PD - 95197 IRF7338PbF HEXFET® Power MOSFET l l l l l Ultra Low On-Resistance Dual N and P Channel MOSFET Surface Mount Available in Tape & Reel Lead-Free S1 N-CHANNEL MOSFET 1 8 D1 G1 2 7 D1 S2 3 6 D2 4 5 D2 G2 VDSS N-Ch P-Ch 12V -12V RDS(on) 0.034Ω 0.150Ω P-CHANNEL MOSFET Top View Description These N and P channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications. This Dual SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infrared, or wave soldering techniques. SO-8 Absolute Maximum Ratings Parameter VDS ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C VGS TJ, TSTG Drain-to-Source Voltage Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage Junction and Storage Temperature Range Max. N-Channel P-Channel 12 6.3 5.2 26 -12 -3.0 -2.5 -13 2.0 1.3 16 Units A W ±12 -55 to + 150 ± 8.0 mW/°C V °C Thermal Resistance Symbol RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead Junction-to-Ambient Typ. Max. Units ––– ––– 20 62.5 °C/W 1 9/30/04 IRF7338PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(ON) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Qg Total Gate Charge Min. 12 -12 — — — — — — 0.6 -0.40 9.2 3.5 — — — — –– — — — — — — — — — — — — — — — — — — — — — N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time tf Fall Time Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Typ. — — 0.01 -0.01 — — — — — — — — — — — — — — — — — — — — 6.0 9.6 7.6 13 26 27 34 25 640 490 340 80 110 58 Max. — — — — 0.034 0.060 0.150 0.200 1.5 -1.0 — — 20 -1.0 50 -25 ±100 ±100 8.6 6.6 1.9 1.3 3.9 1.6 — — — — — — — — — — — — — — Units V V/°C Ω V S µA nA nC Conditions VGS = 0V, ID = 250µA VGS = 0V, ID = -250µA Reference to 25°C, ID = 1mA Reference to 25°C, ID = -1mA VGS = 4.5V, ID = 6.0A VGS = 3.0V, ID = 2.0A VGS = -4.5V, ID = -2.9A VGS = -2.7V, ID = -1.5A VDS = VGS, ID = 250µA VDS = VGS, ID = -250µA VDS = 6.0V, ID = 6.0A VDS = -6.0V, ID = -1.5A VDS = 9.6V, VGS = 0V VDS = -9.6 V, VGS = 0V VDS = 9.6V, VGS = 0V, TJ = 55°C VDS = -9.6V, VGS = 0V, TJ = 55°C VGS = ± 12V VGS = ± 8.0V N-Channel ID = 6.0A, VDS = 6.0V, VGS = 4.5V P-Channel ID = -2.9A, VDS = -9.6V, VGS = -4.5 V ns N-Channel VDD = 6.0V, ID = 1.0A, RG = 6.0Ω, VGS = 4.5V P-Channel VDD = -6.0V, ID = -2.9A, RG = 6.0Ω, VGS = -4.5V pF N-Channel VGS = 0V, VDS = 9.0V, ƒ = 1.0MHz P-Channel VGS = 0V, VDS = -9.0V, ƒ = 1.0KHz Source-Drain Ratings and Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current (Body Diode) VSD Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Min. Typ. Max. Units Conditions — — 6.3 — — -3.0 A — — 26 — — -13 — — 1.3 TJ = 25°C, IS = 1.7A, VGS = 0V V — — -1.2 TJ = 25°C, IS = -2.9A, VGS = 0V — 51 76 N-Channel ns — 37 56 TJ = 25°C, IF = 1.7A, di/dt = 100A/µs — 43 64 P-Channel nC TJ = 25°C, IF = -2.9A, di/dt = -100A/µs — 20 30 Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Surface mounted on 1 in square Cu board. The N-channel MOSFET can withstand 15V VGS max for up to 24 hours over the life of the device. www.irf.com IRF7338PbF N-Channel 100 100 VGS 7.5V 4.5V 4.0V 3.5V 3.0V 2.7V 2.0V BOTTOM 1.5V VGS 7.5V 4.5V 4.0V 3.5V 3.0V 2.7V 2.0V BOTTOM 1.5V 10 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 1.5V 0.1 20µs PULSE WIDTH Tj = 25°C 0.01 0.1 1 10 1 1.5V 20µs PULSE WIDTH Tj = 150°C 0.1 10 0.1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 10 Fig 2. Typical Output Characteristics 100 100.0 ISD, Reverse Drain Current (A) ID, Drain-to-Source Current ( A) 1 VDS , Drain-to-Source Voltage (V) T J = 25°C T J = 150°C 10 VDS = 10V 20µs PULSE WIDTH 1 1.0 2.0 3.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 4.0 T J = 150°C 10.0 1.0 T J = 25°C VGS = 0V 0.1 0.4 0.6 0.8 1.0 1.2 1.4 VSD, Source-toDrain Voltage (V) Fig 4. Typical Source-Drain Diode Forward Voltage 3 IRF7338PbF R DS (on) , Drain-to-Source On Resistance ( Ω) I D = 6.3A 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance 2.0 N-Channel 1.0 0.5 V GS = 4.5V 0.0 -60 -40 -20 0 20 40 60 80 100 TJ , Junction Temperature 120 140 0.10 0.08 VGS = 3.0V 0.06 VGS = 4.5V 0.04 0.02 0.00 160 0 ( °C) 5 10 15 20 25 30 ID , Drain Current (A) Fig 6. Typical On-Resistance Vs. Drain Current Fig 5. Normalized On-Resistance Vs. Temperature 80 0.05 60 0.04 Power (W) RDS(on) , Drain-to -Source On Resistance ( Ω) 0.12 0.03 ID = 6.3A 20 0 0.02 3.0 4.0 5.0 6.0 7.0 8.0 VGS, Gate -to -Source Voltage (V) 4 40 Fig 7. Typical On-Resistance Vs. Gate Voltage 0.00 0.00 0.00 0.01 0.10 1.00 10.00 Time (sec) Fig 8. Typical Power Vs. Time www.irf.com IRF7338PbF N-Channel 1000 Ciss 600 Crss Coss ID= 6.0A VGS , Gate-to-Source Voltage (V) 800 C, Capacitance (pF) 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd , C ds SHORTED = Cgd = Cds + Cgd Coss 400 200 Crss VDS= 12V 10 8 6 4 2 0 0 1 10 0.0 100 2.0 4.0 6.0 8.0 10.0 12.0 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage 100 (Z thJA) D = 0.50 0.20 10 Thermal Response 0.10 0.05 0.02 1 P DM 0.01 SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.1 0.00001 0.0001 0.001 0.01 0.1 t1/ t 2 J = P DM x Z thJA +TA 1 10 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7338PbF N-Channel 7.0 RD VDS 6.0 VGS ID , Drain Current (A) D.U.T. RG 5.0 4.0 + -VDD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 3.0 2.0 Fig 13a. Switching Time Test Circuit 1.0 VDS 90% 0.0 25 50 75 100 TC , Case Temperature 125 150 ( °C) Fig 12. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 13b. Switching Time Waveforms Current Regulator Same Type as D.U.T. QG VGS QGS 50KΩ 12V .2µF .3µF QGD VG D.U.T. + V - DS VGS 3mA Charge IG ID Current Sampling Resistors Fig 14a. Basic Gate Charge Waveform 6 Fig 14b. Gate Charge Test Circuit www.irf.com IRF7338PbF P-Channel 100 100 VGS -7.5V -4.5V -4.0V -3.5V -3.0V -2.7V -2.0V BOTTOM -1.5V VGS -7.5V -4.5V -4.0V -3.5V -3.0V -2.7V -2.0V BOTTOM -1.5V 10 TOP -I D, Drain-to-Source Current (A) -I D, Drain-to-Source Current (A) TOP -1.5V 1 20µs PULSE WIDTH Tj = 25°C 0.1 0.1 1 10 -1.5V 1 20µs PULSE WIDTH Tj = 150°C 0.1 10 0.1 -V DS , Drain-to-Source Voltage (V) Fig 15. Typical Output Characteristics 10 Fig 16. Typical Output Characteristics 100.0 -I SD, Reverse Drain Current (A) 100 -I D, Drain-to-Source Current ( A) 1 -V DS , Drain-to-Source Voltage (V) T J = 25°C 10 T J = 150°C VDS = -10V 20µs PULSE WIDTH 1 1.0 2.0 3.0 -V GS , Gate-to-Source Voltage (V) Fig 17. Typical Transfer Characteristics www.irf.com 10.0 T J = 150°C 1.0 T J = 25°C VGS = 0V 0.1 4.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 -V SD, Source-toDrain Voltage (V) Fig 18. Typical Source-Drain Diode Forward Voltage 7 IRF7338PbF RDS (on) , Drain-to-Source On Resistance ( Ω) I D = -3.0A 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance 2.0 P-Channel 1.0 0.5 V GS = -4.5V 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 0.18 0.16 0.14 VGS = -2.7V 0.12 0.10 VGS = -4.5V 0.08 0.06 160 0 ( °C) TJ , Junction Temperature 2 4 6 8 10 12 14 -I D , Drain Current (A) Fig 20. Typical On-Resistance Vs. Drain Current Fig 19. Normalized On-Resistance Vs. Temperature 0.12 80 60 0.10 Power (W) RDS(on) , Drain-to -Source On Resistance ( Ω) 0.20 0.08 ID = -3.0A 20 0.06 0 2.0 3.0 4.0 5.0 6.0 7.0 -V GS, Gate -to -Source Voltage (V) Fig 21. Typical On-Resistance Vs. Gate Voltage 8 40 8.0 0.00 0.00 0.00 0.01 0.10 1.00 10.00 Time (sec) Fig 22. Maximum Avalanche Energy Vs. Drain Current www.irf.com IRF7338PbF P-Channel 800 Ciss Crss Coss ID= -2.9A -V GS , Gate-to-Source Voltage (V) 600 C, Capacitance (pF) 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd , C ds SHORTED = Cgd = Cds + Cgd 400 200 Coss Crss 10 VDS = -9.6V VDS= -6.0V 8 6 4 2 0 0 1 10 0 100 2 4 6 8 10 Q G Total Gate Charge (nC) - -V DS, Drain-to-Source Voltage (V) Fig 23. Typical Capacitance Vs. Drain-to-Source Voltage Fig 24. Typical Gate Charge Vs. Gate-to-Source Voltage 100 (Z thJA) D = 0.50 0.20 10 Thermal Response 0.10 0.05 0.02 0.01 1 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.1 0.00001 0.0001 0.001 0.01 0.1 t1/ t 2 J = P DM x Z thJA +TA 1 10 t 1, Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 9 IRF7338PbF 3.0 RD VDS VGS 2.4 D.U.T. RG - -I D , Drain Current (A) + VDD 1.8 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 1.2 Fig 27a. Switching Time Test Circuit 0.6 td(on) tr t d(off) tf VGS 0.0 25 50 75 100 TC , Case Temperature 125 150 10% ( °C) Fig 26. Maximum Drain Current Vs. Case Temperature 90% VDS Fig 27b. Switching Time Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG QGS .2µF .3µF QGD D.U.T. +VDS VGS VG -3mA Charge Fig 28a. Basic Gate Charge Waveform 10 12V IG ID Current Sampling Resistors Fig 28b. Gate Charge Test Circuit www.irf.com IRF7338PbF SO-8 Package Outline Dimensions are shown in milimeters (inches) D DIM B 5 A 8 6 7 6 H E 1 6X 2 3 0.25 [.010] 4 A e e1 8X b 0.25 [.010] A MILLIMET ERS MAX MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 A 5 INCHES MIN MAX e .050 BAS IC 1.27 BAS IC e1 .025 BAS IC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° C y 0.10 [.004] A1 8X L 8X c 7 C A B FOOT PRINT NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING TO A S UBS T RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking Information (Lead-Free) EXAMPLE: T HIS IS AN IRF7101 (MOS FET) INTERNAT IONAL RECT IFIER LOGO XXXX F7101 DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY SIT E CODE LOT CODE PART NUMBER www.irf.com 11 IRF7338PbF SO-8 Tape and Reel Dimensions are shown in milimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04 12 www.irf.com