Data Sheet Multiformat Video Encoder Six 14-Bit Noise Shaped Video DACs ADV7344 FEATURES 74.25 MHz 20-/30-bit high definition input support Compliant with SMPTE 274M (1080i), 296M (720p), and 240M (1035i) 6 Noise Shaped Video® (NSV) 14-bit video DACs 16× (216 MHz) DAC oversampling for SD 8× (216 MHz) DAC oversampling for ED 4× (297 MHz) DAC oversampling for HD 37 mA maximum DAC output current NTSC M, PAL B/D/G/H/I/M/N, PAL 60 support NTSC and PAL square pixel operation (24.54 MHz/29.5 MHz) Multiformat video input support 4:2:2 YCrCb (SD, ED, and HD) 4:4:4 YCrCb (ED and HD) 4:4:4 RGB (SD, ED, and HD) Multiformat video output support Composite (CVBS) and S-Video (Y-C) Component YPrPb (SD, ED, and HD) Component RGB (SD, ED, and HD) Macrovision Rev 7.1.L1 (SD) and Rev 1.2 (ED) compliant Simultaneous SD and ED/HD operation EIA/CEA-861B compliance support Copy generation management system (CGMS) Closed captioning and wide screen signaling (WSS) Integrated subcarrier locking to external video source Complete on-chip video timing generator On-chip test pattern generation On-board voltage reference (optional external input) Programmable features Luma and chroma filter responses Vertical blanking interval (VBI) Subcarrier frequency (FSC) and phase Luma delay High definition (HD) programmable features (720p/1080i/1035i) 4× oversampling (297 MHz) Internal test pattern generator Color and black bar, hatch, flat field/frame Fully programmable YCrCb to RGB matrix Gamma correction Programmable adaptive filter control Programmable sharpness filter control CGMS (720p/1080i) and CGMS Type B (720p/1080i) Dual data rate (DDR) input support Enhanced definition (ED) programmable features (525p/625p) 8× oversampling (216 MHz output) Internal test pattern generator Black bar, hatch, flat field/frame Individual Y and PrPb output delay Gamma correction Programmable adaptive filter control Fully programmable YCrCb to RGB matrix Undershoot limiter Macrovision Rev 1.2 (525p/625p) CGMS (525p/625p) and CGMS Type B (525p) Dual data rate (DDR) input support Standard definition (SD) programmable features 16× oversampling (216 MHz) Internal test pattern generator Color and black bar Controlled edge rates for start and end of active video Individual Y and PrPb output delay Undershoot limiter Gamma correction Digital noise reduction (DNR) Multiple chroma and luma filters Luma-SSAF filter with programmable gain/attenuation PrPb SSAF Separate pedestal control on component and composite/S-Video output VCR FF/RW sync mode Macrovision Rev 7.1.L1 Copy generation management system (CGMS) Wide screen signaling (WSS) Closed captioning Serial MPU interface with I2C compatibility 3.3 V analog operation 1.8 V digital operation 1.8 V or 3.3 V I/O operation Temperature range: −40°C to +85°C APPLICATIONS DVD recorders and players High definition Blu-ray DVD players Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006-2012 Analog Devices, Inc. All rights reserved. ADV7344 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 ED/HD Timing Reset ................................................................ 54 Applications ....................................................................................... 1 Revision History ............................................................................... 4 SD Subcarrier Frequency Lock, Subcarrier Phase Reset, and Timing Reset ....................................................................... 54 General Description ......................................................................... 5 SD VCR FF/RW Sync ................................................................ 54 Functional Block Diagram .............................................................. 6 Vertical Blanking Interval ......................................................... 55 Specifications..................................................................................... 7 SD Subcarrier Frequency Control ............................................ 55 Power Supply and Voltage Specifications .................................. 7 SD Noninterlaced Mode ............................................................ 55 Voltage Reference Specifications ................................................ 7 SD Square Pixel Mode ............................................................... 55 Input Clock Specifications .......................................................... 7 Filters............................................................................................ 56 Analog Output Specifications ..................................................... 8 ED/HD Test Pattern Color Controls ....................................... 57 Digital Input/Output Specifications—3.3 V ............................. 8 Color Space Conversion Matrix ............................................... 58 Digital Input/Output Specifications—1.8 V ............................. 8 SD Luma and Color Scale Control ........................................... 59 Digital Timing Specifications—3.3 V ........................................ 9 SD Hue Adjust Control.............................................................. 59 Digital Timing Specifications—1.8 V ...................................... 10 SD Brightness Detect ................................................................. 60 MPU Port Timing Specifications ............................................. 11 SD Brightness Control ............................................................... 60 Power Specifications .................................................................. 11 SD Input Standard Autodetection ............................................ 60 Video Performance Specifications ........................................... 12 Double Buffering ........................................................................ 61 Timing Diagrams ............................................................................ 13 Programmable DAC Gain Control .......................................... 61 Absolute Maximum Ratings.......................................................... 20 Gamma Correction .................................................................... 61 Thermal Resistance .................................................................... 20 ED/HD Sharpness Filter and Adaptive Filter Controls ......... 63 ESD Caution ................................................................................ 20 ED/HD Sharpness Filter and Adaptive Filter Application Examples ...................................................................................... 64 Pin Configuration and Function Descriptions ........................... 21 Typical Performance Characteristics ........................................... 23 MPU Port Description ................................................................... 28 I2C Operation .............................................................................. 28 Register Map Access ....................................................................... 30 Register Programming ............................................................... 30 Subaddress Register (SR7 to SR0) ............................................ 30 Input Configuration ....................................................................... 48 Standard Definition Only .......................................................... 48 Enhanced Definition/High Definition Only .......................... 50 Simultaneous Standard Definition and Enhanced Definition/High Definition ....................................................... 50 Enhanced Definition Only (at 54 MHz) ................................. 51 Output Configuration .................................................................... 52 Design Features ............................................................................... 53 Output Oversampling ................................................................ 53 HD Interlace External P_HSYNC and P_VSYNC Considerations ............................................................................ 54 SD Digital Noise Reduction ...................................................... 65 SD Active Video Edge Control ................................................. 67 External Horizontal and Vertical Synchronization Control ......................................................................................... 68 Low Power Mode ........................................................................ 69 Cable Detection .......................................................................... 69 DAC Autopower-Down ............................................................. 69 Sleep Mode .................................................................................. 69 Pixel and Control Port Readback ............................................. 69 Reset Mechanism........................................................................ 69 SD Teletext Insertion ................................................................. 69 Printed Circuit Board Layout and Design .................................. 71 Unused Pins ................................................................................ 71 DAC Configurations .................................................................. 71 Voltage Reference ....................................................................... 71 Video Output Buffer and Optional Output Filter .................. 71 Printed Circuit Board (PCB) Layout ....................................... 72 Typical Application Circuit ....................................................... 74 Rev. B | Page 2 of 108 Data Sheet ADV7344 Copy Generation Management System ........................................75 Video Output Levels ....................................................................... 87 SD CGMS .....................................................................................75 SD YPrPb Output Levels—SMPTE/EBU N10 ........................ 87 ED CGMS.....................................................................................75 ED/HD YPrPb Output Levels ................................................... 88 HD CGMS ....................................................................................75 SD/ED/HD RGB Output Levels ................................................ 89 CGMS CRC Functionality .........................................................75 SD Output Plots .......................................................................... 90 SD Wide Screen Signaling ..............................................................78 Video Standards .............................................................................. 91 SD Closed Captioning ....................................................................79 Configuration Scripts ..................................................................... 93 Internal Test Pattern Generation ...................................................80 Standard Definition .................................................................... 93 SD Test Patterns ...........................................................................80 Enhanced Definition .................................................................. 97 ED/HD Test Patterns ..................................................................80 High Definition .........................................................................101 SD Timing ........................................................................................81 Outline Dimensions ......................................................................105 HD Timing .......................................................................................86 Ordering Guide .........................................................................105 Rev. B | Page 3 of 108 ADV7344 Data Sheet REVISION HISTORY 2/12—Rev. A to Rev. B Change to Features Section ............................................................. 1 Moved Revision History Section .................................................... 4 Changes to Table 1 ............................................................................ 5 Changes to Digital Input/Output Specifications— 1.8 V Section ..................................................................................... 8 Changes to Table 21 ........................................................................ 34 Changes to Table 24 ........................................................................ 37 Changes to Table 29 ........................................................................ 42 Changes to 24-/30-Bit 4:4:4 RGB Mode Section ........................ 50 Deleted ED/HD Nonstandard Timing Mode Section, Figure 58, and Table 42, Renumbered Sequentially ..................................... 54 Added External Sync Polarity Section ......................................... 57 Changed SD Subcarrier Frequency Lock, Subcarrier Phase Reset, and Timing Reset Section to SD Subcarrier Frequency Lock Section .................................................................................... 58 Deleted Subaddress 0x84, Bits[2:1] Section, Timing Reset (TR) Mode Section, Subcarrier Phase Reset (SCR) Mode Section, and Figure 59 ................................................................................... 55 Deleted Figure 60 ............................................................................ 56 Changes to ED/HD Test Patterns Section ................................... 87 3/09—Rev. 0 to Rev. A Changes to Features Section............................................................ 1 Deleted Detailed Features Section, Changes to Table 1............... 4 Changes to Figure 1 .......................................................................... 5 Changes to Table 6 ............................................................................ 7 Added Digital Input/Output Specifications—1.8 V Section and Table 7 ................................................................................................ 7 Changes to Digital Timing Specifications—3.3 V Section and Table 8 ................................................................................................ 8 Added Table 9.................................................................................... 9 Changes to MPU Port Timing Specifications Section, Default Conditions ......................................................................... 10 Added Power Specifications Section, Default Conditions ........ 10 Added Video Performance Specifications, Default Conditions ....................................................................................... 11 Changes to Table 13 ........................................................................ 19 Changes to Table 15 ........................................................................ 20 Changes to MPU Port Description Section ................................ 27 Changes to I2C Operation Section ............................................... 27 Added Table 16 ............................................................................... 27 Changes to Table 17 ....................................................................... 29 Changes to Table 18 ....................................................................... 30 Changes to Table 21, 0x30 Bit Description ................................. 33 Changes to Table 22, 0x31, Bit Description ................................ 34 Changes to Table 23 ....................................................................... 35 Changes to Table 29 ....................................................................... 40 Changes to Table 30 ....................................................................... 41 Changes to Table 31 ....................................................................... 43 Changes to Table 32 ....................................................................... 45 Added Table 33 ............................................................................... 45 Added Table 34 ............................................................................... 46 Changes to Standard Definition Only Section ........................... 47 Added Figure 52 ............................................................................. 49 Changes to Figure 56...................................................................... 50 Renamed Features Section to Design Features Section............. 52 Changes to ED/HD Nonstandard Timing Mode Section ......... 52 Added HD Interlace External P_HSYNC and P_VSYNC Considerations Section .................................................................. 53 Changes to SD Subcarrier Frequency Lock, Subcarrier Phase Reset, and Timing Reset Section .................................................. 53 Changes to Subaddress 0x8C to Subaddress 0x8F Section ....... 55 Changes to Programming the FSC Section................................... 55 Changes to Subaddress 0x82, Bit 4 Section ................................. 55 Added SD Manual CSC Matrix Adjust Feature Section ............ 58 Changes to Subaddress 0x9C to Subaddress 0x9F Section ....... 59 Changes to SD Brightness Detect Section................................... 60 Changes to Figure 70...................................................................... 62 Added Sleep Mode Section ........................................................... 69 Changes to Pixel and Control Port Readback Section .............. 69 Added SD Teletext Insertion Section ........................................... 69 Added Unused Pins Section .......................................................... 71 Added Figure 85 and Figure 86 .................................................... 71 Changes to Power Supply Sequencing Section ........................... 73 Changes to Figure 93...................................................................... 76 Changes to SD Wide Screen Signaling Section .......................... 78 Changes to Internal Test Pattern Generation Section ............... 80 Changes to SD Timing, Mode 0 (CCIR-656)—Slave Option (Subaddress 0x8A = XXXXX000) Section .................................. 81 Added Configuration Scripts Section .......................................... 93 10/06—Revision 0: Initial Version Rev. B | Page 4 of 108 Data Sheet ADV7344 GENERAL DESCRIPTION Table 1. Standards Directly Supported by the ADV7344 The ADV7344 is a high speed, digital-to-analog video encoder in a 64-pin LQFP package. Six high speed, NSV, 3.3 V, 14-bit video DACs provide support for composite (CVBS), S-Video (YC), and component (YPrPb/RGB) analog outputs in standard definition (SD), enhanced definition (ED), or high definition (HD) video formats. Active Resolution 720 × 240 720 × 288 720 × 480 I/P 1 P P I Frame Rate (Hz) 59.94 50 29.97 Clock Input (MHz) 27 27 27 720 × 576 I 25 27 640 × 480 I 29.97 24.54 768 × 576 I 25 29.5 In addition, simultaneous SD and ED/HD input and output is supported. Full-drive DACs ensure that external output buffering is not required, while 216 MHz (SD and ED) and 297 MHz (HD) oversampling ensures that external output filtering is not required. 720 × 483 720 × 483 720 × 483 720 × 576 720 × 483 720 × 576 1920 × 1035 1920 × 1035 1280 × 720 P P P P P P I I P 27 27 27 27 27 27 74.25 74.1758 74.25 Cable detection and DAC autopower-down features keep power consumption to a minimum. 1280 × 720 P 74.1758 SMPTE 296M 1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080 I I P P 74.25 74.1758 74.25 74.1758 SMPTE 274M SMPTE 274M SMPTE 274M SMPTE 274M 1920 × 1080 P 59.94 59.94 59.94 50 59.94 50 30 29.97 60, 50, 30, 25, 24 23.97, 59.94, 29.97 30, 25 29.97 30, 25, 24 23.98, 29.97 24 ITU-R BT.601/656 ITU-R BT.601/656 NTSC Square Pixel PAL Square Pixel SMPTE 293M BTA T-1004 ITU-R BT.1358 ITU-R BT.1358 ITU-R BT.1362 ITU-R BT.1362 SMPTE 240M SMPTE 240M SMPTE 296M 74.25 ITU-R BT.709-5 The ADV7344 has a 30-bit pixel input port that can be configured in a variety of ways. SD video formats are supported over an SDR interface and ED/HD video formats are supported over SDR and DDR interfaces. Pixel data can be supplied in either the YCrCb or RGB color space. The ADV7344 also supports embedded EAV/SAV timing codes, external video synchronization signals, and I2C® communication protocol. Table 1 lists the video standards directly supported by the ADV7344. 1 I = interlaced, P = progressive. Rev. B | Page 5 of 108 Standard ADV7344 Data Sheet FUNCTIONAL BLOCK DIAGRAM SCL SDA ALSB VIDEO DATA 4:2:2 TO 4:4:4 SD DEINTERLEAVE R G/B 8-/10-/16-/20-/ 24-/30-BIT ED/HD VIDEO DATA POWER MANAGEMENT CONTROL VAA SUBCARRIER FREQUENCY LOCK (SFL) MPU PORT RGB TO YCrCb MATRIX RGB ASYNC BYPASS ADD SYNC PROGRAMMABLE LUMINANCE FILTER ADD BURST PROGRAMMABLE CHROMINANCE FILTER YCrCb TO RGB SIN/COS DDS BLOCK 16× FILTER 16× FILTER RGB YCbCr SDR/DDR ED/HD INPUT 4:2:2 TO 4:4:4 DEINTERLEAVE AGND ADV7344 VBI DATA SERVICE INSERTION VDD_IO 8-/10-/16-/20-/ 24-/30-BIT SD SFL PROGRAMMABLE HDTV FILTERS HDTV TEST PATTERN GENERATOR YCbCr TO RGB MATRIX SHARPNESS AND ADAPTIVE FILTER CONTROL VIDEO TIMING GENERATOR P_HSYNC P_VSYNC P_BLANK S_HSYNC S_VSYNC Figure 1. Rev. B | Page 6 of 108 4× FILTER 16x/4x OVERSAMPLING DAC PLL 14-BIT DAC 1 DAC 1 14-BIT DAC 2 DAC 2 14-BIT DAC 3 DAC 3 14-BIT DAC 4 DAC 4 14-BIT DAC 5 DAC 5 14-BIT DAC 6 DAC 6 REFERENCE AND CABLE DETECT CLKIN (2) PVDD PGND EXT_LF (2) VREF COMP (2) RSET (2) 06400-001 GND_IO VDD (2) MULTIPLEXER DGND (2) Data Sheet ADV7344 SPECIFICATIONS POWER SUPPLY AND VOLTAGE SPECIFICATIONS All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 2. Parameter SUPPLY VOLTAGES VDD VDD_IO PVDD VAA POWER SUPPLY REJECTION RATIO Min Typ Max Unit 1.71 1.71 1.71 2.6 1.8 3.3 1.8 3.3 0.002 1.89 3.63 1.89 3.465 V V V V %/% Min 1.186 1.15 Typ 1.248 1.235 ±10 Max 1.31 1.31 Unit V V μA Max Unit MHz MHz MHz MHz MHz % of one clock cycle % of one clock cycle % of one clock cycle % of one clock cycle ±ns ±ns VOLTAGE REFERENCE SPECIFICATIONS All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 3. Parameter Internal Reference Range, VREF External Reference Range, VREF External VREF Current1 1 External current required to overdrive internal VREF. INPUT CLOCK SPECIFICATIONS VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V. All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 4. Parameter fCLKIN_A fCLKIN_A fCLKIN_A fCLKIN_B fCLKIN_B CLKIN_A High Time, t9 CLKIN_A Low Time, t10 CLKIN_B High Time, t9 CLKIN_B Low Time, t10 CLKIN_A Peak-to-Peak Jitter Tolerance CLKIN_B Peak-to-Peak Jitter Tolerance 1 Conditions1 SD/ED ED (at 54 MHz) HD ED HD Min Typ 27 54 74.25 27 74.25 40 40 40 40 2 2 SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition. Rev. B | Page 7 of 108 ADV7344 Data Sheet ANALOG OUTPUT SPECIFICATIONS VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V, VREF = 1.235 V (driven externally). All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 5. Parameter Full Drive Output Current (Full-Scale) Low-Drive Output Current (Full-Scale)3 DAC-to-DAC Matching Output Compliance, VOC Output Capacitance, COUT Analog Output Delay4 DAC Analog Output Skew Conditions RSET = 510 Ω, RL = 37.5 Ω DAC 1, DAC 2, DAC 3 enabled1 RSET = 510 Ω, RL = 37.5 Ω DAC 1 enabled only2 RSET = 4.12 kΩ, RL = 300 Ω DAC 1 to DAC 6 Min 33 Typ 34.6 Max 37 Unit mA 33 33.5 37 mA 4.1 4.3 1.0 4.5 mA % V pF pF ns ns ns ns 0 DAC 1, DAC 2, DAC 3 DAC 4, DAC 5, DAC 6 DAC 1, DAC 2, DAC 3 DAC 4, DAC 5, DAC 6 DAC 1, DAC 2, DAC 3 DAC 4, DAC 5, DAC 6 1.4 10 6 8 6 2 1 1 Applicable to full-drive capable DACs only, that is, DAC 1, DAC 2, DAC 3. The recommended method of bringing this typical value back to the ideal value is by adjusting Register 0x0B to the recommended value of 0x12. 3 Applicable to all DACs. 4 Output delay measured from the 50% point of the rising edge of the input clock to the 50% point of the DAC output full-scale transition. 2 DIGITAL INPUT/OUTPUT SPECIFICATIONS—3.3 V VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V. All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 6. Parameter Input High Voltage, VIH Input Low Voltage, VIL Input Leakage Current, IIN Input Capacitance, CIN Output High Voltage, VOH Output Low Voltage, VOL Three-State Leakage Current Three-State Output Capacitance Conditions Min 2.0 Typ Max 0.8 ±10 VIN = VDD_IO 4 ISOURCE = 400 μA ISINK = 3.2 mA VIN = 0.4 V, 2.4 V 2.4 0.4 ±1.0 4 Unit V V μA pF V V μA pF DIGITAL INPUT/OUTPUT SPECIFICATIONS—1.8 V When VDD_IO is set to 1.8 V, all the digital video inputs and control inputs, such as I2C, HS, and VS, should use 1.8 V levels. VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 1.89 V. All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 7. Parameter Input High Voltage, VIH Input Low Voltage, VIL Input Capacitance, CIN Output High Voltage, VOH Output Low Voltage, VOL Three-State Output Capacitance Conditions Min 0.7 VDD_IO Typ Max 0.3 VDD_IO 4 ISOURCE = 400 μA ISINK = 3.2 mA VDD_IO – 0.4 0.4 4 Rev. B | Page 8 of 108 Unit V V pF V V pF Data Sheet ADV7344 DIGITAL TIMING SPECIFICATIONS—3.3 V VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 2.97 V to 3.63 V. All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 8. Parameter VIDEO DATA AND VIDEO CONTROL PORT 2, 3 Data Input Setup Time, t11 4 Data Input Hold Time, t124 Control Input Setup Time, t114 Control Input Hold Time, t124 Control Output Access Time, t134 Control Output Hold Time, t144 PIPELINE DELAY 5 SD1 CVBS/YC Outputs (2×) CVBS/YC Outputs (16×) Component Outputs (2×) Component Outputs (16×) ED1 Component Outputs (1×) Component Outputs (8×) HD1 Component Outputs (1×) Component Outputs (4×) Conditions 1 Min SD ED/HD-SDR ED/HD-DDR ED (at 54 MHz) SD ED/HD-SDR ED/HD-DDR ED (at 54 MHz) SD ED/HD-SDR or ED/HD-DDR ED (at 54 MHz) SD ED/HD-SDR or ED/HD-DDR ED (at 54 MHz) SD ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz) SD ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz) 2.1 2.3 2.3 1.7 1.0 1.1 1.1 1.0 2.1 2.3 1.7 1.0 1.1 1.0 Typ Max 12 10 4.0 3.5 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns SD oversampling disabled SD oversampling enabled SD oversampling disabled SD oversampling enabled 68 67 78 84 Clock cycles Clock cycles Clock cycles Clock cycles ED oversampling disabled ED oversampling enabled 41 46 Clock cycles Clock cycles HD oversampling disabled HD oversampling enabled 40 44 Clock cycles Clock cycles SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate. Video data: C[9:0], Y[9:0], and S[9:0]. 3 Video control: P_HSYNC, P_VSYNC, P_BLANK, S_HSYNC, and S_VSYNC. 4 Guaranteed by characterization. 5 Guaranteed by design. 1 2 Rev. B | Page 9 of 108 ADV7344 Data Sheet DIGITAL TIMING SPECIFICATIONS—1.8 V VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 1.89 V. All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 9. Parameter VIDEO DATA AND VIDEO CONTROL PORT 2, 3 Data Input Setup Time, t11 4 Data Input Hold Time, t124 Control Input Setup Time, t114 Control Input Hold Time, t124 Control Output Access Time, t134 Control Output Hold Time, t144 PIPELINE DELAY 5 SD1 CVBS/YC Outputs (2×) CVBS/YC Outputs (16×) Component Outputs (2×) Component Outputs (16×) ED1 Component Outputs (1×) Component Outputs (8×) HD1 Component Outputs (1×) Component Outputs (4×) Conditions 1 Min SD ED/HD-SDR ED/HD-DDR ED (at 54 MHz) SD ED/HD-SDR ED/HD-DDR ED (at 54 MHz) SD ED/HD-SDR or ED/HD-DDR ED (at 54 MHz) SD ED/HD-SDR or ED/HD-DDR ED (at 54 MHz) SD ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz) SD ED/HD-SDR, ED/HD-DDR or ED (at 54 MHz) 1.4 1.9 1.9 1.6 1.4 1.5 1.5 1.3 1.4 1.2 1.0 1.4 1.0 1.0 Typ Max 13 12 4.0 5.0 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns SD oversampling disabled SD oversampling enabled SD oversampling disabled SD oversampling enabled 68 67 78 84 Clock cycles Clock cycles Clock cycles Clock cycles ED oversampling disabled ED oversampling enabled 41 46 Clock cycles Clock cycles HD oversampling disabled HD oversampling enabled 40 44 Clock cycles Clock cycles SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate. Video data: C[9:0], Y[9:0], and S[9:0]. 3 Video control: P_HSYNC, P_VSYNC, P_BLANK, S_HSYNC, and S_VSYNC. 4 Guaranteed by characterization. 5 Guaranteed by design. 1 2 Rev. B | Page 10 of 108 Data Sheet ADV7344 MPU PORT TIMING SPECIFICATIONS VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, VDD_IO = 1.71 V to 3.63 V. All specifications TMIN to TMAX (−40°C to +85°C), unless otherwise noted. Table 10. Parameter MPU PORT, I2C MODE1 SCL Frequency SCL High Pulse Width, t1 SCL Low Pulse Width, t2 Hold Time (Start Condition), t3 Setup Time (Start Condition), t4 Data Setup Time, t5 SDA, SCL Rise Time, t6 SDA, SCL Fall Time, t7 Setup Time (Stop Condition), t8 1 Conditions See Figure 19 Min Typ 0 0.6 1.3 0.6 0.6 100 Max Unit 400 kHz μs μs μs μs ns ns ns μs 300 300 0.6 Guaranteed by characterization. POWER SPECIFICATIONS VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = 25°C. Table 11. Parameter NORMAL POWER MODE1, 2 IDD3 IDD_IO IAA5 IPLL Conditions Min SD only (16× oversampling) ED only (8× oversampling)4 HD only (4× oversampling)4 SD (16× oversampling) and ED (8× oversampling) SD (16× oversampling) and HD (4× oversampling) Three DACs enabled (ED/HD only) Six DACs enabled (SD only and simultaneous modes ) SD only, ED only, or HD only modes Simultaneous modes SLEEP MODE IDD IAA IDD_IO IPLL 1 Typ Rev. B | Page 11 of 108 Unit 90 65 91 95 122 1 124 140 5 10 mA mA mA mA mA mA mA mA mA mA 5 0.3 0.2 0.1 μA μA μA μA RSET1 = 510 Ω (DAC 1, DAC 2 and DAC 3 operating in full-drive mode). RSET2 = 4.12 kΩ (DAC 4, DAC 5, and DAC 6 operating in low drive mode). 75% color bar test pattern applied to pixel data pins. 3 IDD is the continuous current required to drive the digital core. 4 Applicable to both single data rate (SDR) and dual data rate (DDR) input modes. 5 IAA is the total current required to supply all DACs including the VREF circuitry. 2 Max ADV7344 Data Sheet VIDEO PERFORMANCE SPECIFICATIONS VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, VDD_IO = 3.3 V, TA = 25°C, VREF driven externally. Table 12. Parameter STATIC PERFORMANCE Resolution Integral Nonlinearity Differential Nonlinearity 1 +ve Differential Nonlinearity1 −ve STANDARD DEFINTION (SD) MODE Luminance Nonlinearity Differential Gain Differential Phase SNR SNR ENHANCED DEFINITION (ED) MODE Luma Bandwidth Chroma Bandwidth HIGH DEFINITION (HD) MODE Luma Bandwidth Chroma Bandwidth 1 Conditions Min Typ Max Unit RSET1 = 510 Ω, RL1 = 37.5 Ω RSET2 = 4.12 kΩ, RL2 = 300 Ω RSET1 = 510 Ω, RL1 = 37.5 Ω RSET2 = 4.12 kΩ, RL2 = 300 Ω RSET1 = 510 Ω, RL1 = 37.5 Ω RSET2 = 4.12 kΩ, RL2 = 300 Ω 14 3 4 1 3.2 1.7 1.4 Bits LSBs LSBs LSBs LSBs LSBs LSBs NTSC NTSC Luma ramp Flat field full bandwidth 0.2 0.2 0.3 64.5 79.5 ±% % Degrees dB dB 12.5 5.8 MHz MHz 30 13.75 MHz MHz Differential nonlinearity (DNL) measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal step value. For −ve DNL, the actual step value lies below the ideal step value. Rev. B | Page 12 of 108 Data Sheet ADV7344 TIMING DIAGRAMS The following abbreviations are used in Figure 2 to Figure 13: t9 = clock high time t10 = clock low time t11 = data setup time In addition, refer to Table 36 for the ADV7344 input configuration. CLKIN_A t9 CONTROL INPUTS t12 t10 S_HSYNC, S_VSYNC S9 TO S0/Y9 TO Y0* IN SLAVE MODE Y0 Cb0 Y1 Cr0 t11 Y2 Cb2 Cr2 t13 CONTROL OUTPUTS IN MASTER/SLAVE MODE 06400-002 t14 *SELECTED BY SUBADDRESS 0x01, BIT 7. Figure 2. SD Only, 8-/10-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 000) CLKIN_A t9 CONTROL INPUTS t10 t12 S_HSYNC, S_VSYNC IN SLAVE MODE S9 TO S0/Y9 TO Y0* Y0 Y1 Y2 Y3 Y9 TO Y0/C9 TO C0* Cb0 Cr0 Cb2 Cr2 t11 t13 CONTROL OUTPUTS IN MASTER/SLAVE MODE t14 *SELECTED BY SUBADDRESS 0x01, BIT 7. Figure 3. SD Only, 16-/20-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 000) Rev. B | Page 13 of 108 06400-003 t12 = data hold time t13 = control output access time t14 = control output hold time ADV7344 Data Sheet CLKIN_A t9 CONTROL INPUTS t12 t10 S_HSYNC, S_VSYNC Y9 TO Y2/Y9 TO Y0 G0 C9 TO C2/C9 TO C0 B0 G1 G2 B1 B2 R1 R2 t11 S9 TO S2/S9 TO S0 R0 CONTROL OUTPUTS 06400-004 t14 t13 Figure 4. SD Only, 24-/30-Bit, 4:4:4 RGB Pixel Input Mode (Input Mode 000) CLKIN_A t9 CONTROL INPUTS t12 t10 P_HSYNC, P_VSYNC, P_BLANK Y9 TO Y2/Y9 TO Y0 Y0 Y1 Y2 Y3 Y4 Y5 C9 TO C2/C9 TO C0 Cb0 Cr0 Cb2 Cr2 Cb4 Cr4 t11 t13 06400-005 CONTROL OUTPUTS t14 Figure 5. ED/HD-SDR Only, 16-/20-Bit, 4:2:2 YCrCb Pixel Input Mode (Input Mode 001) CLKIN_A t9 CONTROL INPUTS t12 t10 P_HSYNC, P_VSYNC, P_BLANK Y9 TO Y2/Y9 TO Y0 Y0 Y1 Y2 Y3 Y4 Y5 C9 TO C2/C9 TO C0 Cb0 Cb1 Cb2 Cb3 Cb4 Cb5 Cr2 Cr3 Cr4 Cr5 t11 S9 TO S2/S9 TO S0 Cr0 Cr1 t14 t13 Figure 6. ED/HD-SDR Only, 24-/30-Bit, 4:4:4 YCrCb Pixel Input Mode (Input Mode 001) Rev. B | Page 14 of 108 06400-006 CONTROL OUTPUTS Data Sheet ADV7344 CLKIN_A t9 CONTROL INPUTS t12 t10 P_HSYNC, P_VSYNC, P_BLANK Y9 TO Y2/Y9 TO Y0 G0 G1 G2 G3 G4 G5 C9 TO C2/C9 TO C0 B0 B1 B2 B3 B4 B5 R2 R3 R4 R5 t11 S9 TO S2/S9 TO S0 R0 R1 CONTROL OUTPUTS 06400-007 t14 t13 Figure 7. ED/HD-SDR Only, 24-/30-Bit, 4:4:4 RGB Pixel Input Mode (Input Mode 001) CLKIN_A* t9 CONTROL INPUTS t10 P_HSYNC, P_VSYNC, P_BLANK Y9 TO Y2/Y9 TO Y0 Cb0 t11 Y0 Cr0 Y1 t12 Cb2 Y2 Cr2 t12 t11 t13 CONTROL OUTPUTS 06400-008 t14 *LUMA/CHROMACLOCK RELATIONSHIP CAN BE INVERTED USING SUBADDRESS 0x01, BITS 1 AND 2. Figure 8. ED/HD-DDR Only, 8-/10-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Pixel Input Mode (Input Mode 010) CLKIN_A* t9 Y9 TO Y2/Y9 TO Y0 3FF t11 t10 00 00 XY t12 Cb0 Y0 Cr0 Y1 t12 t11 t13 t14 *LUMA/CHROMA CLOCK RELATIONSHIP CAN BE INVERTED USING SUBADDRESS 0x01, BITS 1 AND 2. 06400-009 CONTROL OUTPUTS Figure 9. ED/HD-DDR Only, 8-/10-Bit, 4:2:2 YCrCb (EAV/SAV) Pixel Input Mode (Input Mode 010) Rev. B | Page 15 of 108 ADV7344 Data Sheet CLKIN_B t9 CONTROL INPUTS t12 t10 P_HSYNC, P_VSYNC, P_BLANK ED/HD INPUT Y9 TO Y2/Y9 TO Y0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 C9 TO C2/C9 TO C0 Cb0 Cr0 Cb2 Cr2 Cb4 Cr4 Cb6 Cb2 Y2 Cr2 t11 CLKIN_A t9 CONTROL INPUTS t10 t12 S_HSYNC, S_VSYNC Y0 Cr0 Y1 06400-010 SD INPUT Cb0 S9 TO S2/S9 TO S0 t11 Figure 10. SD, ED/HD-SDR Input Mode, 16-/20-Bit, 4:2:2 ED/HD and 8-/10-Bit, SD Pixel Input Mode (Input Mode 011) CLKIN_B CONTROL INPUTS t9 P_HSYNC, P_VSYNC, P_BLANK Y9 TO Y2/Y9 TO Y0 t10 ED/HD INPUT Cb0 t11 Y0 Cr0 Y1 t12 Y2 Cb2 Cr2 t12 t11 CLKIN_A t9 CONTROL INPUTS t12 t10 S_HSYNC, S_VSYNC SD INPUT Cr0 Y0 Y1 Cb2 Cr2 Y2 06400-011 Cb0 S9 TO S2/S9 TO S0 t11 Figure 11. SD, ED/HD-DDR Input Mode, 8-/10-Bit, 4:2:2 ED/HD and 8-/10-Bit, SD Pixel Input Mode (Input Mode 100) CLKIN_A CONTROL INPUTS P_HSYNC, P_VSYNC, P_BLANK Y9 TO Y2/Y9 TO Y0 t11 t9 Cb0 t12 t10 Y0 Cr0 Y1 Cb2 Y2 Cr2 t13 t14 06400-012 CONTROL OUTPUTS Figure 12. ED Only (at 54 MHz), 8-/10-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Pixel Input Mode (Input Mode 111) Rev. B | Page 16 of 108 Data Sheet ADV7344 CLKIN_A t9 Y9 TO Y2/Y9 TO Y0 t10 3FF 00 t12 t11 00 XY Cb0 Y0 Cr0 Y1 t13 06400-013 t14 CONTROL OUTPUTS Figure 13. ED Only (at 54 MHz), 8-/10-Bit, 4:2:2 YCrCb (EAV/SAV) Pixel Input Mode (Input Mode 111) Y OUTPUT c P_HSYNC P_VSYNC a P_BLANK Y9 TO Y2/Y9 TO Y0 Y0 Y1 Y2 Y3 C9 TO C2/C9 TO C0 Cb0 Cr0 Cb2 Cr2 b c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING SPECIFICATION SECTION OF THE DATA SHEET. A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME EQUAL TO THE PIPELINE DELAY. Figure 14. ED-SDR, 16-/20-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram Rev. B | Page 17 of 108 06400-014 a AND b AS PER RELEVANT STANDARD. ADV7344 Data Sheet Y OUTPUT c P_HSYNC P_VSYNC a P_BLANK Y9 TO Y2/Y9 TO Y0 Cb0 Cr0 Y0 Y1 b a = 32 CLOCK CYCLES FOR 525p a = 24 CLOCK CYCLES FOR 625p AS RECOMMENDED BY STANDARD b(MIN) = 244 CLOCK CYCLES FOR 525p b(MIN) = 264 CLOCK CYCLES FOR 625p 06400-015 c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING SPECIFICATION SECTION OF THE DATA SHEET. A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME EQUAL TO THE PIPELINE DELAY. Figure 15. ED-DDR, 8-/10-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram Y OUTPUT c P_HSYNC P_VSYNC a P_BLANK Y9 TO Y2/Y9 TO Y0 Y0 Y1 Y2 Y3 C9 TO C2/C9 TO C0 Cb0 Cr0 Cb2 Cr2 b c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING SPECIFICATION SECTION OF THE DATA SHEET. A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT AFTER A TIME EQUAL TO THE PIPELINE DELAY. Figure 16. HD-SDR, 16-/20-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram Rev. B | Page 18 of 108 06400-016 a AND b AS PER RELEVANT STANDARD. Data Sheet ADV7344 Y OUTPUT c P_HSYNC P_VSYNC a P_BLANK Y9 TO Y2/Y9 TO Y0 Cb0 Y0 Cr0 Y1 b a AND b AS PER RELEVANT STANDARD. 06400-017 c = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING SPECIFICATION SECTION OF THE DATA SHEET. A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT AFTER A TIME EQUAL TO THE PIPELINE DELAY. Figure 17. HD-DDR, 8-/10-Bit, 4:2:2 YCrCb (HSYNC/VSYNC) Input Timing Diagram S_HSYNC S_VSYNC Cb Cr Y PAL = 264 CLOCK CYCLES NTSC = 244 CLOCK CYCLES *SELECTED BY SUBADDRESS 0x01, BIT 7. Figure 18. SD Input Timing Diagram (Timing Mode 1) t5 t3 t3 SDA t6 t2 t7 t4 t8 2 Figure 19. MPU Port Timing Diagram (I C Mode) Rev. B | Page 19 of 108 06400-019 t1 SCL Y 06400-018 S9 TO S0/Y9 TO Y0* ADV7344 Data Sheet ABSOLUTE MAXIMUM RATINGS Table 13. Parameter1 VAA to AGND VDD to DGND PVDD to PGND VDD_IO to GND_IO AGND to DGND AGND to PGND AGND to GND_IO DGND to PGND DGND to GND_IO PGND to GND_IO Digital Input Voltage to GND_IO Analog Outputs to AGND Maximum CLKIN Input Frequency Storage Temperature Range (TS) Junction Temperature (TJ) Lead Temperature (Soldering, 10 sec) 1 Rating −0.3 V to +3.9 V −0.3 V to +2.3 V −0.3 V to +2.3 V −0.3 V to +3.9 V −0.3 V to +0.3 V −0.3 V to +0.3 V −0.3 V to +0.3 V −0.3 V to +0.3 V −0.3 V to +0.3 V −0.3 V to +0.3 V −0.3 V to VDD_IO + 0.3 V −0.3 V to VAA 80 MHz −65°C to +150°C 150°C 260°C The ADV7344 is a high performance integrated circuit with an ESD rating of <1 kV, and it is ESD sensitive. Proper precautions should be taken for handling and assembly. THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 14. Thermal Resistance1 Package Type 64-Lead LQFP 1 θJC 11 Unit °C/W Values are based on a JEDEC 4-layer test board. The ADV7344 is an RoHS-compliant, Pb-free product. The lead finish is 100% pure Sn electroplate. The device is suitable for Pbfree applications up to 255°C (±5°C) IR reflow (JEDEC STD-20). It is backward compatible with conventional SnPb soldering processes. The electroplated Sn coating can be soldered with Sn/Pb solder paste at conventional reflow temperatures of 220°C to 235°C. Analog output short circuit to any power supply or common can be of an indefinite duration. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. θJA 47 ESD CAUTION Rev. B | Page 20 of 108 Data Sheet ADV7344 64 63 62 61 60 59 58 S_VSYNC S_HSYNC S0 S1 S2 S3 S4 VDD DGND S5 S6 S7 S8 S9 CLKIN_B GND_IO PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 57 56 55 54 53 52 51 50 49 VDD_IO 1 Y0 2 Y1 3 46 VREF Y2 4 45 COMP1 Y3 5 44 DAC 1 Y4 6 43 DAC 2 Y5 7 Y6 8 Y7 9 PIN 1 ADV7344 TOP VIEW (Not to Scale) 48 SFL 47 RSET1 42 DAC 3 41 VAA 40 AGND VDD 10 39 DAC 4 DGND 11 38 DAC 5 DAC 6 Y8 12 37 Y9 13 36 RSET2 C0 14 35 COMP2 C1 15 34 PVDD C2 16 33 EXT_LF1 06400-021 PGND EXT_LF2 CLKIN_A C9 C8 C7 C6 C5 P_BLANK P_VSYNC P_HSYNC SCL SDA ALSB C4 C3 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Figure 20. Pin Configuration Table 15. Pin Function Descriptions Pin No. 13, 12, 9 to 2 29 to 25, 18 to 14 62 to 58, 55 to 51 30 63 Mnemonic Y9 to Y0 Input/ Output I Description 10-Bit Pixel Port (Y9 to Y0). Y0 is the LSB. Refer to Table 36 for input modes. C9 to C0 I 10-Bit Pixel Port (C9 to C0). C0 is the LSB. Refer to Table 36 for input modes. S9 to S0 I 10-Bit Pixel Port (S9 to S0). S0 is the LSB. Refer to Table 36 for input modes. CLKIN_A CLKIN_B I I 50 S_HSYNC I/O 49 S_VSYNC I/O 22 P_HSYNC I 23 P_VSYNC I 24 48 47 P_BLANK SFL RSET1 I I/O I 36 RSET2 I 45, 35 COMP1, COMP2 DAC 1, DAC 2, DAC 3 O Pixel Clock Input for HD only (74.25 MHz), ED 1 only (27 MHz or 54 MHz), or SD only (27 MHz). Pixel Clock Input for Dual Modes Only. Requires a 27 MHz reference clock for ED operation or a 74.25 MHz reference clock for HD operation. SD Horizontal Synchronization Signal. This pin can also be configured to output an SD, ED, or HD horizontal synchronization signal. See the External Horizontal and Vertical Synchronization Control section. SD Vertical Synchronization Signal. This pin can also be configured to output an SD, ED, or HD vertical synchronization signal. See the External Horizontal and Vertical Synchronization Control section. ED/HD Horizontal Synchronization Signal. See the External Horizontal and Vertical Synchronization Control section. ED/HD Vertical Synchronization Signal. See the External Horizontal and Vertical Synchronization Control section. ED/HD Blanking Signal. See the External Horizontal and Vertical Synchronization Control section. Subcarrier Frequency Lock (SFL) Input. This pin is used to control the amplitudes of the DAC 1, DAC 2, and DAC 3 outputs. For full-drive operation (for example, into a 37.5 Ω load), a 510 Ω resistor must be connected from RSET1 to AGND. For low-drive operation (for example, into a 300 Ω load), a 4.12 kΩ resistor must be connected from RSET1 to AGND. This pin is used to control the amplitudes of the DAC 4, DAC 5, and DAC 6 outputs. A 4.12 kΩ resistor must be connected from RSET2 to AGND. Compensation Pins. Connect a 2.2 nF capacitor from both COMP pins to VAA. O DAC Outputs. Full- and low -drive capable DACs. 44, 43, 42 Rev. B | Page 21 of 108 ADV7344 Pin No. 39, 38, 37 Data Sheet Input/ Output O 21 20 19 Mnemonic DAC 4, DAC 5, DAC 6 SCL SDA ALSB 46 41 10, 56 VREF VAA VDD P P 1 34 VDD_IO PVDD P P 33 31 32 40 11, 57 64 EXT_LF1 EXT_LF2 PGND AGND DGND GND_IO I I G G G G 1 2 I I/O I Description DAC Outputs. Low-drive only capable DACs. I2C Clock Input. I2C Data Input/Output. This signal sets up the LSB 2 of the MPU I2C address (see the Power Supply Sequencing section for more information). Optional External Voltage Reference Input for DACs or Voltage Reference Output. Analog Power Supply (3.3 V). Digital Power Supply (1.8 V). For dual-supply configurations, VDD can be connected to other 1.8 V supplies through a ferrite bead or suitable filtering. Input/Output Digital Power Supply (1.8 V or 3.3 V). PLL Power Supply (1.8 V). For dual-supply configurations, PVDD can be connected to other 1.8 V supplies through a ferrite bead or suitable filtering. External Loop Filter for On-Chip PLL 1. External Loop Filter for On-Chip PLL 2. PLL Ground Pin. Analog Ground Pin. Digital Ground Pin. Input/Output Supply Ground Pin. ED = enhanced definition = 525p and 625p. LSB = least significant bit. In the ADV7344, setting the LSB to 0 sets the I2C address to 0xD4. Setting it to 1 sets the I2C address to 0xD6. Rev. B | Page 22 of 108 Data Sheet ADV7344 TYPICAL PERFORMANCE CHARACTERISTICS ED Pr/Pb RESPONSE. LINEAR INTERP FROM 4:2:2 TO 4:4:4 Y RESPONSE IN ED 8× OVERSAMPLING MODE 1.0 0 0.5 –10 0 –0.5 –30 GAIN (dB) –40 –1.0 –1.5 –50 –60 –2.0 –70 –2.5 0 20 40 60 80 100 120 140 FREQUENCY (MHz) 160 180 200 –3.0 06400-022 –80 Figure 21. ED 8× Oversampling, PrPb Filter (Linear) Response 0 2 4 6 8 FREQUENCY (MHz) 10 06400-025 GAIN (dB) –20 12 Figure 24. ED 8× Oversampling, Y Filter Response (Focus on Pass Band) ED Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4 HD Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4 10 0 0 –10 –10 –20 –20 GAIN (dB) GAIN (dB) –30 –30 –40 –40 –50 –60 –50 –70 –60 –80 –70 0 20 40 60 80 100 120 140 FREQUENCY (MHz) 160 180 200 Figure 22. ED 8× Oversampling, PrPb Filter (SSAF™) Response 0 18.5 37.0 55.5 74.0 92.5 FREQUENCY (MHz) 111.0 129.5 148.0 06400-026 –90 –100 06400-023 –80 Figure 25. HD 4× Oversampling, PrPb (SSAF) Filter Response (4:2:2 Input) HD Pr/Pb RESPONSE. 4:4:4 INPUT MODE Y RESPONSE IN ED 8× OVERSAMPLING MODE 0 0 –10 –10 –20 –20 GAIN (dB) –40 –50 –40 –50 –60 –70 –60 –80 –70 –90 0 20 40 60 80 100 120 140 FREQUENCY (MHz) 160 180 Figure 23. ED 8× Oversampling, Y Filter Response 200 –100 10 20 30 40 50 60 70 80 90 100 110 120 130 140 FREQUENCY (MHz) 06400-027 –80 06400-024 GAIN (dB) –30 –30 Figure 26. HD 4× Oversampling, PrPb (SSAF) Filter Response (4:4:4 Input) Rev. B | Page 23 of 108 ADV7344 Data Sheet Y RESPONSE IN HD 4× OVERSAMPLING MODE 10 0 0 –10 –10 MAGNITUDE (dB) –20 GAIN (dB) –30 –40 –50 –60 –20 –30 –40 –50 –70 –90 –70 0 18.5 37.0 55.5 74.0 92.5 FREQUENCY (MHz) 111.0 129.5 148.0 0 06400-028 –100 4 6 8 FREQUENCY (MHz) 10 12 Figure 30. SD PAL, Luma Low-Pass Filter Response Figure 27. HD 4× Oversampling, Y Filter Response Y PASS BAND IN HD 4x OVERSAMPLING MODE 3.0 2 06400-031 –60 –80 0 1.5 –10 MAGNITUDE (dB) 0 GAIN (dB) –1.5 –3.0 –4.5 –6.0 –20 –30 –40 –50 –7.5 –9.0 –60 –70 –10 –10 –20 –20 MAGNITUDE (dB) 0 –40 –60 –60 2 4 6 8 FREQUENCY (MHz) 10 12 12 –40 –50 0 10 –30 –50 06400-030 MAGNITUDE (dB) 0 –30 4 6 8 FREQUENCY (MHz) Figure 31. SD NTSC, Luma Notch Filter Response Figure 28. HD 4× Oversampling, Y Filter Response (Focus on Pass Band) –70 2 Figure 29. SD NTSC, Luma Low-Pass Filter Response –70 0 2 4 6 8 FREQUENCY (MHz) 10 Figure 32. SD PAL, Luma Notch Filter Response Rev. B | Page 24 of 108 12 06400-033 FREQUENCY (MHz) 0 06400-029 –12.0 27.750 30.063 32.375 34.688 37.000 39.312 41.625 43.937 46.250 06400-032 –10.5 Data Sheet ADV7344 Y RESPONSE IN SD OVERSAMPLING MODE 5 0 4 –10 MAGNITUDE (dB) GAIN (dB) –20 –30 –40 –50 –60 3 2 1 0 0 20 40 60 80 100 120 140 FREQUENCY (MHz) 160 180 –1 06400-034 –80 200 0 5 6 7 Figure 36. SD Luma SSAF Filter, Programmable Gain Figure 33. SD, 16× Oversampling, Y Filter Response 1 0 0 –10 –20 MAGNITUDE (dB) MAGNITUDE (dB) 3 4 FREQUENCY (MHz) 2 1 06400-037 –70 –30 –40 –1 –2 –3 –50 0 2 4 6 8 FREQUENCY (MHz) 10 12 06400-035 –70 –5 0 5 7 6 Figure 37. SD Luma SSAF Filter, Programmable Attenuation Figure 34. SD Luma SSAF Filter Response up to 12 MHz 4 0 2 –10 MAGNITUDE (dB) 0 –2 –4 –6 –20 –30 –40 –50 –8 –12 0 1 2 3 4 FREQUENCY (MHz) 5 6 7 –70 0 2 4 8 6 FREQUENCY (MHz) 10 Figure 38. SD Luma CIF Low-Pass Filter Response Figure 35. SD Luma SSAF Filter, Programmable Responses Rev. B | Page 25 of 108 12 06400-039 –60 –10 06400-036 MAGNITUDE (dB) 3 4 FREQUENCY (MHz) 2 1 06400-038 –4 –60 Data Sheet 0 –10 –10 –20 –20 –30 –40 –50 –60 –60 4 8 6 FREQUENCY (MHz) 10 12 –70 0 Figure 39. SD Luma QCIF Low-Pass Filter Response –10 –10 –20 –20 MAGNITUDE (dB) 0 –30 –40 –60 –60 10 12 0 2 4 8 6 FREQUENCY (MHz) 10 Figure 43. SD Chroma 1.0 MHz Low-Pass Filter Response 0 0 –10 –10 –20 –20 MAGNITUDE (dB) Figure 40. SD Chroma 3.0 MHz Low-Pass Filter Response –30 –40 –40 –60 –60 2 4 8 6 FREQUENCY (MHz) 10 12 06400-042 –50 –70 Figure 41. SD Chroma 2.0 MHz Low-Pass Filter Response –70 0 2 4 8 6 FREQUENCY (MHz) 10 Figure 44. SD Chroma 0.65 MHz Low-Pass Filter Response Rev. B | Page 26 of 108 12 –30 –50 0 12 –70 06400-041 –70 8 6 FREQUENCY (MHz) 10 –40 –50 4 8 6 FREQUENCY (MHz) –30 –50 2 4 Figure 42. SD Chroma 1.3 MHz Low-Pass Filter Response 0 0 2 06400-044 2 12 06400-045 0 MAGNITUDE (dB) –40 –50 –70 MAGNITUDE (dB) –30 06400-043 MAGNITUDE (dB) 0 06400-040 MAGNITUDE (dB) ADV7344 ADV7344 0 –10 –10 –20 –20 –30 –40 –30 –40 –50 –50 –60 –60 –70 0 2 4 8 6 FREQUENCY (MHz) 10 12 –70 0 2 4 8 6 FREQUENCY (MHz) 10 Figure 46. SD Chroma QCIF Low-Pass Filter Response Figure 45. SD Chroma CIF Low-Pass Filter Response Rev. B | Page 27 of 108 12 06400-047 MAGNITUDE (dB) 0 06400-046 MAGNITUDE (dB) Data Sheet ADV7344 Data Sheet MPU PORT DESCRIPTION Devices such as a microprocessor can communicate with the ADV7344 through a 2-wire serial l(I2C-compatible) bus. After power-up or reset, the MPU port is configured for I2C operation. I2C OPERATION The ADV7344 supports a 2-wire serial (I2C-compatible) microprocessor bus driving multiple peripherals. This port operates in an open-drain configuration. Two wires, serial data (SDA) and serial clock (SCL), carry information between any device connected to the bus and the ADV7344. The slave address of the ADV7344 depends on the operation (read or write) and the state of the ALSB pin (0 or 1). See Table 16 and Figure 47. The LSB sets either a read or a write operation. Logic 1 corresponds to a read operation, and Logic 0 corresponds to a write operation. A1 is controlled by setting the ALSB pin of the ADV7344 to Logic 0 or Logic 1. Table 16. ADV7344 I2C Slave Addresses Device ALSB Operation Slave Address ADV7344 0 0 1 1 Write Read Write Read 0xD4 0xD5 0xD6 0xD7 1 1 0 1 0 1 A1 ADDRESS CONTROL SET UP BY ALSB 06400-048 READ/WRITE CONTROL WRITE READ Logic 0 on the LSB of the first byte means that the master writes information to the peripheral. Logic 1 on the LSB of the first byte means that the master reads information from the peripheral. The ADV7344 acts as a standard slave device on the bus. The data on the SDA pin is eight bits long, supporting the 7-bit addresses plus the R/W bit. It interprets the first byte as the device address and the second byte as the starting subaddress. There is a subaddress auto-increment facility. This allows data to be written to or read from registers in ascending subaddress sequence starting at any valid subaddress. A data transfer is always terminated by a stop condition. The user can also access any unique subaddress register on a one-by-one basis without updating all the registers. Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, they cause an immediate jump to the idle condition. During a given SCL high period, the user should issue only a start condition, a stop condition, or a stop condition followed by a start condition. If an invalid subaddress is issued by the user, the ADV7344 does not issue an acknowledge but returns to the idle condition. If the user uses the auto-increment method of addressing the encoder and exceeds the highest subaddress, the following actions are taken: X 0 1 responds by pulling the data line low during the ninth clock pulse. This is known as an acknowledge bit. All other devices withdraw from the bus at this point and maintain an idle condition. The idle condition occurs when the device monitors the SDA and SCL lines waiting for the start condition and the correct transmitted address. The R/W bit determines the direction of the data. Figure 47. ADV7344 I2C Slave Address • Analog Devices, Inc., strongly recommends tying ALSB to VDD_IO. If this is not done, a power supply sequence (PSS) may be required. For more information on the PSS, see the Power Supply Sequencing section. The various devices on the bus use the following protocol. The master initiates a data transfer by establishing a start condition, defined by a high-to-low transition on SDA while SCL remains high. This indicates that an address/data stream follows. All peripherals respond to the start condition and shift the next eight bits (7-bit address plus the R/W bit).The bits are transferred from MSB down to LSB. The peripheral that recognizes the transmitted address • In read mode, the highest subaddress register contents are output until the master device issues a no acknowledge. This indicates the end of a read. A no acknowledge condition occurs when the SDA line is not pulled low on the ninth pulse. In write mode, the data for the invalid byte is not loaded into any subaddress register, a no acknowledge is issued by the ADV7344, and the part returns to the idle condition. Figure 48 shows an example of data transfer for a write sequence and the start and stop conditions. Figure 49 shows bus write and read sequences. Rev. B | Page 28 of 108 Data Sheet ADV7344 SCL S 9 1–7 8 START ADDR R/W ACK 9 1–7 8 SUBADDRESS ACK 1–7 DATA 8 9 ACK P STOP 06400-049 SDA Figure 48. I2C Data Transfer S SLAVE ADDR A(S) SUBADDR A(S) DATA S SLAVE ADDR A(S) S = START BIT P = STOP BIT A(S) P LSB = 1 LSB = 0 READ SEQUENCE DATA A(S) SUBADDR A(S) S SLAVE ADDR A(S) = ACKNOWLEDGE BY SLAVE A(M) = ACKNOWLEDGE BY MASTER A(S) DATA A(M) A (S) = NO-ACKNOWLEDGE BY SLAVE A (M) = NO-ACKNOWLEDGE BY MASTER Figure 49. I2C Read and Write Sequence Rev. B | Page 29 of 108 DATA A(M) P 06400-050 WRITE SEQUENCE ADV7344 Data Sheet REGISTER MAP ACCESS A microprocessor can read from or write to all registers of the ADV7344 via the MPU port, except for registers that are specified as read-only or write-only registers. The subaddress register determines which register the next read or write operation accesses. All communication through the MPU port starts with an access to the subaddress register. A read/write operation is then performed from/to the target address, which increments to the next address until the transaction is complete. REGISTER PROGRAMMING Table 17 to Table 35 describe the functionality of each register. All registers can be read from as well as written to, unless otherwise stated. SUBADDRESS REGISTER (SR7 TO SR0) The subaddress register is an 8-bit write-only register. After the MPU port is accessed and a read/write operation is selected, the subaddress is set up. The subaddress register determines to or from which register the operation takes place. Table 17. Register 0x00 SR7 to SR0 0x00 Register Power mode Bit Description Sleep mode. With this control enabled, the current consumption is reduced to µA level. All DACs and the internal PLL circuits are disabled. Registers can be read from and written to in sleep mode. 7 6 Bit Number 5 4 3 2 0 1 0 1 DAC 2: power on/off. 0 1 DAC 1: power on/off. 0 1 DAC 6: power on/off. 0 1 DAC 5: power on/off. 0 1 0 1 Rev. B | Page 30 of 108 0 0 1 PLL and oversampling control. This control allows the internal PLL 1 circuit to be powered down and the oversampling to be switched off. DAC 3: power on/off. DAC 4: power on/off. 1 Register Setting Sleep mode off Sleep mode on PLL 1 on PLL 1 off DAC 3 off DAC 3 on DAC 2 off DAC 2 on DAC 1 off DAC 1 on DAC 6 off DAC 6 on DAC 5 off DAC 5 on DAC 4 off DAC 4 on Reset Value 0x12 Data Sheet ADV7344 Table 18. Register 0x01 to Register 0x09 SR7 to SR0 0x01 Register Mode select Bit Description Reserved. DDR clock edge alignment (only used for ED- 2 and HD-DDR modes) 7 Reserved Input mode (see Subaddress 0x30, Bits[7:3] for ED/HD standard selection) Y/C/S bus swap 0x02 Mode Register 0 6 Bit Number 1 5 4 3 2 1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 SD input only. ED/HD-SDR input only. ED/HD-DDR input only. SD and ED/HD-SDR. SD and ED/HD-DDR. Reserved. Reserved. ED only (at 54 MHz). Allows data to be applied to data ports in various configurations (SD feature only). 0 1 3 x x x x 0x03 0xF0 x x x x x x x x x x LSBs for GY. LSBs for RV. LSBs for BU. LSBs for GV. LSBs for GU. Bits[9:2 ] for GY. Bits[9:2] for GU. Bits[9:2] for GV. Bits[9:2] for BU. Bits[9:2] for RV. 0 1 0 1 SD sync output enable 2 0x20 0 1 RGB/YPrPb output select 1 0 must be written to this bit. Default. If using HD HSYNC/VSYNCinterlace mode, setting this bit to 1 is recommended (seethe HD Interlace External P_HSYNC and P_VSYNC Considerations section for more information). Disabled. Enabled. Disable manual CSC matrix adjust. Enable manual CSC matrix adjust. No sync. Sync on all RGB outputs. RGB component outputs. YPrPb component outputs. No sync output. Output SD syncs on HSYNC and VSYNC pins. No sync output. Output ED/HD syncs on HSYNC and VSYNC pins. 0 1 Sync on RGB. 0 1 0 1 ED/HD CSC Matrix 0 ED/HD CSC Matrix 1 ED/HD CSC Matrix 2 ED/HD CSC Matrix 3 ED/HD CSC Matrix 4 ED/HD CSC Matrix 5 ED/HD CSC Matrix 6 0 0 1 Manual CSC matrix adjust 0x05 0x06 0x07 0x08 0x09 Reset Value 0x00 Chroma clocked in on rising clock edge; luma clocked in on falling clock edge. Reserved. Reserved. Luma clocked in on rising clock edge; chroma clocked in on falling clock edge. 0 1 0 1 0 1 0 1 Test pattern black bar 3 0x03 0x04 Register Setting 0 0 0 0 0 1 1 1 1 Reserved HD interlace external VSYNC and HSYNC ED/HD sync output enable 0 0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x = Logic 0 or Logic 1. ED = enhanced definition = 525p and 625p. Subaddress 0x31, Bit 2 must also be enabled (ED/HD). Subaddress 0x84, Bit 6 must also be enabled (SD). Rev. B | Page 31 of 108 0x4E 0x0E 0x24 0x92 0x7C ADV7344 Data Sheet Table 19. Register 0x0A to Register 0x10 SR7 to SR0 0x0A Register DAC 4, DAC 5, DAC 6 output levels Bit Description Positive gain to DAC output voltage Negative gain to DAC output voltage 0x0B DAC 1, DAC 2, DAC 3 output levels Positive gain to DAC output voltage Negative gain to DAC output voltage 0x0D DAC power mode 7 0 0 0 … 0 0 1 1 1 … 1 0 0 0 … 0 0 1 1 1 … 1 6 0 0 0 … 0 1 1 1 0 … 1 0 0 0 … 0 1 1 1 0 … 1 5 0 0 0 … 1 0 0 0 0 … 1 0 0 0 … 1 0 0 0 0 … 1 Bit Number 4 3 0 0 0 0 0 0 … … 1 1 0 0 0 0 0 0 0 0 … … 1 1 0 0 0 0 0 0 … … 1 1 0 0 0 0 0 0 0 0 … … 1 1 2 0 0 0 … 1 0 0 0 0 … 1 0 0 0 … 1 0 0 0 0 … 1 DAC 1 low power enable DAC 2 low power enable Cable detection Reserved DAC 1 cable detect (read only) Register Setting 0% +0.018% +0.036% … +7.382% +7.5% −7.5% −7.382% −7.364% … −0.018% 0% +0.018% +0.036% … +7.382% +7.5% −7.5% −7.382% −7.364% … −0.018% DAC 1 low power disabled DAC 1 low power enabled DAC 2 low power disabled DAC 2 low power enabled DAC 3 low power disabled DAC 3 low power enabled 0 1 Cable detected on DAC 1 DAC 1 unconnected Cable detected on DAC 2 DAC 2 unconnected 0 1 0 0 0 0 0 1 Reserved Unconnected DAC autopower-down 0 0 1 0 0 0 Rev. B | Page 32 of 108 Reset Value 0x00 0x00 0x00 0 DAC 2 cable detect (read only) Reserved 0 0 1 0 … 1 0 0 1 0 … 1 0 1 0 … 1 0 0 1 0 … 1 0 1 0 1 DAC 3 low power enable 0x10 1 0 0 1 … 1 0 0 0 1 … 1 0 0 1 … 1 0 0 0 1 … 1 0 DAC autopower-down disable DAC autopower-down enable 0x00 Data Sheet ADV7344 Table 20. Register 0x12 to Register 0x17 SR7 to SR0 0x12 0x13 0x14 0x15 0x16 Register Pixel port readback (S bus MSBs) Pixel port readback (Y bus MSBs) Pixel port readback (C bus MSBs) Pixel port readback (S, Y, and C bus LSBs) Control port readback Bit Description S[9:2] readback Y[9:2] readback C[9:2] readback C[1:0] readback Y[1:0] readback S[1:0] readback Reserved P_BLANK P_VSYNC 7 x x x 6 x x x Bit Number 1 5 4 3 2 x x x x x x x x x x x x x x 0 1 Reset Value 0xXX 0xXX 0xXX 0xXX x Read only. 0xXX x x x x x S_HSYNC SFL Reserved Reserved Software reset Reserved Register Setting Read only. Read only. Read only. Read only. 0 S_VSYNC Software reset 0 x x x x x P_HSYNC 0x17 1 x x x x x 0 0 0 0 1 0 0 0 x = Logic 0 or Logic 1. Rev. B | Page 33 of 108 0 0 0 0x00 Writing a 1 resets the device; this is a self-clearing bit. ADV7344 Data Sheet Table 21. Register 0x30 SR7 to SR0 0x30 Register ED/HD Mode Register 1 Bit Description ED/HD output standard. 7 6 Bit Number 5 4 3 2 ED/HD input synchronization format 1 0 0 0 0 1 1 0 1 1 0 1 ED/HD standard 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 2 0 0 1 0 10011–11111 Register Setting EIA770.2 output EIA770.3 output EIA770.1 output. Output levels for full input range. Reserved External HSYNC, VSYNC and field inputs 1 Embedded EAV/SAV codes SMPTE 293M,, ITU-BT.1358 BTA-1004, ITU-BT.1362 ITU-BT.1358 ITU-BT.1362 SMPTE 296M-1, SMPTE 274M-2 SMPTE 296M-3 SMPTE 296M-4, SMPTE 274M-5 SMPTE 296M-6 SMPTE 296M-7, SMPTE 296M-8 SMPTE 240M Reserved Reserved SMPTE 274M-4, SMPTE 274M-5 SMPTE 274M-6 SMPTE 274M-7, SMPTE 274M-8 SMPTE 274M-9 SMPTE 274M-10, SMPTE 274M-11 ITU-R BT.709Reserved Note ED HD 525p at 59.94 Hz 525p at 59.94 Hz 625p at 50 Hz 625p at 50 Hz 720p at 60/59.94 Hz 720p at 50 Hz 720p at 30/29.97 Hz 720p at 25 Hz 720p at 24/23.98 Hz 1035i at 60/59.94 Hz 1080i at 30/29.97 Hz 1080i at 25 Hz 1080p at 30/29.97 Hz 1080p at 25 Hz 1080p at 24/23.98 Hz 1080Psf at 24 Hz Synchronization can be controlled with a combination of either HSYNC and VSYNC inputs or HSYNC and field inputs, depending on Subaddress 0x34, Bit 6. See the HD Interlace External P_HSYNC and P_VSYNC Considerations section for more information. Rev. B | Page 34 of 108 Reset Value 0x00 Data Sheet ADV7344 Table 22. Register 0x31 to Register 0x33 SR7 to SR0 0x31 Register ED/HD Mode Register 2 Bit Description ED/HD pixel data valid 7 6 Bit Number 5 4 3 2 Reserved ED/HD test pattern enable 0 1 0 1 ED/HD undershoot limiter 0 0 1 1 ED/HD sharpness filter 0 0 0 0 1 ED/HD Y delay with respect to the falling edge of HSYNC 0 0 0 0 1 ED/HD CGMS 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 ED/HD Cr/Cb sequence 0 1 Reserved ED/HD input format 0 0 1 Sinc compensation filter on DAC 1, DAC 2, DAC 3 0 1 Reserved ED/HD chroma SSAF 0 0 1 ED/HD chroma input ED/HD double buffering 0 1 0 1 0 0 1 ED/HD CGMS CRC ED/HD Mode Register 4 0 1 0 1 0 1 ED/HD color delay with respect to the falling edge of HSYNC 0x33 Register Setting Pixel data valid off Pixel data valid on Reset Value 0x00 0 ED/HD VBI open ED/HD Mode Register 3 0 0 1 0 1 ED/HD test pattern hatch/field 0x32 1 0 1 0 1 Rev. B | Page 35 of 108 HD test pattern off HD test pattern on Hatch Field/frame Disabled Enabled Disabled −11 IRE −6 IRE −1.5 IRE Disabled Enabled 0 clock cycles 1 clock cycle 2 clock cycles 3 clock cycles 4 clock cycles 0 clock cycles 1 clock cycle 2 clock cycles 3 clock cycles 4 clock cycles Disabled Enabled Disabled Enabled Cb after falling edge of HSYNC Cr after falling edge of HSYNC 0 must be written to this bit 8-bit input 10-bit input Disabled Enabled 0 must be written to this bit Disabled Enabled 4:4:4 4:2:2 Disabled Enabled 0x00 0x68 ADV7344 Data Sheet Table 23. Register 0x34 to Register 0x35 SR7 to SR0 0x34 Register ED/HD Mode Register 5 Bit Description ED/HD timing reset 7 6 Bit Number 5 4 3 2 1 0 0 1 0 1 ED/HD HSYNC control 1 ED/HD blank polarity 0 P_BLANK active high 1 ED Macrovision® enable 0x35 ED/HD Mode Register 6 Macrovision disabled Macrovision enabled 0 must be written to this bit 0 0 1 ED/HD VSYNC/field input Horizontal/vertical counters 2 0 = field input 1 = VSYNC input 0 1 Update field/line counter Field/line counter free running Reserved ED/HD RGB input enable 0 0 1 ED/HD sync on PrPb 0 1 ED/HD color DAC swap 0 1 ED/HD gamma correction curve select 0 1 ED/HD gamma correction enable 0 1 ED/HD adaptive filter mode ED/HD adaptive filter enable 1 2 P_BLANK active low 0 1 Reserved Reset Value 0x48 VSYNC output control (refer to Table 57) 0 1 ED/HD VSYNC control1 Register Setting Internal ED/HD timing counters enabled Resets the internal ED/HD timing counters HSYNC output control (refer to Table 56) 0 1 0 1 0x00 Disabled Enabled Disabled Enabled DAC 2 = Pb, DAC 3 = Pr DAC 2 = Pr, DAC 3 = Pb Gamma correction Curve A Gamma correction Curve B Disabled Enabled Mode A Mode B Disabled Enabled Used in conjunction with ED/HD sync output enable in Subaddress 0x02, Bit 7 = 1. When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so. Rev. B | Page 36 of 108 Data Sheet ADV7344 Table 24. Register 0x36 to Register 0x43 SR7 to SR0 0x36 0x37 0x38 0x39 0X3A Register ED/HD Y level 2 ED/HD Cr level2 ED/HD Cb level2 ED/HD Mode Register 7 ED/HD Mode Register 8 Bit Description ED/HD Test Pattern Y level ED/HD Test Pattern Cr level ED/HD Test Pattern Cb level Reserved ED/HD EIA/CEA-861B synchronization compliance 7 x x x Reserved INV_PHSYNC_POL 0 6 x x x Bit Number 1 4 3 x x x x x x 0 0 5 x x x 2 x x x 0 0x41 0x42 0x43 1 2 ED/HD CGMS Data 0 ED/HD CGMS Data 1 ED/HD CGMS Data 2 Register Setting Y level value Cr level value Cb level value Reset Value 0xA0 0x80 0x80 0x00 Disabled Enabled 0 0 1 Disabled Enabled Disabled Enabled Disabled Enabled 0x00 0x00 0 1 INV_PBLANK_POL ED/HD sharpness filter gain 0 x x x 0 0 1 INV_PVSYNC_POL 0x40 1 x x x 0 0 1 Reserved ED/HD sharpness filter gain, Value A 0 0 0 ED/HD sharpness filter gain, Value B ED/HD CGMS data bits 0 0 … 0 1 … 1 0 0 0 … 1 0 … 1 0 0 0 … 1 0 … 1 0 ED/HD CGMS data bits C15 C14 ED/HD CGMS data bits C7 C6 0 0 0 0 … 0 1 … 1 0 0 … 1 0 … 1 0 0 … 1 0 … 1 0 1 … 1 0 … 1 0 1 … 1 0 … 1 0 C19 C18 C17 C16 Gain A = 0 Gain A = +1 … Gain A = +7 Gain A = −8 … Gain A = −1 Gain B = 0 Gain B = +1 … Gain B = +7 Gain B = −8 … Gain B = −1 CGMS C19 to C16 C13 C12 C11 C10 C9 C8 CGMS C15 to C8 0x00 C5 C4 C3 C2 C1 C0 CGMS C7 to C0 0x00 0x00 x = Logic 0 or Logic 1. For use with ED/HD internal test patterns only (Subaddress 0x31, Bit 2 = 1). Table 25. Register 0x44 to Register 0x57 SR7 to SR0 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 Register ED/HD Gamma A0 ED/HD Gamma A1 ED/HD Gamma A2 ED/HD Gamma A3 ED/HD Gamma A4 ED/HD Gamma A5 ED/HD Gamma A6 ED/HD Gamma A7 ED/HD Gamma A8 ED/HD Gamma A9 ED/HD Gamma B0 ED/HD Gamma B1 ED/HD Gamma B2 Bit Description ED/HD Gamma Curve A (Point 24) ED/HD Gamma Curve A (Point 32) ED/HD Gamma Curve A (Point 48) ED/HD Gamma Curve A (Point 64) ED/HD Gamma Curve A (Point 80) ED/HD Gamma Curve A (Point 96) ED/HD Gamma Curve A (Point 128) ED/HD Gamma Curve A (Point 160) ED/HD Gamma Curve A (Point 192) ED/HD Gamma Curve A (Point 224) ED/HD Gamma Curve B (Point 24) ED/HD Gamma Curve B (Point 32) ED/HD Gamma Curve B (Point 48) 7 x x x x x x x x x x x x x Rev. B | Page 37 of 108 6 x x x x x x x x x x x x x 5 x x x x x x x x x x x x x Bit Number 1 4 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 1 x x x x x x x x x x x x x 0 x x x x x x x x x x x x x Register Setting A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 B0 B1 B2 Reset Value 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 ADV7344 SR7 to SR0 0x51 0x52 0x53 0x54 0x55 0x56 0x57 1 Register ED/HD Gamma B3 ED/HD Gamma B4 ED/HD Gamma B5 ED/HD Gamma B6 ED/HD Gamma B7 ED/HD Gamma B8 ED/HD Gamma B9 Data Sheet Bit Description ED/HD Gamma Curve B (Point 64) ED/HD Gamma Curve B (Point 80) ED/HD Gamma Curve B (Point 96) ED/HD Gamma Curve B (Point 128) ED/HD Gamma Curve B (Point 160) ED/HD Gamma Curve B (Point 192) ED/HD Gamma Curve B (Point 224) 7 x x x x x x x 6 x x x x x x x 5 x x x x x x x Bit Number 1 4 3 2 x x x x x x x x x x x x x x x x x x x x x 1 x x x x x x x Register Setting B3 B4 B5 B6 B7 B8 B9 0 x x x x x x x Reset Value 0x00 0x00 0x00 0x00 0x00 0x00 0x00 x = Logic 0 or Logic 1. Table 26. Register 0x58 to Register 0x5D SR7 to SR0 0x58 0x59 Register ED/HD Adaptive Filter Gain 1 ED/HD Adaptive Filter Gain 2 Bit Description ED/HD Adaptive Filter Gain 1, Value A 7 6 ED/HD Adaptive Filter Gain 1, Value B 0 0 … 0 1 … 1 0 0 … 1 0 … 1 ED/HD Adaptive Filter Gain 2, Value A ED/HD Adaptive Filter Gain 2, Value B 0x5A ED/HD Adaptive Filter Gain 3 0 0 … 0 1 … 1 0 0 … 1 0 … 1 ED/HD Adaptive Filter Gain 3, Value A ED/HD Adaptive Filter Gain 3, Value B 0 0 … 0 1 … 1 Rev. B | Page 38 of 108 0 0 … 1 0 … 1 Bit Number 1 5 4 3 2 0 0 0 0 … … 0 1 1 0 … … 1 1 0 0 0 1 … … 1 1 0 0 … … 1 1 0 0 0 0 … … 0 1 1 0 … … 1 1 0 0 0 1 … … 1 1 0 0 … … 1 1 0 0 0 0 … … 0 1 1 0 … … 1 1 0 0 0 1 … … 1 1 0 0 … … 1 1 1 0 0 … 1 0 … 1 0 0 1 … 1 0 … 1 0 0 … 1 0 … 1 0 1 … 1 0 … 1 0 0 … 1 0 … 1 0 1 … 1 0 … 1 Register Setting Gain A = 0 Gain A = +1 … Gain A = +7 Gain A = −8 … Gain A = −1 Gain B = 0 Gain B = +1 … Gain B = +7 Gain B = −8 … Gain B = −1 Gain A = 0 Gain A = +1 … Gain A = +7 Gain A = −8 … Gain A = −1 Gain B = 0 Gain B = +1 … Gain B = +7 Gain B = −8 … Gain B = −1 Gain A = 0 Gain A = +1 … Gain A = +7 Gain A = −8 … Gain A = −1 Gain B = 0 Gain B = +1 … Gain B = +7 Gain B = −8 … Gain B = −1 Reset Value 0x00 0x00 0x00 Data Sheet SR7 to SR0 0x5B 0x5C 0x5D 1 Register ED/HD Adaptive Filter Threshold A ED/HD Adaptive Filter Threshold B ED/HD Adaptive Filter Threshold C ADV7344 Bit Description ED/HD Adaptive Filter Threshold A 7 x 6 x Bit Number 1 5 4 3 2 x x x x ED/HD Adaptive Filter Threshold B x x x x x x x x ED/HD Adaptive Filter Threshold C x x x x x x x x 1 x 0 x Register Setting Threshold A Threshold B Threshold C Reset Value 0x00 0x00 0x00 x = Logic 0 or Logic 1. Table 27. Register 0x5E to Register 0x6E SR7 to SR0 0x5E Register ED/HD CGMS Type B Register 0 Bit Description ED/HD CGMS Type B enable 7 6 5 Bit Number 4 3 2 ED/HD CGMS Type B CRC enable 0x5F 0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E ED/HD CGMS Type B Register 1 ED/HD CGMS Type B Register 2 ED/HD CGMS Type B Register 3 ED/HD CGMS Type B Register 4 ED/HD CGMS Type B Register 5 ED/HD CGMS Type B Register 6 ED/HD CGMS Type B Register 7 ED/HD CGMS Type B Register 8 ED/HD CGMS Type B Register 9 ED/HD CGMS Type B Register 10 ED/HD CGMS Type B Register 11 ED/HD CGMS Type B Register 12 ED/HD CGMS Type B Register 13 ED/HD CGMS Type B Register 14 ED/HD CGMS Type B Register 15 ED/HD CGMS Type B Register 16 ED/HD CGMS Type B header bits ED/HD CGMS Type B data bits. ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits ED/HD CGMS Type B data bits 1 0 0 1 0 1 Register Setting Disabled Enabled Disabled Enabled H5 to H0 Reset Value 0x00 H5 H4 H3 H2 H1 H0 P7 P6 P5 P4 P3 P2 P1 P0 P7 to P0 0x00 P15 P14 P13 P12 P11 P10 P9 P8 P15 to P8 0x00 P23 P22 P21 P20 P19 P18 P17 P16 P23 to P16 0x00 P31 P30 P29 P28 P27 P26 P25 P24 P31 to P24 0x00 P39 P38 P37 P36 P35 P34 P33 P32 P39 to P32 0x00 P47 P46 P45 P44 P43 P42 P41 P40 P47 to P40 0x00 P55 P54 P53 P52 P51 P50 P49 P48 P55 to P48 0x00 P63 P62 P61 P60 P59 P58 P57 P56 P63 to P56 0x00 P71 P70 P69 P68 P67 P66 P65 P64 P71 to P64 0x00 P79 P78 P77 P76 P75 P74 P73 P72 P79 to P72 0x00 P87 P86 P85 P84 P83 P82 P81 P80 P87 to P80 0x00 P95 P94 P93 P92 P91 P90 P89 P88 P95 to P88 0x00 P103 P102 P101 P100 P99 P98 P97 P96 P103 to P96 0x00 P111 P110 P109 P108 P107 P106 P105 P104 P111 to P104 0x00 P119 P118 P117 P116 P115 P114 P113 P112 P119 to P112 0x00 P127 P126 P125 P124 P123 P122 P121 P120 P127 to P120 0x00 Rev. B | Page 39 of 108 ADV7344 Data Sheet Table 28. Register 0x80 to Register 0x83 SR7 to SR0 0x80 Register SD Mode Register 1 Bit Description SD standard 7 6 Bit Number 5 4 3 2 SD luma filter SD chroma filter 0x82 SD Mode Register 2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 SD PrPb SSAF 0 1 0 1 SD square pixel mode 0 1 SD VCR FF/RW sync 0 1 SD pixel data valid SD Mode Register 3 0 1 0 1 SD pedestal on YPrPb output 0 1 SD Output Levels Y 0 1 SD Output Levels PrPb 0 0 1 1 SD VBI open 0 1 SD closed captioning field control Reserved 0 1 0 1 0 0 1 1 0 1 0 1 0 Rev. B | Page 40 of 108 Reset Value 0x10 0x0B Refer to Table 37 0 1 SD pedestal Register Setting NTSC PAL B/D/G/H/I PAL M PAL N LPF NTSC LPF PAL Notch NTSC Notch PAL SSAF luma Luma CIF Luma QCIF Reserved 1.3 MHz 0.65 MHz 1.0 MHz 2.0 MHz Reserved Chroma CIF Chroma QCIF 3.0 MHz Disabled Enabled Refer to Table 37 0 1 SD DAC Output 2 SD active video edge control 0 0 1 0 1 0 1 0 1 0 1 0 1 SD DAC Output 1 0x83 1 0 0 1 1 Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled No pedestal on YPrPb 7.5 IRE pedestal on YPrPb Y = 700 mV/300 mV Y = 714 mV/286 mV 700 mV p-p (PAL), 1000 mV p-p (NTSC) 700 mV p-p 1000 mV p-p 648 mV p-p Disabled Enabled Closed captioning disabled Closed captioning on odd field only Closed captioning on even field only Closed captioning on both fields Reserved 0x04 Data Sheet ADV7344 Table 29. Register 0x84 to Register 0x89 SR7 to SR0 0x84 Register SD Mode Register 4 Bit Description Reserved SD SFL/SCR/TR mode select 7 6 Bit Number 5 4 3 2 1 0 1 0 1 SD active video length 0 1 SD chroma 0 1 SD burst 0 1 SD color bars SD luma/chroma swap 0x86 SD Mode Register 5 0 1 0 1 NTSC color subcarrier adjust (delay from the falling edge of the output HSYNC pulse to the start of color burst) Reserved SD EIA/CEA-861B synchronization compliance 0x87 SD Mode Register 6 0 0 1 0 1 0 1 1 0 1 Disabled. SFL mode enabled. 720 pixels. 710 (NTSC), 702 (PAL). Chroma enabled. Chroma disabled. Enabled. Disabled. Disabled. Enabled. DAC 2 = luma, DAC 3 = chroma . DAC 2 = chroma, DAC 3 = luma. 5.17 μs. 5.31 μs. 5.59 μs (must be set for Macrovision compliance). Reserved. Reset Value 0x00 0x02 0 Disabled. Enabled. 0 0 1 0 1 SD luma and color scale control 0 1 SD luma scale saturation 0 1 SD hue adjust 0 1 SD brightness 0 1 SD luma SSAF gain 0 1 SD input standard autodetect Reserved. SD RGB input enable Register Setting 0 Reserved SD horizontal/vertical counter mode 1 SD RGB color swap 0 0 0 1 0 0 1 Rev. B | Page 41 of 108 Update field/line counter. Field/line counter free running. Normal. Color reversal enabled. Disabled. Enabled. Disabled. Enabled. Disabled. Enabled. Disabled. Enabled. Disabled. Enabled. Disabled. Enabled. 0 must be written to this bit. SD YCrCb input. SD RGB input. 0x00 ADV7344 SR7 to SR0 0x88 Register SD Mode Register 7 Data Sheet Bit Description Reserved SD noninterlaced mode 7 6 Bit Number 5 4 3 2 SD digital noise reduction 0 0 1 0 1 0 1 1 0 1 0 1 SD undershoot limiter 0 0 1 1 Reserved SD black burst output on DAC luma 1 0 1 0 1 0 0 1 SD chroma delay Reserved Disabled. Enabled. Disabled. Enabled. 8-bit YCbCr input. 16-bit YCbCr input. 10-bit YCbCr input/16-/24-/30-bit RGB input. 20-bit YCbCr input. Disabled. Enabled. Disabled. Enabled. Gamma Correction Curve A. Gamma Correction Curve B. Disabled. −11 IRE. −6 IRE. −1.5 IRE. 0 must be written to this bit. Disabled. Enabled. Disabled. Four clock cycles. Eight clock cycles. Reserved. 0 must be written to these bits. 0 1 SD gamma correction enable SD Mode Register 8 Register Setting 0 1 SD input format 0x89 0 0 0 1 SD double buffering SD gamma correction curve select 1 0 0 1 1 0 0 1 0 1 0 Reset Value 0x00 0x00 When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so. Table 30. Register 0x8A to Register 0x98 SR7 to SR0 0x8A Register SD Timing Register 0 Bit Description SD slave/master mode 7 6 Bit Number 1 5 4 3 2 1 0 0 1 1 0 1 0 1 SD timing mode Reserved SD luma delay Register Setting Slave mode. Master mode. Mode 0. Mode 1. Mode 2. Mode 3. 1 0 0 1 1 SD minimum luma value SD timing reset 0 0 1 0 1 0 1 0 1 0 1 Rev. B | Page 42 of 108 No delay. Two clock cycles. Four clock cycles. Six clock cycles. −40 IRE. −7.5 IRE. Normal operation Freezes the counters; this bit must be set back to zero to reset the counters and resume operation. Reset Value 0x08 Data Sheet SR7 to SR0 0x8B Register SD Timing Register 1 (applicable in master modes only, that is, Subaddress 0x8A, Bit 0 = 1) ADV7344 Bit Description SD HSYNC width 7 6 0 0 1 1 SD HSYNC to VSYNC delay SD HSYNC to VSYNC rising edge delay (Mode 1 only) SD VSYNC width (Mode 2 only) SD HSYNC to pixel data adjust 0x8C SD FSC Register 0 3 0x8D SD FSC Register 13 0x8E SD FSC Register 23 0x8F SD FSC Register 33 0x90 0x91 SD FSC phase SD closed captioning 0x92 SD closed captioning 0x93 0x94 0x95 0x96 0x97 0x98 SD closed captioning SD closed captioning SD Pedestal Register 0 SD Pedestal Register 1 SD Pedestal Register 2 SD Pedestal Register 3 Bit Number 1 5 4 3 2 Subcarrier Frequency Bits[7:0] Subcarrier Frequency Bits[15:8] Subcarrier Frequency Bits[23:16] Subcarrier Frequency Bits[31:24] Subcarrier Phase Bits[9:2] Extended data on even fie lds Extended data on even fields Data on odd fields Data on odd fields Pedestal on odd fields Pedestal on odd fields Pedestal on even fields Pedestal on even fields X2 X2 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 x 0 1 0 1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 17 25 17 25 x x 16 24 16 24 x x 15 23 15 23 x x 14 22 14 22 x x 13 21 13 21 x x 12 20 12 20 x = Logic 0 or Logic 1. X = don’t care. 3 SD subcarrier frequency registers default to NTSC subcarrier frequency values. 1 2 Rev. B | Page 43 of 108 Register Setting ta = one clock cycle. ta = four clock cycles. ta = 16 clock cycles. ta = 128 clock cycles. tb = 0 clock cycles. tb = four clock cycles. tb = eight clock cycle.s tb = 18 clock cycles. tc = tb. tc = tb + 32 µs. One clock cycle. Four clock cycles. 16 clock cycles. 128 clock cycles. 0 clock cycles. One clock cycle. Two clock cycles. Three clock cycles. Subcarrier Frequency Bits[7:0] . Subcarrier Frequency Bits[15:8]. Reset Value 0x00 0x1F 0x7C x x Subcarrier Frequency Bits[23:16]. Subcarrier Frequency Bits[31:24]. Subcarrier Phase Bits[9:2]. Extended Data Bits[7:0]. 0xF0 0x00 0x00 x x Extended Data Bits[15:8]. 0x00 x x 11 19 11 19 x x 10 18 10 18 Data Bits[7:0]. Data Bits[15:8]. Setting any of these bits to 1 disables pedestal on the line number indicated by the bit settings. 0x00 0x00 0x00 0x00 0x00 0x00 0x21 ADV7344 Data Sheet Table 31. Register 0x99 to Register 0xA5 SR7 to SR0 0x99 Register SD CGMS/WSS 0 Bit Description SD CGMS data SD CGMS CRC 7 6 SD CGMS on odd fields SD CGMS on even fields SD WSS 0x9A SD CGMS/WSS 1 SD CGMS/WSS data 0x9B SD CGMS/WSS 2 SD CGMS data SD CGMS/WSS data 0x9C SD scale LSB 0x9D 0x9E 0x9F 0xA0 0xA1 SD Y scale SD Cb scale SD Cr scale SD hue adjust SD brightness/WSS 0xA2 SD luma SSAF 0xA3 SD DNR 0 LSBs for SD Y scale value LSBs for SD Cb scale value LSBs for SD Cr scale value LSBs for SD FSC phase SD Y scale value SD Cb scale value SD Cr scale value SD hue adjust value SD brightness value SD blank WSS data Bit Number 1 5 4 3 2 x x 0 1 0 1 1 x 0 x 0 1 0 1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 0 … 0 … 1 0 … 1 … 1 0 … 1 … 0 0 … 0 … 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 x x x x x x x x x x x x 0 1 SD luma SSAF gain/attenuation (only applicable if Register 0x87, Bit 4 = 1) Reserved Coring gain border (in DNR mode, the values in brackets apply) 0 Coring gain data (in DNR mode, the values in brackets apply) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 Register Setting CGMS Data Bits[C19:C16] Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled CGMS Data Bits[C13:C8] or WSS Data Bits[W13:W8] CGMS Data Bits[C15:C14] CGMS Data Bits[C7:C0] or WSS Data Bits[W7:W0] SD Y Scale Bits[1:0] SD Cb Scale Bits[1:0] SD Cr Scale Bits[1:0] Subcarrier Phase Bits[1:0] SD Y Scale Bits[9:2] SD Cb Scale Bits[9:2] SD Cr Scale Bits[9:2] SD Hue adjust Bits[7:0] SD Brightness Bits[6:0] Disabled Enabled −4 dB … 0 dB … +4 dB Reset Value 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0 0 1 0 1 0 1 0 1 0 Rev. B | Page 44 of 108 No gain +1/16 [−1/8] +2/16 [−2/8] +3/16 [−3/8] +4/16 [−4/8] +5/16 [−5/8] +6/16 [−6/8] +7/16 [−7/8] +8/16 [−1] No gain. +1/16 [−1/8] +2/16 [−2/8] +3/16 [−3/8] +4/16 [−4/8] +5/16 [−5/8] +6/16 [−6/8] +7/16 [−7/8] +8/16 [−1] 0x00 Data Sheet SR7 to SR0 0xA4 Register SD DNR 1 ADV7344 Bit Description DNR threshold 7 Border area Block size control 0xA5 SD DNR 2 6 Bit Number 1 5 4 3 2 0 0 0 0 0 0 0 0 … … … … 1 1 1 1 1 1 1 1 0 1 0 0 0 1 DNR mode 1 0 0 1 … 0 1 0 1 DNR input select DNR block offset 1 0 0 … 1 1 0 1 1 0 1 0 1 0 0 1 0 0 … 1 1 0 0 … 1 1 0 0 … 1 1 0 1 … 0 1 Register Setting 0 1 … 62 63 Two pixels Four pixels Eight pixels 16 pixels Filter A Filter B Filter C Filter D DNR mode DNR sharpness mode 0 pixel offset One-pixel offset … 14-pixel offset 15-pixel offset Reset Value 0x00 0x00 x = Logic 0 or Logic 1. Table 32. Register 0xA6 to Register 0xBB SR7 to SR0 0xA6 0xA7 0xA8 0xA9 0xAA 0xAB 0xAC 0xAD 0xAE 0xAF 0xB0 0xB1 0xB2 0xB3 0xB4 0xB5 0xB6 0xB7 0xB8 0xB9 0xBA Register SD Gamma A0 SD Gamma A1 SD Gamma A2 SD Gamma A3 SD Gamma A4 SD Gamma A5 SD Gamma A6 SD Gamma A7 SD Gamma A8 SD Gamma A9 SD Gamma B0 SD Gamma B1 SD Gamma B2 SD Gamma B3 SD Gamma B4 SD Gamma B5 SD Gamma B6 SD Gamma B7 SD Gamma B8 SD Gamma B9 SD brightness detect Bit Description SD Gamma Curve A (Point 24) SD Gamma Curve A (Point 32) SD Gamma Curve A (Point 48) SD Gamma Curve A (Point 64) SD Gamma Curve A (Point 80) SD Gamma Curve A (Point 96) SD Gamma Curve A (Point 128) SD Gamma Curve A (Point 160) SD Gamma Curve A (Point 192) SD Gamma Curve A (Point 224) SD Gamma Curve B (Point 24) SD Gamma Curve B (Point 32) SD Gamma Curve B (Point 48) SD Gamma Curve B (Point 64) SD Gamma Curve B (Point 80) SD Gamma Curve B (Point 96) SD Gamma Curve B (Point 128) SD Gamma Curve B (Point 160) SD Gamma Curve B (Point 192) SD Gamma Curve B (Point 224) SD brightness value 7 x x x x x x x x x x x x x x x x x x x x x Rev. B | Page 45 of 108 6 x x x x x x x x x x x x x x x x x x x x x Bit Number 1 5 4 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 1 x x x x x x x x x x x x x x x x x x x x x 0 x x x x x x x x x x x x x x x x x x x x x Register Setting A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 Read only Reset Value 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xXX ADV7344 SR7 to SR0 0xBB 1 2 Register Field count Data Sheet Bit Description Field count Reserved Encoder version code 7 6 0 0 0 1 Bit Number 1 5 4 3 2 x 0 0 0 1 x 0 x Register Setting Read only Reserved Read only; first encoder version 2 Read only; second encoder version Reset Value 0x0X x = Logic 0 or Logic 1. See the HD Interlace External P_HSYNC and P_VSYNC Considerations section for information about the first encoder revision. Table 33. Register 0xBD to Register 0xC8 SR7 to SR0 0xBD 0xBE 0xBF 0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 0xC8 1 Register SD CSC Matrix 1 SD CSC Matrix 2 SD CSC Matrix 3 SD CSC Matrix 4 SD CSC Matrix 5 SD CSC Matrix 6 SD CSC Matrix 7 SD CSC Matrix 8 SD CSC Matrix 9 SD CSC Matrix 10 SD CSC Matrix 11 SD CSC Matrix 12 Bit Description SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient SD CSC matrix coefficient 7 x x x x x x x x x x x x 6 x x x x x x x x x x x x x = Logic 0 or Logic 1. Rev. B | Page 46 of 108 Bit Number 1 5 4 3 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 2 x x x x x x x x x x x x 1 x x x x x x x x x x x x 0 x x x x x x x x x x x x Register Setting Bits [7:0] for a1 Bits [7:0] for a2 Bits [7:0] for a3 Bits [7:0] for a4 Bits [7:0] for b1 Bits [7:0] for b2 Bits [7:0] for b3 Bits [7:0] for b4 Bits [7:0] for c1 Bits [7:0] for c2 Bits [7:0] for c3 Bits [7:0] for c4 Reset Value 0x42 0x81 0x19 0x10 0x70 0x5E 0x12 0x80 0x26 0x4A 0x70 0x80 Data Sheet ADV7344 Table 34. Register 0xC9 to Register 0xCE SR7 to SR0 0xC9 Register Teletext control Bit Description Teletext enable 7 6 5 Bit Number 4 3 2 Teletext request mode 0xCB 0xCC 0xCD 0xCE Teletext request control TTX Line Enable 0 TTX Line Enable 1 TTX Line Enable 2 TTX Line Enable 3 Reserved Teletext request falling edge position control 0 Teletext request rising edge position control 0 0 … 1 1 22 14 22 14 Teletext on odd fields Teletext on odd fields Teletext on even fields Teletext on even fields 0 0 1 0 1 Teletext input pin select 0xCA 1 0 0 0 … 1 1 21 13 21 13 0 0 0 … 1 1 20 12 20 12 0 0 0 1 P_VSYNC. 1 1 0 1 0 0 … 1 1 0 0 … 1 1 0 0 … 1 1 0 1 … 0 1 18 10 18 10 17 9 17 9 16 8 16 8 15 7 15 7 C0. Reserved. Reserved. 0 clock cycles. One clock cycle. … 14 clock cycles. 15 clock cycles. 0 clock cycles. One clock cycle. … 14 clock cycles. 15 clock cycles. Setting any of these bits to 1 enables teletext on the line number indicated by the bit settings. 0 0 1 … 0 1 19 11 19 11 Register Setting Disabled. Enabled. Line request signal. Bit request signal. S_VSYNC. Reset Value 0x00 0x00 0x00 0x00 0x00 0x00 Table 35. Register 0xE0 to Register 0xF1 SR7 to SR0 0xE0 0xE1 0xE2 0xE3 0xE4 0xE5 0xE6 0xE7 0xE8 0xE9 0xEA 0xEB 0xEC 0xED 0xEE 0xEF 0xF0 0xF1 1 Register Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Macrovision Bit Description MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits MV control bits 7 x x x x x x x x x x x x x x x x x 0 6 x x x x x x x x x x x x x x x x x 0 5 x x x x x x x x x x x x x x x x x 0 Bit Number 1 4 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 x = Logic 0 or Logic 1. Rev. B | Page 47 of 108 1 x x x x x x x x x x x x x x x x x 0 0 x x x x x x x x x x x x x x x x x x Register Setting Bits[7:1] must be 0. Reset Value 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 ADV7344 Data Sheet INPUT CONFIGURATION The ADV7344 supports a number of different input modes. The desired input mode is selected using Subaddress 0x01, Bits[6:4]. The ADV7344 defaults to standard definition only (SD only) on power-up. Table 36 provides an overview of all possible input configurations. Each input mode is described in detail in the following sections. STANDARD DEFINITION ONLY Subaddress 0x01, Bits[6:4] = 000 Standard definition (SD) YCrCb data can be input in 4:2:2 format. Standard definition (SD) RGB data can be input in 4:4:4 format. A 27 MHz clock signal must be provided on the CLKIN_A pin. Input synchronization signals are provided on the S_HSYNC and S_VSYNC pins. 8-/10-Bit 4:2:2 YCrCb Mode Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bit 3 = 0 In 8-/10-bit 4:2:2 YCrCb input mode, the interleaved pixel data is input on Pin S9 to Pin S2/S0 (or Pin Y9 to Pin Y2/Y0, depending on Subaddress 0x01, Bit 7), with Pin S0/Y0 being the LSB in 10-bit input mode. The ITU-R BT.601/656 input standard is supported. Embedded EAV/SAV timing codes are also supported. 16-/20-Bit 4:2:2 YCrCb Mode Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bit 3 = 1 In 16-/20-bit 4:2:2 YCrCb input mode, the Y pixel data is input on Pin S9 to Pin S2/S0 (or Pin Y9 to Pin Y2/Y0, depending on Subaddress 0x01, Bit 7), with Pin S0/Y0 being the LSB in 20-bit input mode. The CrCb pixel data is input on Pin Y9 to Pin Y2/Y0 (or Pin C9 to Pin C2/C0, depending on Subaddress 0x01, Bit 7), with Pin Y0/C0 being the LSB in 20-bit input mode. Embedded EAV/SAV timing codes are not supported; therefore, so an external synchronization is needed in this mode. 24-/30-Bit 4:4:4 RGB Mode Subaddress 0x87, Bit 7 = 1 In 24-/30-bit 4:4:4 RGB input mode, the red pixel data is input on Pin S9 to Pin S2/S0, the green pixel data is input on Pin Y9 to Pin Y2/Y0, and the blue pixel data is input on Pin C9 to Pin C2/C0. The S0, Y0, and C0 pins are the respective bus LSBs in 30-bit input mode. Embedded EAV/SAV timing codes are not supported with SD RGB input mode. Also, master timing mode is not supported for SD RGB input mode, therefore, external synchronization must be used. ADV7344 2 MPEG2 DECODER S_VSYNC, S_HSYNC 27MHz CLKIN_A 10 S[9:0] OR Y[9:0]1 NOTES 1SELECTED BY SUBADDRESS 0x01, BIT 7. Figure 50. SD Only Example Application Rev. B | Page 48 of 108 06400-051 YCrCb Data Sheet ADV7344 Table 36. Input Configuration S Input Mode 1 000 SD only 8-/10-bit YCrCb 2, 3 16-/20-bit YCrCb2, 3, 4 9 8 7 6 5 4 001 010 24-/30-bit RGB4 ED/HD-DDR only (8-/10-bit)3, 2 1 0 9 8 Y 7 6 5 4 3 2 1 Y/C/S bus swap (0x01[7]) = 0 C 0 9 8 7 6 5 4 3 2 1 YCrCb Y CrCb Y/C/S bus swap (0x01[7]) = 1 YCrCb 8-/10-bit YCrCb2, 3 16-/20-bit YCrCb2, 3, 4 24-/30-bit RGB4 ED/HD-SDR only3, 5, 6, 7 16-/20-bit YCrCb 24-/30-bit YCrCb 3 R Y CrCb SD RGB input enable (0x87[7]) = 1 G B ED/HD RGB input enable (0x35[1]) = 0 Y CrCb Cr Y Cb R ED/HD RGB input enable (0x35[1]) = 1 G B YCrCb 6, 7 011 100 111 SD, ED/HDSDR (24-/30bit)3, 6, 7, 8 SD, ED/HDDDR (16-/20bit)3, 6, 7, 8 ED Only (54 MHz) (8-/10bit)3, 6, 7 YCrCb (SD) Y (ED/HD) YCrCb (SD) YCrCb (ED/HD) CrCb (ED/HD) YCrCb The input mode is determined by Subaddress 0x01, Bits[6:4]. In SD only (YCrCb) mode, the format of the input data is determined by Subaddress 0x88, Bits[4:3]. See Table 29 for more information. 3 For 8-/16-/24-bit inputs, only the eight most significant bits (MSBs) of each applicable input bus are used. 4 External synchronization signals must be used in this input mode. Embedded EAV/SAV timing codes are not supported. 5 In ED/HD-SDR only (YCrCb) mode, the format of the input data is determined by Subaddress 0x33, Bit 6. See Table 22 for more information. 6 ED = enhanced definition = 525p and 625p. 7 The bus width of the ED/HD input data is determined by Subaddress 0x33, Bit 2 (0 = 8-bit input, 1 = 10-bit input). See Table 22 for more information. 8 The bus width of the SD input data is determined by Subaddress 0x88, Bits[4:] (00 = 8-bit, 11 = 16-bit, 10 = 10-bit, 11 = 20-bit). See Table 29 for more information. 1 2 Rev. B | Page 49 of 108 0 ADV7344 Data Sheet ENHANCED DEFINITION/HIGH DEFINITION ONLY The Cb pixel data is input on Pin C9 to Pin C2/C0, with Pin C0 being the LSB in 30-bit input mode. Enhanced definition (ED) or high definition (HD) YCrCb data can be input in either 4:2:2 or 4:4:4 format. If desired, dual data rate (DDR) pixel data inputs can be employed (4:2:2 format only). Enhanced definition (ED) or high definition (HD) RGB data can be input in 4:4:4 format (single data rate only). The clock signal must be provided on the CLKIN_A pin. Input synchronization signals are provided on the P_HSYNC, P_VSYNC, and P_BLANK pins. 24-/30-Bit 4:4:4 RGB Mode Subaddress 0x35, Bit 1 = 1 In 24-/30-bit 4:4:4 RGB input mode, the red pixel data is input on Pin S9 to Pin S2/S0, the green pixel data is input on Pin Y9 to Pin Y2/Y0, and the blue pixel data is input on Pin C9 to Pin C2/C0. The S0, Y0, and C0 pins are the respective bus LSBs in 30-bit input mode. MPEG2 DECODER 16-/20-Bit 4:2:2 YCrCb Mode (SDR) Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 1 Cb 10 In 16-/20-bit 4:2:2 YCrCb input mode, the Y pixel data is input on Pin Y9 to Pin Y2/Y0, with Pin Y0 being the LSB in 20-bit input mode. Cr 10 INTERLACED TO PROGRESSIVE The CrCb pixel data is input on Pin C9 to Pin C2/C0, with Pin C0 being the LSB in 20-bit input mode. C[9:0] S[9:0] Y[9:0] P_VSYNC, P_HSYNC, P_BLANK Figure 53. ED/HD Only Example Application In 8-/10-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is input on Pin Y9 to Pin Y2/Y0 on either the rising or falling edge of CLKIN_A. Pin Y0 is the LSB in 10-bit input mode. The CrCb pixel data is also input on Pin Y9 to Pin Y2/Y0 on the opposite edge of CLKIN_A. Pin Y0 is the LSB in 10-bit input mode. Whether the Y data is clocked in on the rising or falling edge of CLKIN_A is determined by Subaddress 0x01, Bits[2:1] (see Figure 51 and Figure 52). SIMULTANEOUS STANDARD DEFINITION AND ENHANCED DEFINITION/HIGH DEFINITION Subaddress 0x01, Bits[6:4] = 011 or 100 The ADV7344 is able to simultaneously process SD 4:2:2 YCrCb data and ED/HD 4:2:2 YCrCb data. The 27 MHz SD clock signal must be provided on the CLKIN_A pin. The ED/HD clock signal must be provided on the CLKIN_B pin. SD input synchronization signals are provided on the S_HSYNC and S_VSYNC pins. ED/HD input synchronization signals are provided on the P_HSYNC, P_VSYNC, and P_BLANK pins. SD 8-/10-Bit 4:2:2 YCrCb and ED/HD-SDR 16-/20-Bit 4:2:2 YCrCb CLKIN_A 00 00 XY Cb0 Y0 Cr0 The SD 8-/10-bit 4:2:2 YCrCb pixel data is input on Pin S9 to Pin S2/S0, with Pin S0 being the LSB in 10-bit input mode. Y1 06400-052 3FF NOTES 1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 00 IN THIS CASE. The ED/HD 16-/20-bit 4:2:2 Y pixel data is input on Pin Y9 to Pin Y2/Y0, with Pin Y0 being the LSB in 20-bit input mode. Figure 51. ED/HD-DDR Input Sequence (EAV/SAV)—Option A The ED/HD 16-/20-bit 4:2:2 CrCb pixel data is input on Pin C9 to Pin C2/C0, with Pin C0 being the LSB in 20-bit input mode. CLKIN_A 3FF 00 00 XY Y0 Cb0 Y1 SD 8-/10-Bit 4:2:2 YCrCb and ED/HD-DDR 8-/10-Bit 4:2:2 YCrCb Cr0 06400-053 Y[9:0] Y 10 3 8-/10-Bit 4:2:2 YCrCb Mode (DDR) Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 1 Y[9:0] ADV7344 CLKIN_A YCrCb 06400-054 Subaddress 0x01, Bits[6:4] = 001 or 010 NOTES 1. SUBADDRESS 0x01 [2:1] SHOULD BE SET TO 11 IN THIS CASE. Figure 52. ED/HD-DDR Input Sequence (EAV/SAV)—Option B The SD 8-/10-bit 4:2:2 YCrCb pixel data is input on Pin S9 to Pin S2/S0, with Pin S0 being the LSB in 10-bit input mode. 24-/30-Bit 4:4:4 YCrCb Mode Subaddress 0x35, Bit 1 = 0; Subaddress 0x33, Bit 6 = 0 The ED/HD-DDR 8-/10-bit 4:2:2 Y pixel data is input on Pin Y9 to Pin Y2/Y0 upon the rising or falling edge of CLKIN_B. Pin Y0 is the LSB in 10-bit input mode. In 24-/30-bit 4:4:4 YCrCb input mode, the Y pixel data is input on Pin Y9 to Pin Y2/Y0, with Pin Y0 being the LSB in 30-bit input mode. The ED/HD-DDR 8-/10-bit 4:2:2 CrCb pixel data is also input on Pin Y9 to Pin Y2/Y0 on the opposite edge of CLKIN_B. Pin Y0 is the LSB in 10-bit input mode. The Cr pixel data is input on Pin S9 to Pin S2/S0, with Pin S0 being the LSB in 30-bit input mode. Rev. B | Page 50 of 108 Data Sheet ADV7344 Whether the ED/HD Y data is clocked in on the rising or falling edge of CLKIN_B is determined by Subaddress 0x01, Bits[2:1] (see the input sequence shown in Figure 51 and Figure 52). 2 27MHz The interleaved pixel data is input on Pin Y9 to Pin Y2/Y0, with Pin Y0 being the LSB in 10-bit input mode. Y C[9:0] 10 Y[9:0] P_VSYNC, P_HSYNC, P_BLANK 3 27MHz CLKIN_B CLKIN_A Y[9:0] Figure 54. Simultaneous SD and ED Example Application 3FF 00 00 XY Cb0 Y0 Cr0 Y1 Figure 56. ED Only (at 54 MHz) Input Sequence (EAV/SAV) ADV7344 27MHz YCrCb 10 HD DECODER 1080i OR 720p OR 1035i MPEG2 DECODER 54MHz CLKIN_A CLKIN_A YCrCb S[9:0] ADV7344 YCrCb 10 CrCb 10 Y INTERLACED TO PROGRESSIVE C[9:0] 10 3 74.25MHz Y[9:0] P_VSYNC, P_HSYNC, P_BLANK CLKIN_B 3 Y[9:0] P_VSYNC, P_HSYNC, P_BLANK Figure 57. ED Only (at 54 MHz) Example Application 06400-056 SD DECODER S_VSYNC, S_HSYNC 06400-058 2 Figure 55. Simultaneous SD and HD Example Application Rev. B | Page 51 of 108 06400-057 525p OR 625p S[9:0] ADV7344 CrCb 10 Enhanced definition (ED) YCrCb data can be input in an interleaved 4:2:2 format on an 8-/10-bit bus at a rate of 54 MHz. A 54 MHz clock signal must be provided on the CLKIN_A pin. Input synchronization signals are provided on the P_HSYNC, P_VSYNC, and P_BLANK pins. CLKIN_A YCrCb 10 ED DECODER S_VSYNC, S_HSYNC Subaddress 0x01, Bits[6:4] = 111 06400-055 SD DECODER ENHANCED DEFINITION ONLY (AT 54 MHz) ADV7344 Data Sheet OUTPUT CONFIGURATION The ADV7344 supports a number of different output configurations. Table 37 to Table 40 list all possible output configurations. Table 37. SD Only Output Configurations RGB/YPrPb Output Select 1 (Subaddress 0x02, Bit 5) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 SD DAC Output 2 (Subaddress 0x82, Bit 2) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 SD DAC Output 1 (Subaddress 0x82, Bit 1) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 SD Luma/Chroma Swap (Subddress 0x84, Bit 7) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 DAC 1 G G CVBS CVBS CVBS CVBS G G Y Y CVBS CVBS CVBS CVBS Y Y DAC 2 B B Luma Chroma B B Luma Chroma Pb Pb Luma Chroma Pb Pb Luma Chroma DAC 3 R R Chroma Luma R R Chroma Luma Pr Pr Chroma Luma Pr Pr Chroma Luma DAC 4 CVBS CVBS G G G G CVBS CVBS CVBS CVBS Y Y Y Y CVBS CVBS DAC 5 Luma Chroma B B Luma Chroma B B Luma Chroma Pb Pb Luma Chroma Pb Pb DAC 6 Chroma Luma R R Chroma Luma R R Chroma Luma Pr Pr Chroma Luma Pr Pr If SD RGB output is selected, a color reversal is possible using Subaddress 0x86, Bit 7. Table 38. ED/HD Only Output Configurations RGB/YPrPb Output Select (Subaddress 0x02, Bit 5) 0 0 1 1 ED/HD Color DAC Swap (Subaddress 0x35, Bit 3) 0 1 0 1 DAC 1 G G Y Y DAC 2 B R Pb Pr DAC 3 R B Pr Pb DAC 4 N/A N/A N/A N/A DAC 5 N/A N/A N/A N/A DAC 6 N/A N/A N/A N/A Table 39. Simultaneous SD and ED/HD Output Configurations RGB/YPrPb Output Select (Subaddress 0x02, Bit 5) 0 0 0 0 1 1 1 1 ED/HD Color DAC Swap (Subaddress 0x35, Bit 3) 0 0 1 1 0 0 1 1 SD Luma/Chroma Swap (Subaddress 0x84, Bit 7) 0 1 0 1 0 1 0 1 DAC 1 (ED/HD) G G G G Y Y Y Y DAC 2 (ED/HD) B B R R Pb Pb Pr Pr DAC 3 (ED/HD) R R B B Pr Pr Pb Pb DAC 4 (SD) CVBS CVBS CVBS CVBS CVBS CVBS CVBS CVBS DAC 5 (SD) Luma Chroma Luma Chroma Luma Chroma Luma Chroma DAC 6 (SD) Chroma Luma Chroma Luma Chroma Luma Chroma Luma Table 40. ED Only (at 54 MHz) Output Configurations RGB/YPrPb Output Select (Subaddress 0x02, Bit 5) 0 0 1 1 ED/HD Color DAC Swap (Subaddress 0x35, Bit 3) 0 1 0 1 Rev. B | Page 52 of 108 DAC 1 G G Y Y DAC 2 B R Pb Pr DAC 3 R B Pr Pb DAC 4 N/A N/A N/A N/A DAC 5 N/A N/A N/A N/A DAC 6 N/A N/A N/A N/A Data Sheet ADV7344 DESIGN FEATURES External Sync Polarity OUTPUT OVERSAMPLING The ADV7344 includes two on-chip phase-locked loops (PLLs) that allow for oversampling of SD, ED, and HD video data. Table 41 shows the various oversampling rates supported in the ADV7344. SD Only, ED Only, and HD Only Modes PLL 1 is used in SD only, ED only, and HD only modes. PLL 2 is unused in these modes. PLL 1 is disabled by default and can be enabled using Subaddress 0x00, Bit 1 = 0. SD and ED/HD Simultaneous Modes Both PLL 1 and PLL 2 are used in simultaneous modes. The use of two PLLs allows for independent oversampling of SD and ED/HD video. PLL 1 is used to oversample SD video data, and PLL 2 is used to oversample ED/HD video data. In simultaneous modes, PLL 2 is always enabled. PLL 1 is disabled by default and can be enabled using Subaddress 0x00, Bit 1 = 0. For SD and ED/HD modes, the ADV7344 parts typically expect HS and VS to be low during their respective blanking periods. However, when the CEA861 compliance bit (0x39, Bit 5 for ED/HD modes and 0x86, Bit 3 for SD modes) is enabled, the part expects the HS or VS to be active low or high depending on the input format selected (0x30 Bits [7:3]). If a different polarity other than the default is needed for ED/HD modes, 0x3A Bits [2:0] can be used to invert PHSYNCB, PVSYNCB or PBLANKB individually regardless of whether CEA-861-B mode is enabled. It is not possible to invert S_HSYNC or S_VSYNC. Table 41. Output Oversampling Modes and Rates Input Mode Subaddress 0x01 Bits[6:4] 000 SD only 000 SD only 001/010 ED only 001/010 ED only 001/010 HD only 001/010 HD only 011/100 SD and ED 011/100 SD and ED 011/100 SD and HD 011/100 SD and HD 111 ED only (at 54 MHz) 111 ED only (at 54 MHz) PLL and Oversampling Control Subaddress 0x00, Bit 1 1 0 1 0 1 0 1 0 1 0 1 0 Rev. B | Page 53 of 108 Oversampling Mode and Rate SD (2×) SD (16×) ED (1×) ED (8×) HD (1×) HD (4×) SD (2×) and ED (8×) SD (16×) and ED (8×) SD (2×) and HD (4×) SD (16×) and HD (4×) ED only (at 54 MHz) (1×) ED only (at 54 MHz) (8×) ADV7344 Data Sheet HD INTERLACE EXTERNAL P_HSYNC AND P_VSYNC CONSIDERATIONS SD SUBCARRIER FREQUENCY LOCK If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 01 or higher, the user should set Subaddress 0x02, Bit 1 to high to ensure exactly correct timing in the HD interlace modes when using the P_HSYNC and P_VSYNC synchronization signals. If this bit is set to low, the first active pixel on each line is masked and Pr and Pb outputs are swapped when using the YCrCb 4:2:2 input format. Setting Subaddress 0x02, Bit 1 low causes the encoder to behave in the same way as the first version of silicon (that is, this setting is backward compatible). In this mode (Subaddress 0x84, Bits[2:1] = 11), the ADV7344 can be used to lock to an external video source. The SFL mode allows the ADV7344 to automatically alter the subcarrier frequency to compensate for line length variations. Subcarrier Frequency Lock (SFL) Mode When the part is connected to a device such as an ADV7403 video decoder (see Figure 58) that outputs a digital data stream in the SFL format, the part automatically changes to the compensated subcarrier frequency on a line-by-line basis. This digital data stream is 67 bits wide, and the subcarrier is contained in Bit 0 to Bit 21. Each bit is two clock cycles long. If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 00, the setting of Subaddress 0x02, Bit has no effect. In this version of the encoder, the first active pixel is masked and Pr and Pb outputs are swapped when using the YCrCb 4:2:2 format in HD interlace modes with the P_HSYNC and P_VSYNC synchronization signals. To avoid these limitations, use the newer revision of silicon or a different type of synchronization. SD VCR FF/RW SYNC Subaddress 0x82, Bit 5 In DVD record applications where the encoder is used with a decoder, the VCR FF/RW sync control bit can be used for nonstandard input video, that is, in fast forward or rewind mode. In fast forward mode, the sync information at the start of a new field in the incoming video usually occurs before the correct number of lines/fields is reached. In rewind mode, this sync signal usually occurs after the total number of lines/fields is reached. Conventionally, this means that the output video has corrupted field signals because one signal is generated by the incoming video and another is generated when the internal line/field counters reach the end of a field. These considerations apply only to the HD interlace modes with external P_HSYNC and P_VSYNC synchronization (EAV/SAV mode is not affected and always has exactly correct timing). There is no negative effect in setting Subaddress 0x02, Bit 0 to high, and this bit can remain high for all the other video standards. ED/HD TIMING RESET Subaddress 0x34, Bit 0 When the VCR FF/RW sync control is enabled (Subaddress 0x82, Bit 5), the line/field counters are updated according to the incoming VSYNC signal and when the analog output matches the incoming VSYNC signal. This control is available in all slave-timing modes except Slave Mode 0. An ED/HD timing reset is achieved by toggling the ED/HD timing reset control bit (Subaddress 0x34, Bit 0) from 0 to 1. In this state, the horizontal and vertical counters remain reset. When this bit is set back to 0, the internal counters resume counting. This timing reset applies to the ED/HD timing counters only. ADV7344 CLKIN_A LLC1 COMPOSITE VIDEO1 ADV7403 VIDEO DECODER DAC 1 DAC 2 SFL SFL P19 TO P10 14 BITS H/L TRANSITION SUBCARRIER COUNT START LOW PHASE 128 13 0 DAC 3 Y9 TO Y0/ S9 TO S05 DAC 5 DAC 6 4 BITS RESERVED 21 DAC 4 SEQUENCE BIT3 FSC PLL INCREMENT2 0 RESET BIT4 RESERVED RTC TIME SLOT 01 14 6768 19 VALID INVALID SAMPLE SAMPLE 1FOR EXAMPLE, VCR OR CABLE. 2F SC PLL INCREMENT IS 22 BITS LONG. VALUE LOADED INTO ADV7344 FSC DDS REGISTER IS FSC PLL INCREMENTS BITS[21:0] PLUS BITS[0:9] OF SUBCARRIER FREQUENCY REGISTERS. 3SEQUENCE BIT 8/LINE LOCKED CLOCK 5 BITS RESERVED 06400-063 PAL: 0 = LINE NORMAL, 1 = LINE INVERTED NTSC: 0 = NO CHANGE 4RESET ADV7344 DDS. 5SELECTED BY SUBADDRESS 0x01, BIT 7. Figure 58. SD Subcarrier Frequency Lock Timing and Connections Diagram (Subaddress 0x84, Bits[2:1] = 11) Rev. B | Page 54 of 108 Data Sheet ADV7344 VERTICAL BLANKING INTERVAL Typical FSC Values Subaddress 0x31, Bit 4; Subaddress 0x83, Bit 4 Table 42 outlines the values that should be written to the subcarrier frequency registers for NTSC and PAL B/D/G/H/I. The ADV7344 is able to accept input data that contains VBI data (such as CGMS, WSS, VITS) in SD, ED, and HD modes.If VBI is disabled (Subaddress 0x31, Bit 4 for ED/HD; Subaddress 0x83, Bit 4 for SD), VBI data is not present at the output and the entire VBI is blanked. These control bits are valid in all master and slave timing modes. For the SMPTE 293M (525p) standard, VBI data can be inserted on Line 13 to Line 42 of each frame or on Line 6 to Line 43 for the ITU-R BT.1358 (625p) standard. VBI data can be present on Line 10 to Line 20 for NTSC and on Line 7 to Line 22 for PAL. In SD Timing Mode 0 (slave option), if VBI is enabled, the blanking bit in the EAV/SAV code is overwritten. It is possible to use VBI in this timing mode as well. If CGMS is enabled and VBI is disabled, the CGMS data is, nevertheless, available at the output. SD SUBCARRIER FREQUENCY CONTROL Subaddress 0x8C to Subaddress 0x8F The ADV7344 is able to generate the color subcarrier used in CVBS and S-Video (Y-C) outputs from the input pixel clock. Four 8-bit registers are used to set up the subcarrier frequency. The value of these registers is calculated using Subcarrier Frequency Register = Number of subcarrier periods in one video line Number of 27 MHz clk cycles in one video line × 2 32 where the sum is rounded to the nearest integer. For example, in NTSC mode 227.5 32 Subcarrier Register Value = × 2 = 569408543 1716 Table 42. Typical FSC Values Subaddress 0x8C 0x8D 0x8E 0x8F Description FSC0 FSC1 FSC2 FSC3 NTSC 0x1F 0x7C 0xF0 0x21 PAL B/D/G/H/I 0xCB 0x8A 0x09 0x2A SD NONINTERLACED MODE Subaddress 0x88, Bit 1 The ADV7344 supports an SD noninterlaced mode. Using this mode, progressive inputs at twice the frame rate of NTSC and PAL (240p/59.94 Hz and 288p/50 Hz, respectively) can be input into the ADV7344. The SD noninterlaced mode can be enabled using Subaddress 0x88, Bit 1. A 27 MHz clock signal must be provided on the CLKIN_A pin. Embedded EAV/SAV timing codes or external horizontal and vertical synchronization signals provided on the S_HSYNC and S_VSYNC pins can be used to synchronize the input pixel data. All input configurations, output configurations, and features available in NTSC and PAL modes are available in SD noninterlaced mode. For 240p/59.94 Hz input, the ADV7344 should be configured for NTSC operation, and Subaddress 0x88, Bit 1 should be set to 1. For 288p/50 Hz input, the ADV7344 should be configured for PAL operation, and Subaddress 0x88, Bit 1 should be set to 1. SD SQUARE PIXEL MODE Subaddress 0x82, Bit 4 The ADV7344 supports an SD square pixel mode (Subaddress 0x82, Bit 4). For NTSC operation, an input clock of 24.5454 MHz is required. The active resolution is 640 × 480. For PAL operation, an input clock of 29.5 MHz is required. The active resolution is 768 × 576. where: Subcarrier Register Value = 569408543d = 0×21F07C1F SD FSC Register 0: 0x1F SD FSC Register 1: 0x7C SD FSC Register 2: 0xF0 SD FSC Register 3: 0x21 Programming the FSC The subcarrier frequency register value is divided into four FSC registers, as shown in the previous example. The four subcarrier frequency registers must be updated sequentially, starting with Subcarrier Frequency Register 0 and ending with Subcarrier Frequency Register 3. The subcarrier frequency updates only after the last subcarrier frequency register byte has been received by the ADV7344. The SD input standard autodetection feature must be disabled. For CVBS and S-Video (Y-C) outputs, the SD subcarrier frequency registers must be updated to reflect the input clock frequency used in SD square pixel mode. The SD input standard autodetection feature must be disabled in SD square pixel mode. In square pixel mode, the timing diagrams shown in Figure 59 and Figure 60 apply. Rev. B | Page 55 of 108 ADV7344 Data Sheet ANALOG VIDEO EAV CODE NTSC/PAL M SYSTEM (525 LINES/60Hz) PAL SYSTEM (625 LINES/50Hz) 4 CLOCK SAV CODE 0 F F A A A 0 F F B B B C C 8 1 8 1 F 0 0 X C Y C Y C Y r Y b b r 0 0 0 0 F 0 0 Y b ANCILLARY DATA (HANC) 4 CLOCK 272 CLOCK 1280 CLOCK 4 CLOCK 4 CLOCK 344 CLOCK 1536 CLOCK 06400-064 INPUT PIXELS F 0 0 X 8 1 8 1 C Y Y F 0 0 Y 0 0 0 0 r START OF ACTIVE VIDEO LINE END OF ACTIVE VIDEO LINE Figure 59. Square Pixel Mode EAV/SAV Embedded Timing HSYNC FIELD Cb Y Cr Y PAL = 308 CLOCK CYCLES NTSC = 236 CLOCK CYCLES 06400-065 PIXEL DATA Figure 60. Square Pixel Mode Active Pixel Timing FILTERS Table 43 shows an overview of the programmable filters available on the ADV7344. Table 43. Selectable Filters Filter SD Luma LPF NTSC SD Luma LPF PAL SD Luma Notch NTSC SD Luma Notch PAL SD Luma SSAF SD Luma CIF SD Luma QCIF SD Chroma 0.65 MHz SD Chroma 1.0 MHz SD Chroma 1.3 MHz SD Chroma 2.0 MHz SD Chroma 3.0 MHz SD Chroma CIF SD Chroma QCIF SD PrPb SSAF ED/HD Chroma Input ED/HD Sinc Compensation Filter ED/HD Chroma SSAF Subaddress 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x82 0x33 0x33 0x33 SD Internal Filter Response Subaddress 0x80, Bits[7:2]; Subaddress 0x82, Bit 0 The Y filter supports several different frequency responses, including two low-pass responses, two notch responses, an extended (SSAF) response with or without gain boost attenuation, a CIF response, and a QCIF response. The PrPb filter supports several different frequency responses, including six low-pass responses, a CIF response, and a QCIF response, as shown in Figure 38 and Figure 39. If SD SSAF gain is enabled (Subaddress 0x87, Bit 4), there are 13 response options in the −4 dB to +4 dB range. The desired response can be programmed using Subaddress 0xA2. The variation in frequency responses is shown in Figure 35 to Figure 37. In addition to the chroma filters listed in Table 43, the ADV7344 contains an SSAF filter that is specifically designed for the color difference component outputs, Pr and Pb. This filter has a cutoff frequency of ~2.7 MHz and a gain of –40 dB at 3.8 MHz (see Figure 61). This filter can be controlled with Subaddress 0x82, Bit 0. Rev. B | Page 56 of 108 Data Sheet ADV7344 0.5 EXTENDED (SSAF) PrPb FILTER MODE 0.4 0 0.3 0.2 –20 GAIN (dB) GAIN (dB) –10 –30 0.1 0 –0.1 –0.2 –40 –0.3 –50 0 1 2 3 4 FREQUENCY (MHz) 5 6 06400-066 –60 0 5 10 15 20 FREQUENCY (MHz) 25 30 06400-067 –0.4 –0.5 Figure 62. ED/HD Sinc Compensation Filter Enabled Figure 61. PrPb SSAF Filter 0.5 If this filter is disabled, one of the chroma filters shown in Table 44 can be selected and used for the CVBS or luma/chroma signal. 0.4 0.3 Table 44. Internal Filter Specifications 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 0 5 10 15 20 FREQUENCY (MHz) 25 30 06400-068 3 dB Bandwidth (MHz)2 4.24 4.81 2.3/4.9/6.6 3.1/5.6/6.4 6.45 3.02 1.5 0.65 1 1.395 2.2 3.2 0.65 0.5 GAIN (dB) Filter Luma LPF NTSC Luma LPF PAL Luma Notch NTSC Luma Notch PAL Luma SSAF Luma CIF Luma QCIF Chroma 0.65 MHz Chroma 1.0 MHz Chroma 1.3 MHz Chroma 2.0 MHz Chroma 3.0 MHz Chroma CIF Chroma QCIF Pass-Band Ripple (dB)1 0.16 0.1 0.09 0.1 0.04 0.127 Monotonic Monotonic Monotonic 0.09 0.048 Monotonic Monotonic Monotonic Figure 63. ED/HD Sinc Compensation Filter Disabled ED/HD TEST PATTERN COLOR CONTROLS Subaddress 0x36 to Subaddress 0x38 1 Three 8-bit registers at Subaddress 0x36 to Subaddress 0x38 are used to program the output color of the internal ED/HD test pattern generator (Subaddress 0x31, Bit 2 = 1), whether it be the lines of the crosshatch pattern or the uniform field test pattern. They are not functional as color controls for external pixel data input. ED/HD Sinc Compensation Filter Response Subaddress 0x33, Bit 3 The values for the luma (Y) and the color difference (Cr and Cb) signals used to obtain white, black, and saturated primary and complementary colors conform to the ITU-R BT.601-4 standard. Pass-band ripple is the maximum fluctuation from the 0 dB response in the pass band, measured in decibels. The pass band is defined to have 0 Hz to fc (Hz) frequency limits for a low-pass filter and 0 Hz to f1 (Hz) and f2 (Hz) to infinity for a notch filter, where fc, f1, and f2 are the −3 dB points. 2 3 dB bandwidth refers to the −3 dB cutoff frequency. The ADV7344 includes a filter designed to counter the effect of sinc roll-off in DAC 1, DAC 2, and DAC 3 while operating in ED/HD mode. This filter is enabled by default. It can be disabled using Subaddress 0x33, Bit 3. The benefit of the filter is illustrated in Figure 62 and Figure 63. Table 45 shows sample color values that can be programmed into the color registers when the output standard selection is set to EIA 770.2/ EIA770.3 (Subaddress 0x30, Bits[1:0] = 00). Rev. B | Page 57 of 108 ADV7344 Data Sheet Pr = (b1 × R) + (b2 × G) + (b3 × B) + b4 Table 45. Sample Color Values for EIA 770.2/EIA770.3 ED/HD Output Standard Selection Sample Color White Black Red Green Blue Yellow Cyan Magenta Y Value 235 (0xEB) 16 (0x10) 81 (0x51) 145 (0x91) 41 (0x29) 210 (0xD2) 170 (0xAA) 106 (0x6A) Cr Value 128 (0x80) 128 (0x80) 240 (0xF0) 34 (0x22) 110 (0x6E) 146 (0x92) 16 (0x10) 222 (0xDE) Pb = (c1 × R) + (c2 × G) + (c3 × B) + c4 Cb Value 128 (0x80) 128 (0x80) 90 (0x5A) 54 (0x36) 240 (0xF0) 16 (0x10) 166 (0xA6) 202 (0xCA) COLOR SPACE CONVERSION MATRIX Subaddress 0x03 to Subaddress 0x09 The internal color space conversion (CSC) matrix automatically performs all color space conversions based on the input mode programmed in the mode select register (Subaddress 0x01, Bits[6:4]). Table 46 and Table 47 show the options available in this matrix. An SD color space conversion from RGB-in to YPrPb-out is possible. An ED/HD color space conversion from RGB-in to YPrPb-out is not possible. Table 46. SD Color Space Conversion Options Input YCrCb YCrCb RGB RGB 1 Output1 YPrPb RGB YPrPb RGB YPrPb/RGB Out (Subaddress 0x02, Bit 5) 1 0 1 0 RGB In/YCrCb In (Subaddress 0x87, Bit 7) 0 0 1 1 CVBS/YC outputs are available for all CSC combinations. The coefficients and their default values and register locations are shown in Table 48. Table 48. SD Manual CSC Matrix Default Values Coefficient a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 Input YCrCb YCrCb RGB Output YPrPb RGB RGB Default 0x42 0x81 0x19 0x10 0x70 0x5E 0x12 0x80 0x26 0x4A 0x70 0x80 ED/HD Manual CSC Matrix Adjust Feature The ED/HD manual CSC matrix adjust feature provides custom coefficient manipulation for color space conversions and is used in ED and HD modes only. The ED/HD manual CSC matrix adjust feature can be enabled using Subaddress 0x02, Bit 3. Normally, there is no need to enable this feature because the CSC matrix automatically performs the color space conversion based on the input mode chosen (ED or HD) and the input and output color spaces selected (see Table 47). For this reason, the ED/HD manual CSC matrix adjust feature is disabled by default. If RGB output is selected, the ED/HD CSC matrix scalar uses the following equations: Table 47. ED/HD Color Space Conversion Options YPrPb/RGB Out (Subaddress 0x02, Bit 5) 1 0 0 Subaddress 0xBD 0xBE 0xBF 0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 0xC8 R = GY × Y + RV × Pr RGB In/YCrCb In (Subaddress 0x35, Bit 1) 0 0 1 G = GY × Y − (GU × Pb) − (GV × Pr) B = GY × Y + BU × Pb Note that subtractions are implemented in hardware. If YPrPb output is selected, the following equations are used: Y = GY × Y SD Manual CSC Matrix Adjust Feature Pr = RV × Pr The SD manual CSC matrix adjust feature provides custom coefficient manipulation for RGB to YPbPr conversion (for YPbPr to RGB conversion, this matrix adjustment is not available). Pb = BU × Pb Normally, there is no need to modify the SD matrix coefficients because the CSC matrix automatically performs the color space conversion based on the output color space selected (see Table 46). Note that Bit 7 in Subaddress 0x87 must be set to enable RGB input and, therefore, use the CSC manual adjustment. The SD CSC matrix scalar uses the following equations: where: GY = Subaddress 0x05, Bits[7:0] and Subaddress 0x03, Bits[1:0]. GU = Subaddress 0x06, Bits[7:0] and Subaddress 0x04, Bits[7:6]. GV = Subaddress 0x07, Bits[7:0] and Subaddress 0x04, Bits[5:4]. BU = Subaddress 0x08, Bits[7:0] and Subaddress 0x04, Bits[3:2]. RV = Subaddress 0x09, Bits[7:0] and Subaddress 0x04, Bits[1:0]. Y = (a1 × R) + (a2 × G) + (a3 × B) + a4 Rev. B | Page 58 of 108 Data Sheet ADV7344 On power-up, the CSC matrix is programmed with the default values shown in Table 49. SD LUMA AND COLOR SCALE CONTROL Table 49. ED/HD Manual CSC Matrix Default Values When enabled, the SD luma and color scale control feature can be used to scale the SD Y, Cb, and Cr output levels. This feature can be enabled using Subaddress 0x87, Bit 0. This feature affects all SD output signals, that is, CVBS, Y-C, YPrPb, and RGB. Subaddress 0x03 0x04 0x05 0x06 0x07 0x08 0x09 Default 0x03 0xF0 0x4E 0x0E 0x24 0x92 0x7C When the ED/HD manual CSC matrix adjust feature is enabled, the default coefficient values in Subaddress 0x03 to Subaddress 0x09 are correct for the HD color space only. The color components are converted according to the following 1080i and 720p standards (SMPTE 274M, SMPTE 296M): R = Y + 1.575Pr Subaddress 0x9C to Subaddress 0x9F When enabled, three 10-bit registers (SD Y scale, SD Cb scale, and SD Cr scale) control the scaling of the SD Y, Cb, and Cr output levels. The SD Y scale register contains the scaling factor used to the scale the Y level from 0.0 to 1.5 times its initial level. The SD Cb scale and SD Cr scale registers contain the scaling factors to scale the Cb and Cr levels from 0.0 to 2.0 times their initial levels, respectively. The values to be written to these 10-bit registers are calculated using the following equation: Y, Cb, or Cr Scale Value = Scale Factor × 512 For example, if Scale Factor = 1.3 G = Y − 0.468Pr − 0.187Pb Y, Cb, or Cr Scale Value = 1.3 × 512 = 665.6 B = Y + 1.855Pb The conversion coefficients should be multiplied by 315 before being written to the ED/HD CSC matrix registers. This is reflected in the default values for GY = 0x13B, GU = 0x03B, GV = 0x093, BU = 0x248, and RV = 0x1F0. If the ED/HD manual CSC matrix adjust feature is enabled and another input standard (such as ED) is used, the scale values for GY, GU, GV, BU, and RV must be adjusted according to this input standard color space. The user should consider that the color component conversion may use different scale values. Subaddress 0x9C, SD scale LSB register = 0x2A Subaddress 0x9D, SD Y scale register = 0xA6 Subaddress 0x9E, SD Cb scale register = 0xA6 Subaddress 0x9F, SD Cr scale register = 0xA6 It is recommended that the SD luma scale saturation feature (Subaddress 0x87, Bit 1) be enabled when scaling the Y output level to avoid excessive Y output levels. Subaddress 0xA0 R = Y + 1.402Pr When enabled, the SD hue adjust control register (Subaddress 0xA0) is used to adjust the hue on the SD composite and chroma outputs. This feature can be enabled using Subaddress 0x87, Bit 2. G = Y – 0.714Pr – 0.344Pb B = Y + 1.773Pb The programmable CSC matrix is used for external ED/HD pixel data and is not functional when internal test patterns are enabled. Programming the CSC Matrix If custom manipulation of the ED/HD CSC matrix coefficients is required for a YCrCb-to-RGB color space conversion, use the following procedure: 2. 3. 4. Y, Cb, or Cr Scale Value = 1010 0110 10b SD HUE ADJUST CONTROL For example, SMPTE 293M uses the following conversion: 1. Y, Cb, or Cr Scale Value = 666 (rounded to the nearest integer) Enable the ED/HD manual CSC matrix adjust feature (Subaddress 0x02, Bit 3). Set the output to RGB (Subaddress 0x02, Bit 5). Disable sync on PrPb (Subaddress 0x35, Bit 2). Enable sync on RGB (optional) (Subaddress 0x02, Bit 4). Subaddress 0xA0 contains the bits required to vary the hue of the video data, that is, the variance in phase of the subcarrier during active video with respect to the phase of the subcarrier during the color burst. The ADV7344 provides a range of ±22.5 in increments of 0.17578125°. For normal operation (zero adjustment), this register is set to 0x80. Value 0xFF and Value 0x00 represent the upper and lower limits, respectively, of the attainable adjustment in NTSC mode. Value 0xFF and Value 0x01 represent the upper and lower limits, respectively, of the attainable adjustment in PAL mode. The GY value controls the green signal output level, the BU value controls the blue signal output level, and the RV value controls the red signal output level. Rev. B | Page 59 of 108 ADV7344 Data Sheet The hue adjust value is calculated using the following equation: 0 × (SD Brightness Value) = 0 × (IRE Value × 2.015631) = Hue Adjust (°) = 0.17578125° (HCRd − 128) 0 × (20 × 2.015631) = 0 × (40.31262) ≈ 0x28 where HCRd = hue adjust control register (decimal). To add a –7 IRE brightness level to a PAL signal, write 0x72 to Subaddress 0xA1. For example, to adjust the hue by +4°, write 0x97 to the hue adjust control register. 0 × (SD Brightness Value) = 0 × (IRE Value × 2.075631) = 0 × (7 × 2.015631) = 0x(14.109417) ≈ 0001110b 0001110b into twos complement = 1110010b = 0x72 4 + 128 ≈ 151d = 0 x97 0.17578125 where the sum is rounded to the nearest integer. To adjust the hue by −4°, write 0x69 to the hue adjust control register. −4 + 128 ≈ 105d = 0 x69 0.17578125 where the sum is rounded to the nearest integer. SD BRIGHTNESS DETECT Subaddress 0xBA The ADV7344 allows monitoring of the brightness level of the incoming video data. The SD brightness detect register (Subaddress 0xBA) is a read-only register. SD BRIGHTNESS CONTROL Subaddress 0xA1, Bits[6:0] When this feature is enabled, the SD brightness/WSS control register (Subaddress 0xA1) is used to control brightness by adding a programmable setup level onto the scaled Y data. This feature can be enabled using Subaddress 0x87, Bit 3. For NTSC with pedestal, the setup can vary from 0 IRE to 22.5 IRE. For NTSC without pedestal and for PAL, the setup can vary from −7.5 IRE to +15 IRE. The SD brightness control register is an 8-bit register. The seven LSBs of this 8-bit register are used to control the brightness level, which can be a positive or negative value. Table 50. Sample Brightness Control Values1 Setup Level (NTSC) with Pedestal 22.5 IRE 15 IRE 7.5 IRE 0 IRE 1 Setup Level (NTSC) Without Pedestal 15 IRE 7.5 IRE 0 IRE −7.5 IRE Brightness Control Value 0x1E 0x0F 0x00 0x71 Values in the range of 0x3F to 0x44 may result in an invalid output signal. SD INPUT STANDARD AUTODETECTION Subaddress 0x87, Bit 5 The ADV7344 includes an SD input standard autodetect feature. This SD feature can be enabled by setting Subaddress 0x87, Bits[5:1]. When enabled, the ADV7344 can automatically identify an NTSC or a PAL B/D/G/H/I input stream. The ADV7344 automatically updates the subcarrier frequency registers with the appropriate value for the identified standard. The ADV7344 is also configured to correctly encode the identified standard. The SD standard bits (Subaddress 0x80, Bits[1:0]) and the subcarrier frequency registers are not updated to reflect the identified standard. All registers retain their default or userdefined values. For example, to add a +20 IRE brightness level to an NTSC signal with pedestal, write 0x28 to Subaddress 0xA1. NTSC WITHOUT PEDESTAL +7.5 IRE 100 IRE 0 IRE POSITIVE SETUP VALUE ADDED NEGATIVE SETUP VALUE ADDED Figure 64. Examples of Brightness Control Values Rev. B | Page 60 of 108 06400-069 –7.5 IRE NO SETUP VALUE ADDED Setup Level (PAL) 15 IRE 7.5 IRE 0 IRE −7.5 IRE Data Sheet ADV7344 DOUBLE BUFFERING Subaddress 0x33, Bit 7 for ED/HD; Subaddress 0x88, Bit 2 for SD Double-buffered registers are updated once per field. Double buffering improves overall performance because modifications to register settings are not made during active video but take effect prior to the start of the active video on the next field. Double buffering can be activated on the following ED/HD registers using Subaddress 0x33, Bit 7: the ED/HD Gamma A and Gamma B curves and ED/HD CGMS registers. Double buffering can be activated on the following SD registers using Subaddress 0x88, Bit 2: the SD Gamma A and Gamma B curves, SD Y scale, SD Cr scale, SD Cb scale, SD brightness, SD closed captioning, and SD Macrovision Bits[5:0] (Subaddress 0xE0, Bits[5:0]). PROGRAMMABLE DAC GAIN CONTROL Subaddress 0x0A to Subaddress 0x0B It is possible to adjust the DAC output signal gain up or down from its absolute level. This is illustrated in Figure 65. DAC 4 to DAC 6 are controlled by Register 0x0A. DAC 1 to DAC 3 are controlled by Register 0x0B. CASE A GAIN PROGRAMMED IN DAC OUTPUT LEVEL REGISTERS, SUBADDRESS 0x0A, 0x0B 700mV 300mV In Case B of Figure 65, the video output signal is reduced. The absolute level of the sync tip and the blanking level decrease with respect to the reference video output signal. The overall gain of the signal is reduced from the reference signal. The range of this feature is specified for ±7.5% of the nominal output from the DACs. For example, if the output current of the DAC is 4.33 mA, the DAC gain control feature can change this output current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%). The reset value of the control registers is 0x00; that is, nominal DAC current is output. Table 51 shows how the output current of the DACs varies for a nominal 4.33 mA output current. Table 51. DAC Gain Control Reg. 0x0A or Reg.0x0B 0100 0000 (0x40) 0011 1111 (0x3F) 0011 1110 (0x3E) ... ... 0000 0010 (0x02) 0000 0001 (0x01) 0000 0000 (0x00) DAC Current (mA) 4.658 4.653 4.648 ... ... 4.43 4.38 4.33 % Gain 7.5000% 7.3820% 7.3640% ... ... 0.0360% 0.0180% 0.0000% 1111 1111 (0xFF) 1111 1110 (0xFE) ... ... 1100 0010 (0xC2) 1100 0001 (0xC1) 1100 0000 (0xC0) 4.25 4.23 ... ... 4.018 4.013 4.008 −0.0180% −0.0360% ... ... −7.3640% −7.3820% −7.5000% Note Reset value, nominal GAMMA CORRECTION Subaddress 0x44 to Subaddress 0x57 for ED/HD; Subaddress 0xA6 to Subaddress 0xB9 for SD CASE B Generally, gamma correction is applied to compensate for the nonlinear relationship between signal input and output brightness level (as perceived on a CRT). It can also be applied wherever nonlinear processing is used. NEGATIVE GAIN PROGRAMMED IN DAC OUTPUT LEVEL REGISTERS, SUBADDRESS 0x0A, 0x0B 700mV Gamma correction uses the function SignalOUT = (SignalIN)γ where γ is the gamma correction factor. 06399-070 300mV Figure 65. Programmable DAC Gain—Positive and Negative Gain In Case A of Figure 65, the video output signal is gained. The absolute level of the sync tip and the blanking level increase with respect to the reference video output signal. The overall gain of the signal is increased from the reference signal. Gamma correction is available for SD and ED/HD video. For both variations, there are twenty 8-bit registers. They are used to program the Gamma Correction Curve A and Gamma Correction Curve B. ED/HD gamma correction is enabled using Subaddress 0x35, Bit 5. ED/HD Gamma Correction Curve A is programmed at Subaddress 0x44 to Subaddress 0x4D, and ED/HD Gamma Correction Curve B is programmed at Subaddress 0x4E to Subaddress 0x57. Rev. B | Page 61 of 108 ADV7344 Data Sheet SD gamma correction is enabled using Subaddress 0x88, Bit 6. SD Gamma Correction Curve A is programmed at Subaddress 0xA6 to Subaddress 0xAF, and SD Gamma Correction Curve B is programmed at Subaddress 0xB0 to Subaddress 0xB9. Gamma correction is performed on the luma data only. The user can choose one of two correction curves, Curve A or Curve B. Only one of these curves can be used at a time. For ED/HD gamma correction, curve selection is controlled using Subaddress 0x35, Bit 4. For SD gamma correction, curve selection is controlled using Subaddress 0x88, Bit 7. The shape of the gamma correction curve is controlled by defining the curve response at 10 different locations along the curve. By altering the response at these locations, the shape of the gamma correction curve can be modified. Between these points, linear interpolation is used to generate intermediate values. Considering that the curve has a total length of 256 points, the 10 programmable locations are at the following points: 24, 32, 48, 64, 80, 96, 128, 160, 192, and 224. The following locations are fixed and cannot be changed: 0, 16, 240, and 255. To program the gamma correction registers, calculate the 10 programmable curve values using the following formula: n − 16 γ γ n = × (240 − 16) + 16 240 − 16 where: γn is the value to be written into the gamma correction register for point n on the gamma correction curve. n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224. γ is the gamma correction factor. For example, setting γ = 0.5 for all programmable curve data points results in the following yn values: y24 = [(8/224)0.5 × 224] + 16 = 58 y32 = [(16/224)0.5 × 224] + 16 = 76 y48 = [(32/224)0.5 × 224] + 16 = 101 y64 = [(48/224)0.5 × 224] + 16 = 120 y80 = [(64/224)0.5 × 224] + 16 = 136 y96 = [(80/224)0.5 × 224] + 16 = 150 y128 = [(112/224)0.5 × 224] + 16 = 174 From the curve locations, 16 to 240, the values at the programmable locations and, therefore, the response of the gamma correction curve, should be calculated to produce the following result: xDESIRED = (xINPUT)γ y160 = [(144/224)0.5 × 224] + 16 = 195 y192 = [(176/224)0.5 × 224] + 16 = 214 y224 = [(208/224)0.5 × 224] + 16 = 232 where the sum of each equation is rounded to the nearest integer. where: xDESIRED is the desired gamma corrected output. xINPUT is the linear input signal. γ is gamma correction factor. The gamma curves in Figure 66 and Figure 67 are examples only; any user-defined curve in the range from 16 to 240 is acceptable. GAMMA CORRECTION BLOCK TO A RAMP INPUT FOR VARIOUS GAMMA VALUES GAMMA CORRECTION BLOCK OUTPUT TO A RAMP INPUT 300 SIGNAL OUTPUT 200 0.5 150 100 SIGNAL INPUT 50 0 0 50 100 150 LOCATION 200 250 Figure 66. Signal Input (Ramp) and Signal Output for Gamma 0.5 250 0.3 200 0.5 150 100 G SI L NA T PU IN 1.5 1.8 50 0 0 50 100 150 LOCATION 200 250 Figure 67. Signal Input (Ramp) and Selectable Output Curves Rev. B | Page 62 of 108 06400-072 GAMMA CORRECTED AMPLITUDE 250 06400-071 GAMMA CORRECTED AMPLITUDE 300 Data Sheet ADV7344 ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER CONTROLS Subaddress 0x4; Subaddress 0x58 to Subaddress 0x5D There are three filter modes available on the ADV7344, a sharpness filter mode and two adaptive filter modes. ED/HD Sharpness Filter Mode The derivative of the incoming signal is compared to the three programmable threshold values: ED/HD adaptive filter (Threshold A, Threshold B, and Threshold C) registers (Subaddress 0x5B, Subaddress 0x5C, and Subaddress 0x5D, respectively). The recommended threshold range is 16 to 235, although any value in the range of 0 to 255 can be used. To enhance or attenuate the Y signal in the frequency ranges shown in Figure 68, the ED/HD sharpness filter must be enabled (Subaddress 0x31, Bit 7) and the ED/HD adaptive filter must be disabled (Subaddress 0x35, Bit 7). The edges can then be attenuated with the settings in the ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers (Subaddress 0x58, Subaddress 0x59 and Subaddress 0x5A, respectively), and the ED/HD sharpness filter gain register (Subaddress 0x40). To select one of the 256 individual responses, the corresponding gain values, which range from –8 to +7 for each filter, must be programmed into the ED/HD sharpness filter gain register at Subaddress 0x40. There are two adaptive filter modes available. The mode is selected using the ED/HD adaptive filter mode control (Subaddress 0x35, Bit 6) as follows: 1.5 SHARPNESS AND ADAPTIVE FILTER CONTROL BLOCK 1.5 1.4 1.3 1.3 MAGNITUDE 1.4 MAGNITUDE 1.2 INPUT SIGNAL STEP • Mode A is used when the ED/HD adaptive filter mode control is set to 0. In this case, Filter B (LPF) is used in the adaptive filter block. In addition, only the programmed values for Gain B in the ED/HD sharpness filter gain register and ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers are applied when needed. The Gain A values are fixed and cannot be changed. Mode B is used when ED/HD adaptive filter mode control is set to 1. In this mode, a cascade of Filter A and Filter B is used. Both settings for Gain A and Gain B in the ED/HD sharpness filter gain register and ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers become active when needed. 1.1 1.0 0.9 1.2 1.1 1.0 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 FREQUENCY (MHz) FILTER A RESPONSE (Gain Ka) FREQUENCY (MHz) FILTER B RESPONSE (Gain Kb) 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0 2 6 8 4 10 FREQUENCY (MHz) 12 FREQUENCY RESPONSE IN SHARPNESS FILTER MODE WITH Ka = 3 AND Kb = 7 Figure 68. ED/HD Sharpness and Adaptive Filter Control Block Rev. B | Page 63 of 108 06400-073 The ED/HD adaptive filter (Threshold A, Threshold B, and Threshold C) registers, the ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers, and the ED/HD sharpness filter gain register are used in adaptive filter mode. To activate the adaptive filter control, the ED/HD sharpness filter and the ED/HD adaptive filter must be enabled (Subaddress 0x31, Bit 7, and Subaddress 0x35, Bit 7, respectively). • MAGNITUDE RESPONSE (Linear Scale) ED/HD Adaptive Filter Mode ADV7344 Data Sheet d a R2 1 e b R4 R1 f c 1 500mV 4.00µs M 4.00µs 1 9.99978ms CH1 ALL FIELDS CH1 500mV REF A 500mV 4.00µs 1 M 4.00µs 9.99978ms CH1 ALL FIELDS 06400-074 R2 CH1 500mV REF A Figure 69. ED/ HD Sharpness Filter Control with Different Gain Settings for ED/HD Sharpness Filter Gain Values ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER APPLICATION EXAMPLES Sharpness Filter Application The ED/HD sharpness filter can be used to enhance or attenuate the Y video output signal. The register settings in Table 52 are used to achieve the results shown in Figure 69. Input data is generated by an external signal source. 1 Register Setting 0xFC 0x10 0x20 0x00 0x81 0x00 0x08 0x04 0x40 0x80 0x22 Reference1 a b c d e f The register settings in Table 53 are used to obtain the results shown in Figure 71, that is, to remove the ringing on the input Y signal, as shown in Figure 70. Input data is generated by an external signal source. Table 53. Register Settings for Figure 71 Table 52. ED/HD Sharpness Control Settings for Figure 69 Subaddress 0x00 0x01 0x02 0x30 0x31 0x40 0x40 0x40 0x40 0x40 0x40 Adaptive Filter Control Application Subaddress 0x00 0x01 0x02 0x30 0x31 0x35 0x40 0x58 0x59 0x5A 0x5B 0x5C 0x5D See Figure 69. Rev. B | Page 64 of 108 Register Setting 0xFC 0x38 0x20 0x00 0x81 0x80 0x00 0xAC 0x9A 0x88 0x28 0x3F 0x64 Data Sheet ADV7344 amount (coring gain border, coring gain data) of this noise signal is subtracted from the original signal. In DNR sharpness mode, if the absolute value of the filter output is less than the programmed threshold, it is assumed to be noise. Otherwise, if the level exceeds the threshold, now identified as a valid signal, a fraction of the signal (coring gain border, coring gain data) is added to the original signal to boost high frequency components and sharpen the video image. 06400-075 In MPEG systems, it is common to process the video information in blocks of 8 pixels × 8 pixels for MPEG2 systems or 16 pixels × 16 pixels for MPEG1 systems (block size control). DNR can be applied to the resulting block transition areas that are known to contain noise. Generally, the block transition area contains two pixels. It is possible to define this area to contain four pixels (border area). Figure 70. Input Signal to ED/HD Adaptive Filter It is also possible to compensate for variable block positioning or differences in YCrCb pixel timing with the use of the DNR block offset. The digital noise reduction registers are three 8-bit registers. They are used to control the DNR processing. DNR MODE DNR CONTROL 06400-076 BLOCK SIZE CONTROL BORDER AREA BLOCK OFFSET GAIN Figure 71. Output Signal from ED/HD Adaptive Filter (Mode A) NOISE SIGNAL PATH When the adaptive filter mode is changed to Mode B (Subaddress 0x35, Bit 6), the output shown in Figure 72 can be obtained. CORING GAIN DATA CORING GAIN BORDER INPUT FILTER BLOCK FILTER OUTPUT < THRESHOLD? Y DATA INPUT FILTER OUTPUT > THRESHOLD – SUBTRACT SIGNAL IN THRESHOLD RANGE FROM ORIGINAL SIGNAL + DNR OUT MAIN SIGNAL PATH DNR SHARPNESS MODE DNR CONTROL BLOCK SIZE CONTROL BORDER AREA BLOCK OFFSET 06400-077 GAIN NOISE SIGNAL PATH CORING GAIN DATA CORING GAIN BORDER INPUT FILTER BLOCK SD DIGITAL NOISE REDUCTION Y DATA INPUT Subaddress 0xA3 to Subaddress 0xA5 Digital noise reduction (DNR) is applied to the Y data only. A filter block selects the high frequency, low amplitude components of the incoming signal (DNR input select). The absolute value of the filter output is compared to a programmable threshold value (DNR threshold control). There are two DNR modes available, DNR mode and DNR sharpness mode. In DNR mode, if the absolute value of the filter output is smaller than the threshold, it is assumed to be noise. A programmable Rev. B | Page 65 of 108 ADD SIGNAL ABOVE THRESHOLD RANGE FROM ORIGINAL SIGNAL FILTER OUTPUT > THRESHOLD? FILTER OUTPUT < THRESHOLD + + MAIN SIGNAL PATH Figure 73. SD DNR Block Diagram DNR OUT 06400-078 Figure 72. Output Signal from ED/HD Adaptive Filter (Mode B) ADV7344 Data Sheet Coring Gain Border—Subaddress 0xA3, Bits[3:0] Block Size Control—Subaddress 0xA4, Bit 7 These four bits are assigned to the gain factor applied to border areas. In DNR mode, the range of gain values is 0 to 1 in increments of 1/8. This factor is applied to the DNR filter output that lies below the set threshold range. The result is then subtracted from the original signal. This bit is used to select the size of the data blocks to be processed. Setting the block size control function to Logic 1 defines a 16 pixel × 16 pixel data block, and Logic 0 defines an 8 pixel × 8 pixel data block, where one pixel refers to two clock cycles at 27 MHz. In DNR sharpness mode, the range of gain values is 0 to 0.5 in increments of 1/16. This factor is applied to the DNR filter output that lies above the threshold range. The result is added to the original signal. DNR Input Select Control—Subaddress 0xA5, Bits[2:0] These four bits are assigned to the gain factor applied to the luma data inside the MPEG pixel block. In DNR mode, the range of gain values is 0 to 1 in increments of 1/8. This factor is applied to the DNR filter output that lies below the set threshold range. The result is then subtracted from the original signal. In DNR sharpness mode, the range of gain values is 0 to 0.5 in increments of 1/16. This factor is applied to the DNR filter output that lies above the threshold range. The result is added to the original signal. FILTER D 0.8 0 06400-079 OFFSET CAUSED BY VARIATIONS IN INPUT TIMING OXXXXXXOOXXXXXXO Figure 74. SD DNR Offset Control DNR Threshold—Subaddress 0xA4, Bits[5:0] These six bits are used to define the threshold value in the range of 0 to 63. The range is an absolute value. Border Area—Subaddress 0xA4, Bit 6 When this bit is set to Logic 1, the block transition area can be defined to consist of four pixels. If this bit is set to Logic 0, the border transition area consists of two pixels, where one pixel refers to two clock cycles at 27 MHz. TWO-PIXEL BORDER DATA 0 1 2 3 4 FREQUENCY (MHz) 5 6 Figure 76. SD DNR Input Select DNR Mode Control—Subaddress 0xA5, Bit 3 This bit controls the DNR mode selected. Logic 0 selects DNR mode; Logic 1 selects DNR sharpness mode. DNR works on the principle of defining low amplitude, high frequency signals as probable noise and subtracting this noise from the original signal. In DNR mode, it is possible to subtract a fraction of the signal that lies below the set threshold, assumed to be noise, from the original signal. The threshold is set in DNR Register 1. When DNR sharpness mode is enabled, it is possible to add a fraction of the signal that lies above the set threshold to the original signal because this data is assumed to be valid data and not noise. The overall effect is that the signal is boosted (similar to using the extended SSAF filter). DNR Block Offset Control—Subaddress 0xA5, Bits[7:4] 8 × 8 PIXEL BLOCK 8 × 8 PIXEL BLOCK 06400-080 720 × 485 PIXELS (NTSC) FILTER B FILTER A OXXXXXXOOXXXXXXO DNR27 TO DNR24 = 0x01 0.4 0.2 APPLY BORDER CORING GAIN OXXXXXXOOXXXXXXO FILTER C 0.6 06400-081 APPLY DATA CORING GAIN 1.0 MAGNITUDE Coring Gain Data—Subaddress 0xA3, Bits[7:4] Three bits are assigned to select the filter, which is applied to the incoming Y data. The signal that lies in the pass band of the selected filter is the signal that is DNR processed. Figure 76 shows the filter responses selectable with this control. Four bits are assigned to this control, which allows a shift of the data block of 15 pixels maximum. Consider the coring gain positions fixed. The block offset shifts the data in steps of one pixel such that the border coring gain factors can be applied at the same position regardless of variations in input timing of the data. Figure 75. SD DNR Border Area Rev. B | Page 66 of 108 Data Sheet ADV7344 SD ACTIVE VIDEO EDGE CONTROL three pixels of the active video on the luma channel are scaled so that maximum transitions on these pixels are not possible. Subaddress 0x82, Bit 7 At the start of active video, the first three pixels are multiplied by 1/8, 1/2, and 7/8, respectively. Approaching the end of active video, the last three pixels are multiplied by 7/8, 1/2, and 1/8, respectively. All other active video pixels pass through unprocessed. The ADV7344 is able to control fast rising and falling signals at the start and end of active video to minimize ringing. When the active video edge control feature is enabled (Subaddress 0x82, Bit 7 = 1), the first three pixels and the last LUMA CHANNEL WITH ACTIVE VIDEO EDGE DISABLED LUMA CHANNEL WITH ACTIVE VIDEO EDGE ENABLED 100 IRE 100 IRE 87.5 IRE 50 IRE 06400-082 12.5 IRE 0 IRE 0 IRE Figure 77. Example of Active Video Edge Functionality VOLTS IRE:FLT 100 0.5 50 0 F2 L135 –50 0 2 4 6 8 10 12 06400-083 0 Figure 78. Example of Video Output with Subaddress 0x82, Bit 7 = 0 VOLTS IRE:FLT 100 0.5 50 0 F2 L135 –50 –2 0 2 4 6 8 10 Figure 79. Example of Video Output with Subaddress 0x82, Bit 7 = 1 Rev. B | Page 67 of 108 12 06400-084 0 ADV7344 Data Sheet EXTERNAL HORIZONTAL AND VERTICAL SYNCHRONIZATION CONTROL For synchronization purposes, the ADV7344 is able to accept either time codes embedded in the input pixel data or external synchronization signals provided on the S_HSYNC, S_VSYNC, P_HSYNC, P_VSYNC, and P_BLANK pins (see Table 54). It is also possible to output synchronization signals on the S_HSYNC and S_VSYNC pins (see Table 55 to Table 57). Table 54. Timing Synchronization Signal Input Options Signal Pin Condition SD HSYNC In SD VSYNC In ED/HD HSYNC In ED/HD VSYNC In ED/HD BLANK In S_HSYNC S_VSYNC P_HSYNC P_VSYNC P_BLANK SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0])1 SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0])1 ED/HD timing sync, inputs enabled (Subaddress 0x30, Bit 2 = 0) ED/HD timing sync, inputs enabled (Subaddress 0x30, Bit 2 = 0) 1 SD and ED/HD timing sync. Outputs must also be disabled (Subaddress 0x02[7:6] = 00). Table 55. Timing Synchronization Signal Output Options Signal SD HSYNC Out SD VSYNC Out ED/HD HSYNC Out ED/HD VSYNC Out 1 Pin S_HSYNC S_VSYNC S_HSYNC S_VSYNC Condition SD timing sync, outputs enabled (Subaddress 0x02, Bit 6 = 1)1 SD timing sync, outputs enabled (Subaddress 0x02, Bit 6 = 1)1 ED/HD timing sync, outputs enabled (Subaddress 0x02, Bit 7 = 1) ED/HD timing sync, outputs enabled (Subaddress 0x02, Bit 7 = 1) ED/HD timing sync. Outputs must also be disabled (Subaddress 0x02, Bit 7 = 0). Table 56. HSYNC Output Control1, 2 ED/HD Input Sync Format (Subaddress 0x30, Bit 2) X X 0 1 ED/HD HSYNC Control (Subaddress 0x34, Bit 1) X X 0 0 ED/HD Sync Output Enable (Subaddress 0x02, Bit 7) 0 0 1 1 SD Sync Output Enable (Subaddress 0x02, Bit 6) 0 1 X X X 1 1 X 1 2 Signal on S_HSYNC Pin Tristate Pipelined SD HSYNC Pipelined ED/HD HSYNC Pipelined ED/HD HSYNC based on AV Code H bit Pipelined ED/HD HSYNC based on the horizontal counter Duration N/A See SD Timing As per HSYNC timing Same as line blanking interval Same as embedded HSYNC In all ED/HD standards where there is an HSYNC output, the start of the HSYNC pulse is aligned with the falling edge of the embedded HSYNC in the output video. X = don’t care. Table 57. VSYNC Output Control 1, 2 ED/HD Input Sync Format (0x30, Bit 2) X X 0 ED/HD VSYNC Control (0x34, Bit 2) X X 0 ED/HD Sync Output Enable (0x02, Bit 7) 0 0 1 SD Sync Output Enable (0x02, Bit 6) 0 1 X 1 0 1 X 1 0 1 X X 1 1 X X 1 1 X 1 2 Video Standard X Interlaced X All HD interlaced standards All ED/HD progressive standards All ED/HD standards except 525p 525p Signal on S_VSYNC Pin Tristate. Pipelined SD VSYNC/Field. Pipelined ED/HD VSYNC or field signal. Pipelined field signal based on AV Code F bit. Pipelined VSYNC based on AV Code V bit. Pipelined ED/HD VSYNC based on vertical counter. Pipelined ED/HD VSYNC based on vertical counter. Duration – See SD Timing As per VSYNC or field signal timing Field Vertical blanking interval Aligned with serration lines Vertical blanking interval In all ED/HD standards where there is a VSYNC output, the start of the VSYNC pulse is aligned with the falling edge of the embedded VSYNC in the output video. X = don’t care. Rev. B | Page 68 of 108 Data Sheet ADV7344 LOW POWER MODE Subaddress 0x0D, Bits[2:0] For power-sensitive applications, the ADV7344 supports an Analog Devices proprietary low power mode of operation on DAC 1, DAC 2, and DAC 3. To use this low power mode, these DACs must be operating in full-drive mode (RSET1 = 510 Ω, RL = 37.5 Ω). Low power mode is not available in low-drive mode (RSET = 4.12 kΩ, RL = 300 Ω). Low power mode can be independently enabled or disabled on DAC 1, DAC 2, and DAC 3 using Subaddress 0x0D, Bits[2:0]. Low power mode is disabled by default on each DAC. In low power mode, DAC current consumption is content dependent. On a typical video stream, it can be reduced by as much as 40%. For applications requiring the highest possible video performance, low power mode should be disabled. CABLE DETECTION Subaddress 0x10 The ADV7344 includes an Analog Devices proprietary cable detection feature. The cable detection feature is available on DAC 1 and DAC 2, while operating in full-drive mode (RSET1 = 510 Ω, RL1 = 37.5 Ω, assuming a connected cable). The feature is not available in low-drive mode (RSET1 = 4.12 kΩ, RL = 300 Ω). For a DAC to be monitored, the DAC must be powered up in Subaddress 0x00. The cable detection feature can be used with all SD, ED, and HD video standards. It is available for all output configurations, that is, CVBS, YC, YPrPb, and RGB output configurations. For CVBS/YC output configurations, both DAC 1 and DAC 2 are monitored; that is, the CVBS and YC luma outputs are monitored. For YPrPb and RGB output configurations, only DAC 1 is monitored; that is, the luma or green output is monitored. Once per frame, the ADV7344 monitors DAC 1 and/or DAC 2, updating Subaddress 0x10, Bit 0 and Bit 1, respectively. If a cable is detected on one of the DACs, the relevant bit is set to 0. If not, the bit is set to 1. DAC AUTOPOWER-DOWN Subaddress 0x10, Bit 4 For power-sensitive applications, a DAC autopower-down feature can be enabled using Subaddress 0x10, Bit 4. This feature is available only when the cable detection feature is enabled. With this feature enabled, the cable detection circuitry monitors DAC 1 and/or DAC 2 once per frame. If they are unconnected, some or all of the DACs automatically power down. Which DAC or DACs are powered down depends on the selected output configuration. For CVBS/YC output configurations, if DAC 1 is unconnected, only DAC 1 powers down. If DAC 2 is unconnected, DAC 2 and DAC 3 power down. For YPrPb and RGB output configurations, if DAC 1 is unconnected, all three DACs power down. DAC 2 is not monitored for YPrPb and RGB output configurations. Once per frame, DAC 1 and/or DAC 2 is monitored. If a cable is detected, the appropriate DAC or DACs remain powered up for the duration of the frame. If no cable is detected, the appropriate DAC or DACs power down until the next frame when the process is repeated. SLEEP MODE Subaddress 0x00, Bit 0 In sleep mode, most of the digital I/O pins of the ADV7340/ ADV7341 are disabled. For inputs, this means that the external data is ignored, and internally the logic normally driven by a given input is just tied low or high. This includes CLKINx. For digital output pins, this means that the pin goes into tristate (high impedance) mode. There are some exceptions to allow the user to continue to communicate with the part via I2C: the ALSB, SDA, and SCL pins are kept alive. PIXEL AND CONTROL PORT READBACK Subaddress 0x12 to Subaddress 0x16 The ADV7344 supports the readback of most digital inputs via the I2C MPU port. This feature is useful for board-level connectivity testing with upstream devices. The pixel port (S[9:0], Y[9:0], and C[9:0]), the control port (S_HSYNC, S_VSYNC, P_HSYNC, P_VSYNC, and P_BLANK), and the SFL pin are available for readback via the MPU port. The readback registers are located at Subaddress 0x12 to Subaddress 0x16. When using this feature, apply a clock signal to the CLKIN_A pin to register the levels applied to the input pins. RESET MECHANISM Subaddress 0x17, Bit 1 The ADV7344 has a software reset accessible via the I2C MPU port. A software reset is activated by writing a 1 to Subaddress 0x17, Bit 1. This resets all registers to their default values. This bit is self-clearing; that is, after a 1 has been written to the bit, the bit automatically returns to 0. The ADV7344 includes a power-on reset (POR) circuit to ensure correct operation after power-up. SD TELETEXT INSERTION Subaddress 0xC9 to Subaddress 0xCE The ADV7344 supports the insertion of teletext data, using a 2-pin interface, when operating in PAL mode. Teletext insertion is enabled using Subaddress 0xC9, Bit 0. In accordance with the PAL WST teletext standard, teletext data should be inserted into the ADV7344 at a rate of 6.9375 Mbps. The teletext data can be inserted on the S_VSYNC, P_VSYNC, Rev. B | Page 69 of 108 ADV7344 Data Sheet or C0 pin. The pin on which the teletext data is inserted is selected using Subaddress 0xC9, Bits [3:2]. When teletext insertion is enabled, a teletext request signal is output from the ADV7344 to indicate when teletext data should be inserted. The teletext request signal is output on the SFL pin. The position (relative to the teletext data) and width of the request signal are configurable using Subaddress 0xCA. The request signal can operate in either a line or bit mode. The request signal mode is controlled using Subaddress 0xC9, Bit 1. To account for the noninteger relationship between the teletext insertion rate (6.9375 Mbps) and the pixel clock (27 MHz), a teletext insertion protocol is implemented in the ADV7344. At a rate of 6.9375 Mbps, the time taken for the insertion of 37 teletext bits equates to 144 pixel clock cycles (at 27 MHz). For every 37 teletext bits inserted into the ADV7344, the 10th, 19th, 28th, and 37th bits are carried for three pixel clock cycles, and the remainder are carried for four pixel clock cycles (totaling 144 pixel clock cycles). The teletext insertion protocol repeats every 37 teletext bits or 144 pixel clock cycles until all 360 teletext bits are inserted. 45 BYTES (360 BITS) – PAL RUN-IN CLOCK 06400-143 ADDRESS AND DATA TELETEXT VBI LINE Figure 80. Teletext VBI Line tSYNTTXOUT CVBS/Y tPD tPD HSYNC 10.2µs TTXDATA TTXDEL TTXREQ PROGRAMMABLE PULSE EDGES tSYNTTXOUT = 10.2µs. tPD = PIPELINE DELAY THROUGH ADV7344. TTXDEL = TTXREQ TO TTXDATA (PROGRAMMABLE RANGE = 4 BITS [0 TO 15 PIXEL CLOCK CYCLES]). Figure 81. Teletext Functionality Diagram Rev. B | Page 70 of 108 06400-144 TTXST Data Sheet ADV7344 PRINTED CIRCUIT BOARD LAYOUT AND DESIGN UNUSED PINS If the S_HSYNC, S_VSYNC, P_HSYNC, and P_VSYNC pins are not used, they should be tied to VDD_IO through a pull-up resistor (10 kΩ or 4.7 kΩ). Any other unused digital inputs should be tied to ground. Unused digital output pins should be left floating. DAC outputs can be either left floating or connected to GND. Disabling these outputs is recommended. is connected to a device that requires this filtering. The filter specifications vary with the application. The use of 16× (SD), 8× (ED), or 4× (HD) oversampling can remove the requirement for a reconstruction filter altogether. For applications requiring an output buffer and reconstruction filter, the ADA4430-1, ADA4411-3, and ADA4410-6 integrated video filter buffers should be considered. Table 58. ADV7344 Output Rates The ADV7344 contains six DACs. All six DACs can be configured to operate in low-drive mode. Low-drive mode is defined as 4.33 mA full-scale current into a 300 Ω load, RL. DAC 1, DAC 2, and DAC 3 can also be configured to operate in full-drive mode. Full-drive mode is defined as 34.7 mA fullscale current into a 37.5 Ω load, RL. Full drive is the recommended mode of operation for DAC 1, DAC 2, and DAC 3. The ADV7344 contains two RSET pins. A resistor connected between the RSET1 pin and AGND is used to control the fullscale output current and, therefore, the DAC output voltage levels of DAC 1, DAC 2, and DAC 3. For low-drive operation, RSET1 must have a value of 4.12 kΩ, and RL must have a value of 300 Ω. For full-drive operation, RSET1 must have a value of 510 Ω, and RL must have a value of 37.5 Ω. A resistor connected between the RSET2 pin and AGND is used to control the full-scale output current and, therefore, the DAC output voltage levels of DAC 4, DAC 5, and DAC 6. RSET2 must have a value of 4.12 kΩ, and RL must have a value of 300 Ω (that is, low-drive operation only). The resistors connected to the RSET1 and RSET2 pins should have a 1% tolerance. Input Mode (Subaddress 0x01, Bits[6:4]) SD Only PLL Control (Subaddress 0x00, Bit 1) Off On Off On Off On ED Only HD Only Output Rate (MHz) 27 216 27 216 74.25 297 (2x) (16x) (1x) (8x) (1x) (4x) Table 59. Output Filter Requirements Application SD SD ED ED HD HD Cutoff Frequency (MHz) >6.5 >6.5 >12.5 >12.5 >30 >30 Oversampling 2× 16× 1× 8× 1× 4× Attenuation –50 dB at (MHz) 20.5 209.5 14.5 203.5 44.25 267 10µH DAC OUTPUT 3 600Ω The ADV7344 contains two compensation pins, COMP1 and COMP2. A 2.2 nF compensation capacitor should be connected from each of these pins to VAA. 22pF 75Ω 600Ω BNC OUTPUT 1 4 560Ω 06400-085 DAC CONFIGURATIONS 560Ω VOLTAGE REFERENCE Figure 82. Example of Output Filter for SD, 16× Oversampling 4.7µH DAC OUTPUT 3 6.8pF 600Ω 600Ω 6.8pF 75Ω 1 BNC OUTPUT 4 560Ω 560Ω 06400-086 The ADV7344 contains an on-chip voltage reference that can be used as a board-level voltage reference via the VREF pin. Alternatively, the ADV7344 can be used with an external voltage reference by connecting the reference source to the VREF pin. For optimal performance, an external voltage reference such as the AD1580 should be used with the ADV7344. If an external voltage reference is not used, a 0.1 µF capacitor should be connected from the VREF pin to VAA. Figure 83. Example of Output Filter for ED, 8× Oversampling VIDEO OUTPUT BUFFER AND OPTIONAL OUTPUT FILTER DAC OUTPUT 3 300Ω An optional reconstruction (anti-imaging) low-pass filter (LPF) may be required on the ADV7344 DAC outputs if the ADV7344 Rev. B | Page 71 of 108 1 4 75Ω 390nH BNC OUTPUT 3 33pF 33pF 75Ω 1 4 500Ω 500Ω Figure 84. Example of Output Filter for HD, 4× Oversampling 06400-087 An output buffer is necessary on any DAC that operates in lowdrive mode (RSETx = 4.12 kΩ, RL = 300 Ω). Analog Devices produces a range of op amps suitable for this application, for example, the AD8061. For more information about line driver buffering circuits, see the relevant op amp data sheet. ADV7344 Data Sheet CIRCUIT FREQUENCY RESPONSE 0 24n –30 –10 21n MAGNITUDE (dB) –60 –20 It is recommended to use a 4-layer printed circuit board with ground and power planes separating the signal trace layer and the solder side layer. 18n –90 –30 PHASE (Degrees) 15n –120 –40 Component Placement 12n –150 –50 Component placement should be carefully considered to separate noisy circuits, such as clock signals and high speed digital circuitry, from analog circuitry. 9n –180 GROUP DELAY (Seconds) –60 6n –210 –70 –80 1M 3n –240 0 1G 10M 100M FREQUENCY (Hz) 06400-088 GAIN (dB) The layout should be optimized for lowest noise on the ADV7344 power and ground planes by shielding the digital inputs and providing good power supply decoupling. 0 Figure 85. Output Filter Plot for SD, 16× Oversampling CIRCUIT FREQUENCY RESPONSE 0 480 It is recommended that the ADV7344 be placed as close as possible to the output connector, with the DAC output traces as short as possible. 18n 400 –10 MAGNITUDE (dB) 16n 320 –20 14n GAIN (dB) The termination resistors on the DAC output traces should be placed as close as possible to and on the same side of the PCB as the ADV7344. The termination resistors should overlay the PCB ground plane. 240 –30 PHASE (Degrees) GROUP DELAY (Seconds) –40 12n 160 10n –50 80 –60 0 –70 –80 8n 6n 4n –160 –80 10M 2n –240 0 1G 100M 06400-089 –90 1M FREQUENCY (Hz) Figure 86. Output Filter Plot for ED, 8× Oversampling CIRCUIT FREQUENCY RESPONSE 0 PHASE (Degrees) It is recommended that a separate regulated supply be provided for each power domain (VAA, VDD, VDD_IO, and PVDD). For optimal performance, linear regulators rather than switch mode regulators should be used. If switch mode regulators must be used, care must be taken with regard to the quality of the output voltage in terms of ripple and noise. This is particularly true for the VAA and PVDD power domains. Each power supply should be individually connected to the system power supply at a single point through a suitable filtering device, such as a ferrite bead. –20 40 –30 –40 –40 –120 –50 –200 10 100 FREQUENCY (MHz) Power Supply Decoupling 06400-090 GAIN (dB) GROUP DELAY (Seconds) PHASE (Degrees) 120 1 External filter and buffer components connected to the DAC outputs should be placed as close as possible to the ADV7344 to minimize the possibility of noise pickup from neighboring circuitry and to minimize the effect of trace capacitance on output bandwidth. This is particularly important when operating in low-drive mode (RSETx = 4.12 kΩ, RL = 300 Ω). Power Supplies 200 MAGNITUDE (dB) –10 The external loop filter components and components connected to the COMP, VREF, and RSETx pins should be placed as close as possible to and on the same side of the PCB as the ADV7344. Adding vias to the PCB to get the components closer to the ADV7344 is not recommended. Figure 87. Output Filter Plot for HD, 4× Oversampling PRINTED CIRCUIT BOARD (PCB) LAYOUT The ADV7344 is a highly integrated circuit containing both precision analog and high speed digital circuitry. It is designed to minimize interference effects on the integrity of the analog circuitry by the high speed digital circuitry. It is imperative that these same design and layout techniques be applied to the system-level design so that optimal performance is achieved. It is recommended that each power supply pin be decoupled with 10 nF and 0.1 µF ceramic capacitors. The VAA, PVDD, VDD_IO, and both VDD pins should be individually decoupled to ground. The decoupling capacitors should be placed as close as possible to the ADV7344 with the capacitor leads kept as short as possible to minimize lead inductance. A 1 µF tantalum capacitor is recommended across the VAA supply in addition to the 10 nF and 0.1 µF ceramic capacitors. Rev. B | Page 72 of 108 Data Sheet ADV7344 Power Supply Sequencing If the ALSB pin is tied low, a power supply sequence is required for proper operation of the part. The VDD_IO power supply must be established a minimum of 250 µs prior to the VDD power supply being established. The VAA and PVDD power supplies can be established at any time and in any order. Tying ALSB to VDD_IO completely removes this PSS requirement. Digital Signal Interconnect The digital signal traces should be isolated as much as possible from the analog outputs and other analog circuitry. Digital signal traces should not overlay the VAA or PVDD power planes. Due to the high clock rates used, avoid long clock traces to the ADV7344 to minimize noise pickup. Any pull-up termination resistors for the digital inputs should be connected to the VDD_IO power supply. Any unused digital inputs should be tied to ground. Analog Signal Interconnect DAC output traces should be treated as transmission lines with appropriate measures taken to ensure optimal performance (for example, impedance matched traces). The DAC output traces should be kept as short as possible. The termination resistors on the DAC output traces should be placed as close as possible to, and on the same side of the PCB as, the ADV7344. To avoid crosstalk between the DAC outputs, it is recommended that as much space as possible be left between the traces connected to the DAC output pins. Adding ground traces between the DAC output traces is also recommended. Rev. B | Page 73 of 108 ADV7344 Data Sheet TYPICAL APPLICATION CIRCUIT FERRITE BEAD VDD_IO PVDD (1.8V) 10µF GND_IO GND_IO FERRITE BEAD 33µF 10µF PGND PGND FERRITE BEAD 0.1µF 0.01µF GND_IO GND_IO 0.1µF 0.01µF PGND VDD (1.8V) 10µF 0.1µF AGND AGND FERRITE BEAD 33µF DGND AGND 10µF 0.1µF DGND DGND PGND PIXEL PORT INPUTS C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 VDD_IO VAA PVDD VDD VDD S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 VAA POWER SUPPLY AGND DECOUPLING AGND CLOCK INPUTS I2C PORT P_HSYNC P_VSYNC P_BLANK ADI RECOMMENDS TO TIE ALSB TO VDD_IO. PLEASE REFER TO POWER SUPPLY SEQUENCING SECTION FOR MORE INFORMATION ON THIS. 3. THE RESISTORS CONNECTED TO THE RSET PINS SHOULD HAVE A 1% TOLERANCE. VDD POWER SUPPLY DECOUPLING FOR EACH POWER PIN 0.01µF DGND 2.2nF VAA 1.1kΩ COMP2 1.235V VREF RSET1 ADV7344 OPTIONAL. IF THE INTERNAL VOLTAGE REFERENCE IS USED, A 0.1µF CAPACITOR SHOULD BE CONNECTED FROM VREF TO VAA. VAA 2.2nF COMP1 AD1580 0.1µF RSET2 4.12kΩ 510Ω AGND AGND AGND OPTIONAL LPF DAC 1 DAC 1 OPTIONAL LPF DAC 2 DAC 3 ALSB DAC 3 OPTIONAL LPF 75Ω 75Ω 75Ω AGND AGND AGND TIE EITHER LOW OR HIGH (SEE NOTE 2) DAC1 TO DAC3 LOW DRIVE OPTION 75Ω DAC 4 DAC 4 4.12kΩ AGND 300Ω ADA4411-3 DAC 1 ADA4411-3 300Ω DAC 5 LPF AGND 300Ω SDA SCL ADA4411-3 75Ω AGND DAC 2 DAC 6 300Ω LPF 170Ω AGND 300Ω ADA4411-3 12nF 170Ω EXT_LF2 AGND 75Ω DAC 3 DAC 3 LPF AGND PGND DGND DGND GND_IO LOOP FILTER COMPONENTS SHOULD BE LOCATED CLOSE TO THE EXT_LF PIN AND ON THE SAME SIDE OF THE PCB AS THE ADV7344. DAC 2 LPF 75Ω DAC 6 EXT_LF1 150nF DAC 1 LPF 75Ω DAC 5 EXTERNAL LOOP FILTER 150nF 75Ω AGND CLKIN_A CLKIN_B 12nF RSET1 LPF ADA4411-3 PVDD DAC1 TO DAC3 FULL DRIVE OPTION DAC 2 ADA4411-3 S_HSYNC S_VSYNC CONTROL INPUTS/OUTPUTS ALSB = 0, I2C DEVICE ADDRESS = 0xD4 OR 0x54 ALSB = 1, I2C DEVICE ADDRESS = 0xD6 OR 0x56 1µF 0.01µF VAA Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 2. THE I2C DEVICE ADDRESS IS CONFIGURABLE USING THE ALSB PIN: PVDD POWER SUPPLY DECOUPLING VAA 33µF NOTES 1. FOR OPTIMUM PERFORMANCE, EXTERNAL COMPONENTS CONNECTED TO THE COMP, RSET, VREF AND DAC OUTPUT PINS SHOULD BE LOCATED CLOSE TO AND ON THE SAME SIDE OF THE PCB AS THE ADV7344. VDD_IO POWER SUPPLY DECOUPLING 300Ω AGND PGND DGND DGND GND_IO AGND Figure 88. ADV7344 Typical Application Circuit Rev. B | Page 74 of 108 06400-091 33µF Data Sheet ADV7344 COPY GENERATION MANAGEMENT SYSTEM SD CGMS Subaddress 0x99 to Subaddress 0x9B The ADV7344 supports a copy generation management system (CGMS) conforming to the EIAJ CPR-1204 and ARIB TR-B15 standards. CGMS data is transmitted on Line 20 of the odd fields and Line 283 of even fields. Subaddress 0x99, Bits[6:5] control whether CGMS data is output on odd or even fields or both. SD CGMS data can only be transmitted when the ADV7344 is configured in NTSC mode. The CGMS data is 20 bits long. The CGMS data is preceded by a reference pulse of the same amplitude and duration as a CGMS bit (see Figure 89). ED CGMS Subaddress 0x41 to Subaddress 0x43; Subaddress 0x5E to Subaddress 0x6E 525p Mode When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 1080i CGMS data is applied to Line 19 and Line 582 of the luminance vertical blanking interval. The HD CGMS data registers are at Subaddress 0x41, Subaddress 0x42, and Subaddress 0x43. The ADV7344 also supports CGMS Type B packets in HD mode (720p and 1080i) in accordance with CEA-805-A. When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1), 720p CGMS data is applied to Line 23 of the luminance vertical blanking interval. When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1), 1080i CGMS data is applied to Line 18 and Line 581 of the luminance vertical blanking interval. The HD CGMS Type B data registers are at Subaddress 0x5E to Subaddress 0x6E. The ADV7344 supports a copy generation management system (CGMS) in 525p mode in accordance with EIAJ CPR-1204-1. When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 525p CGMS data is inserted on Line 41. The 525p CGMS data registers are at Subaddress 0x41, Subaddress 0x42, and Subaddress 0x43. The ADV7344 also supports CGMS Type B packets in 525p mode in accordance with CEA-805-A. When ED CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1), 525p CGMS Type B data is inserted on Line 40. The 525p CGMS Type B data registers are at Subaddress 0x5E to Subaddress 0x6E. 625p Mode The ADV7344 supports a copy generation management system (CGMS) in 625p mode in accordance with IEC62375 (2004). When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 625p CGMS data is inserted on Line 43. The 625p CGMS data registers are at Subaddress 0x42 and Subaddress 0x43. HD CGMS Subaddress 0x41 to Subaddress 0x43; Subaddress 0x5E to Subaddress 0x6E The ADV7344 supports a copy generation management system (CGMS) in HD mode (720p and 1080i) in accordance with EIAJ CPR-1204-2. When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 720p CGMS data is applied to Line 24 of the luminance vertical blanking interval. CGMS CRC FUNCTIONALITY If SD CGMS CRC (Subaddress 0x99, Bit 4) or ED/HD CGMS CRC (Subaddress 0x32, Bit 7) is enabled, the upper six CGMS data bits, C19 to C14, which comprise the 6-bit CRC check sequence, are automatically calculated on the ADV7344. This calculation is based on the lower 14 bits (C13 to C0) of the data in the CGMS data registers, and the result is output with the remaining 14 bits to form the complete 20 bits of the CGMS data. The calculation of the CRC sequence is based on the polynomial x6 + x + 1 with a preset value of 111111. If SD CGMS CRC or ED/HD CGMS CRC is disabled, all 20 bits (C19 to C0) are output directly from the CGMS registers (CRC must be calculated by the user manually). If ED/HD CGMS Type B CRC (Subaddress 0x5E, Bit 1) is enabled, the upper six CGMS Type B data bits (P122 to P127) that comprise the 6-bit CRC check sequence are automatically calculated on the ADV7344. This calculation is based on the lower 128 bits (H0 to H5 and P0 to P121) of the data in the CGMS Type B data registers. The result is output with the remaining 128 bits to form the complete 134 bits of the CGMS Type B data. The calculation of the CRC sequence is based on the polynomial x6 + x + 1 with a preset value of 111111. If ED/HD CGMS Type B CRC is disabled, all 134 bits (H0 to H5 and P0 to P127) are output directly from the CGMS Type B registers (CRC must be calculated by the user manually). Rev. B | Page 75 of 108 ADV7344 Data Sheet +100 IRE CRC SEQUENCE REF +70 IRE C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 0 IRE –40 IRE 06400-092 49.1µs ± 0.5µs 11.2µs 2.235µs ± 20ns Figure 89. Standard Definition CGMS Waveform CRC SEQUENCE +700mV REF BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20 70% ± 10% C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 0mV –300mV T = 1/(fH × 33) = 963ns fH = HORIZONTAL SCAN FREQUENCY T ± 30ns 06400-093 21.2µs ± 0.22µs 22T 5.8µs ± 0.15µs 6T Figure 90. Enhanced Definition (525p) CGMS Waveform R = RUN-IN S = START CODE PEAK WHITE 500mV ± 25mV R C0 LSB S C1 C2 C3 C4 C5 SYNC LEVEL C6 C7 C8 C9 C10 C11 C12 C13 MSB 06400-094 13.7µs 5.5µs ± 0.125µs Figure 91. Enhanced Definition (625p) CGMS Waveform CRC SEQUENCE +700mV REF BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20 70% ± 10% C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 0mV 4T 3.128µs ± 90ns 17.2µs ± 160ns 22T T = 1/(fH × 1650/58) = 781.93ns fH = HORIZONTAL SCAN FREQUENCY 1H Figure 92. High Definition (720p) CGMS Waveform Rev. B | Page 76 of 108 06400-095 T ± 30ns –300mV Data Sheet ADV7344 CRC SEQUENCE +700mV REF BIT 1 BIT 2 BIT 20 70% ± 10% C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 0mV T ± 30ns 22.84µs ± 210ns 22T T = 1/(fH × 2200/77) = 1.038µs fH = HORIZONTAL SCAN FREQUENCY 1H 4T 4.15µs ± 60ns 06400-096 –300mV Figure 93. High Definition (1080i) CGMS Waveform CRC SEQUENCE +700mV START 70% ± 10% BIT 1 BIT 2 H0 H1 BIT 134 H2 H3 H4 H5 P0 P1 P2 P3 P4 . . . P122 P123 P124 P125 P126 P127 0mV 06400-097 –300mV PLEASE REFERTO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION Figure 94. Enhanced Definition (525p) CGMS Type B Waveform CRC SEQUENCE +700mV START 70% ± 10% BIT 1 BIT 2 H0 H1 BIT 134 H2 H3 H4 H5 P0 P1 P2 P3 P4 . . . P122 P123 P124 P125 P126 P127 –300mV PLEASE REFER TO THE CEA-805-A SPECIFICATION FOR TIMING INFORMATION Figure 95. High Definition (720p and 1080i) CGMS Type B Waveform Rev. B | Page 77 of 108 06400-098 0mV ADV7344 Data Sheet SD WIDE SCREEN SIGNALING Figure 96). The latter portion of Line 23 (after 42.5 µs from the falling edge of HSYNC) is available for the insertion of video. WSS data transmission on Line 23 can be enabled using Subaddress 0x99, Bit 7. It is possible to blank the WSS portion of Line 23 with Subaddress 0xA1, Bit 7. Subaddress 0x99, Subaddress 0x9A, Subaddress 0x9B The ADV7344 supports wide screen signaling (WSS) conforming to the ETSI 300 294 standard. WSS data is transmitted on Line 23. WSS data can be transmitted when the device is configured in PAL mode. The WSS data is 14 bits long. The function of each of these bits is shown in Table 60. The WSS data is preceded by a run-in sequence and a start code (see Table 60. Function of WSS Bit Description Aspect Ratio, Format, Position 13 12 11 10 9 Bit Number 8 7 6 5 4 Mode 3 1 0 0 1 0 1 1 0 2 0 0 0 0 1 1 1 1 W8 W9 0 1 Color Encoding 0 1 Helper Signals 0 1 Reserved Teletext Subtitles 0 0 1 Open Subtitles 0 0 1 1 Surround Sound 0 1 0 1 0 1 Copyright 0 1 Copy Protection 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 Setting 4:3, full format, N/A 14:9, letterbox, center 14:9, letterbox, top 16:9, letterbox, center 16:9, letterbox, top >16:9, letterbox, center 14:9, full format, center 16:0, N/A, N/A Camera mode Film mode Normal PAL Motion Adaptive ColorPlus Not present Present N/A No Yes No Subtitles in active image area Subtitles out of active image area Reserved No Yes No copyright asserted or unknown Copyright asserted Copying not restricted Copying restricted 500mV RUN-IN SEQUENCE START CODE W0 W1 W2 W3 W4 W5 W6 W7 W10 W11 W12 W13 ACTIVE VIDEO 11.0µs 06400-099 38.4µs 42.5µs Figure 96. WSS Waveform Diagram Rev. B | Page 78 of 108 Data Sheet ADV7344 SD CLOSED CAPTIONING Line 284. All pixels inputs are ignored on Line 21 and Line 284 if closed captioning is enabled. Subaddress 0x91 to Subaddress 0x94 The ADV7344 supports closed captioning conforming to the standard television synchronizing waveform for color transmission. Closed captioning is transmitted during the blanked active line time of Line 21 of the odd fields and Line 284 of the even fields. The FCC Code of Federal Regulations (CFR) 47 Section 15.119 and EIA-608 describe the closed captioning information for Line 21 and Line 284. Closed captioning consists of a seven-cycle sinusoidal burst that is frequency- and phase-locked to the caption data. After the clock run-in signal, the blanking level is held for two data bits and is followed by the Logic 1 start bit. Sixteen bits of data follow the start bit. These consist of two 8-bit bytes, seven data bits, and one odd parity bit. The data for these bytes is stored in the SD closed captioning registers (Subaddress 0x93 to Subaddress 0x94). The ADV7344 also supports the extended closed captioning operation, which is active during even fields and encoded on scan Line 284. The data for this operation is stored in the SD closed captioning registers (Subaddress 0x91 to Subaddress 0x92). The ADV7344 automatically generates all clock run-in signals and timing that support closed captioning on Line 21 and The ADV7344 uses a single buffering method. This means that the closed captioning buffer is only 1-byte deep. Therefore, there is no frame delay in outputting the closed captioning data, unlike other 2-byte deep buffering systems. The data must be loaded one line before it is output on Line 21 and Line 284. A typical implementation of this method is to use VSYNC to interrupt a microprocessor, which in turn loads the new data (two bytes) in every field. If no new data is required for transmission, 0s must be inserted in both data registers; this is called nulling. It is also important to load control codes, all of which are double bytes, on Line 21. Otherwise, a TV does not recognize them. If there is a message such as “Hello World” that has an odd number of characters, it is important to add a blank character at the end to make sure that the end-of-caption, 2-byte control code lands in the same field. 12.91µs 10.5 ± 0.25µs 7 CYCLES OF 0.5035MHz CLOCK RUN-IN TWO 7-BIT + PARITY ASCII CHARACTERS (DATA) P A R I T Y S T A D0 TO D6 R T 50 IRE D0 TO D6 BYTE 0 P A R I T Y BYTE 1 40 IRE 10.003µs 27.382µs 33.764µs Figure 97. SD Closed Captioning Waveform, NTSC Rev. B | Page 79 of 108 06400-100 REFERENCE COLOR BURST (9 CYCLES) FREQUENCY = FSC = 3.579545MHz AMPLITUDE = 40 IRE ADV7344 Data Sheet INTERNAL TEST PATTERN GENERATION SD TEST PATTERNS ED/HD TEST PATTERNS The ADV7344 is able to internally generate SD color bar and black bar test patterns. For this function, a 27 MHz clock signal must be applied to the CLKIN_A pin. The ADV7344 is able to internally generate ED/HD black bar and hatch test patterns. For ED test patterns, a 27 MHz clock signal must be applied to the CLKIN_A pin. For HD test patterns, a 74.25 MHz clock signal must be applied to the CLKIN_A pin. The register settings in Table 61 are used to generate an SD NTSC 75% color bar test pattern. CVBS output is available on DAC 4, S-Video (Y-C) output is on DAC 5 and DAC 6, and YPrPb output is on DAC 1 to DAC 3. On power-up, the subcarrier frequency registers default to the appropriate values for NTSC. All other registers are set as normal/default. Table 61. SD NTSC Color Bar Test Pattern Register Writes Subaddress 0x00 0x82 0x84 Setting 0xFC 0xC9 0x40 To generate an SD NTSC black bar test pattern, the settings shown in Table 61 should be used with an additional write of 0x24 to Subaddress 0x02. For PAL output of either test pattern, the same settings are used, except that Subaddress 0x80 is programmed to 0x11, and the subcarrier frequency registers are programmed as shown in Table 62. Table 62. PAL FSC Register Writes Subaddress 0x8C 0x8D 0x8E 0x8F Description FSC0 FSC1 FSC2 FSC3 The register settings in Table 63 are used to generate an ED 525p hatch test pattern. YPrPb output is available on DAC 1 to DAC 3. All other registers are set as normal/default. Table 63. ED 525p Hatch Test Pattern Register Writes Subaddress 0x00 0x01 0x31 Setting 0x1C 0x10 0x05 To generate an ED 525p black bar test pattern, the settings shown in Table 63 should be used with an additional write of 0x24 to Subaddress 0x02. To generate an ED 525p flat field test pattern, the settings shown in Table 63 should be used, except that 0x0D should be written to Subaddress 0x31. The Y, Cr, and Cb levels for the hatch and flat field test patterns can be controlled using Subaddress 0x36, Subaddress 0x37, and Subaddress 0x38, respectively. For ED/HD standards other than 525p, the settings shown in Table 63 (and subsequent comments) are used, except that Subaddress 0x30, Bits[7:3] are updated as appropriate. Setting 0xCB 0x8A 0x09 0x2A Note that, when programming the FSC registers, the user must write the values in the sequence FSC0, FSC1, FSC2, FSC3. The full FSC value to be written is accepted only after the FSC3 write is complete. Rev. B | Page 80 of 108 Data Sheet ADV7344 SD TIMING Mode 0 (CCIR-656)—Slave Option (Subaddress 0x8A = X X X X X 0 0 0) The ADV7344 is controlled by the SAV (start of active video) and EAV (end of active video) time codes embedded in the pixel data. All timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before and after each line during active picture and retrace. If the S_VSYNC and S_HSYNC pins are not used, they should be tied to VDD_IO during this mode. ANALOG VIDEO EAV CODE C C 8 1 8 1 F 0 0 X C Y C Y C Y r Y b b 0 0 0 0 F 0 0 Y b r 0 F F A A A 0 F F B B B ANCILLARY DATA (HANC) 4 CLOCK 4 CLOCK 4 CLOCK 4 CLOCK PAL SYSTEM (625 LINES/50Hz) 1440 CLOCK 268 CLOCK NTSC/PAL M SYSTEM (525 LINES/60Hz) 1440 CLOCK 280 CLOCK 06400-101 INPUT PIXELS SAV CODE C F 0 0 X 8 1 8 1 Y Y r F 0 0 Y 0 0 0 0 START OF ACTIVE VIDEO LINE END OF ACTIVE VIDEO LINE Figure 98. SD Slave Mode 0 Mode 0 (CCIR-656)—Master Option (Subaddress 0x8A = X X X X X 0 0 1) The ADV7344 generates H and F signals required for the SAV and EAV time codes in the CCIR656 standard. The H bit is output on S_HSYNC and the F bit is output on S_VSYNC. DISPLAY DISPLAY VERTICAL BLANK 522 523 524 525 1 2 3 4 5 6 7 8 9 10 11 20 21 22 H EVEN FIELD F ODD FIELD DISPLAY DISPLAY VERTICAL BLANK 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 283 284 285 F ODD FIELD 06400-102 H EVEN FIELD Figure 99. SD Master Mode 0, NTSC Rev. B | Page 81 of 108 ADV7344 Data Sheet DISPLAY DISPLAY VERTICAL BLANK 622 623 624 625 1 2 4 3 5 6 21 7 22 23 H ODD FIELD EVEN FIELD F DISPLAY DISPLAY VERTICAL BLANK 309 310 311 313 312 315 314 316 318 317 319 335 334 320 336 ODD FIELD F 06400-103 H EVEN FIELD Figure 100. SD Master Mode 0, PAL ANALOG VIDEO 06400-104 H F Figure 101. SD Master Mode 0, Data Transitions Mode 1—Slave Option (Subaddress 0x8A = X X X X X 0 1 0) In this mode, the ADV7344 accepts horizontal sync and odd/even field signals. When HSYNC is low, a transition of the field input indicates a new frame, that is, vertical retrace. The ADV7344 automatically blanks all normally blank lines as required by the CCIR-624 standard. HSYNC and FIELD are input on the S_HSYNC and S_VSYNC pins, respectively. DISPLAY DISPLAY 522 523 VERTICAL BLANK 524 525 1 2 3 4 5 6 7 8 9 10 11 20 21 22 HSYNC FIELD EVEN FIELD ODD FIELD DISPLAY 260 261 DISPLAY VERTICAL BLANK 262 263 264 265 266 267 268 269 270 271 272 273 274 283 284 285 FIELD ODD FIELD 06400-105 HSYNC EVEN FIELD Figure 102. SD Slave Mode 1, NTSC Rev. B | Page 82 of 108 Data Sheet ADV7344 DISPLAY DISPLAY 622 623 VERTICAL BLANK 624 625 1 2 4 3 5 6 7 21 22 23 HSYNC FIELD EVEN FIELD ODD FIELD DISPLAY DISPLAY 309 310 VERTICAL BLANK 311 312 313 314 315 316 317 318 319 320 334 335 336 ODD FIELD FIELD 06400-106 HSYNC EVEN FIELD Figure 103. SD Slave Mode 1, PAL Mode 1—Master Option (Subaddress 0x8A = X X X X X 0 1 1) In this mode, the ADV7344 can generate horizontal sync and odd/even field signals. When HSYNC is low, a transition of the field input indicates a new frame, that is, vertical retrace. The ADV7344 automatically blanks all normally blank lines as required by the CCIR-624 standard. Pixel data is latched on the rising clock edge following the timing signal transitions. HSYNC and FIELD are output on the S_HSYNC and S_VSYNC pins, respectively. HSYNC FIELD Cb Y PAL = 132 × CLOCK/2 NTSC = 122 × CLOCK/2 Cr Y 06400-107 PIXEL DATA Figure 104. SD Timing Mode 1, Odd/Even Field Transitions (Master/Slave) Mode 2— Slave Option (Subaddress 0x8A = X X X X X 1 0 0) In this mode, the ADV7344 accepts horizontal and vertical sync signals. A coincident low transition of both HSYNC and VSYNC inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates the start of an even field. The ADV7344 automatically blanks all normally blank lines as required by the CCIR-624 standard. HSYNC and VSYNC are input on the S_HSYNC and S_VSYNC pins, respectively. Rev. B | Page 83 of 108 ADV7344 Data Sheet DISPLAY 522 DISPLAY VERTICAL BLANK 523 524 525 1 4 3 2 5 7 6 8 10 9 20 11 21 22 HSYNC VSYNC ODD FIELD EVEN FIELD DISPLAY DISPLAY VERTICAL BLANK 260 261 262 263 264 265 266 267 268 269 270 271 272 273 283 274 284 285 VSYNC 06400-108 HSYNC EVEN FIELD ODD FIELD Figure 105. SD Slave Mode 2, NTSC DISPLAY 622 623 DISPLAY VERTICAL BLANK 624 625 1 2 3 4 5 6 7 21 22 23 HSYNC VSYNC EVEN FIELD ODD FIELD DISPLAY 309 310 DISPLAY VERTICAL BLANK 311 312 313 314 315 316 317 318 319 320 334 335 336 ODD FIELD VSYNC 06400-109 HSYNC EVEN FIELD Figure 106. SD Slave Mode 2, PAL Mode 2—Master Option (Subaddress 0x8A = X X X X X 1 0 1) In this mode, the ADV7344 can generate horizontal and vertical sync signals. A coincident low transition of both HSYNC and VSYNC inputs indicates the start of an odd field. A VSYNC low transition when HSYNC is high indicates the start of an even field. The ADV7344 automatically blanks all normally blank lines as required by the CCIR-624 standard. HSYNC and VSYNC are output on the S_HSYNC and S_VSYNC pins, respectively. HSYNC VSYNC Cb PAL = 132 × CLOCK/2 NTSC = 122 × CLOCK/2 Figure 107. SD Timing Mode 2, Even-to-Odd Field Transition (Master/Slave) Rev. B | Page 84 of 108 Y Cr Y 06400-110 PIXEL DATA Data Sheet ADV7344 HSYNC VSYNC PAL = 864 × CLOCK/2 NTSC = 858 × CLOCK/2 PIXEL DATA Cb Y Cr Cb 06400-111 Y PAL = 132 × CLOCK/2 NTSC = 122 × CLOCK/2 Figure 108. SD Timing Mode 2, Odd-to-Even Field Transition (Master/Slave) Mode 3—Master/Slave Option (Subaddress 0x8A = X X X X X 1 1 0 or X X X X X 1 1 1) In this mode, the ADV7344 accepts or generates horizontal sync and odd/even field signals. When HSYNC is high, a transition of the field input indicates a new frame, that is, vertical retrace. The ADV7344 automatically blanks all normally blank lines as required by the CCIR-624 standard. HSYNC and VSYNC are output in master mode and input in slave mode on the S_VSYNC and S_VSYNC pins, respectively. DISPLAY DISPLAY 522 523 VERTICAL BLANK 524 525 1 2 4 3 5 6 8 7 9 10 20 11 21 22 HSYNC FIELD EVEN FIELD ODD FIELD DISPLAY 260 DISPLAY VERTICAL BLANK 261 262 263 264 265 266 267 268 269 270 271 272 273 283 274 285 284 FIELD ODD FIELD 06400-112 HSYNC EVEN FIELD Figure 109. SD Timing Mode 3, NTSC DISPLAY 622 623 DISPLAY VERTICAL BLANK 624 625 1 2 3 4 5 6 7 21 22 23 HSYNC FIELD EVEN FIELD ODD FIELD DISPLAY DISPLAY 309 310 VERTICAL BLANK 311 312 313 314 315 316 317 318 319 320 334 335 336 FIELD EVEN FIELD 06400-113 HSYNC ODD FIELD Figure 110. SD Timing Mode 3, PAL Rev. B | Page 85 of 108 ADV7344 Data Sheet HD TIMING DISPLAY FIELD 1 VERTICAL BLANKING INTERVAL 1124 1125 1 2 3 4 5 6 7 8 20 21 22 560 P_VSYNC P_HSYNC DISPLAY VERTICAL BLANKING INTERVAL FIELD 2 561 562 563 564 565 566 567 568 569 570 583 584 585 1123 06400-114 P_VSYNC P_HSYNC Figure 111. 1080i HSYNC and VSYNC Input Timing Rev. B | Page 86 of 108 Data Sheet ADV7344 VIDEO OUTPUT LEVELS BLACK BLUE RED GREEN CYAN YELLOW WHITE BLACK BLUE RED MAGENTA GREEN CYAN YELLOW WHITE Pattern: 100% Color Bars MAGENTA SD YPrPb OUTPUT LEVELS—SMPTE/EBU N10 700mV 700mV 300mV 06400-115 06400-118 300mV BLACK BLUE RED MAGENTA GREEN CYAN WHITE BLACK BLUE RED MAGENTA GREEN CYAN YELLOW WHITE YELLOW Figure 115. Y Levels—PAL Figure 112. Y Levels—NTSC 700mV 06400-116 06400-119 700mV BLACK BLUE RED MAGENTA GREEN CYAN WHITE BLACK BLUE RED MAGENTA GREEN CYAN YELLOW WHITE YELLOW Figure 116. Pr Levels—PAL Figure 113. Pr Levels—NTSC 700mV 06400-117 06400-120 700mV Figure 117. Pb Levels—PAL Figure 114. Pb Levels—NTSC Rev. B | Page 87 of 108 ADV7344 Data Sheet ED/HD YPRPB OUTPUT LEVELS INPUT CODE EIA-770.2, STANDARD FOR Y INPUT CODE OUTPUT VOLTAGE EIA-770.3, STANDARD FOR Y OUTPUT VOLTAGE 940 940 700mV 700mV 64 64 300mV 300mV EIA-770.3, STANDARD FOR Pr/Pb EIA-770.2, STANDARD FOR Pr/Pb OUTPUT VOLTAGE OUTPUT VOLTAGE 960 960 600mV 512 700mV 64 06400-123 700mV 64 06400-121 512 Figure 120. EIA-770.3 Standard Output Signals (1080i/720p) Figure 118. EIA-770.2 Standard Output Signals (525p/625p) INPUT CODE INPUT CODE EIA-770.1, STANDARD FOR Y OUTPUT VOLTAGE 782mV Y–OUTPUT LEVELS FOR FULL INPUT SELECTION OUTPUT VOLTAGE 1023 940 700mV 714mV 64 300mV 64 286mV INPUT CODE EIA-770.1, STANDARD FOR Pr/Pb Pr/Pb–OUTPUT LEVELS FOR FULL INPUT SELECTION OUTPUT VOLTAGE 1023 OUTPUT VOLTAGE 960 700mV 512 700mV 64 Figure 119. EIA-770.1 Standard Output Signals (525p/625p) Rev. B | Page 88 of 108 300mV Figure 121. Output Levels for Full Input Selection 06400-124 06400-122 64 Data Sheet ADV7344 SD/ED/HD RGB OUTPUT LEVELS Pattern: 100%/75% Color Bars R R 700mV/525mV 700mV/525mV 300mV 300mV G G 700mV/525mV 700mV/525mV 300mV 300mV B B 06400-125 300mV 300mV 06400-127 700mV/525mV 700mV/525mV Figure 124. HD RGB Output Levels—RGB Sync Disabled Figure 122. SD/ED RGB Output Levels—RGB Sync Disabled R R 700mV/525mV 600mV 700mV/525mV 300mV 300mV 0mV 0mV G G 700mV/525mV 600mV 700mV/525mV 300mV 300mV 0mV 0mV B B 700mV/525mV 600mV 700mV/525mV 06400-126 0mV 06400-128 300mV 300mV 0mV Figure 125. HD RGB Output Levels—RGB Sync Enabled Figure 123. SD/ED RGB Output Levels—RGB Sync Enabled Rev. B | Page 89 of 108 ADV7344 Data Sheet SD OUTPUT PLOTS VOLTS VOLTS IRE:FLT 0.6 100 0.4 0.5 50 0.2 0 0 0 –0.2 10 L608 30 40 50 60 MICROSECONDS APL = 44.5% PRECISION MODE OFF 525 LINE NTSC SYNCHRONOUS SYNC = A SLOW CLAMP TO 0.00V AT 6.72µs FRAMES SELECTED 1, 2 0 10 20 30 40 50 60 MICROSECONDS NOISE REDUCTION: 0.00dB PRECISION MODE OFF APL = 39.1% SYNCHRONOUS SOUND-IN-SYNC OFF 625 LINE NTSC NO FILTERING FRAMES SELECTED 1, 2, 3, 4 SLOW CLAMP TO 0.00 AT 6.72µs 20 Figure 126. NTSC Color Bars (75%) 06400-132 0 F1 L76 06400-129 –50 Figure 129. PAL Color Bars (75%) VOLTS VOLTS IRE:FLT 0.6 0.5 0.4 50 0.2 0 00 F2 L238 10 L575 30 40 50 60 MICROSECONDS NOISE REDUCTION: 15.05dB APL = 44.3% PRECISION MODE OFF 525 LINE NTSC NO FILTERING SYNCHRONOUS SYNC = SOURCE SLOW CLAMP TO 0.00V AT 6.72µs FRAMES SELECTED 1, 2 0 20 0 10 20 30 40 50 60 70 MICROSECONDS NO BUNCH SIGNAL APL NEEDS SYNC SOURCE. PRECISION MODE OFF 625 LINE PAL NO FILTERING SYNCHRONOUS SOUND-IN-SYNC OFF SLOW CLAMP TO 0.00 AT 6.72µs FRAMES SELECTED 1 Figure 127. NTSC Luma 06400-133 –0.2 06400-130 0 Figure 130. PAL Luma VOLTS IRE:FLT 0.4 50 VOLTS 0.5 0.2 0 0 0 –0.2 –50 –0.4 –0.5 F1 L76 L575 20 30 40 50 60 MICROSECONDS NOISE REDUCTION: 15.05dB PRECISION MODE OFF APL NEEDS SYNC SOURCE. SYNCHRONOUS SYNC = B 525 LINE NTSC NO FILTERING FRAMES SELECTED 1, 2 SLOW CLAMP TO 0.00 AT 6.72µs 0 30 40 50 60 MICROSECONDS APL NEEDS SYNC SOURCE. NO BUNCH SIGNAL 625 LINE PAL NO FILTERING PRECISION MODE OFF SLOW CLAMP TO 0.00 AT 6.72µs SYNCHRONOUS SOUND-IN-SYNC OFF FRAMES SELECTED 1 Figure 128. NTSC Chroma 10 20 Figure 131. PAL Chroma Rev. B | Page 90 of 108 06400-134 10 06400-131 0 Data Sheet ADV7344 VIDEO STANDARDS 0HDATUM SMPTE 274M ANALOG WAVEFORM DIGITAL HORIZONTAL BLANKING *1 272T 4T ANCILLARY DATA (OPTIONAL) OR BLANKING CODE EAV CODE 1920T DIGITAL ACTIVE LINE F 0 0 F C V b Y C r F 0 0 H* 0 0 F 0 0 V H* F F INPUT PIXELS 4T SAV CODE 4 CLOCK SAMPLE NUMBER 2112 C Y r 4 CLOCK 0 2199 2116 2156 44 188 192 2111 06400-135 FVH* = FVH AND PARITY BITS SAV/EAV: LINE 1 TO 562: F = 0 SAV/EAV: LINE 563 TO 1125: F = 1 SAV/EAV: LINE 1 TO 20; 561 TO 583; 1124 TO 1125: V = 1 SAV/EAV: LINE 21 TO 560; 584 TO 1123: V = 0 FOR A FRAME RATE OF 30Hz: 40 SAMPLES FOR A FRAME RATE OF 25Hz: 480 SAMPLES Figure 132. EAV/SAV Input Data Timing Diagram (SMPTE 274M) SMPTE 293M ANALOG WAVEFORM ANCILLARY DATA (OPTIONAL) EAV CODE INPUT PIXELS F F 0 0 V F 0 0 H* F 0 0 F V F 0 0 H* 4 CLOCK 4 CLOCK 719 SAMPLE NUMBER 723 736 0HDATUM 799 DIGITAL ACTIVE LINE SAV CODE 853 C C b Y r C Y r Y 857 0 719 DIGITAL HORIZONTAL BLANKING 06400-136 FVH* = FVH AND PARITY BITS SAV: LINE 43 TO 525 = 200H SAV: LINE 1 TO 42 = 2AC EAV: LINE 43 TO 525 = 274H EAV: LINE 1 TO 42 = 2D8 Figure 133. EAV/SAV Input Data Timing Diagram (SMPTE 293M) 522 523 524 ACTIVE VIDEO VERTICAL BLANK 525 1 2 5 6 7 8 9 12 13 Figure 134. SMPTE 293M (525p) Rev. B | Page 91 of 108 14 15 16 42 43 44 06400-137 ACTIVE VIDEO ADV7344 Data Sheet 622 623 ACTIVE VIDEO VERTICAL BLANK 624 625 1 2 5 4 6 7 8 9 10 12 11 13 43 44 45 06400-138 ACTIVE VIDEO Figure 135. ITU-R BT.1358 (625p) DISPLAY 747 748 749 4 3 2 1 750 7 6 5 8 25 26 27 744 745 06400-139 VERTICAL BLANKING INTERVAL Figure 136. SMPTE 296M (720p) DISPLAY VERTICAL BLANKING INTERVAL FIELD 1 1124 1125 1 2 3 4 5 6 7 8 20 21 22 560 DISPLAY VERTICAL BLANKING INTERVAL 561 562 563 564 565 566 567 568 569 Figure 137. SMPTE 274M (1080i) Rev. B | Page 92 of 108 570 583 584 585 1123 06400-140 FIELD 2 Data Sheet ADV7344 CONFIGURATION SCRIPTS The scripts listed in the following pages can be used to configure the ADV7344 for basic operation. Certain features are enabled by default. If required for a specific application, additional features can be enabled. Table 64 lists the scripts available for SD modes of operation. Similarly, Table 85 and Table 112 list the scripts available for ED and HD modes of operation, respectively. For all scripts, only the necessary register writes are included. All other registers are assumed to have their default values. STANDARD DEFINITION Table 64. SD Configuration Scripts Input Format 525i (NTSC) 525i (NTSC) 525i (NTSC) 525i (NTSC) 525i (NTSC) 525i (NTSC) 525i (NTSC) 525i (NTSC) Input Data Width 1 10-bit SDR 10-bit SDR 10-bit SDR 10-bit SDR 20-bit SDR 20-bit SDR 30-bit SDR 30-bit SDR Synchronization Format EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC HSYNC/VSYNC HSYNC/VSYNC HSYNC/VSYNC HSYNC/VSYNC Input Color Space YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb RGB RGB Output Color Space YPrPb and CVBS/Y-C YPrPb and CVBS/Y-C RGB and CVBS/Y-C RGB and CVBS/Y-C YPrPb and CVBS/Y-C RGB and CVBS/Y-C YPrPb and CVBS/Y-C RGB and CVBS/Y-C Table Number Table 65 Table 66 Table 67 Table 68 Table 69 Table 70 Table 71 Table 72 NTSC Sq. Pixel NTSC Sq. Pixel 10-bit SDR 30-bit SDR YCrCb RGB CVBS/Y-C (S-Video) CVBS/Y-C (S-Video) Table 73 Table 74 625i (PAL) 625i (PAL) 625i (PAL) 625i (PAL) 625i (PAL) 625i (PAL) 625i (PAL) 625i (PAL) 10-bit SDR 10-bit SDR 10-bit SDR 10-bit SDR 20-bit SDR 20-bit SDR 30-bit SDR 30-bit SDR EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC HSYNC/VSYNC HSYNC/VSYNC HSYNC/VSYNC HSYNC/VSYNC YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb RGB RGB YPrPb and CVBS/Y-C YPrPb and CVBS/Y-C RGB and CVBS/Y-C RGB and CVBS/Y-C YPrPb and CVBS/Y-C RGB and CVBS/Y-C YPrPb and CVBS/Y-C RGB and CVBS/Y-C Table 75 Table 76 Table 77 Table 78 Table 79 Table 80 Table 81 Table 82 PAL Sq. Pixel PAL Sq. Pixel 10-bit SDR 30-bit SDR EAV/SAV HSYNC/VSYNC YCrCb RGB CVBS/Y-C (S-Video) CVBS/Y-C (S-Video) Table 83 Table 84 1 SDR = single data rate Table 66. 10-Bit 525i YCrCb In, YPrPb and CVBS/Y-C Out Table 65. 10-Bit 525i YCrCb In (EAV/SAV), YPrPb and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0xFC 0x00 0x10 0x82 0xC9 0x88 0x10 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. YPrPb and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. 10-bit input enabled. Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0xFC 0x00 0x10 0x82 0xC9 0x88 0x8A 0x10 0x0C Rev. B | Page 93 of 108 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. YPrPb and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. 10-bit input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. ADV7344 Data Sheet Table 67. 10-Bit 525i YCrCb In (EAV/SAV), RGB and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0xFC 0x00 0x10 0x80 0x10 0x82 0xC9 0x88 0x10 Table 70. 20-Bit 525i YCrCb In, RGB and CVBS/Y-C Out Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. RGB output enabled. RGB output sync enabled. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. RGB and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. 10-bit input enabled. Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0xFC 0x00 0x10 0x80 0x10 0x82 0xC9 0x88 0x8A 0x18 0x0C Table 68. 10-Bit 525i YCrCb In, RGB and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0xFC 0x00 0x10 0x80 0x10 0x82 0xC9 0x88 0x8A 0x10 0x0C Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. RGB output enabled. RGB output sync enabled. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. RGB and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. 10-bit input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Table 69. 20-Bit 525i YCrCb In, YPrPb and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0xFC 0x00 0x10 0x82 0xC9 0x88 0x8A 0x18 0x0C Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. YPrPb and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. 20-bit input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Description Software reset All DACs enabled. PLL enabled (16×). SD input mode. RGB output enabled. RGB output sync enabled. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. RGB and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. 20-bit input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Table 71. 30-Bit 525i RGB In, YPrPb and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0xFC 0x00 0x10 0x82 0xC9 0x87 0x88 0x8A 0x80 0x10 0x0C Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. YPrPb and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. RGB input enabled. 10-bit input enabled (10 × 3 = 30-bit). Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Table 72. 30-Bit 525i RGB In, RGB and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0xFC 0x00 0x10 0x80 0x10 0x82 0xC9 0x87 0x88 0x8A 0x80 0x10 0x0C Rev. B | Page 94 of 108 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. RGB output enabled. RGB output sync enabled. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. RGB and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. RGB input enabled. 10-bit input enabled (10 × 3 = 30-bit). Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Data Sheet ADV7344 Table 73. 10-Bit NTSC Square Pixel YCrCb In (EAV/SAV), CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0x1C 0x00 0x10 0x82 0xDB 0x88 0x8C 0x8D 0x8E 0x8F 0x10 0x55 0x55 0x55 0x25 Description Software reset All DACs enabled. PLL enabled (16×). SD input mode. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. CVBS/Y-C (S-Video) out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. Square pixel mode enabled. 10-bit YCbCr input enabled. Subcarrier Frequency Register values for CVBS and/or S-Video (Y-C) output in NTSC square pixel mode (24.5454 MHz input clock). Table 74. 30-Bit NTSC Square Pixel RGB In, CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0x1C 0x00 0x10 0x82 0xDB 0x87 0x88 0x8A 0x80 0x10 0x0C 0x8C 0x8D 0x8E 0x8F 0x55 0x55 0x55 0x25 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. NTSC standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. CVBS/Y-C (S-Video) out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled. Square pixel mode enabled. RGB input enabled. 30-bit RGB input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Subcarrier Frequency Register values for CVBS and/or S-Video (Y-C) output in NTSC Square pixel mode (24.5454 MHz input clock). Table 75. 10-Bit 625i YCrCb In (EAV/SAV), YPrPb and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0xFC 0x00 0x11 0x82 0xC1 0x88 0x10 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. YPrPb and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. 10-bit input enabled. Table 76. 10-Bit 625i YCrCb In, YPrPb and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0xFC 0x00 0x11 0x82 0xC1 0x88 0x8A 0x10 0x0C Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. YPrPb and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. 10-bit input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Table 77. 10-Bit 625i YCrCb In (EAV/SAV), RGB and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0xFC 0x00 0x10 0x80 0x11 0x82 0xC1 0x88 0x10 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. RGB output enabled. RGB output sync enabled. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. RGB and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. 10-bit input enabled. Table 78. 10-Bit 625i YCrCb In, RGB and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0xFC 0x00 0x10 0x80 0x11 0x82 0xC1 0x88 0x8A 0x10 0x0C Rev. B | Page 95 of 108 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. RGB output enabled. RGB output sync enabled. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. RGB and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. 10-bit input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. ADV7344 Data Sheet Table 79. 20-Bit 625i YCrCb In, YPrPb and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0xFC 0x00 0x11 0x82 0xC1 0x88 0x8A 0x18 0x0C Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. YPrPb and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. 20-bit input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Table 80. 20-Bit 625i YCrCb In, RGB and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0xFC 0x00 0x10 0x80 0x11 0x82 0xC1 0x88 0x8A 0x18 0x0C Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. RGB output enabled. RGB output sync enabled. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. RGB and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. 20-bit input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Table 81. 30-Bit 625i RGB In, YPrPb and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0xFC 0x00 0x11 0x82 0xC1 0x87 0x88 0x8A 0x80 0x10 0x0C Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. YPrPb and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. RGB input enabled. 10-bit input enabled (10 × 3 = 30-bit). Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Table 82. 30-Bit 625i RGB In, RGB and CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0xFC 0x00 0x10 0x80 0x11 0x82 0xC1 0x87 0x88 0x8A 0x80 0x10 0x0C Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. RGB output enabled. RGB output sync enabled. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. RGB and CVBS/Y-C out. SSAF PrPb filter enabled. Active video edge control enabled. RGB input enabled. 10-bit input enabled (10 × 3 = 30-bit). Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Table 83. 10-Bit PAL Square Pixel YCrCb In (EAV/SAV), CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0x1C 0x00 0x11 0x82 0xD3 0x88 0x8C 0x8D 0x8E 0x8F 0x10 0x0C 0x8C 0x79 0x26 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. CVBS/Y-C (S-Video) out. SSAF PrPb filter enabled. Active video edge control enabled. Square pixel mode enabled. 10-bit YCbCr input enabled. Subcarrier Frequency Register values for CVBS and/or S-Video (Y-C) output in PAL square pixel mode (29.5 MHz input clock). Table 84. 30-Bit PAL Square Pixel RGB In, CVBS/Y-C Out Subaddress 0x17 0x00 0x01 0x80 Setting 0x02 0x1C 0x00 0x11 0x82 0xD3 0x87 0x88 0x8A 0x80 0x10 0x0C 0x8C 0x8D 0x8E 0x8F 0x0C 0x8C 0x79 0x26 Rev. B | Page 96 of 108 Description Software reset. All DACs enabled. PLL enabled (16×). SD input mode. PAL standard. SSAF luma filter enabled. 1.3 MHz chroma filter enabled. Pixel data valid. CVBS/Y-C (S-Video) out. SSAF PrPb filter enabled. Active video edge control enabled. Square pixel mode enabled. RGB input enabled. 30-bit RGB input enabled. Timing Mode 2 (slave). HSYNC/VSYNC synchronization. Subcarrier Frequency Register values for CVBS and/or S-Video (Y-C) output in PAL square pixel mode (29.5 MHz input clock). Data Sheet ADV7344 ENHANCED DEFINITION Table 85. ED Configuration Scripts Input Format 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz 525p at 59.94 Hz Input Data Width 1 10-bit DDR 10-bit DDR 10-bit DDR 10-bit DDR 20-bit SDR 20-bit SDR 20-bit SDR 20-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR Synchronization Format EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC HSYNC/VSYNC Input Color Space YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb RGB Output Color Space YPrPb YPrPb RGB RGB YPrPb YPrPb RGB RGB YPrPb YPrPb RGB RGB RGB Table Number Table 86 Table 87 Table 88 Table 89 Table 90 Table 91 Table 92 Table 93 Table 94 Table 95 Table 96 Table 97 Table 98 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 625p at 50 Hz 10-bit DDR 10-bit DDR 10-bit DDR 10-bit DDR 20-bit SDR 20-bit SDR 20-bit SDR 20-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR 30-Bit SDR EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC HSYNC/VSYNC YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb RGB YPrPb YPrPb RGB RGB YPrPb YPrPb RGB RGB YPrPb YPrPb RGB RGB RGB Table 99 Table 100 Table 101 Table 102 Table 103 Table 104 Table 105 Table 106 Table 107 Table 108 Table 109 Table 110 Table 111 1 SDR = single data rate. DDR = dual data rate. Table 86. 10-Bit 525p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x30 0x04 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-DDR input mode. Luma data clocked on falling edge of CLKIN. 525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled. Table 87. 10-Bit 525p YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x30 0x00 0x31 0x33 0x01 0x6C Rev. B | Page 97 of 108 Description Software reset. All DACs enabled. PLL enabled (8×). ED-DDR input mode. Luma data clocked on falling edge of CLKIN. 525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled. ADV7344 Data Sheet Table 88. 10-Bit 525p YCrCb In (EAV/SAV), RGB Out Table 92. 20-Bit 525p YCrCb In (EAV/SAV), RGB Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x02 0x10 0x30 0x04 0x30 0x04 0x31 0x33 0x01 0x6C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-DDR input mode. Luma data clocked on falling edge of CLKIN. RGB output enabled. RGB output sync enabled. 525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled. Table 89. 10-Bit 525p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x02 0x10 0x30 0x00 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-DDR input mode. Luma data clocked on falling edge of CLKIN. RGB output enabled. RGB output sync enabled. 525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled. Table 90. 20-Bit 525p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x04 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. 525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled (10 × 2 = 20-bit). Table 91. 20-Bit 525p YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x00 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. 525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled (10 × 2 = 20-bit). Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled (10 × 2 = 20-bit). Table 93. 20-Bit 525p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x00 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled (10 × 2 = 20-bit). Table 94. 30-Bit 525p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x04 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. 525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 95. 30-Bit 525p YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x00 0x31 0x33 0x01 0x2C Rev. B | Page 98 of 108 Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. 525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Data Sheet ADV7344 Table 96. 30-Bit 525p YCrCb In (EAV/SAV), RGB Out Table 100. 10-Bit 625p YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x30 0x18 0x30 0x04 0x31 0x33 0x01 0x2C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 525p at 59.94 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 97. 30-Bit 525p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x00 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 98. 30-Bit 525p RGB In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x00 0x31 0x33 0x01 0x2C 0x35 0x02 Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 525p at 59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). RGB input enabled. Table 99. 10-Bit 625p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x30 0x1C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-DDR input mode. Luma data clocked on falling edge of CLKIN. 625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled. Description Software reset. All DACs enabled. PLL enabled (8×). ED-DDR input mode. Luma data clocked on falling edge of CLKIN. 625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled. Table 101. 10-Bit 625p YCrCb In (EAV/SAV), RGB Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x02 0x10 0x30 0x1C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-DDR input mode. Luma data clocked on falling edge of CLKIN. RGB output enabled. RGB output sync enabled. 625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled. Table 102. 10-Bit 625p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x02 0x10 0x30 0x18 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-DDR input mode. Luma data clocked on falling edge of CLKIN. RGB output enabled. RGB output sync enabled. 625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled. Table 103. 20-Bit 625p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x1C 0x31 0x33 0x01 0x6C Rev. B | Page 99 of 108 Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. 625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled (10 × 2 = 20-bit). ADV7344 Data Sheet Table 104. 20-Bit 625p YCrCb In, YPrPb Out Table 108. 30-Bit 625p YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x18 Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x18 0x31 0x33 0x01 0x6C 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. 625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled (10 × 2 = 20-bit). Table 105. 20-Bit 625p YCrCb In (EAV/SAV), RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x1C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled (10 × 2 = 20-bit). Table 106. 20-Bit 625p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x18 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 10-bit input enabled (10 × 2 = 20-bit). Table 107. 30-Bit 625p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x1C 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. 625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. 625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 109. 30-Bit 625p YCrCb In (EAV/SAV), RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x1C 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 625p at 50 Hz. EAV/SAV synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 110. 30-Bit 625p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x18 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 111. 30-Bit 625p RGB In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x18 0x31 0x33 0x01 0x2C 0x35 0x02 Rev. B | Page 100 of 108 Description Software reset. All DACs enabled. PLL enabled (8×). ED-SDR input mode. RGB output enabled. RGB output sync enabled. 625p at 50 Hz. HSYNC/VSYNC synchronization. EIA-770.2 output levels. Pixel data valid. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). RGB input enabled. Data Sheet ADV7344 HIGH DEFINITION Table 112. HD Configuration Scripts Input Format 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz 720p at 60 Hz/59.94 Hz Input Data Width 1 10-bit DDR 10-bit DDR 10-bit DDR 10-bit DDR 20-bit SDR 20-bit SDR 20-bit SDR 20-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR Synchronization Format EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC HSYNC/VSYNC Input Color Space YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb RGB Output Color Space YPrPb YPrPb RGB RGB YPrPb YPrPb RGB RGB YPrPb YPrPb RGB RGB RGB Table Number Table 113 Table 114 Table 115 Table 116 Table 117 Table 118 Table 119 Table 120 Table 121 Table 122 Table 123 Table 124 Table 125 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 1080i at 30 Hz/29.97 Hz 10-bit DDR 10-bit DDR 10-bit DDR 10-bit DDR 20-bit SDR 20-bit SDR 20-bit SDR 20-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR 30-bit SDR EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC EAV/SAV HSYNC/VSYNC HSYNC/VSYNC YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb YCrCb RGB YPrPb YPrPb RGB RGB YPrPb YPrPb RGB RGB YPrPb YPrPb RGB RGB RGB Table 126 Table 127 Table 128 Table 129 Table 130 Table 131 Table 132 Table 133 Table 134 Table 135 Table 136 Table 137 Table 138 1 SDR = single data rate. DDR = dual data rate. Table 113. 10-Bit 720p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x30 0x2C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-DDR input mode. Luma data clocked on falling edge of CLKIN. 720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled. Table 114. 10-Bit 720p YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x30 0x28 0x31 0x33 0x01 0x6C Rev. B | Page 101 of 108 Description Software reset. All DACs enabled. PLL enabled (4×). HD-DDR input mode. Luma data clocked on falling edge of CLKIN. 720p at 60 Hz/59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled. ADV7344 Data Sheet Table 115. 10-Bit 720p YCrCb In (EAV/SAV), RGB Out Table 119. 20-Bit 720p YCrCb In (EAV/SAV), RGB Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x02 0x10 0x30 0x2C 0x30 0x2C 0x31 0x33 0x01 0x6C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-DDR input mode. Luma data clocked on falling edge of CLKIN. RGB output enabled. RGB output sync enabled. 720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled. Table 116. 10-Bit 720p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x02 0x10 0x30 0x28 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-DDR input mode. Luma data clocked on falling edge of CLKIN. RGB output enabled. RGB output sync enabled. 720p at 60 Hz/59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled. Table 117. 20-Bit 720p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x2C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. 720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled (10 × 2 = 20-bit). Table 118. 20-Bit 720p YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x28 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. 720p at 60 Hz/59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled (10 × 2 = 20-bit). Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled (10 × 2 = 20-bit). Table 120. 20-Bit 720p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x28 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 720p at 60 Hz/59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled (10 × 2 = 20-bit). Table 121. 30-Bit 720p YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x2C 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. 720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 122. 30-Bit 720p YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x28 0x31 0x33 0x01 0x2C Rev. B | Page 102 of 108 Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. 720p at 60 Hz/59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Data Sheet ADV7344 Table 123. 30-Bit 720p YCrCb In (EAV/SAV), RGB Out Table 127. 10-Bit 1080i YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x30 0x68 0x30 0x2C 0x31 0x33 0x01 0x2C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 720p at 60 Hz/59.94 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 124. 30-Bit 720p YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x28 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 720p at 60 Hz/59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Description Software reset. All DACs enabled. PLL enabled (4×). HD-DDR input mode. Luma data clocked on falling edge of CLKIN. 1080i at 30 Hz/29.97 Hz. HSYNC/ VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled. Table 128. 10-Bit 1080i YCrCb In (EAV/SAV), RGB Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x02 0x10 0x30 0x6C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-DDR input mode. Luma data clocked on falling edge of CLKIN. RGB output enabled. RGB output sync enabled. 1080i at 30 Hz/29.97 Hz. HSYNC/ VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled. Table 125. 30-Bit 720p RGB In, RGB Out Table 129. 10-Bit 1080i YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x02 0x10 0x30 0x28 0x30 0x68 0x31 0x33 0x01 0x6C 0x31 0x33 0x01 0x2C 0x35 0x02 Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 720p at 60 Hz/59.94 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). RGB input enabled. Table 126. 10-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 Setting 0x02 0x1C 0x20 0x30 0x6C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-DDR input mode. Luma data clocked on falling edge of CLKIN. 1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled. Description Software reset. All DACs enabled. PLL enabled (4×). HD-DDR input mode. Luma data clocked on falling edge of CLKIN. RGB output enabled. RGB output sync enabled. 1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled. Table 130. 20-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x6C 0x31 0x33 0x01 0x6C Rev. B | Page 103 of 108 Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. 1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled (10 × 2 = 20-bit). ADV7344 Data Sheet Table 131. 20-Bit 1080i YCrCb In, YPrPb Out Table 135. 30-Bit 1080i YCrCb In, YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x68 Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x68 0x31 0x33 0x01 0x6C 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. 1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled (10 × 2 = 20-bit). Table 132. 20-Bit 1080i YCrCb In (EAV/SAV), RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x6C 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled (10 × 2 = 20-bit). Table 133. 20-Bit 1080i YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x68 0x31 0x33 0x01 0x6C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 10-bit input enabled (10 × 2 = 20-bit). Table 134. 30-Bit 1080i YCrCb In (EAV/SAV), YPrPb Out Subaddress 0x17 0x00 0x01 0x30 Setting 0x02 0x1C 0x10 0x6C 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. 1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. 1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 136. 30-Bit 1080i YCrCb In (EAV/SAV), RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x6C 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 1080i at 30 Hz/29.97 Hz. EAV/SAV synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 137. 30-Bit 1080i YCrCb In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x68 0x31 0x33 0x01 0x2C Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). Table 138. 30-Bit 1080i RGB In, RGB Out Subaddress 0x17 0x00 0x01 0x02 Setting 0x02 0x1C 0x10 0x10 0x30 0x68 0x31 0x33 0x01 0x2C 0x35 0x02 Rev. B | Page 104 of 108 Description Software reset. All DACs enabled. PLL enabled (4×). HD-SDR input mode. RGB output enabled. RGB output sync enabled. 1080i at 30 Hz/29.97 Hz. HSYNC/VSYNC synchronization. EIA-770.3 output levels. Pixel data valid. 4× oversampling. 4:4:4 input data. 10-bit input enabled (10 × 3 = 30-bit). RGB input enabled. Data Sheet ADV7344 OUTLINE DIMENSIONS 0.75 0.60 0.45 12.20 12.00 SQ 11.80 1.60 MAX 64 49 1 48 PIN 1 10.20 10.00 SQ 9.80 TOP VIEW (PINS DOWN) 0.15 0.05 SEATING PLANE 0.20 0.09 7° 3.5° 0° 16 33 32 17 0.08 COPLANARITY VIEW A VIEW A 0.50 BSC LEAD PITCH 0.27 0.22 0.17 ROTATED 90° CCW COMPLIANT TO JEDEC STANDARDS MS-026-BCD 051706-A 1.45 1.40 1.35 Figure 138. 64-Lead Low Profile Quad Flat Package [LQFP] (ST-64-2) Dimensions shown in millimeters ORDERING GUIDE Model ADV7344BSTZ EVAL-ADV7344EBZ 1 1 2 Temperature Range −40°C to +85°C Macrovision 2 Antitaping Yes Yes Package Description 64-Lead Low Profile Quad Flat Package [LQFP] Evaluation Platform Package Option ST-64-2 Z = RoHS Compliant Part. Macrovision-enabled ICs require the buyer to be an approved licensee (authorized buyer) of ICs that are able to output Macrovision Rev 7.1.L1-compliant video. Rev. B | Page 105 of 108 ADV7344 Data Sheet NOTES Rev. B | Page 106 of 108 Data Sheet ADV7344 NOTES Rev. B | Page 107 of 108 ADV7344 Data Sheet NOTES Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. ©2006-2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06400-0-2/12(B) Rev. B | Page 108 of 108