IRF IRFG5110

PD - 90437D
POWER MOSFET
THRU-HOLE (MO-036AB)
IRFG5110
100V, Combination 2N-2P-CHANNEL
®
HEXFET MOSFET TECHNOLOGY
Product Summary
Part Number
IRFG5110
IRFG5110
RDS(on)
0.7Ω
0.7Ω
ID
1.0A
-1.0A
CHANNEL
N
P
HEXFET® MOSFET technology is the key to International
Rectifier’s advanced line of power MOSFET transistors. The
efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages
of MOSFETs, such as voltage control, very fast switching,
ease of paralleling and electrical parameter temperature
stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers,
audio amplifiers, high energy pulse circuits, and virtually
any application where high reliability is required. The
HEXFET transistor’s totally isolated package eliminates the
need for additional isolating material between the device
and the heatsink. This improves thermal efficiency and
reduces drain capacitance.
MO-036AB
Features:
n
n
n
n
n
n
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Electrically Isolated
Dynamic dv/dt Rating
Light-weight
Absolute Maximum Ratings (Per Die)
Parameter
ID @ VGS =± 10V, TC = 25°C
ID @ VGS =± 10V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current ➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current ➀
Repetitive Avalanche Energy ➀
Peak Diode Recovery dv/dt
Operating Junction
Storage Temperature Range
Lead Temperature
Weight
N-Channel
P-Channel
1.0
0.6
4.0
1.4
0.011
±20
75 ➁
—
—
5.5 ➂
Units
-1.0
-0.6
-4.0
1.4
W
0.011
W/°C
±20
75 ➄
—
—
-5.5 ➅
V
mJ
A
mJ
A
V/ns
-55 to 150
o
300 (0.63 in./1.6 mm from case for 10s)
1.3 (Typical)
C
g
For footnotes refer to the last page
www.irf.com
1
04/16/02
IRFG5110
Electrical Characteristics For Each N-Channel Device @ Tj = 25°C (Unless Otherwise Specified)
Parameter
Min
Drain-to-Source Breakdown Voltage
100
∆BV DSS /∆T J Temperature Coefficient of Breakdown —
Voltage
RDS(on)
Static Drain-to-Source On-State
—
Resistance
—
VGS(th)
Gate Threshold Voltage
2.0
g fs
Forward Transconductance
0.86
IDSS
Zero Gate Voltage Drain Current
—
—
Typ Max Units
Test Conditions
—
—
V
VGS = 0V, ID = 1.0mA
0.13
—
V/°C
—
—
—
—
—
—
0.7
0.8
4.0
—
Ω
25
250
µA
nA
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
10
100
-100
15
7.5
7.5
20
25
40
40
—
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
180
82
15
—
—
—
Reference to 25°C, ID = 1.0mA
VGS = 10V, ID = 0.6A ➃
VGS = 10V, ID = 1.0A
VDS = VGS, ID = 250µA
VDS > 15V, IDS = 0.6A ➃
VDS= 80V, VGS= 0V
VDS = 80V,
VGS = 0V, TJ =125°C
VGS = 20V
VGS = -20V
VGS =10V, ID = 1.0A,
VDS = 50V
V
S( )
Ω
BVDSS
nC
VDD = 50V, ID = 1.0A,
VGS =10V, RG = 24Ω
ns
nH
Measured from drain lead (6mm/
0.25in. from package) to source
lead (6mm/0.25in. from package)
pF
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
Min Typ Max Units
IS
ISM
VSD
t rr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) ➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
1.0
4.0
1.5
200
0.83
Test Conditions
A
V
nS
nC
Tj = 25°C, IS = 1.0A, VGS = 0V ➃
Tj = 25°C, IF = 1.0A, di/dt ≤ 100A/µs
VDD ≤ 50V ➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
RthJC
RthJA
Junction-to-Case
Junction-to-Ambient
Min Typ Max Units
—
—
—
—
17
90
°C/W
Test Conditions
Typical socket mount
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2
www.irf.com
IRFG5110
Electrical Characteristics For Each P-Channel Device @ Tj = 25°C (Unless Otherwise Specified)
Parameter
Min
Drain-to-Source Breakdown Voltage
-100
—
—
V
—
-0.22
—
V/°C
—
—
-2.0
1.1
—
—
—
—
—
—
—
—
0.7
0.8
-4.0
—
-25
-250
Ω
∆BV DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Typ Max Units
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
10
-100
100
22
8.0
14
30
60
60
60
—
C iss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
390
170
45
—
—
—
V
S( )
Ω
BVDSS
µA
nA
nC
Test Conditions
VGS = 0V, ID = -1.0mA
Reference to 25°C, ID = -1.0mA
VGS = -10V, ID = -0.6A
➃
VGS = -10V, ID =- 1.0A
VDS = VGS, ID = -250µA
VDS > -15V, IDS = -0.6A ➃
VDS= -80V, VGS= 0V
VDS = -80V,
VGS = 0V, TJ =125°C
VGS = - 20V
VGS = 20V
VGS = -10V, ID = -1.0A,
VDS = -50V
ns
VDD = -50V, ID = -1.0A,
VGS = -10V, RG = 24Ω
nH Measured from drain lead (6mm/
0.25in. from package)
. to source
lead (6mm/0.25in. from package)
pF
VGS = 0V, VDS = -25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics (Per Die)
Parameter
Min Typ Max Units
IS
ISM
VSD
t rr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) ➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
-1.0
-4.0
-5.5
200
0.66
Test Conditions
A
V
nS
nC
Tj = 25°C, IS = -1.0A, VGS = 0V ➃
Tj = 25°C, IF = -1.0A, di/dt ≤ -100A/µs
VDD ≤ -50V
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance (Per Die)
Parameter
R thJC
RthJA
Junction-to-Case
Junction-to-Ambient
Min Typ Max Units
—
—
—
—
17
90
Test Conditions
°C/W
Typical socket mount
For footnotes refer to the last page
www.irf.com
3
IRFG5110
N-Channel
Q1,Q3
4
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
IRFG5110
N-Channel
Q1,Q3
13a & b
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
5
IRFG5110
N-Channel
Q1,Q3
V DS
VGS
RD
D.U.T.
RG
+
-V DD
-10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
VDS
90%
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
6
www.irf.com
IRFG5110
N-Channel
Q1,Q3
15V
D R IV E R
L
VDS
D .U .T.
RG
IA S
10V
20V
tp
+
V
- DD
A
0 .01 Ω
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D S S
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
10V
12V
.2µF
.3µF
10 V
QGS
QGD
10V
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRFG5110
P-Channel
Q2,Q4
Fig 14. Typical Output Characteristics
Fig 16. Typical Transfer Characteristics
8
Fig 15. Typical Output Characteristics
Fig 17. Normalized On-Resistance
Vs. Temperature
www.irf.com
IRFG5110
P-Channel
Q2,Q4
26a & b
Fig 18. Typical Capacitance
Vs.
Drain-to-Source Voltage
Fig20. Typical Source-Drain Diode
Forward Voltage
www.irf.com
Fig 19. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 21. Maximum Safe Operating
Area
9
IRFG5110
P-Channel
Q2,Q4
V DS
VGS
RD
D.U.T.
RG
+
V DD
-10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 23a. Switching Time Test Circuit
td(on)
tr
t d(off)
tf
VGS
10%
90%
Fig 22. Maximum Drain Current Vs.
Case Temperature
VDS
Fig 23b. Switching Time Waveforms
Fig 24. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
10
www.irf.com
IRFG5110
P-Channel
Q2,Q4
L
VDS
D .U .T.
RG
IA S
-20V
-10V
tp
VD D
A
D R IV E R
0.0 1Ω
15V
Fig 25a. Unclamped Inductive Test Circuit
IAS
Fig 25c. Maximum Avalanche Energy
Vs. Drain Current
tp
V (BR)DSS
Fig 25b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
-10V
12V
.2µF
.3µF
-10V
QGS
QGD
D.U.T.
+VDS
VGS
VG
-3mA
Charge
Fig 26a. Basic Gate Charge Waveform
www.irf.com
IG
ID
Current Sampling Resistors
Fig 26b. Gate Charge Test Circuit
11
IRFG5110
Footnotes:
➀ Repetitive Rating; Pulse width limited by
maximum junction temperature.
➁ VDD = 50V, starting TJ = 25°C, L= 150mH,
Peak IL = 1.0A, VGS = 10V
➂ ISD ≤ 1.0A, di/dt ≤ 75A/µs,
VDD ≤ 100V, TJ ≤ 150°C
➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
➄ VDD = - 25V, starting TJ = 25°C, L= 150mH,
Peak IL = - 1.0A, VGS = -10V
➅ ISD ≤ - 1.0A, di/dt ≤ - 110A/µs,
VDD ≤ -100V, TJ ≤ 150°C
Case Outline and Dimensions — MO-036AB
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice.04/02
12
www.irf.com