IRF IRF7338PBF

PD - 95197
IRF7338PbF
HEXFET® Power MOSFET
l
l
l
l
l
Ultra Low On-Resistance
Dual N and P Channel MOSFET
Surface Mount
Available in Tape & Reel
Lead-Free
S1
N-CHANNEL MOSFET
1
8
D1
G1
2
7
D1
S2
3
6
D2
4
5
D2
G2
VDSS
N-Ch
P-Ch
12V
-12V
RDS(on) 0.034Ω 0.150Ω
P-CHANNEL MOSFET
Top View
Description
These N and P channel MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
the extremely low on-resistance per silicon area. This
benefit provides the designer with an extremely efficient
device for use in battery and load management
applications.
This Dual SO-8 has been modified through a customized
leadframe for enhanced thermal characteristics and
multiple-die capability making it ideal in a variety of power
applications. With these improvements, multiple devices
can be used in an application with dramatically reduced
board space. The package is designed for vapor phase,
infrared, or wave soldering techniques.
SO-8
Absolute Maximum Ratings
Parameter
VDS
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
VGS
TJ, TSTG
Drain-to-Source Voltage
Continuous Drain Current, VGS @ 4.5V
Continuous Drain Current, VGS @ 4.5V
Pulsed Drain Current 
Power Dissipation ƒ
Power Dissipation ƒ
Linear Derating Factor
Gate-to-Source Voltage
Junction and Storage Temperature Range
Max.
N-Channel
P-Channel
12
6.3
5.2
26
-12
-3.0
-2.5
-13
2.0
1.3
16
Units
A
W
±12 „
-55 to + 150
± 8.0
mW/°C
V
°C
Thermal Resistance
Symbol
RθJL
RθJA
www.irf.com
Parameter
Junction-to-Drain Lead
Junction-to-Ambient ƒ
Typ.
Max.
Units
–––
–––
20
62.5
°C/W
1
9/30/04
IRF7338PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(ON)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Qg
Total Gate Charge
Min.
12
-12
—
—
—
—
—
—
0.6
-0.40
9.2
3.5
—
—
—
—
––
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
Qgs
Gate-to-Source Charge
Qgd
Gate-to-Drain ("Miller") Charge
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
Typ.
—
—
0.01
-0.01
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6.0
9.6
7.6
13
26
27
34
25
640
490
340
80
110
58
Max.
—
—
—
—
0.034
0.060
0.150
0.200
1.5
-1.0
—
—
20
-1.0
50
-25
±100
±100
8.6
6.6
1.9
1.3
3.9
1.6
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Units
V
V/°C
Ω
V
S
µA
nA
nC
Conditions
VGS = 0V, ID = 250µA
VGS = 0V, ID = -250µA
Reference to 25°C, ID = 1mA
Reference to 25°C, ID = -1mA
VGS = 4.5V, ID = 6.0A ‚
VGS = 3.0V, ID = 2.0A ‚
VGS = -4.5V, ID = -2.9A ‚
VGS = -2.7V, ID = -1.5A ‚
VDS = VGS, ID = 250µA
VDS = VGS, ID = -250µA
VDS = 6.0V, ID = 6.0A ‚
VDS = -6.0V, ID = -1.5A ‚
VDS = 9.6V, VGS = 0V
VDS = -9.6 V, VGS = 0V
VDS = 9.6V, VGS = 0V, TJ = 55°C
VDS = -9.6V, VGS = 0V, TJ = 55°C
VGS = ± 12V
VGS = ± 8.0V
N-Channel
ID = 6.0A, VDS = 6.0V, VGS = 4.5V
P-Channel
ID = -2.9A, VDS = -9.6V, VGS = -4.5 V
ns
N-Channel
VDD = 6.0V, ID = 1.0A, RG = 6.0Ω,
VGS = 4.5V
P-Channel
VDD = -6.0V, ID = -2.9A, RG = 6.0Ω,
VGS = -4.5V
pF
‚
N-Channel
VGS = 0V, VDS = 9.0V, ƒ = 1.0MHz
P-Channel
VGS = 0V, VDS = -9.0V, ƒ = 1.0KHz
Source-Drain Ratings and Characteristics
Parameter
IS
Continuous Source Current (Body Diode)
ISM
Pulsed Source Current (Body Diode) 
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
N-Ch
P-Ch
Min. Typ. Max. Units
Conditions
—
— 6.3
—
— -3.0
A
—
—
26
—
— -13
—
— 1.3
TJ = 25°C, IS = 1.7A, VGS = 0V ‚
V
—
— -1.2
TJ = 25°C, IS = -2.9A, VGS = 0V ‚
—
51
76
N-Channel
ns
—
37
56
TJ = 25°C, IF = 1.7A, di/dt = 100A/µs
—
43
64
P-Channel
nC
TJ = 25°C, IF = -2.9A, di/dt = -100A/µs
—
20
30
‚
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
ƒ Surface mounted on 1 in square Cu board.
„ The N-channel MOSFET can withstand 15V VGS max
for up to 24 hours over the life of the device.
www.irf.com
IRF7338PbF
N-Channel
100
100
VGS
7.5V
4.5V
4.0V
3.5V
3.0V
2.7V
2.0V
BOTTOM 1.5V
VGS
7.5V
4.5V
4.0V
3.5V
3.0V
2.7V
2.0V
BOTTOM 1.5V
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
1.5V
0.1
20µs PULSE WIDTH
Tj = 25°C
0.01
0.1
1
10
1
1.5V
20µs PULSE WIDTH
Tj = 150°C
0.1
10
0.1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
10
Fig 2. Typical Output Characteristics
100
100.0
ISD, Reverse Drain Current (A)
ID, Drain-to-Source Current ( A)
1
VDS , Drain-to-Source Voltage (V)
T J = 25°C
T J = 150°C
10
VDS = 10V
20µs PULSE WIDTH
1
1.0
2.0
3.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
4.0
T J = 150°C
10.0
1.0
T J = 25°C
VGS = 0V
0.1
0.4
0.6
0.8
1.0
1.2
1.4
VSD, Source-toDrain Voltage (V)
Fig 4. Typical Source-Drain Diode
Forward Voltage
3
IRF7338PbF
R DS (on) , Drain-to-Source On Resistance ( Ω)
I D = 6.3A
1.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
2.0
N-Channel
1.0
0.5
V GS = 4.5V
0.0
-60
-40
-20
0
20
40
60
80
100
TJ , Junction Temperature
120
140
0.10
0.08
VGS = 3.0V
0.06
VGS = 4.5V
0.04
0.02
0.00
160
0
( °C)
5
10
15
20
25
30
ID , Drain Current (A)
Fig 6. Typical On-Resistance Vs. Drain
Current
Fig 5. Normalized On-Resistance
Vs. Temperature
80
0.05
60
0.04
Power (W)
RDS(on) , Drain-to -Source On Resistance ( Ω)
0.12
0.03
ID = 6.3A
20
0
0.02
3.0
4.0
5.0
6.0
7.0
8.0
VGS, Gate -to -Source Voltage (V)
4
40
Fig 7. Typical On-Resistance Vs. Gate
Voltage
0.00
0.00
0.00
0.01
0.10
1.00
10.00
Time (sec)
Fig 8. Typical Power Vs. Time
www.irf.com
IRF7338PbF
N-Channel
1000
Ciss
600
Crss
Coss
ID= 6.0A
VGS , Gate-to-Source Voltage (V)
800
C, Capacitance (pF)
12
VGS = 0V,
f = 1 MHZ
C iss
= C gs + C gd , C ds
SHORTED
= Cgd
= Cds + Cgd
Coss
400
200
Crss
VDS= 12V
10
8
6
4
2
0
0
1
10
0.0
100
2.0
4.0
6.0
8.0
10.0
12.0
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 10. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 9. Typical Capacitance Vs.
Drain-to-Source Voltage
100
(Z thJA)
D = 0.50
0.20
10
Thermal Response
0.10
0.05
0.02
1
P DM
0.01
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D =
2. Peak T
0.1
0.00001
0.0001
0.001
0.01
0.1
t1/ t 2
J = P DM x Z thJA
+TA
1
10
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF7338PbF
N-Channel
7.0
RD
VDS
6.0
VGS
ID , Drain Current (A)
D.U.T.
RG
5.0
4.0
+
-VDD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
3.0
2.0
Fig 13a. Switching Time Test Circuit
1.0
VDS
90%
0.0
25
50
75
100
TC , Case Temperature
125
150
( °C)
Fig 12. Maximum Drain Current Vs.
Case Temperature
10%
VGS
td(on)
tr
t d(off)
tf
Fig 13b. Switching Time Waveforms
Current Regulator
Same Type as D.U.T.
QG
VGS
QGS
50KΩ
12V
.2µF
.3µF
QGD
VG
D.U.T.
+
V
- DS
VGS
3mA
Charge
IG
ID
Current Sampling Resistors
Fig 14a. Basic Gate Charge Waveform
6
Fig 14b. Gate Charge Test Circuit
www.irf.com
IRF7338PbF
P-Channel
100
100
VGS
-7.5V
-4.5V
-4.0V
-3.5V
-3.0V
-2.7V
-2.0V
BOTTOM -1.5V
VGS
-7.5V
-4.5V
-4.0V
-3.5V
-3.0V
-2.7V
-2.0V
BOTTOM -1.5V
10
TOP
-I D, Drain-to-Source Current (A)
-I D, Drain-to-Source Current (A)
TOP
-1.5V
1
20µs PULSE WIDTH
Tj = 25°C
0.1
0.1
1
10
-1.5V
1
20µs PULSE WIDTH
Tj = 150°C
0.1
10
0.1
-V DS , Drain-to-Source Voltage (V)
Fig 15. Typical Output Characteristics
10
Fig 16. Typical Output Characteristics
100.0
-I SD, Reverse Drain Current (A)
100
-I D, Drain-to-Source Current ( A)
1
-V DS , Drain-to-Source Voltage (V)
T J = 25°C
10
T J = 150°C
VDS = -10V
20µs PULSE WIDTH
1
1.0
2.0
3.0
-V GS , Gate-to-Source Voltage (V)
Fig 17. Typical Transfer Characteristics
www.irf.com
10.0
T J = 150°C
1.0
T J = 25°C
VGS = 0V
0.1
4.0
0.4
0.6
0.8
1.0
1.2
1.4
1.6
-V SD, Source-toDrain Voltage (V)
Fig 18. Typical Source-Drain Diode
Forward Voltage
7
IRF7338PbF
RDS (on) , Drain-to-Source On Resistance ( Ω)
I D = -3.0A
1.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
2.0
P-Channel
1.0
0.5
V GS = -4.5V
0.0
-60
-40
-20
0
20
40
60
80
100
120
140
0.18
0.16
0.14
VGS = -2.7V
0.12
0.10
VGS = -4.5V
0.08
0.06
160
0
( °C)
TJ , Junction Temperature
2
4
6
8
10
12
14
-I D , Drain Current (A)
Fig 20. Typical On-Resistance Vs. Drain
Current
Fig 19. Normalized On-Resistance
Vs. Temperature
0.12
80
60
0.10
Power (W)
RDS(on) , Drain-to -Source On Resistance ( Ω)
0.20
0.08
ID = -3.0A
20
0.06
0
2.0
3.0
4.0
5.0
6.0
7.0
-V GS, Gate -to -Source Voltage (V)
Fig 21. Typical On-Resistance Vs. Gate
Voltage
8
40
8.0
0.00
0.00
0.00
0.01
0.10
1.00
10.00
Time (sec)
Fig 22. Maximum Avalanche Energy
Vs. Drain Current
www.irf.com
IRF7338PbF
P-Channel
800
Ciss
Crss
Coss
ID= -2.9A
-V GS , Gate-to-Source Voltage (V)
600
C, Capacitance (pF)
12
VGS = 0V,
f = 1 MHZ
C iss
= C gs + C gd , C ds
SHORTED
= Cgd
= Cds + Cgd
400
200
Coss
Crss
10
VDS = -9.6V
VDS= -6.0V
8
6
4
2
0
0
1
10
0
100
2
4
6
8
10
Q G Total Gate Charge (nC)
- -V DS, Drain-to-Source Voltage (V)
Fig 23. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 24. Typical Gate Charge Vs.
Gate-to-Source Voltage
100
(Z thJA)
D = 0.50
0.20
10
Thermal Response
0.10
0.05
0.02
0.01
1
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D =
2. Peak T
0.1
0.00001
0.0001
0.001
0.01
0.1
t1/ t 2
J = P DM x Z thJA
+TA
1
10
t 1, Rectangular Pulse Duration (sec)
Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
9
IRF7338PbF
3.0
RD
VDS
VGS
2.4
D.U.T.
RG
-
-I D , Drain Current (A)
+
VDD
1.8
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
1.2
Fig 27a. Switching Time Test Circuit
0.6
td(on)
tr
t d(off)
tf
VGS
0.0
25
50
75
100
TC , Case Temperature
125
150
10%
( °C)
Fig 26. Maximum Drain Current Vs.
Case Temperature
90%
VDS
Fig 27b. Switching Time Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
QGS
.2µF
.3µF
QGD
D.U.T.
+VDS
VGS
VG
-3mA
Charge
Fig 28a. Basic Gate Charge Waveform
10
12V
IG
ID
Current Sampling Resistors
Fig 28b. Gate Charge Test Circuit
www.irf.com
IRF7338PbF
SO-8 Package Outline
Dimensions are shown in milimeters (inches)
D
DIM
B
5
A
8
6
7
6
H
E
1
6X
2
3
0.25 [.010]
4
A
e
e1
8X b
0.25 [.010]
A
MILLIMET ERS
MAX
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
A
5
INCHES
MIN
MAX
e
.050 BAS IC
1.27 BAS IC
e1
.025 BAS IC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
C
y
0.10 [.004]
A1
8X L
8X c
7
C A B
FOOT PRINT
NOT ES :
1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994.
8X 0.72 [.028]
2. CONT ROLLING DIMENS ION: MILLIMET ER
3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ].
4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA.
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006].
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010].
6.46 [.255]
7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING TO
A S UBS T RAT E.
3X 1.27 [.050]
8X 1.78 [.070]
SO-8 Part Marking Information (Lead-Free)
EXAMPLE: T HIS IS AN IRF7101 (MOS FET)
INTERNAT IONAL
RECT IFIER
LOGO
XXXX
F7101
DAT E CODE (YWW)
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
Y = LAS T DIGIT OF T HE YEAR
WW = WEEK
A = AS S EMBLY SIT E CODE
LOT CODE
PART NUMBER
www.irf.com
11
IRF7338PbF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/04
12
www.irf.com