IRF IRS2103PBF

Data Sheet No. PD60260
IRS2108/IRS21084(S)PbF
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
• Fully operational to +600 V
• Tolerant to negative transient voltage, dV/dt
•
•
•
•
•
•
•
•
•
•
•
Packages
8-Lead PDIP
immune
Gate drive supply range from 10 V to 20 V
Undervoltage lockout for both channels
3.3 V, 5 V, and 15 V input logic compatible
Cross-conduction prevention logic
Matched propagation delay for both channels
High-side output in phase with HIN input
Low-side output out of phase with input
Logic and power ground +/- 5 V offset
Internal 540 ns deadtime, and programmable up
to 5 µs with one external RDT resistor (IRS21084)
Lower di/dt gate driver for better noise immunity
RoHS compliant
14-Lead PDIP
8-Lead SOIC
14-Lead SOIC
Description
Feature Comparison
The IRS2108/IRS21084 are high volt
age, high speed power MOSFET and
"!$"
ton/toff
!
'!
IGBT drivers with dependent high- and
"#"
%&
%&
low-side referenced output channels. 9:*9;:
*
"
99*9
Proprietary HVIC and latch immune
9:<
*
9:=
"><
CMOS technologies enable ruggedized
*
?"
99*9
$$@"><>
9:=<
*
monolithic construction. The logic input
9:A*9;9
"><
*
?"
J>*9
is compatible with standard CMOS or
$$@"><>
9:A<
*
LSTTL output, down to 3.3 V logic. The
?"
:*:<
*
":
9;<
output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an
N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.
Typical Connection
IRS21084
IRS2108
(Refer to Lead Assignments for correct pin
configuration). These diagrams show
electrical connections only. Please refer to
our Application Notes and DesignTips for
proper circuit board layout.
www.irf.com
1
IRS2108/IRS21084(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
VB
High-side floating absolute voltage
VS
Min.
Max.
-0.3
625
High-side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High-side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low-side and logic fixed supply voltage
-0.3
25
VLO
Low-side output voltage
-0.3
VCC + 0.3
DT
Programmable deadtime pin voltage (IRS21084 only)
Logic input voltage (HIN & )
V SS - 0.3
VSS - 0.3
VCC + 0.3
VIN
Logic ground (IRS21084 only )
VCC - 25
VCC + 0.3
VSS
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
50
(8 lead PDIP)
—
1.0
(8 lead SOIC)
—
0.625
(14 lead PDIP)
—
1.6
(14 lead SOIC)
—
1.0
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
(14 lead PDIP)
—
75
(14 lead SOIC)
—
120
Thermal resistance, junction to ambient
V
VCC + 0.3
—
Package power dissipation @ TA ≤ +25 oC
Units
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.
Symbol
VB
VS
VHO
VCC
VLO
Definition
High-side floating supply absolute voltage
High-side floating supply offset voltage
High-side floating output voltage
Low-side and logic fixed supply voltage
Low-side output voltage
Min.
Max.
VS + 10
Note 1
VS
10
0
COM
VSS
VS + 20
600
VB
20
VCC
VCC
VCC
Units
V
IRS2108
VIN
Logic input voltage
IRS21084
DT
Programmable deadtime pin voltage (IRS21084 only)
VS
VCC
VSS
Logic ground (IRS21084 only )
-5
5
TA
Ambient temperature
-40
125
°C
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
www.irf.com
2
IRS2108/IRS21084(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
Turn-on propagation delay
—
220
300
toff
Turn-off propagation delay
—
200
280
VS = 0 V
VS = 0 V or 600 V
Delay matching | ton - toff |
—
0
30
tr
Turn-on rise time
—
100
220
tf
Turn-off fall time
—
35
80
400
540
680
4
5
6
µs
RDT = 200 kΩ (IR21084)
—
0
60
ns
RDT=0 Ω
—
0
600
MT
DT
MDT
Deadtime: LO turn-off to HO turn-on(DTLO-HO) &
HO turn-off to LO turn-on (DTHO-LO)
Deadtime matching = | DTLO-HO - DTHO-LO |
ns
VS = 0 V
RDT= 0 Ω
RDT= 200 kΩ (IR21084)
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, V SS = COM, DT= V SS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN
parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and
Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage for HIN & logic “0” for 2.5
—
—
VIL
Logic “0” input voltage for HIN & logic “1” for —
—
0.8
VOH
High level output voltage, VBIAS - VO
—
0.05
0.2
VOL
Low level output voltage, VO
—
0.02
0.1
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
75
130
IQCC
Quiescent VCC supply current
0.4
1.0
1.6
IIN+
Logic “1” input bias current
—
5
20
IIN-
Logic “0” input bias current
—
—
5
8.0
8.9
9.8
7.4
8.2
9.0
Hysteresis
0.3
0.7
—
IO+
Output high short circuit pulsed current
120
290
—
IO-
Output low short circuit pulsed current
250
600
—
VCCUV+
VCC and VBS supply undervoltage positive going
VBSUV+
threshold
VCCUV-
VCC and VBS supply undervoltage negative going
VBSUV-
threshold
VCCUVH
VBSUVH
VCC = 10 V to 20 V
V
IO = 2 mA
VB = VS = 600 V
µA
mA
RDT=0 Ω
HIN = 5 V, = 0 V
µA
HIN = 0 V, = 5 V
V
mA
www.irf.com
VIN = 0 V or 5 V
VIN = 0 V or 5 V
VO = 0 V,
PW ≤ 10 µs
VO = 15 V,
PW ≤ 10 µs
3
IRS2108/IRS21084(S)PbF
Functional Block Diagram
VB
UV
DETECT
2108
HO
R
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFT
HIN
DT
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
DEADTIME &
SHOOT-THROUGH
PREVENTION
UV
DETECT
+5V
VSS/COM
LEVEL
SHIFT
LIN
LO
DELAY
COM
VSS
VB
21084
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
HIN
HV
LEVEL
SHIFTER
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
VCC
DEADTIME &
SHOOT-THROUGH
PREVENTION
DT
UV
DETECT
+5V
LIN
Q
VSS/COM
LEVEL
SHIFT
DELAY
LO
COM
VSS
www.irf.com
4
IRS2108/IRS21084(S)PbF
Lead Definitions
Symbol Description
HIN
Logic input for high-side gate driver output (HO), in phase (referenced to COM for IRS2108
and VSS for IRS21084)
Logic input for low-side gate driver output (LO), out of phase (referenced to COM for IRS2108
and VSS for IRS21084)
DT
Programmable deadtime lead, referenced to VSS (IR21084 only)
VSS
Logic ground (IRS21084 only)
VB
High-side floating supply
HO
High-side gate driver output
VS
High-side floating supply return
VCC
Low-side and logic fixed supply
LO
Low-side gate driver output
COM
Low-side return
Lead Assignments
VCC
VB
8
1
VCC
VB
8
HIN
HO
7
2
HIN
HO
7
3
LIN
VS
6
LIN
VS
6
4
COM
LO
5
COM
LO
5
1
2
www.irf.com
3
4
8 Lead PDIP
8 Lead SOIC
IRS2108PbF
IRS2108SPbF
1
VCC
2
HIN
VB
14
14
1
VCC
13
2
HIN
VB
13
12
11
3
LIN
HO
12
3
LIN
HO
4
DT
VS
11
4
DT
VS
5
VSS
10
5
VSS
10
6
COM
9
6
COM
9
7
LO
8
7
LO
8
14 Lead PDIP
14 Lead SOIC
IRS21084PbF
IRS21084SPbF
5
IRS2108/IRS21084(S)PbF
5^
5^
``
Figure 1. Input/Output Timing Diagram
<^
`
<^
'^
'^
5^
5^
``
<^
5^
<^
5^
'^
'^
Figure 2. Switching Time Waveform Definitions
<^
`
'^
<^
'^
_
Figure 3. Deadtime Waveform Definitions
www.irf.com
6
500
400
300
M ax.
200
Typ.
100
0
-50
-25
0
25
50
75
100 125
Turn-On Propagation Delay (ns)
Turn-On Propagation Delay (ns)
IRS2108/IRS21084(S)PbF
500
400
M ax.
300
Typ.
200
100
0
10
12
Turn-Off Propagation Delay (ns)
Turn-Off Propagation Delay (ns)
500
400
300
M ax.
200
Typ.
100
-25
0
25
50
75
100 125
Temperature ( oC)
Figure 5A. Turn-Off Propagation Delay
vs.Tem perature
www.irf.com
16
18
20
Figure 4B. Turn-On Propagation Delay
vs. Supply Voltage
Figure 4A. Turn-On Propagation Delay
vs. Tem perature
0
-50
14
V BIAS Supply Voltage (V)
Temperature ( oC)
500
400
M ax.
300
Typ.
200
100
0
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 5B. Turn-Off Propagation Delay
vs. Supply Voltage
7
IRS2108/IRS21084(S)PbF
500
Turn-On Rise Time (ns)
Turn-On Rise Time (ns )
500
400
300
200
Max.
100
400
300
Max.
200
100
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
10
125
12
o
Temperature ( C)
20
200
Turn-Off
Fall Time
(ns)e )
Turn-Off
Fall Tim
Turn-Off Fall Time (ns)
18
Figure 6B. Turn-On Rise Time
vs. Supply Voltage
200
150
100
50
150
100
50
0
-25
0
25
50
75
100
o
Temperature ( C)
Figure 7A. Turn-Off Fall Tim e
vs. Temperature
www.irf.com
16
V BIAS Supply Voltage (V)
Figure 6A. Turn-On Rise Time
vs.Temperature
0
-50
14
125
10
12
14
16
18
20
Input Voltage (V)
Figure 7B. Turn-Off Fall Time
vs. Input voltage
8
1000
1000
800
800
Deadtime (ns)
Deadtime (ns)
IRS2108/IRS21084(S)PbF
Max.
600
Typ.
400
Typ.
600
Min.
400
Min.
200
-50
Max.
200
-25
0
25
50
75
10
100 125
14
16
18
20
V BIAS Supply Voltage (V)
Temperature (oC)
Figure 8B. Deadtim e vs. Supply Voltage
Figure 8A. Deadtim e vs. Tem perature
7
8
7
Input Voltage (V)
6
Max.
Deadtime (µs)
( s)
12
5
Typ.
4
Min.
3
2
1
6
5
4
3
Min.
2
1
0
0
www.irf.com
50
100
150
200
0
-50
-25
0
25
50
75
100
RDT (kΩ)
Temperature ( C)
Figure 8C. Deadtim e vs. RDT
(IR21084 Only)
Figure 9A. Logic "1" Input Voltage
vs. Tem perature
125
o
9
IRS2108/IRS21084(S)PbF
4.0
8
6
5
4
3
Min.
2
3.2
Input Voltage (V)
Input Voltage (V)
7
2.4
1.6
Min.
0.8
1
0
10
12
14
16
18
0.0
-50
20
-25
0
Figure 9B. Logic "1" Input Voltage
vs. Supply Voltage
High Level Output Voltage (V )
Input Voltage (V)
3.2
2.4
1.6
Min.
0.0
12
14
16
18
V CC Supply Voltage (V)
Figure 10B. Logic "0" Input Voltage
vs. Supply Voltage
www.irf.com
75
100
125
Figure 10A. Logic "0" Input Voltage
vs. Tem perature
4.0
10
50
Temperature ( oC)
V BAIS Supply Voltage (V)
0.8
25
20
0.5
0.4
0.3
0.2
Max.
0.1
Typ.
0.0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 11A. High Level Output Voltage
vs. Temperature
10
0.5
Low Level Output Voltage (V)
High Level Output Voltage (V)
IRS2108/IRS21084(S)PbF
0.4
0.3
0.2
Max.
0.1
Typ.
0.0
10
12
14
16
18
20
0.5
0.4
0.3
0.2
0.1
Max.
Typ.
0.0
-50
-25
0
0.3
0.2
Max.
0.1
Typ.
0
18
V BIAS Supply Voltage (V)
Figure 12B. Low Level Output Voltage
vs. Supply Voltage
www.irf.com
20
Offset Supply Leakage Current ((µA)
A)
Low Level Output Voltage (V)
0.4
16
100
125
Figure 12A. Low Level Output Voltage
vs.Temperature
0.5
14
75
Temperature ( C)
Figure 11B. High Lovel Output Voltage
vs. Supply Voltage
12
50
o
VBAIS Supply Voltage (V)
10
25
500
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100 125
Temperature ( oC)
Figure 13A. Offset Supply Leakage Current
vs. Tem perature
11
400
500
V BS Supply Current (µA)
( A)
Offset Supply Leakage Current (µA)
( A)
IRS2108/IRS21084(S)PbF
400
300
200
100
M ax.
300
200
M ax.
100
Typ.
M in.
0
0
100
200
300
400
500
0
-50
600
-25
V B Boost Voltage (V)
Figure 13B. Offset Supply Leakage Current
vs. Tem perature
100 125
Figure 14A. V BS Supply Current
vs. Tem perature
3.0
VCC Supply Current (mA)
400
V BS Supply Current (µA)
( A)
0
25
50
75
Temperature ( oC)
300
200
M ax.
100
Typ.
2.5
2.0
M ax.
1.5
Typ.
1.0
0.5
M in.
M in.
0
10
12
14
16
18
V BS Supply Voltage (V)
Figure 14B. V BS Supply Current
vs. Supply Voltage
www.irf.com
20
0.0
-50
-25
0
25
50
75
100 125
Temperature ( oC)
Figure 15A. V CC Supply Current
vs. Tem perature
12
IRS2108/IRS21084(S)PbF
60
Logic "1" Input Current ((µA)
A)
V CC Supply Current (mA)
3.0
2.5
2.0
1.5
Max.
1.0
Typ.
0.5
Min.
0.0
10
12
14
16
18
V CC Supply Voltage (V)
50
40
30
20
Max.
10
Typ.
0
20
-50
30
Max.
20
Typ.
0
16
18
V CC Supply Voltage (V)
Figure 16B. Logic "1" Input Current
vs. Supply Voltage
www.irf.com
20
Logic "0" Input Bias Current (µA)
Logic "1" Input Current(µA)
µ(A)
40
14
50
75
100
125
Figure 16A. Logic "1" Input Current
vs. Tem perature
50
12
25
Temperature ( C)
60
10
0
o
Figure 15B. V CC Supply Current
vs. Supply Voltage
10
-25
6
5
Max
4
3
2
1
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 17A. Logic "0" Input Bias Current
vs. Temperature
13
12
6
5
V CC UVLO Threshold (+) (V)
Logic "0" Input Bias Current (µA)
IRS2108/IRS21084(S)PbF
Max
4
3
2
1
11
10
Max.
Typ.
9
Min.
8
7
0
10
12
14
16
18
-50
20
-25
0
50
75
100
125
o
Temperature ( C)
Supply Voltage (V)
F i gure 17B. Lo gic "0" Input Bias Cur rent
Figure 17B. Logic "0" Input Bias Current
Figure 18. V CC Undervoltage Threshold (+)
vs. Tem perature
vs. Voltage
12
V BS UVLO Threshold (+) (V)
11
VCC UVLO Threshold (-) (V)
25
10
Max.
9
Typ.
8
Min.
7
6
-50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 19. V CC Undervoltage Threshold (-)
vs. Tem perature
www.irf.com
11
10
Max.
9
Typ.
8
Min.
7
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 20. V BS Undervoltage Threshold (+)
vs. Tem perature
14
IRS2108/IRS21084(S)PbF
Output Source Current (m
(mA)
Α)
V BS UVLO Threshold (-) (V)
11
10
9
M ax.
Typ.
8
M in.
7
6
-50
-25
0
25
50
75
500
400
Typ.
300
200
100
Min.
0
-50
100 125
-25
0
50
75
100
125
Temperature (oC)
Temperature ( oC)
Figure 21. V BS Undervoltage Threshold (-)
vs. Tem perature
Figure 22A. Output Source Current
vs. Tem perature
500
1000
Output Sink Current (m
(mA)
Α)
Output Source Current (mA)
(m
Α)
25
400
300
200
Typ.
100
Min.
0
10
www.irf.com
12
14
16
18
20
800
600
Typ.
400
Min.
200
0
-50
-25
0
25
50
75
100
VBIAS Supply Voltage (V)
Temperature (oC)
Figure 22B. Output Source Current
vs. Supply Voltage
Figure 23A. Output Sink Curre nt
vs .Te m pe rature
125
15
IRS2108/IRS21084(S)PbF
0
V S Offset Supply Voltage (V)
Output Sink Current (mA)
1000
800
600
400
Typ.
200
Min.
0
-2
Typ.
-4
-6
-8
-10
10
12
14
16
18
20
10
VBIAS Supply Voltage (V)
14
16
18
20
V BS Floating Supply Voltage (V)
Figure 23B. Output Sink Current
vs. Supply Voltage
Figure 24. Maxim um V s Negative Offset
vs. Supply Voltage
140
140
120
120
100
100
140 V
80
70 V
60
0V
40
20
1
10
100
1000
Frequency (kHz)
Figure 25. IRS2108 vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
www.irf.com
Temperature (o C)
Temperature (ooC)
Temperature ( C)
12
140 V
80
70 V
60
0V
40
20
1
10
100
1000
Frequency (kHz)
Figure 26. IRS2108 vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
16
140
140
120
120
100
140 V
70 V
80
0V
60
Temperature (o C)
Temperature (o C)
IRS2108/IRS21084(S)PbF
140 V 70 V
0V
100
80
60
40
40
20
1
20
1
10
100
1000
140
120
120
100
80
140 V
p
( ()o C)
Temperature
140
100
80
140 V
60
70 V
40
1000
Figure 28. IRS2108 vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
Figure 27. IRS2108 vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
Temperature (o C)
100
Frequency (kHz)
Frequency (kHz)
60
10
0V
70 V
40
0V
20
1
10
100
1000
Frequency (kHz)
Figure 29. IRS21084 vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
www.irf.com
20
1
10
100
1000
Frequency (kHz)
Figure 30. IRS21084 vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
17
140
140
120
120
100
140 V
80
70 V
60
0V
40
Temperature (o C)
Temperature (o C)
IRS2108/IRS21084(S)PbF
140 V
70 V
100
0V
80
60
40
20
1
10
100
20
1000
1
10
Frequency (kHz)
140
120
120
100
140 V
70 V
0V
40
Temperature (o C)
Temperature (o C)
140
60
1000
Figure 32. IRS21084 vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
Figure 31. IRS21084 vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
80
100
Frequency (kHz)
140 V
100
70 V
80
0V
60
40
20
1
10
100
1000
Frequency (kHz)
20
1
10
100
1000
Frequency (kHz)
Figure 33. IRS2108S vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
www.irf.com
Figure 34. IRS2108S vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
18
IRS2108/IRS21084(S)PbF
0V
100
80
60
Temperature (o C)
Temperature (o C)
120
140 V 70 V 0 V
140
140 V 70 V
140
120
100
80
60
40
40
20
20
1
1
10
100
1000
10
100
1000
Frequency (kHz)
Frequency (kHz)
Figure 36. IRS2108S vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
140
140
120
120
100
80
60
140 V
70 V
0V
40
Temperature (o C)
Temperature (o C)
Figure 35. IRS2108S vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
100
140 V
80
70 V
60
0V
40
20
1
10
100
1000
Frequency (kHz)
Figure 37. IRS21084S vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
www.irf.com
20
1
10
100
1000
Frequency (kHz)
Figure 38. IR21084S vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
19
140
140
120
120
100
140 V
80
70 V
60
0V
40
Temperature (o C)
Temperature (o C)
IRS2108/IRS21084(S)PbF
140 V 70 V
0V
100
80
60
40
20
20
1
10
100
1000
Frequency (kHz)
Figure 39. IRS21084S vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 40. IRS21084S vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
20
IRS2108/IRS21084(S)PbF
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
21
IRS2108/IRS21084(S)PbF
14 Lead PDIP
14-Lead SOIC (narrow body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
22
IRS2108/IRS21084(S)PbF
Tape & Reel
8-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8.1 0
0. 31 1
0 .3 18
B
3 .9 0
4.1 0
0. 15 3
0 .1 61
C
11 .7 0
1 2. 30
0 .4 6
0 .4 84
D
5 .4 5
5.5 5
0. 21 4
0 .2 18
E
6 .3 0
6.5 0
0. 24 8
0 .2 55
F
5 .1 0
5.3 0
0. 20 0
0 .2 08
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1.6 0
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 30 .2 5
1 2 .9 76
13 .0 0 1
B
20 .9 5
2 1. 45
0. 82 4
0 .8 44
C
12 .8 0
1 3. 20
0. 50 3
0 .5 19
D
1 .9 5
2.4 5
0. 76 7
0 .0 96
E
98 .0 0
1 02 .0 0
3. 85 8
4 .0 15
F
n /a
1 8. 40
n /a
0 .7 24
G
14 .5 0
1 7. 10
0. 57 0
0 .6 73
H
12 .4 0
1 4. 40
0. 48 8
0 .5 66
www.irf.com
23
IRS2108/IRS21084(S)PbF
Tape & Reel
14-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8.1 0
0. 31 1
0 .3 18
B
3 .9 0
4.1 0
0. 15 3
0 .1 61
C
15 .7 0
1 6. 30
0. 61 8
0 .6 41
D
7 .4 0
7.6 0
0. 29 1
0 .2 99
E
6 .4 0
6.6 0
0. 25 2
0 .2 60
F
9 .4 0
9.6 0
0. 37 0
0 .3 78
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1.6 0
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 1 4 SO IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 30 .2 5
1 2 .9 76
13 .0 0 1
B
20 .9 5
2 1. 45
0. 82 4
0 .8 44
C
12 .8 0
1 3. 20
0. 50 3
0 .5 19
D
1 .9 5
2.4 5
0. 76 7
0 .0 96
E
98 .0 0
1 02 .0 0
3. 85 8
4 .0 15
F
n /a
2 2. 40
n /a
0 .8 81
G
18 .5 0
2 1. 10
0. 72 8
0 .8 30
H
16 .4 0
1 8. 40
0. 64 5
0 .7 24
www.irf.com
24
IRS2108/IRS21084(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
Date code
S
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
?
P
IR logo
MARKING CODE
Lead Free Released
Non-Lead Free
Released
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2108PbF
8-Lead SOIC IRS2108SPbF
8-Lead SOIC Tape & Reel IRS2108STRPbF
14-Lead PDIP IRS21084PbF
14-Lead SOIC IRS21084SPbF
14-Lead SOIC Tape & Reel IRS21084STRPbF
The SOIC-8 is MSL2 qualified.
The SOIC-14 is MSL3 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
Data and specifications subject to change without notice. 12/4/2006
www.irf.com
25