400-101
INPUT PIXELS
SAV CODE
C
F 0 0 X 8 1 8 1
Y
Y
r
F 0 0 Y 0 0 0 0
START OF ACTIVE
VIDEO LINE
END OF ACTIVE
VIDEO LINE
Figure 98. SD Slave Mode 0
Mode 0 (CCIR-656)—Master Option (Subaddress 0x8A = X X X X X 0 0 1)
The ADV7344 generates H and F signals required for the SAV and EAV time codes in the CCIR656 standard. The H bit is output on
S_HSYNC and the F bit is output on S_VSYNC.
DISPLAY
DISPLAY
VERTICAL BLANK
522
523
524
525
1
2
3
4
5
6
7
8
9
10
11
20
21
22
H
EVEN FIELD
F
ODD FIELD
DISPLAY
DISPLAY
VERTICAL BLANK
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
283
284
285
F
ODD FIELD
06400-102
H
EVEN FIELD
Figure 99. SD Master Mode 0, NTSC
Rev. B | Page 81 of 108
ADV7344
Data Sheet
DISPLAY
DISPLAY
VERTICAL BLANK
622
623
624
625
1
2
4
3
5
6
21
7
22
23
H
ODD FIELD
EVEN FIELD
F
DISPLAY
DISPLAY
VERTICAL BLANK
309
310
311
313
312
315
314
316
318
317
319
335
334
320
336
ODD FIELD
F
06400-103
H
EVEN FIELD
Figure 100. SD Master Mode 0, PAL
ANALOG
VIDEO
06400-104
H
F
Figure 101. SD Master Mode 0, Data Transitions
Mode 1—Slave Option (Subaddress 0x8A = X X X X X 0 1 0)
In this mode, the ADV7344 accepts horizontal sync and odd/even field signals. When HSYNC is low, a transition of the field input
indicates a new frame, that is, vertical retrace. The ADV7344 automatically blanks all normally blank lines as required by the CCIR-624
standard. HSYNC and FIELD are input on the S_HSYNC and S_VSYNC pins, respectively.
DISPLAY
DISPLAY
522
523
VERTICAL BLANK
524
525
1
2
3
4
5
6
7
8
9
10
11
20
21
22
HSYNC
FIELD
EVEN FIELD ODD FIELD
DISPLAY
260
261
DISPLAY
VERTICAL BLANK
262
263
264
265
266
267
268
269
270
271
272
273
274
283
284
285
FIELD
ODD FIELD
06400-105
HSYNC
EVEN FIELD
Figure 102. SD Slave Mode 1, NTSC
Rev. B | Page 82 of 108
Data Sheet
ADV7344
DISPLAY
DISPLAY
622
623
VERTICAL BLANK
624
625
1
2
4
3
5
6
7
21
22
23
HSYNC
FIELD
EVEN FIELD
ODD FIELD
DISPLAY
DISPLAY
309
310
VERTICAL BLANK
311
312
313
314
315
316
317
318
319
320
334
335
336
ODD FIELD
FIELD
06400-106
HSYNC
EVEN FIELD
Figure 103. SD Slave Mode 1, PAL
Mode 1—Master Option (Subaddress 0x8A = X X X X X 0 1 1)
In this mode, the ADV7344 can generate horizontal sync and odd/even field signals. When HSYNC is low, a transition of the field input
indicates a new frame, that is, vertical retrace. The ADV7344 automatically blanks all normally blank lines as required by the CCIR-624
standard. Pixel data is latched on the rising clock edge following the timing signal transitions. HSYNC and FIELD are output on the
S_HSYNC and S_VSYNC pins, respectively.
HSYNC
FIELD
Cb
Y
PAL = 132 × CLOCK/2
NTSC = 122 × CLOCK/2
Cr
Y
06400-107
PIXEL
DATA
Figure 104. SD Timing Mode 1, Odd/Even Field Transitions (Master/Slave)
Mode 2— Slave Option (Subaddress 0x8A = X X X X X 1 0 0)
In this mode, the ADV7344 accepts horizontal and vertical sync signals. A coincident low transition of both HSYNC and VSYNC inputs
indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates the start of an even field. The ADV7344
automatically blanks all normally blank lines as required by the CCIR-624 standard. HSYNC and VSYNC are input on the S_HSYNC and
S_VSYNC pins, respectively.
Rev. B | Page 83 of 108
ADV7344
Data Sheet
DISPLAY
522
DISPLAY
VERTICAL BLANK
523
524
525
1
4
3
2
5
7
6
8
10
9
20
11
21
22
HSYNC
VSYNC
ODD FIELD
EVEN FIELD
DISPLAY
DISPLAY
VERTICAL BLANK
260
261
262
263
264
265
266
267
268
269
270
271
272
273
283
274
284
285
VSYNC
06400-108
HSYNC
EVEN FIELD
ODD FIELD
Figure 105. SD Slave Mode 2, NTSC
DISPLAY
622
623
DISPLAY
VERTICAL BLANK
624
625
1
2
3
4
5
6
7
21
22
23
HSYNC
VSYNC
EVEN FIELD
ODD FIELD
DISPLAY
309
310
DISPLAY
VERTICAL BLANK
311
312
313
314
315
316
317
318
319
320
334
335
336
ODD FIELD
VSYNC
06400-109
HSYNC
EVEN FIELD
Figure 106. SD Slave Mode 2, PAL
Mode 2—Master Option (Subaddress 0x8A = X X X X X 1 0 1)
In this mode, the ADV7344 can generate horizontal and vertical sync signals. A coincident low transition of both HSYNC and VSYNC
inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates the start of an even field. The ADV7344
automatically blanks all normally blank lines as required by the CCIR-624 standard. HSYNC and VSYNC are output on the S_HSYNC
and S_VSYNC pins, respectively.
HSYNC
VSYNC
Cb
PAL = 132 × CLOCK/2
NTSC = 122 × CLOCK/2
Figure 107. SD Timing Mode 2, Even-to-Odd Field Transition (Master/Slave)
Rev. B | Page 84 of 108
Y
Cr
Y
06400-110
PIXEL
DATA
Data Sheet
ADV7344
HSYNC
VSYNC
PAL = 864 × CLOCK/2
NTSC = 858 × CLOCK/2
PIXEL
DATA
Cb
Y
Cr
Cb
06400-111
Y
PAL = 132 × CLOCK/2
NTSC = 122 × CLOCK/2
Figure 108. SD Timing Mode 2, Odd-to-Even Field Transition (Master/Slave)
Mode 3—Master/Slave Option (Subaddress 0x8A = X X X X X 1 1 0 or X X X X X 1 1 1)
In this mode, the ADV7344 accepts or generates horizontal sync and odd/even field signals. When HSYNC is high, a transition of the
field input indicates a new frame, that is, vertical retrace. The ADV7344 automatically blanks all normally blank lines as required by the
CCIR-624 standard. HSYNC and VSYNC are output in master mode and input in slave mode on the S_VSYNC and S_VSYNC pins,
respectively.
DISPLAY
DISPLAY
522
523
VERTICAL BLANK
524
525
1
2
4
3
5
6
8
7
9
10
20
11
21
22
HSYNC
FIELD
EVEN FIELD
ODD FIELD
DISPLAY
260
DISPLAY
VERTICAL BLANK
261
262
263
264
265
266
267
268
269
270
271
272
273
283
274
285
284
FIELD
ODD FIELD
06400-112
HSYNC
EVEN FIELD
Figure 109. SD Timing Mode 3, NTSC
DISPLAY
622
623
DISPLAY
VERTICAL BLANK
624
625
1
2
3
4
5
6
7
21
22
23
HSYNC
FIELD
EVEN FIELD
ODD FIELD
DISPLAY
DISPLAY
309
310
VERTICAL BLANK
311
312
313
314
315
316
317
318
319
320
334
335
336
FIELD
EVEN FIELD
06400-113
HSYNC
ODD FIELD
Figure 110. SD Timing Mode 3, PAL
Rev. B | Page 85 of 108
ADV7344
Data Sheet
HD TIMING
DISPLAY
FIELD 1
VERTICAL BLANKING INTERVAL
1124
1125
1
2
3
4
5
6
7
8
20
21
22
560
P_VSYNC
P_HSYNC
DISPLAY
VERTICAL BLANKING INTERVAL
FIELD 2
561
562
563
564
565
566
567
568
569
570
583
584
585
1123
06400-114
P_VSYNC
P_HSYNC
Figure 111. 1080i HSYNC and VSYNC Input Timing
Rev. B | Page 86 of 108
Data Sheet
ADV7344
VIDEO OUTPUT LEVELS
BLACK
BLUE
RED
GREEN
CYAN
YELLOW
WHITE
BLACK
BLUE
RED
MAGENTA
GREEN
CYAN
YELLOW
WHITE
Pattern: 100% Color Bars
MAGENTA
SD YPrPb OUTPUT LEVELS—SMPTE/EBU N10
700mV
700mV
300mV
06400-115
06400-118
300mV
BLACK
BLUE
RED
MAGENTA
GREEN
CYAN
WHITE
BLACK
BLUE
RED
MAGENTA
GREEN
CYAN
YELLOW
WHITE
YELLOW
Figure 115. Y Levels—PAL
Figure 112. Y Levels—NTSC
700mV
06400-116
06400-119
700mV
BLACK
BLUE
RED
MAGENTA
GREEN
CYAN
WHITE
BLACK
BLUE
RED
MAGENTA
GREEN
CYAN
YELLOW
WHITE
YELLOW
Figure 116. Pr Levels—PAL
Figure 113. Pr Levels—NTSC
700mV
06400-117
06400-120
700mV
Figure 117. Pb Levels—PAL
Figure 114. Pb Levels—NTSC
Rev. B | Page 87 of 108
ADV7344
Data Sheet
ED/HD YPRPB OUTPUT LEVELS
INPUT CODE
EIA-770.2, STANDARD FOR Y
INPUT CODE
OUTPUT VOLTAGE
EIA-770.3, STANDARD FOR Y
OUTPUT VOLTAGE
940
940
700mV
700mV
64
64
300mV
300mV
EIA-770.3, STANDARD FOR Pr/Pb
EIA-770.2, STANDARD FOR Pr/Pb
OUTPUT VOLTAGE
OUTPUT VOLTAGE
960
960
600mV
512
700mV
64
06400-123
700mV
64
06400-121
512
Figure 120. EIA-770.3 Standard Output Signals (1080i/720p)
Figure 118. EIA-770.2 Standard Output Signals (525p/625p)
INPUT CODE
INPUT CODE
EIA-770.1, STANDARD FOR Y
OUTPUT VOLTAGE
782mV
Y–OUTPUT LEVELS FOR
FULL INPUT SELECTION
OUTPUT VOLTAGE
1023
940
700mV
714mV
64
300mV
64
286mV
INPUT CODE
EIA-770.1, STANDARD FOR Pr/Pb
Pr/Pb–OUTPUT LEVELS FOR
FULL INPUT SELECTION
OUTPUT VOLTAGE
1023
OUTPUT VOLTAGE
960
700mV
512
700mV
64
Figure 119. EIA-770.1 Standard Output Signals (525p/625p)
Rev. B | Page 88 of 108
300mV
Figure 121. Output Levels for Full Input Selection
06400-124
06400-122
64
Data Sheet
ADV7344
SD/ED/HD RGB OUTPUT LEVELS
Pattern: 100%/75% Color Bars
R
R
700mV/525mV
700mV/525mV
300mV
300mV
G
G
700mV/525mV
700mV/525mV
300mV
300mV
B
B
06400-125
300mV
300mV
06400-127
700mV/525mV
700mV/525mV
Figure 124. HD RGB Output Levels—RGB Sync Disabled
Figure 122. SD/ED RGB Output Levels—RGB Sync Disabled
R
R
700mV/525mV
600mV
700mV/525mV
300mV
300mV
0mV
0mV
G
G
700mV/525mV
600mV
700mV/525mV
300mV
300mV
0mV
0mV
B
B
700mV/525mV
600mV
700mV/525mV
06400-126
0mV
06400-128
300mV
300mV
0mV
Figure 125. HD RGB Output Levels—RGB Sync Enabled
Figure 123. SD/ED RGB Output Levels—RGB Sync Enabled
Rev. B | Page 89 of 108
ADV7344
Data Sheet
SD OUTPUT PLOTS
VOLTS
VOLTS IRE:FLT
0.6
100
0.4
0.5
50
0.2
0
0
0
–0.2
10
L608
30
40
50
60
MICROSECONDS
APL = 44.5%
PRECISION MODE OFF
525 LINE NTSC
SYNCHRONOUS SYNC = A
SLOW CLAMP TO 0.00V AT 6.72µs
FRAMES SELECTED 1, 2
0
10
20
30
40
50
60
MICROSECONDS
NOISE REDUCTION: 0.00dB
PRECISION MODE OFF
APL = 39.1%
SYNCHRONOUS SOUND-IN-SYNC OFF
625 LINE NTSC NO FILTERING
FRAMES SELECTED 1, 2, 3, 4
SLOW CLAMP TO 0.00 AT 6.72µs
20
Figure 126. NTSC Color Bars (75%)
06400-132
0
F1
L76
06400-129
–50
Figure 129. PAL Color Bars (75%)
VOLTS
VOLTS IRE:FLT
0.6
0.5
0.4
50
0.2
0
00
F2
L238
10
L575
30
40
50
60
MICROSECONDS
NOISE REDUCTION: 15.05dB
APL = 44.3%
PRECISION MODE OFF
525 LINE NTSC NO FILTERING
SYNCHRONOUS SYNC = SOURCE
SLOW CLAMP TO 0.00V AT 6.72µs
FRAMES SELECTED 1, 2
0
20
0
10
20
30
40
50
60
70
MICROSECONDS
NO BUNCH SIGNAL
APL NEEDS SYNC SOURCE.
PRECISION MODE OFF
625 LINE PAL NO FILTERING
SYNCHRONOUS SOUND-IN-SYNC OFF
SLOW CLAMP TO 0.00 AT 6.72µs
FRAMES SELECTED 1
Figure 127. NTSC Luma
06400-133
–0.2
06400-130
0
Figure 130. PAL Luma
VOLTS IRE:FLT
0.4
50
VOLTS
0.5
0.2
0
0
0
–0.2
–50
–0.4
–0.5
F1
L76
L575
20
30
40
50
60
MICROSECONDS
NOISE REDUCTION: 15.05dB
PRECISION MODE OFF
APL NEEDS SYNC SOURCE.
SYNCHRONOUS SYNC = B
525 LINE NTSC NO FILTERING
FRAMES SELECTED 1, 2
SLOW CLAMP TO 0.00 AT 6.72µs
0
30
40
50
60
MICROSECONDS
APL NEEDS SYNC SOURCE.
NO BUNCH SIGNAL
625 LINE PAL NO FILTERING
PRECISION MODE OFF
SLOW CLAMP TO 0.00 AT 6.72µs
SYNCHRONOUS SOUND-IN-SYNC OFF
FRAMES SELECTED 1
Figure 128. NTSC Chroma
10
20
Figure 131. PAL Chroma
Rev. B | Page 90 of 108
06400-134
10
06400-131
0
Data Sheet
ADV7344
VIDEO STANDARDS
0HDATUM
SMPTE 274M
ANALOG WAVEFORM
DIGITAL HORIZONTAL BLANKING
*1
272T
4T
ANCILLARY DATA
(OPTIONAL) OR BLANKING CODE
EAV CODE
1920T
DIGITAL
ACTIVE LINE
F 0 0 F C
V b Y C
r
F 0 0 H*
0 0 F
0 0 V
H*
F
F
INPUT PIXELS
4T
SAV CODE
4 CLOCK
SAMPLE NUMBER
2112
C Y
r
4 CLOCK
0
2199
2116 2156
44
188
192
2111
06400-135
FVH* = FVH AND PARITY BITS
SAV/EAV: LINE 1 TO 562: F = 0
SAV/EAV: LINE 563 TO 1125: F = 1
SAV/EAV: LINE 1 TO 20; 561 TO 583; 1124 TO 1125: V = 1
SAV/EAV: LINE 21 TO 560; 584 TO 1123: V = 0
FOR A FRAME RATE OF 30Hz: 40 SAMPLES
FOR A FRAME RATE OF 25Hz: 480 SAMPLES
Figure 132. EAV/SAV Input Data Timing Diagram (SMPTE 274M)
SMPTE 293M
ANALOG WAVEFORM
ANCILLARY DATA
(OPTIONAL)
EAV CODE
INPUT PIXELS
F
F 0 0 V
F 0 0 H*
F 0 0 F
V
F 0 0 H*
4 CLOCK
4 CLOCK
719
SAMPLE NUMBER
723 736
0HDATUM
799
DIGITAL
ACTIVE LINE
SAV CODE
853
C
C
b Y r
C
Y r Y
857 0
719
DIGITAL HORIZONTAL BLANKING
06400-136
FVH* = FVH AND PARITY BITS
SAV: LINE 43 TO 525 = 200H
SAV: LINE 1 TO 42 = 2AC
EAV: LINE 43 TO 525 = 274H
EAV: LINE 1 TO 42 = 2D8
Figure 133. EAV/SAV Input Data Timing Diagram (SMPTE 293M)
522
523
524
ACTIVE
VIDEO
VERTICAL BLANK
525
1
2
5
6
7
8
9
12
13
Figure 134. SMPTE 293M (525p)
Rev. B | Page 91 of 108
14
15
16
42
43
44
06400-137
ACTIVE
VIDEO
ADV7344
Data Sheet
622
623
ACTIVE
VIDEO
VERTICAL BLANK
624
625
1
2
5
4
6
7
8
9
10
12
11
13
43
44
45
06400-138
ACTIVE
VIDEO
Figure 135. ITU-R BT.1358 (625p)
DISPLAY
747
748
749
4
3
2
1
750
7
6
5
8
25
26
27
744
745
06400-139
VERTICAL BLANKING INTERVAL
Figure 136. SMPTE 296M (720p)
DISPLAY
VERTICAL BLANKING INTERVAL
FIELD 1
1124
1125
1
2
3
4
5
6
7
8
20
21
22
560
DISPLAY
VERTICAL BLANKING INTERVAL
561
562
563
564
565
566
567
568
569
Figure 137. SMPTE 274M (1080i)
Rev. B | Page 92 of 108
570
583
584
585
1123
06400-140
FIELD 2
Data Sheet
ADV7344
CONFIGURATION SCRIPTS
The scripts listed in the following pages can be used to configure the ADV7344 for basic operation. Certain features are enabled by
default. If required for a specific application, additional features can be enabled. Table 64 lists the scripts available for SD modes of
operation. Similarly, Table 85 and Table 112 list the scripts available for ED and HD modes of operation, respectively. For all scripts, only
the necessary register writes are included. All other registers are assumed to have their default values.
STANDARD DEFINITION
Table 64. SD Configuration Scripts
Input Format
525i (NTSC)
525i (NTSC)
525i (NTSC)
525i (NTSC)
525i (NTSC)
525i (NTSC)
525i (NTSC)
525i (NTSC)
Input Data Width 1
10-bit SDR
10-bit SDR
10-bit SDR
10-bit SDR
20-bit SDR
20-bit SDR
30-bit SDR
30-bit SDR
Synchronization Format
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
HSYNC/VSYNC
HSYNC/VSYNC
HSYNC/VSYNC
HSYNC/VSYNC
Input Color Space
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
RGB
RGB
Output Color Space
YPrPb and CVBS/Y-C
YPrPb and CVBS/Y-C
RGB and CVBS/Y-C
RGB and CVBS/Y-C
YPrPb and CVBS/Y-C
RGB and CVBS/Y-C
YPrPb and CVBS/Y-C
RGB and CVBS/Y-C
Table Number
Table 65
Table 66
Table 67
Table 68
Table 69
Table 70
Table 71
Table 72
NTSC Sq. Pixel
NTSC Sq. Pixel
10-bit SDR
30-bit SDR
YCrCb
RGB
CVBS/Y-C (S-Video)
CVBS/Y-C (S-Video)
Table 73
Table 74
625i (PAL)
625i (PAL)
625i (PAL)
625i (PAL)
625i (PAL)
625i (PAL)
625i (PAL)
625i (PAL)
10-bit SDR
10-bit SDR
10-bit SDR
10-bit SDR
20-bit SDR
20-bit SDR
30-bit SDR
30-bit SDR
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
HSYNC/VSYNC
HSYNC/VSYNC
HSYNC/VSYNC
HSYNC/VSYNC
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
RGB
RGB
YPrPb and CVBS/Y-C
YPrPb and CVBS/Y-C
RGB and CVBS/Y-C
RGB and CVBS/Y-C
YPrPb and CVBS/Y-C
RGB and CVBS/Y-C
YPrPb and CVBS/Y-C
RGB and CVBS/Y-C
Table 75
Table 76
Table 77
Table 78
Table 79
Table 80
Table 81
Table 82
PAL Sq. Pixel
PAL Sq. Pixel
10-bit SDR
30-bit SDR
EAV/SAV
HSYNC/VSYNC
YCrCb
RGB
CVBS/Y-C (S-Video)
CVBS/Y-C (S-Video)
Table 83
Table 84
1
SDR = single data rate
Table 66. 10-Bit 525i YCrCb In, YPrPb and CVBS/Y-C Out
Table 65. 10-Bit 525i YCrCb In (EAV/SAV), YPrPb and
CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0xFC
0x00
0x10
0x82
0xC9
0x88
0x10
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. YPrPb and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
10-bit input enabled.
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0xFC
0x00
0x10
0x82
0xC9
0x88
0x8A
0x10
0x0C
Rev. B | Page 93 of 108
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. YPrPb and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
10-bit input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
ADV7344
Data Sheet
Table 67. 10-Bit 525i YCrCb In (EAV/SAV), RGB and
CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0xFC
0x00
0x10
0x80
0x10
0x82
0xC9
0x88
0x10
Table 70. 20-Bit 525i YCrCb In, RGB and CVBS/Y-C Out
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
RGB output enabled. RGB output sync
enabled.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. RGB and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
10-bit input enabled.
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0xFC
0x00
0x10
0x80
0x10
0x82
0xC9
0x88
0x8A
0x18
0x0C
Table 68. 10-Bit 525i YCrCb In, RGB and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0xFC
0x00
0x10
0x80
0x10
0x82
0xC9
0x88
0x8A
0x10
0x0C
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
RGB output enabled. RGB output sync
enabled.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. RGB and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
10-bit input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 69. 20-Bit 525i YCrCb In, YPrPb and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0xFC
0x00
0x10
0x82
0xC9
0x88
0x8A
0x18
0x0C
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. YPrPb and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
20-bit input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Description
Software reset
All DACs enabled. PLL enabled (16×).
SD input mode.
RGB output enabled. RGB output sync
enabled.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. RGB and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
20-bit input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 71. 30-Bit 525i RGB In, YPrPb and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0xFC
0x00
0x10
0x82
0xC9
0x87
0x88
0x8A
0x80
0x10
0x0C
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. YPrPb and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
RGB input enabled.
10-bit input enabled (10 × 3 = 30-bit).
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 72. 30-Bit 525i RGB In, RGB and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0xFC
0x00
0x10
0x80
0x10
0x82
0xC9
0x87
0x88
0x8A
0x80
0x10
0x0C
Rev. B | Page 94 of 108
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
RGB output enabled. RGB output sync
enabled.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. RGB and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled.
RGB input enabled.
10-bit input enabled (10 × 3 = 30-bit).
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Data Sheet
ADV7344
Table 73. 10-Bit NTSC Square Pixel YCrCb In (EAV/SAV),
CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0x1C
0x00
0x10
0x82
0xDB
0x88
0x8C
0x8D
0x8E
0x8F
0x10
0x55
0x55
0x55
0x25
Description
Software reset
All DACs enabled. PLL enabled (16×).
SD input mode.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled. Square pixel mode enabled.
10-bit YCbCr input enabled.
Subcarrier Frequency Register values
for CVBS and/or S-Video (Y-C) output in
NTSC square pixel mode (24.5454 MHz
input clock).
Table 74. 30-Bit NTSC Square Pixel RGB In, CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0x1C
0x00
0x10
0x82
0xDB
0x87
0x88
0x8A
0x80
0x10
0x0C
0x8C
0x8D
0x8E
0x8F
0x55
0x55
0x55
0x25
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
Pixel data valid. CVBS/Y-C (S-Video) out.
SSAF PrPb filter enabled. Active video
edge control enabled. Pedestal
enabled. Square pixel mode enabled.
RGB input enabled.
30-bit RGB input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Subcarrier Frequency Register values
for CVBS and/or S-Video (Y-C) output in
NTSC Square pixel mode (24.5454 MHz
input clock).
Table 75. 10-Bit 625i YCrCb In (EAV/SAV), YPrPb and
CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0xFC
0x00
0x11
0x82
0xC1
0x88
0x10
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. YPrPb and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled.
10-bit input enabled.
Table 76. 10-Bit 625i YCrCb In, YPrPb and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0xFC
0x00
0x11
0x82
0xC1
0x88
0x8A
0x10
0x0C
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. YPrPb and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled.
10-bit input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 77. 10-Bit 625i YCrCb In (EAV/SAV), RGB and
CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0xFC
0x00
0x10
0x80
0x11
0x82
0xC1
0x88
0x10
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
RGB output enabled. RGB output sync
enabled.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. RGB and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled.
10-bit input enabled.
Table 78. 10-Bit 625i YCrCb In, RGB and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0xFC
0x00
0x10
0x80
0x11
0x82
0xC1
0x88
0x8A
0x10
0x0C
Rev. B | Page 95 of 108
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
RGB output enabled. RGB output sync
enabled.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. RGB and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled.
10-bit input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
ADV7344
Data Sheet
Table 79. 20-Bit 625i YCrCb In, YPrPb and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0xFC
0x00
0x11
0x82
0xC1
0x88
0x8A
0x18
0x0C
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. YPrPb and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled.
20-bit input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 80. 20-Bit 625i YCrCb In, RGB and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0xFC
0x00
0x10
0x80
0x11
0x82
0xC1
0x88
0x8A
0x18
0x0C
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
RGB output enabled. RGB output sync
enabled.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. RGB and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled.
20-bit input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 81. 30-Bit 625i RGB In, YPrPb and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0xFC
0x00
0x11
0x82
0xC1
0x87
0x88
0x8A
0x80
0x10
0x0C
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. YPrPb and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled.
RGB input enabled.
10-bit input enabled (10 × 3 = 30-bit).
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 82. 30-Bit 625i RGB In, RGB and CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0xFC
0x00
0x10
0x80
0x11
0x82
0xC1
0x87
0x88
0x8A
0x80
0x10
0x0C
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
RGB output enabled. RGB output sync
enabled.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. RGB and CVBS/Y-C
out. SSAF PrPb filter enabled. Active
video edge control enabled.
RGB input enabled.
10-bit input enabled (10 × 3 = 30-bit).
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Table 83. 10-Bit PAL Square Pixel YCrCb In (EAV/SAV),
CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0x1C
0x00
0x11
0x82
0xD3
0x88
0x8C
0x8D
0x8E
0x8F
0x10
0x0C
0x8C
0x79
0x26
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. Square
pixel mode enabled.
10-bit YCbCr input enabled.
Subcarrier Frequency Register values
for CVBS and/or S-Video (Y-C) output
in PAL square pixel mode (29.5 MHz
input clock).
Table 84. 30-Bit PAL Square Pixel RGB In, CVBS/Y-C Out
Subaddress
0x17
0x00
0x01
0x80
Setting
0x02
0x1C
0x00
0x11
0x82
0xD3
0x87
0x88
0x8A
0x80
0x10
0x0C
0x8C
0x8D
0x8E
0x8F
0x0C
0x8C
0x79
0x26
Rev. B | Page 96 of 108
Description
Software reset.
All DACs enabled. PLL enabled (16×).
SD input mode.
PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. Square
pixel mode enabled.
RGB input enabled.
30-bit RGB input enabled.
Timing Mode 2 (slave). HSYNC/VSYNC
synchronization.
Subcarrier Frequency Register values
for CVBS and/or S-Video (Y-C) output
in PAL square pixel mode (29.5 MHz
input clock).
Data Sheet
ADV7344
ENHANCED DEFINITION
Table 85. ED Configuration Scripts
Input Format
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
525p at 59.94 Hz
Input Data Width 1
10-bit DDR
10-bit DDR
10-bit DDR
10-bit DDR
20-bit SDR
20-bit SDR
20-bit SDR
20-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
Synchronization Format
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
HSYNC/VSYNC
Input Color Space
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
RGB
Output Color Space
YPrPb
YPrPb
RGB
RGB
YPrPb
YPrPb
RGB
RGB
YPrPb
YPrPb
RGB
RGB
RGB
Table Number
Table 86
Table 87
Table 88
Table 89
Table 90
Table 91
Table 92
Table 93
Table 94
Table 95
Table 96
Table 97
Table 98
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
625p at 50 Hz
10-bit DDR
10-bit DDR
10-bit DDR
10-bit DDR
20-bit SDR
20-bit SDR
20-bit SDR
20-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
30-Bit SDR
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
HSYNC/VSYNC
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
RGB
YPrPb
YPrPb
RGB
RGB
YPrPb
YPrPb
RGB
RGB
YPrPb
YPrPb
RGB
RGB
RGB
Table 99
Table 100
Table 101
Table 102
Table 103
Table 104
Table 105
Table 106
Table 107
Table 108
Table 109
Table 110
Table 111
1
SDR = single data rate. DDR = dual data rate.
Table 86. 10-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x30
0x04
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled.
Table 87. 10-Bit 525p YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x30
0x00
0x31
0x33
0x01
0x6C
Rev. B | Page 97 of 108
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
525p at 59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.2 output
levels.
Pixel data valid.
10-bit input enabled.
ADV7344
Data Sheet
Table 88. 10-Bit 525p YCrCb In (EAV/SAV), RGB Out
Table 92. 20-Bit 525p YCrCb In (EAV/SAV), RGB Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x02
0x10
0x30
0x04
0x30
0x04
0x31
0x33
0x01
0x6C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
RGB output enabled. RGB output sync
enabled.
525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled.
Table 89. 10-Bit 525p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x02
0x10
0x30
0x00
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
RGB output enabled. RGB output sync
enabled.
525p at 59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.2 output
levels.
Pixel data valid.
10-bit input enabled.
Table 90. 20-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x04
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled (10 × 2 = 20-bit).
Table 91. 20-Bit 525p YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x00
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled (10 × 2 = 20-bit).
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled (10 × 2 = 20-bit).
Table 93. 20-Bit 525p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x00
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled (10 × 2 = 20-bit).
Table 94. 30-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x04
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 95. 30-Bit 525p YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x00
0x31
0x33
0x01
0x2C
Rev. B | Page 98 of 108
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Data Sheet
ADV7344
Table 96. 30-Bit 525p YCrCb In (EAV/SAV), RGB Out
Table 100. 10-Bit 625p YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x30
0x18
0x30
0x04
0x31
0x33
0x01
0x2C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 97. 30-Bit 525p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x00
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 98. 30-Bit 525p RGB In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x00
0x31
0x33
0x01
0x2C
0x35
0x02
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
RGB input enabled.
Table 99. 10-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x30
0x1C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled.
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
625p at 50 Hz. HSYNC/VSYNC
synchronization. EIA-770.2 output
levels.
Pixel data valid.
10-bit input enabled.
Table 101. 10-Bit 625p YCrCb In (EAV/SAV), RGB Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x02
0x10
0x30
0x1C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
RGB output enabled. RGB output sync
enabled.
625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled.
Table 102. 10-Bit 625p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x02
0x10
0x30
0x18
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
RGB output enabled. RGB output sync
enabled.
625p at 50 Hz. HSYNC/VSYNC
synchronization. EIA-770.2 output
levels.
Pixel data valid.
10-bit input enabled.
Table 103. 20-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x1C
0x31
0x33
0x01
0x6C
Rev. B | Page 99 of 108
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled (10 × 2 = 20-bit).
ADV7344
Data Sheet
Table 104. 20-Bit 625p YCrCb In, YPrPb Out
Table 108. 30-Bit 625p YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x18
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x18
0x31
0x33
0x01
0x6C
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled (10 × 2 = 20-bit).
Table 105. 20-Bit 625p YCrCb In (EAV/SAV), RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x1C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled (10 × 2 = 20-bit).
Table 106. 20-Bit 625p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x18
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
10-bit input enabled (10 × 2 = 20-bit).
Table 107. 30-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x1C
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 109. 30-Bit 625p YCrCb In (EAV/SAV), RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x1C
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 110. 30-Bit 625p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x18
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 111. 30-Bit 625p RGB In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x18
0x31
0x33
0x01
0x2C
0x35
0x02
Rev. B | Page 100 of 108
Description
Software reset.
All DACs enabled. PLL enabled (8×).
ED-SDR input mode.
RGB output enabled. RGB output sync
enabled.
625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels.
Pixel data valid.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
RGB input enabled.
Data Sheet
ADV7344
HIGH DEFINITION
Table 112. HD Configuration Scripts
Input Format
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
720p at 60 Hz/59.94 Hz
Input Data Width 1
10-bit DDR
10-bit DDR
10-bit DDR
10-bit DDR
20-bit SDR
20-bit SDR
20-bit SDR
20-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
Synchronization Format
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
HSYNC/VSYNC
Input Color Space
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
RGB
Output Color Space
YPrPb
YPrPb
RGB
RGB
YPrPb
YPrPb
RGB
RGB
YPrPb
YPrPb
RGB
RGB
RGB
Table Number
Table 113
Table 114
Table 115
Table 116
Table 117
Table 118
Table 119
Table 120
Table 121
Table 122
Table 123
Table 124
Table 125
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
1080i at 30 Hz/29.97 Hz
10-bit DDR
10-bit DDR
10-bit DDR
10-bit DDR
20-bit SDR
20-bit SDR
20-bit SDR
20-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
30-bit SDR
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
EAV/SAV
HSYNC/VSYNC
HSYNC/VSYNC
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
YCrCb
RGB
YPrPb
YPrPb
RGB
RGB
YPrPb
YPrPb
RGB
RGB
YPrPb
YPrPb
RGB
RGB
RGB
Table 126
Table 127
Table 128
Table 129
Table 130
Table 131
Table 132
Table 133
Table 134
Table 135
Table 136
Table 137
Table 138
1
SDR = single data rate. DDR = dual data rate.
Table 113. 10-Bit 720p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x30
0x2C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled.
Table 114. 10-Bit 720p YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x30
0x28
0x31
0x33
0x01
0x6C
Rev. B | Page 101 of 108
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output
levels.
Pixel data valid. 4× oversampling.
10-bit input enabled.
ADV7344
Data Sheet
Table 115. 10-Bit 720p YCrCb In (EAV/SAV), RGB Out
Table 119. 20-Bit 720p YCrCb In (EAV/SAV), RGB Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x02
0x10
0x30
0x2C
0x30
0x2C
0x31
0x33
0x01
0x6C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
RGB output enabled. RGB output sync
enabled.
720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled.
Table 116. 10-Bit 720p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x02
0x10
0x30
0x28
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
RGB output enabled. RGB output sync
enabled.
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output
levels.
Pixel data valid. 4× oversampling.
10-bit input enabled.
Table 117. 20-Bit 720p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x2C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled (10 × 2 = 20-bit).
Table 118. 20-Bit 720p YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x28
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled (10 × 2 = 20-bit).
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled (10 × 2 = 20-bit).
Table 120. 20-Bit 720p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x28
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled (10 × 2 = 20-bit).
Table 121. 30-Bit 720p YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x2C
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 122. 30-Bit 720p YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x28
0x31
0x33
0x01
0x2C
Rev. B | Page 102 of 108
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Data Sheet
ADV7344
Table 123. 30-Bit 720p YCrCb In (EAV/SAV), RGB Out
Table 127. 10-Bit 1080i YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x30
0x68
0x30
0x2C
0x31
0x33
0x01
0x2C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 124. 30-Bit 720p YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x28
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
1080i at 30 Hz/29.97 Hz. HSYNC/
VSYNC synchronization. EIA-770.3
output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled.
Table 128. 10-Bit 1080i YCrCb In (EAV/SAV), RGB Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x02
0x10
0x30
0x6C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
RGB output enabled. RGB output sync
enabled.
1080i at 30 Hz/29.97 Hz. HSYNC/
VSYNC synchronization. EIA-770.3
output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled.
Table 125. 30-Bit 720p RGB In, RGB Out
Table 129. 10-Bit 1080i YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x02
0x10
0x30
0x28
0x30
0x68
0x31
0x33
0x01
0x6C
0x31
0x33
0x01
0x2C
0x35
0x02
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
720p at 60 Hz/59.94 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
RGB input enabled.
Table 126. 10-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
Setting
0x02
0x1C
0x20
0x30
0x6C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled.
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-DDR input mode. Luma data
clocked on falling edge of CLKIN.
RGB output enabled. RGB output sync
enabled.
1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled.
Table 130. 20-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x6C
0x31
0x33
0x01
0x6C
Rev. B | Page 103 of 108
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled (10 × 2 = 20-bit).
ADV7344
Data Sheet
Table 131. 20-Bit 1080i YCrCb In, YPrPb Out
Table 135. 30-Bit 1080i YCrCb In, YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x68
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x68
0x31
0x33
0x01
0x6C
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled (10 × 2 = 20-bit).
Table 132. 20-Bit 1080i YCrCb In (EAV/SAV), RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x6C
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled (10 × 2 = 20-bit).
Table 133. 20-Bit 1080i YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x68
0x31
0x33
0x01
0x6C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
10-bit input enabled (10 × 2 = 20-bit).
Table 134. 30-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out
Subaddress
0x17
0x00
0x01
0x30
Setting
0x02
0x1C
0x10
0x6C
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 136. 30-Bit 1080i YCrCb In (EAV/SAV), RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x6C
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 137. 30-Bit 1080i YCrCb In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x68
0x31
0x33
0x01
0x2C
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
Table 138. 30-Bit 1080i RGB In, RGB Out
Subaddress
0x17
0x00
0x01
0x02
Setting
0x02
0x1C
0x10
0x10
0x30
0x68
0x31
0x33
0x01
0x2C
0x35
0x02
Rev. B | Page 104 of 108
Description
Software reset.
All DACs enabled. PLL enabled (4×).
HD-SDR input mode.
RGB output enabled. RGB output sync
enabled.
1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC
synchronization. EIA-770.3 output levels.
Pixel data valid. 4× oversampling.
4:4:4 input data. 10-bit input enabled
(10 × 3 = 30-bit).
RGB input enabled.
Data Sheet
ADV7344
OUTLINE DIMENSIONS
0.75
0.60
0.45
12.20
12.00 SQ
11.80
1.60
MAX
64
49
1
48
PIN 1
10.20
10.00 SQ
9.80
TOP VIEW
(PINS DOWN)
0.15
0.05
SEATING
PLANE
0.20
0.09
7°
3.5°
0°
16
33
32
17
0.08
COPLANARITY
VIEW A
VIEW A
0.50
BSC
LEAD PITCH
0.27
0.22
0.17
ROTATED 90° CCW
COMPLIANT TO JEDEC STANDARDS MS-026-BCD
051706-A
1.45
1.40
1.35
Figure 138. 64-Lead Low Profile Quad Flat Package [LQFP]
(ST-64-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model
ADV7344BSTZ
EVAL-ADV7344EBZ
1
1
2
Temperature Range
−40°C to +85°C
Macrovision 2
Antitaping
Yes
Yes
Package Description
64-Lead Low Profile Quad Flat Package [LQFP]
Evaluation Platform
Package Option
ST-64-2
Z = RoHS Compliant Part.
Macrovision-enabled ICs require the buyer to be an approved licensee (authorized buyer) of ICs that are able to output Macrovision Rev 7.1.L1-compliant video.
Rev. B | Page 105 of 108
ADV7344
Data Sheet
NOTES
Rev. B | Page 106 of 108
Data Sheet
ADV7344
NOTES
Rev. B | Page 107 of 108
ADV7344
Data Sheet
NOTES
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
©2006-2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06400-0-2/12(B)
Rev. B | Page 108 of 108