Dual 12-Bit nanoDAC with ±10 ppm/°C On-Chip Reference AD5623R-EP Enhanced Product The AD5623R-EP has an on-chip 2.5 V reference giving a maximum full-scale output of 5 V. The on-chip reference is off at power-up, allowing the use of an external reference. FEATURES Low power, smallest pin-compatible, dual nanoDAC: 12 bits User-selectable external or internal reference External reference default On-chip 2.5 V, ±10 ppm/°C reference 10-lead MSOP 4.5 V to 5.5 V power supply Guaranteed monotonic by design Power-on reset to zero scale Per channel power-down Serial interface up to 50 MHz Hardware LDAC and CLR functions The AD5623R-EP incorporates a power-on reset circuit that ensures that the output of the DACs powers up to 0 V and remains there until a valid write takes place. The AD5623R-EP contains a power-down feature that reduces the current consumption of the device to 0.48 μA at 5 V and provides software-selectable output loads while in power-down mode. The low power consumption of this device in normal operation makes it ideally suited to portable, battery-operated equipment. The AD5623R-EP uses a versatile, 3-wire serial interface that operates at clock rates of up to 50 MHz, and is compatible with standard SPI, QSPI™, MICROWIRE™, and DSP interface standards. The on-chip precision output amplifier enables railto-rail output swing to be achieved. Additional application and technical information can be found in the AD5623R data sheet. ENHANCED PRODUCT FEATURES Supports defense and aerospace applications (AQEC) Extended temperature range: −55°C to +105°C Controlled manufacturing baseline One assembly/test site One fabrication site Enhanced product change notification Qualification data available on request PRODUCT HIGHLIGHTS 1. 2. 3. 4. APPLICATIONS Process control Data acquisition systems Dual 12-Bit DAC. On-Chip 2.5 V, ±10 ppm/°C Reference. Available in 10-Lead MSOP. Low Power. Typically consumes 1.25 mW at 5 V. 4.5 μs maximum settling time. GENERAL DESCRIPTION Table 1. Related Device The AD5623R-EP, a member of the nanoDAC® family, is a low power, dual 12-bit buffered voltage output digital-to-analog converter (DAC) that operates from a single 4.5 V to 5.5 V supply and is guaranteed monotonic by design. Part No. AD5623R Description 2.7 V to 5.5 V, dual 12-bit nanoDAC, with external reference FUNCTIONAL BLOCK DIAGRAM VDD VREFIN /VREFOUT 2.5V REFERENCE LDAC SCLK DAC REGISTER STRING DAC A BUFFER VOUTA INPUT REGISTER DAC REGISTER STRING DAC B BUFFER VOUTB INTERFACE LOGIC DIN AD5623R-EP LDAC CLR POWER-ON RESET GND POWER-DOWN LOGIC 12105-001 SYNC INPUT REGISTER Figure 1. Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD5623R-EP Enhanced Product TABLE OF CONTENTS Features .............................................................................................. 1 Absolute Maximum Ratings ............................................................6 Enhanced Product Features ............................................................ 1 ESD Caution...................................................................................6 Applications ....................................................................................... 1 Pin Configuration and Function Descriptions..............................7 General Description ......................................................................... 1 Typical Performance Characteristics ..............................................8 Product Highlights ........................................................................... 1 Applications Information .............................................................. 13 Functional Block Diagram .............................................................. 1 Using a Reference as a Power Supply ....................................... 13 Revision History ............................................................................... 2 Outline Dimensions ....................................................................... 14 Specifications..................................................................................... 3 Ordering Guide .......................................................................... 14 AC Characteristics ........................................................................ 4 Timing Characteristics ................................................................ 4 REVISION HISTORY 9/15—Rev. 0 to Rev. A Changes to Features Section............................................................ 1 Added Enhanced Product Features Section.................................. 1 Change to Table 5 ............................................................................. 6 Changes to Using a Reference as a Power Supply Section and Figure 33 .......................................................................................... 13 Deleted Terminology Section ....................................................... 13 Deleted Theory of Operation Section, Digital-to-Analog Architecture Section, Figure 33; Renumbered Sequentially, Resistor String Section, Output Amplifier Section, Figure 34, Internal Reference Section, External Reference Section, and Serial Interface Section .................................................................. 15 Deleted Input Shift Register Section, Table 7; Renumbered Sequentially, Table 8, SYNC Interrupt Section, Power-On Reset Section, Software Reset Section, Table 9, Figure 35, and Figure 36 .......................................................................................... 16 Deleted Power-Down Modes Section, Table 10 to Table 13, and Figure 37 .......................................................................................... 17 Deleted LDAC Function Section, Synchronous LDAC Section, Asynchronous LDAC Section, Table 14 to Table 16, and Internal Reference Setup Section................................................................. 18 Deleted Microprocessor Interfacing Section, AD5623R-EP to Blackfin® ADSP-BF53x Interface Section, Figure 38, AD5623R-EP to M68HC11/MC68L11 Interface Section, Figure 39, AD5623R-EP to 80C51 Interface Section, Figure 40, AD5623R-EP to MICOWIRE Interface Section, and Figure 41............................ 19 Deleted Power Supply Bypassing and Grounding Section ....... 20 4/14—Revision 0: Initial Version Rev. A | Page 2 of 16 Enhanced Product AD5623R-EP SPECIFICATIONS VDD = 4.5 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN/VREFOUT = VDD; all specifications TMIN to TMAX, unless otherwise noted. Table 2. Parameter1 STATIC PERFORMANCE2 Resolution Relative Accuracy, INL Differential Nonlinearity, DNL Zero-Scale Error Offset Error Full-Scale Error Gain Error Zero-Scale Error Drift Gain Temperature Coefficient DC Power Supply Rejection Ratio DC Crosstalk External Reference Min DC Output Impedance Short-Circuit Current Power-Up Time REFERENCE INPUTS Reference Current Reference Input Range Reference Input Impedance REFERENCE OUTPUT Output Voltage Reference Temperature Coefficient3 Output Impedance LOGIC INPUTS3 Input Current Input Low Voltage (VINL) Input High Voltage (VINH) Pin Capacitance POWER REQUIREMENTS VDD IDD (Normal Mode)4 Internal Reference Off Internal Reference On IDD (All Power-Down Modes)5 Max ±1 ±1.5 ±1 +12 ±12 ±1 ±1.5 12 Unit Test Conditions/Comments ±2 ±2.5 −100 Bits LSB LSB mV mV % of FSR % of FSR µV/°C ppm dB Of FSR/°C DAC code = midscale; VDD = 5 V ± 10% 10 10 5 25 20 10 µV µV/mA µV µV µV/mA µV Due to full-scale output change; RL = 2 kΩ to GND or VDD Due to load current change Due to powering down (per channel) Due to full-scale output change; RL = 2 kΩ to GND or VDD Due to load current change Due to powering down (per channel) +2 ±1 −0.1 Internal Reference OUTPUT CHARACTERISTICS3 Output Voltage Range Capacitive Load Stability Typ 0 VDD 2 10 0.5 30 4 170 0.75 VDD = 5 V Coming out of power-down mode; VDD = 5 V VREFIN/VREFOUT = VDD = 5.5 V 2.505 V ppm/°C kΩ At ambient ±2 0.8 µA V V pF pF All digital inputs VDD = 5 V VDD = 5 V DIN, SCLK, and SYNC LDAC and CLR 5.5 V 0.45 1 1 mA mA µA 2 3 19 0.25 0.8 0.48 RL = ∞ RL = 2 kΩ µA V kΩ ±10 7.5 4.5 All 1s loaded to DAC register 200 VDD 26 2.495 V nF nF Ω mA μs Guaranteed monotonic by design All 0s loaded to DAC register Temperature range = −55°C to +105°C, typical at +25°C. Linearity calculated using a reduced code range: Code 32 to Code 4064. Output unloaded. 3 Guaranteed by design and characterization, but not production tested. 4 Interface inactive. All DACs active. DAC outputs unloaded. 5 Both DACs powered down. 1 2 Rev. A | Page 3 of 16 VINH = VDD and VINL = GND VDD = 4.5 V to 5.5 V VDD = 4.5 V to 5.5 V VDD = 4.5 V to 5.5 V, VINH = VDD and VINL = GND AD5623R-EP Enhanced Product AC CHARACTERISTICS VDD = 4.5 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN/VREFOUT = VDD; all specifications TMIN to TMAX, unless otherwise noted. Table 3. Parameter1, 2 SLEW RATE FEEDTHROUGH Digital Feedthrough Reference Feedthrough CROSSTALK Digital Crosstalk Analog Crosstalk DAC-to-DAC Crosstalk MULTIPLYING BANDWIDTH TOTAL HARMONIC DISTORTION OUTPUT CHARACTERISTICS Digital-to-Analog Glitch Impulse Output Voltage Settling Time Output Noise Spectral Density Output Noise 1 2 Min Typ 1.8 Max Unit V/µs Test Conditions/Comments 0.1 −90 nV-sec dB VREFIN/VREFOUT = 2 V ± 0.1 V p-p, frequency 10 Hz to 20 MHz 0.1 1 4 1 4 340 −80 nV-sec nV-sec nV-sec nV-sec nV-sec kHz dB External reference Internal reference External reference Internal reference VREFIN/VREFOUT = 2 V ± 0.1 V p-p VREFIN/VREFOUT = 2 V ± 0.1 V p-p, frequency = 10 kHz nV-sec µs nV/√Hz nV/√Hz μV p-p 1 LSB change around major carry ¼ to ¾ scale settling to ±0.5 LSB DAC code = midscale, 1 kHz DAC code = midscale, 10 kHz 0.1 Hz to 10 Hz 10 3 120 100 15 4.5 Guaranteed by design and characterization, but not production tested. Temperature range = −55°C to +105°C, typical at +25°C. TIMING CHARACTERISTICS All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VINL + VINH)/2. VDD = 4.5 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted. Table 4. Parameter1 t12 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 1 2 Limit at TMIN, TMAX 20 9 9 13 5 5 0 15 13 0 10 15 5 0 300 Unit ns min ns min ns min ns min ns min ns min ns min ns min ns min ns min ns min ns min ns min ns min ns max Description SCLK cycle time SCLK high time SCLK low time SYNC to SCLK falling edge setup time Data setup time Data hold time SCLK falling edge to SYNC rising edge Minimum SYNC high time SYNC rising edge to SCLK fall ignore SCLK falling edge to SYNC fall ignore LDAC pulse width low SCLK falling edge to LDAC rising edge CLR pulse width low SCLK falling edge to LDAC falling edge CLR pulse activation time Guaranteed by design and characterization, but not production tested. Maximum SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V. Rev. A | Page 4 of 16 Enhanced Product AD5623R-EP Timing Diagram t10 t1 t9 SCLK t8 t3 t4 t2 t7 SYNC t6 t5 DIN DB23 DB0 t14 t11 LDAC1 t12 LDAC2 VOUT t13 t15 12105-002 CLR 1ASYNCHRONOUS LDAC UPDATE MODE. 2SYNCHRONOUS LDAC UPDATE MODE. Figure 2. Serial Write Operation Rev. A | Page 5 of 16 AD5623R-EP Enhanced Product ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 5. Parameter VDD to GND VOUTx to GND VREFIN/VREFOUT to GND Digital Input Voltage to GND Operating Temperature Range Industrial Storage Temperature Range Junction Temperature (TJ max) Power Dissipation MSOP Package (4-Layer Board) θJA Thermal Impedance θJC Thermal Impedance Reflow Soldering Peak Temperature Pb-Free Rating −0.3 V to +7 V −0.3 V to VDD + 0.3 V −0.3 V to VDD + 0.3 V −0.3 V to VDD + 0.3 V Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. ESD CAUTION −55°C to +105°C −65°C to +150°C 150°C (TJ max − TA)/θJA 142°C/W 43.7°C/W 260 (+0/−5)°C Rev. A | Page 6 of 16 Enhanced Product AD5623R-EP VOUTA 1 10 VREFIN/VREFOUT VOUTB 2 9 VDD 8 DIN LDAC 4 7 SCLK CLR 5 6 SYNC GND 3 AD5623R-EP TOP VIEW (Not to Scale) 12105-003 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 3. Pin Configuration Table 6. Pin Function Descriptions Pin No. 1 2 3 4 Mnemonic VOUTA VOUTB GND LDAC 5 CLR 6 SYNC 7 SCLK 8 DIN 9 VDD 10 VREFIN/VREFOUT Description Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation. Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation. Ground. Reference point for all circuitry on the device. Load DAC. Pulsing this pin low allows any or all DAC registers to be updated if the input registers have new data. This allows simultaneous update of all DAC outputs. Alternatively, this pin can be tied permanently low. Asynchronous Clear Input. The CLR input is falling edge sensitive. While CLR is low, all LDAC pulses are ignored. When CLR is activated, zero scale is loaded to all input and DAC registers. This clears the output to 0 V. The device exits clear code mode on the 24th falling edge of the next write to the device. If CLR is activated during a write sequence, the write is aborted. Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When SYNC goes low, it enables the input shift register, and data is transferred in on the falling edges of the following clocks. The DAC is updated following the 24th clock cycle unless SYNC is taken high before this edge, in which case the rising edge of SYNC acts as an interrupt and the write sequence is ignored by the DAC. Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates of up to 50 MHz. Serial Data Input. This device has a 24-bit input shift register. Data is clocked into the register on the falling edge of the serial clock input. Power Supply Input. This device can be operated from 4.5 V to 5.5 V. Decouple the supply with a 10 μF capacitor in parallel with a 0.1 μF capacitor to GND. Common Reference Input/Reference Output. When the internal reference is selected, this is the reference output pin. When using an external reference, this is the reference input pin. The default for this pin is a reference input. Rev. A | Page 7 of 16 AD5623R-EP Enhanced Product TYPICAL PERFORMANCE CHARACTERISTICS 1.0 0.20 VDD = 5V VREFIN/VREFOUT = 2.5V 0.15 TA = 25°C VDD = VREFIN/VREFOUT = 5V 0.8 TA = 25°C 0.6 0.10 DNL ERROR (LSB) 0.2 0 –0.2 –0.4 0.05 0 –0.05 –0.10 –0.6 –0.15 –1.0 0 0.5k 1.0k 1.5k 2.0k 2.5k CODE 3.0k 3.5k 4.0k 12105-007 –0.8 –0.20 0 0.5k Figure 4. INL, External Reference 0.20 1.5k 2.0k 2.5k CODE 3.0k 3.5k 4.0k Figure 7. DNL, at 5 V VDD 8 VDD = VREFIN/VREFOUT = 5V TA = 25°C 0.15 1.0k 12105-016 INL ERROR (LSB) 0.4 6 MAX INL 0.10 4 0.05 2 ERROR (LSB) DNL ERROR (LSB) VDD = VREFIN/VREFOUT = 5V 0 –0.05 MAX DNL 0 MIN DNL –2 –0.10 –4 –0.15 –6 0 0.5k 1.0k 1.5k 2.0k 2.5k CODE 3.0k 3.5k 4.0k –8 –40 12105-010 –0.20 0 20 40 60 TEMPERATURE (°C) 80 100 120 Figure 8. INL Error and DNL Error vs. Temperature Figure 5. DNL, External Reference 10 1.0 VDD = 5V VREFIN/VREFOUT = 2.5V TA = 25°C 0.8 MAX INL 8 6 0.4 4 ERROR (LSB) 0.6 0.2 0 –0.2 VDD = 5V TA = 25°C 2 MAX DNL 0 MIN DNL –2 –0.4 –4 –0.6 –6 –0.8 –8 –1.0 0 0.5k 1.0k 1.5k 2.0k 2.5k CODE 3.0k 3.5k 4.0k Figure 6. INL, at 5 V VDD –10 0.75 1.25 1.75 2.25 2.75 3.25 VREF (V) 3.75 4.25 Figure 9. INL Error and DNL Error vs. VREF Rev. A | Page 8 of 16 4.75 12105-081 MIN INL 12105-013 INL ERROR (LSB) –20 12105-080 MIN INL Enhanced Product AD5623R-EP 8 1.5 6 1.0 MAX INL ZERO-SCALE ERROR TA = 25°C 0.5 2 ERROR (mV) MAX DNL 0 MIN DNL –2 –4 0 –0.5 –1.0 –1.5 OFFSET ERROR MIN INL –6 3.2 3.7 4.2 VDD (V) 4.7 –2.5 –40 12105-082 –8 2.7 –2.0 5.2 Figure 10. INL Error and DNL Error vs. VDD –20 0 20 40 60 TEMPERATURE (°C) 80 100 12105-024 ERROR (LSB) 4 Figure 13. Zero-Scale Error and Offset Error vs. Temperature 1.0 0 TA = 25°C VDD = 5V –0.02 0.5 ZERO-SCALE ERROR –0.04 GAIN ERROR 0 ERROR (mV) ERROR (% FSR) –0.06 –0.08 –0.10 –0.12 –0.14 –0.5 –1.0 –1.5 FULL-SCALE ERROR –0.16 –2.0 –20 0 20 40 60 TEMPERATURE (°C) 80 100 –2.5 2.7 12105-023 –0.20 –40 Figure 11. Gain Error and Full-Scale Error vs. Temperature 3.2 3.7 4.2 VDD (V) 4.7 5.2 12105-026 OFFSET ERROR –0.18 Figure 14. Zero-Scale Error and Offset Error vs. VDD 1.0 VDD = 5.5V TA = 25°C 8 0.5 NUMBER OF UNITS FULL-SCALE ERROR –0.5 –1.0 6 4 2 –2.0 2.7 3.2 3.7 4.2 VDD (V) 4.7 5.2 Figure 12. Gain Error and Full-Scale Error vs. VDD 0 0.230 0.235 0.240 0.245 IDD (mA) 0.250 Figure 15. IDD Histogram with External Reference Rev. A | Page 9 of 16 0.255 12105-090 –1.5 12105-025 ERROR (% FSR) GAIN ERROR 0 AD5623R-EP Enhanced Product 0.30 5 TA = 25°C VDD = 5.5V TA = 25°C 0.25 VDD = VREFIN/VREFOUT = 5V 0.20 3 IDD (mA) 0.15 2 0.10 1 0.78 0.80 0.82 IDD (mA) 0 –40 12105-091 0 0.05 0.84 –20 0 20 40 60 TEMPERATURE (°C) 80 12105-044 NUMBER OF UNITS 4 100 Figure 19. Supply Current vs. Temperature Figure 16. IDD Histogram with Internal Reference 0.5 0.4 DAC LOADED WITH FULL-SCALE SOURCING CURRENT DAC LOADED WITH ZERO-SCALE SINKING CURRENT ERROR VOLTAGE (V) 0.3 0.2 VDD = VREFIN/VREFOUT = 5V TA = 25°C FULL-SCALE CODE CHANGE 0x0000 TO 0xFFFF OUTPUT LOADED WITH 2kΩ AND 200pF TO GND 0.1 0 –0.1 VDD = 5V VREFIN/VREFOUT = 2.5V –0.2 VOUT = 909mV/DIV –0.3 1 –6 –4 –2 0 2 CURRENT (mA) 4 6 8 10 TIME BASE = 4µs/DIV Figure 20. Full-Scale Settling Time, 5 V Figure 17. Headroom at Rails vs. Source and Sink Current 6 VDD = 5V VREFIN/VREFOUT = 2.5V 5 TA = 25C FULL SCALE 3 MIDSCALE VDD 2 1 1/4 SCALE 1 MAX(CH2)* 420.0mV 0 2 ZERO SCALE –20 –10 0 10 CURRENT (mA) 20 VOUT 30 12105-030 VOUT (V) VDD = VREFIN/VREFOUT = 5V TA = 25°C 3/4 SCALE 4 –1 –30 12105-060 –8 CH1 2.0V CH2 500mV M100µs 125MS/s A CH1 1.28V Figure 21. Power-On Reset to 0 V Figure 18. 5 V VDD Source and Sink Capability Rev. A | Page 10 of 16 8.0ns/pt 12105-061 –0.5 –10 12105-029 –0.4 Enhanced Product AD5623R-EP 1 SCLK VOUT (V) 3 VOUT VDD = 5V CH1 5.0V CH3 5.0V CH2 500mV M400ns A CH1 1.4V 12105-062 2 2.496 2.494 2.492 2.490 2.488 2.486 2.484 2.482 2.480 2.478 2.476 2.474 2.472 2.470 2.468 2.466 2.464 2.462 2.460 2.458 2.456 VDD = VREFIN/VREFOUT = 5V TA = 25°C 5ns/SAMPLE NUMBER GLITCH IMPULSE = 9.494nV 1LSB CHANGE AROUND MIDSCALE (0x8000 TO 0x7FFF) 50 100 150 200 250 300 350 SAMPLE NUMBER 400 450 512 VDD = VREFIN/VREFOUT = 5V TA = 25°C DAC LOADED WITH MIDSCALE 0 50 100 150 200 250 300 350 SAMPLE NUMBER 400 450 512 Y AXIS = 2µV/DIV X AXIS = 4s/DIV Figure 26. 0.1 Hz to 10 Hz Output Noise Plot, External Reference Figure 23. Digital-to-Analog Glitch Impulse (Negative) 2.498 VDD = VREFIN/VREFOUT = 5V TA = 25°C 5ns/SAMPLE NUMBER ANALOG CROSSTALK = 0.424nV 2.497 12105-063 1 12105-058 VOUT (V) 0 Figure 25. Analog Crosstalk, Internal Reference Figure 22. Exiting Power-Down to Midscale 2.538 2.537 2.536 2.535 2.534 2.533 2.532 2.531 2.530 2.529 2.528 2.527 2.526 2.525 2.524 2.523 2.522 2.521 VDD = 5V VREFIN/VREFOUT = 2.5V TA = 25°C 5ns/SAMPLE NUMBER ANALOG CROSSTALK = 4.462nV 12105-057 SYNC VDD = 5V VREFIN/VREFOUT = 2.5V TA = 25°C DAC LOADED WITH MIDSCALE 10µV/DIV 2.495 2.494 1 2.493 2.491 0 50 100 150 200 250 300 350 SAMPLE NUMBER 400 450 512 Figure 24. Analog Crosstalk, External Reference 5s/DIV Figure 27. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference Rev. A | Page 11 of 16 12105-064 2.492 12105-059 VOUT (V) 2.496 AD5623R-EP Enhanced Product 800 5 TA = 25°C MIDSCALE LOADED –5 600 –10 500 (dB) 400 300 –20 –25 VDD = 5V VREFIN/VREFOUT = 2.5V 200 –15 –30 100 0 100 1k 10k FREQUENCY (Hz) 1M 10M 12105-066 –35 –40 10k 100k 1M FREQUENCY (Hz) Figure 28. Noise Spectral Density, Internal Reference 10M Figure 31. Multiplying Bandwidth VDD = 5V TA = 25°C DAC LOADED WITH FULL SCALE VREFIN/VREFOUT = 2V ± 0.3V p-p –30 –40 VOUT A –50 –60 –70 –80 VOUT B 2k 4k 6k FREQUENCY (Hz) 8k 10k Figure 29. Total Harmonic Distortion VREFIN/VREFOUT = VDD TA = 25°C 14 12 10 VDD = 5V 4 1 2 3 7 4 5 6 CAPACITANCE (nF) 8 9 10 12105-068 6 0 CH3 5.0V CH2 1.0V CH4 1.0V M200ns A CH3 Figure 32. CLR Pulse Activation Time 16 8 2 Figure 30. Settling Time vs. Capacitive Load Rev. A | Page 12 of 16 1.10V 12105-050 4 –90 –100 TIME (µs) CLR 3 12105-067 TOTAL HARMONIC DISTORTION (dB) –20 12105-069 OUTPUT NOISE (nV/√Hz) 700 VDD = 5V TA = 25°C 0 Enhanced Product AD5623R-EP APPLICATIONS INFORMATION Because the supply current required by the AD5623R-EP is extremely low, an alternative option is to use a voltage reference to supply the required voltage to the device (see Figure 33). This is especially useful if the power supply is quite noisy or if the system supply voltages are at some value other than 5 V or 3 V, for example, 15 V. The voltage reference outputs a steady supply voltage for the AD5623R-EP. If the ADR293-EP is used, it must supply ~500 μA of current to the AD5623R-EP, with no load on the output of the DAC. When the DAC output is loaded, the ADR293-EP also needs to supply the current to the load. The total current required (with a 5 kΩ load on the DAC output) is The load regulation of the ADR293-EP is typically 30 ppm/mA, which results in a 45 ppm (225 μV) error for the 1.5 mA current drawn from it. This corresponds to a 0.184 LSB error. 12V ADR293-EP 3-WIRE SERIAL INTERFACE 500 μA + (5 V/5 kΩ) = 1.5 mA Rev. A | Page 13 of 16 SYNC SCLK 5V VDD VOUT = 0V TO 5V AD5623R-EP DIN 12105-041 USING A REFERENCE AS A POWER SUPPLY Figure 33. ADR293-EP as Power Supply to the AD5623R-EP AD5623R-EP Enhanced Product OUTLINE DIMENSIONS 3.10 3.00 2.90 10 3.10 3.00 2.90 5.15 4.90 4.65 6 1 5 PIN 1 IDENTIFIER 0.50 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.30 0.15 0.70 0.55 0.40 0.23 0.13 6° 0° COMPLIANT TO JEDEC STANDARDS MO-187-BA 091709-A 0.15 0.05 COPLANARITY 0.10 Figure 34. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters ORDERING GUIDE Model1 AD5623RSRMZ-EP-5R7 1 Temperature Range −55°C to +105°C Accuracy ±1.5 LSB INL Internal Reference 2.5 V Z = RoHS Compliant Part. Rev. A | Page 14 of 16 Package Description 10-Lead MSOP Package Option RM-10 Branding DN9 Enhanced Product AD5623R-EP NOTES Rev. A | Page 15 of 16 AD5623R-EP Enhanced Product NOTES ©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D12105-0-9/15(A) Rev. A | Page 16 of 16