PD - 96040 AUTOMOTIVE MOSFET IRF1404ZPbF IRF1404ZSPbF IRF1404ZLPbF Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free HEXFET® Power MOSFET D VDSS = 40V RDS(on) = 3.7mΩ G Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. ID = 75A S TO-220AB IRF1404ZPbF D2Pak TO-262 IRF1404ZSPbF IRF1404ZLPbF Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM 180 PD @TC = 25°C Power Dissipation 200 W Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) 1.3 ± 20 W/°C V 330 mJ 120 c d c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range h 480 A mJ -55 to + 175 °C Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Thermal Resistance i Parameter 300 (1.6mm from case ) y Junction-to-Case RθCS Case-to-Sink, Flat Greased Surface RθJA Junction-to-Ambient RθJA Junction-to-Ambient (PCB Mount) j i y 10 lbf in (1.1N m) Typ. RθJC www.irf.com 710 See Fig.12a, 12b, 15, 16 g i A 75 ––– Max. 0.75 k 0.50 ––– ––– 62 ––– 40 Units °C/W 1 01/03/06 IRF1404Z/S/LPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V Conditions VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.033 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 2.7 3.7 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 gfs IDSS Forward Transconductance 170 ––– Drain-to-Source Leakage Current ––– ––– ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 100 150 Qgs Gate-to-Source Charge ––– 31 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 42 ––– td(on) Turn-On Delay Time ––– 18 ––– VDD = 20V tr Rise Time ––– 110 ––– ID = 75A td(off) Turn-Off Delay Time ––– 36 ––– tf Fall Time ––– 58 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Input Capacitance ––– 4340 ––– and center of die contact VGS = 0V Coss Output Capacitance ––– 1030 ––– Crss Reverse Transfer Capacitance ––– 550 ––– Coss Output Capacitance ––– 3300 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 920 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 1350 ––– VGS = 0V, VDS = 0V to 32V IGSS V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A e V VDS = VGS, ID = 250µA ––– V VDS = 25V, ID = 75A 20 µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V ID = 75A nC VDS = 32V VGS = 10V ns nH RG = 3.0 Ω e e VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 75 ISM (Body Diode) Pulsed Source Current ––– ––– 750 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 28 42 ns Qrr Reverse Recovery Charge ––– 34 51 nC ton Forward Turn-On Time 2 c Conditions MOSFET symbol A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V e TJ = 25°C, IF = 75A, VDD = 20V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF1404Z/S/LPbF 1000 1000 VGS 100 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS TOP 10 4.5V 1 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 4.5V 20µs PULSE WIDTH Tj = 25°C 0.1 10 0.1 1 10 100 0.1 1 VDS, Drain-to-Source Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 200 T J = 25°C Gfs, Forward Transconductance (S) ID, Drain-to-Source Current ( A) 20µs PULSE WIDTH Tj = 175°C T J = 175°C 100 10 VDS = 15V 20µs PULSE WIDTH 1 T J = 175°C 160 120 T J = 25°C 80 40 VDS = 15V 20µs PULSE WIDTH 0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 11.0 0 40 80 120 160 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRF1404Z/S/LPbF 8000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd 6000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd Ciss 4000 2000 Coss ID= 75A VDS= 32V VDS= 20V 16 12 8 4 Crss 0 0 1 10 0 100 40 80 120 160 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10000 1000.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 175°C 100.0 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1000 100 100µsec 10 1 1.8 1msec Tc = 25°C Tj = 175°C Single Pulse 0 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF1404Z/S/LPbF 200 ID , Drain Current (A) 160 120 80 40 0 25 50 75 100 125 150 175 ID = 75A VGS = 10V 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance 2.0 LIMITED BY PACKAGE 1.0 0.5 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1404Z/S/LPbF DRIVER L VDS D.U.T RG + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 600 15V TOP 500 BOTTOM ID 31A 53A 75A 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS ID = 250µA 3.0 2.0 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF1404Z/S/LPbF Avalanche Current (A) 10000 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Duty Cycle = Single Pulse 1000 0.01 100 0.05 0.10 10 1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 400 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 75A 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF1404Z/S/LPbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF1404Z/S/LPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB LE D ON WW 19, 2000 IN T HE AS S E MB LY LINE "C" Note: "P" in as s embly line pos ition indicates "L ead - F ree" www.irf.com INT E R NAT IONAL R E CT IF IE R LOGO AS S E MB LY LOT CODE PAR T NU MB E R DAT E CODE YE AR 0 = 2000 WE E K 19 LINE C 9 IRF1404Z/S/LPbF D2Pak Package Outline (Dimensions are shown in millimeters (inches)) D2Pak Part Marking Information THIS IS AN IRF 530S WITH LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" INT ERNATIONAL RECTIFIER LOGO ASS EMBLY LOT CODE PART NUMBER F 530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L OR INTERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE 10 PART NUMBER F530S DATE CODE P = DESIGNAT ES LEAD - FREE PRODUCT (OPTIONAL) YEAR 0 = 2000 WEEK 02 A = AS SEMBLY SITE CODE www.irf.com IRF1404Z/S/LPbF TO-262 Package Outline ( Dimensions are shown in millimeters (inches)) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S E MBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" INTERNATIONAL RE CTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WE EK 19 LINE C OR INTERNATIONAL RE CT IFIER LOGO AS S EMBLY LOT CODE www.irf.com PART NUMBER DATE CODE P = DES IGNATES LEAD-FRE E PRODUCT (OPTIONAL) YEAR 7 = 1997 WE EK 19 A = AS S EMBLY S IT E CODE 11 IRF1404Z/S/LPbF D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. Limited by TJmax, starting TJ = 25°C, L = 0.11mH This value determined from sample failure population. 100% R G = 25Ω, IAS = 75A, VGS =10V. Part not tested to this value in production. recommended for use above this value. This is only applied to TO-220AB pakcage. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. This is applied to D2Pak, when mounted on 1" square PCB (FR Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS . TO-220 device will have an Rth value of 0.65°C/W. Repetitive rating; pulse width limited by TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/06 12 www.irf.com