Data Sheet No. PD60174 revG IR2184(4)(S) & (PbF) HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • Packages Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V and 5V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Output source/sink current capability 1.4A/1.8A Also available LEAD-FREE (PbF) Description 14-Lead PDIP IR21844 8-Lead PDIP IR2184 8-Lead SOIC IR2184S 14-Lead SOIC IR21844S IR2181/IR2183/IR2184 Feature Comparison The IR2184(4)(S) are high voltage, high speed power MOSFET and IGBT ! "!$" %! &'' "#" drivers with dependent high and low side referenced output channels. Pro*797 & " 79&** prietary HVIC and latch immune *797: & *79; "< CMOS technologies enable rugge & =" 79&** *79;: $>:?< & dized monolithic construction. The *79: "< & =" 9&*@ logic input is compatible with standard *79:: $>:?< & CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection IR2184 (Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com IR21844 1 IR2184(4)(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High side floating absolute voltage VS Min. Max. -0.3 625 Units High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 DT Programmable dead-time pin voltage (IR21844 only) VSS - 0.3 VCC + 0.3 VIN Logic input voltage (IN & SD) VSS - 0.3 VSS + 10 VSS Logic ground (IR21844 only) VCC - 25 VCC + 0.3 — 50 dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient (8-lead PDIP) — 1.0 (8-lead SOIC) — 0.625 (14-lead PDIP) — 1.6 (14-lead SOIC) — 1.0 (8-lead PDIP) — 125 (8-lead SOIC) — 200 (14-lead PDIP) — 75 (14-lead SOIC) — 120 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage (IN & SD) VSS VSS + 5 DT Programmable dead-time pin voltage (IR21844 only) VSS VCC VSS Logic ground (IR21844 only) -5 5 Ambient temperature -40 125 TA Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: IN and SD are internally clamped with a 5.2V zener diode. 2 www.irf.com IR2184(4)(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 680 900 VS = 0V toff Turn-off propagation delay — 270 400 VS = 0V or 600V tsd Shut-down propagation delay — 180 270 MTon Delay matching, HS & LS turn-on — 0 90 MToff Delay matching, HS & LS turn-off — 0 40 nsec tr Turn-on rise time — 40 60 VS = 0V tf Turn-off fall time — 20 35 VS = 0V Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) 280 4 400 5 520 6 Deadtime matching = DTLO - HO - DTHO-LO — 0 50 — 0 600 DT MDT µsec nsec RDT= 0 RDT = 200k RDT=0 RDT = 200k Static Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, DT= VSS and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS /COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage for HO & logic “0” for LO 2.7 — — VIL Logic “0” input voltage for HO & logic “1” for LO — — 0.8 VCC = 10V to 20V VCC = 10V to 20V — VCC = 10V to 20V VSD,TH+ SD input positive going threshold 2.7 — VSD,TH- — — 0.8 VOH SD input negative going threshold High level output voltage, VBIAS - VO — — 1.2 IO = 0A VOL Low level output voltage, VO — — 0.1 IO = 0A ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 60 150 IQCC Quiescent VCC supply current 0.4 1.0 1.6 IIN+ Logic “1” input bias current — 25 60 IIN- Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis — 8.0 — 8.9 1.0 9.8 7.4 8.2 9.0 0.3 0.7 — IO+ Output high short circuit pulsed current 1.4 1.9 — IO- Output low short circuit pulsed current 1.8 2.3 — VCCUV+ VBSUV+ VCCUVVBSUVVCCUVH V µA mA µA VCC = 10V to 20V VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V IN = 5V, SD = 0V IN = 0V, SD = 5V V VBSUVH www.irf.com A VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs 3 IR2184(4)(S) & (PbF) Functional Block Diagrams VB 2184 UV DETECT HO R VSS/COM LEVEL SHIFT IN HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC DEADTIME UV DETECT +5V VSS/COM LEVEL SHIFT SD LO DELAY COM VB 21844 UV DETECT HO R VSS/COM LEVEL SHIFT IN HV LEVEL SHIFTER Q S VS PULSE GENERATOR VCC DEADTIME DT UV DETECT +5V SD R PULSE FILTER VSS/COM LEVEL SHIFT LO DELAY COM VSS 4 www.irf.com IR2184(4)(S) & (PbF) Lead Definitions Symbol Description IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM SD DT Logic input for shutdown (referenced to COM for IR2184 and VSS for IR21844) Programmable dead-time lead, referenced to VSS. (IR21844 only) VSS Logic Ground (21844 only) VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return for IR2184 and VSS for IR21844) Lead Assignments IN VB 2 SD HO 7 3 COM VS 6 4 LO VCC 5 1 www.irf.com 8 IN VB 8 2 SD HO 7 3 COM VS 6 4 LO VCC 5 1 8-Lead PDIP 8-Lead SOIC IR2184 IR2184S 14 1 IN 2 SD VB 13 2 3 VSS HO 12 4 DT VS 1 14 IN SD VB 13 3 VSS HO 12 11 4 DT VS 11 5 COM 10 5 COM 10 6 LO 9 6 LO 9 7 VCC 8 7 VCC 8 14-Lead PDIP 14-Lead SOIC IR21844 IR21844S 5 IR2184(4)(S) & (PbF) ^_ <` <` ^_ '' q` Figure 1. Input/Output Timing Diagram ' q` 7` 7` Figure 2. Switching Time Waveform Definitions <` <` ! <` q` q` Figure 3. Shutdown Waveform Definitions 7` q` 7` { ^_ <` <` Figure 4. Deadtime Waveform Definitions ^_ 7` q` Figure 5. Delay Matching Waveform Definitions 6 www.irf.com 1400 1400 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) IR2184(4)(S) & (PbF) 1200 1000 M ax. 800 Typ. 600 400 -50 -25 0 25 50 75 100 1200 M ax. 1000 Typ. 800 600 400 125 10 12 Temperature (oC) 16 18 20 Supply Voltage (V) Figure 4A. Turn-on Propagation Delay vs. Temperature Figure4B. Turn-on Propagation Delay vs. Supply Voltage 700 700 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 14 600 500 400 M ax. 300 Typ. 200 100 -50 -25 0 25 50 75 100 Temperature (oC) Figure 5A. Turn-off Propagation Delay vs. Temperature www.irf.com 125 600 500 M ax. 400 300 Typ. 200 100 10 12 14 16 18 20 Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage 7 IR2184(4)(S) & (PbF) 500 300 M ax. 200 Typ. 100 0 -50 Turn-on Rise Time (ns) SD Propagation Delay (ns) 400 Typ. 200 100 0 25 50 75 100 10 125 12 14 16 18 Temperature (oC) Supply Voltage (V) Figure 6A. SD Propagation Delay vs. Temperature Figure 6B. SD Propagation Delay vs. Supply Voltage 120 100 100 80 60 40 M ax. 300 120 M ax. Typ. 20 0 -50 80 60 20 M ax. Typ. 40 20 0 -25 0 25 50 75 100 125 Temperature (oC) Figure 7A. Turn-on Rise Time vs. Temperature 8 400 0 -25 Turn-on Rise Time (ns) SD Propagation Delay (ns) 500 10 12 14 16 18 20 Supply Voltage (V) Figure 7B. Turn-on Rise Time vs. Supply Voltage www.irf.com IR2184(4)(S) & (PbF) 80 Turn-off Fall Time (ns) Turn-off Fall Time (ns) 80 60 40 M ax. Typ 20 0 -50 60 M ax. 40 Typ. 20 0 -25 0 25 50 75 100 125 10 12 Temperature (oC) 18 20 Figure 8B. Turn-off Fall Time vs. Supply Voltage 1100 1100 900 900 Deaduime (ns) Deadtime (ns) 16 Supply Voltage (V) Figure 8A. Turn-off Fall Time vs. Temperature 700 M ax. 500 14 Typ. M in. 300 700 M ax. 500 Typ. M in. 300 100 -50 100 -25 0 25 50 75 100 Temperature (oC) Figure 9A. Deadtime vs. Temperature www.irf.com 125 10 12 14 16 18 20 Supply Voltage (v) Figure 9B. Deadtime vs. Supply Voltage 9 IR2184(4)(S) & (PbF) 6 6 M ax. 5 Typ. 4 M in. 3 2 1 0 0 50 100 150 Logic "1" Input Voltage (V) Deadtime ( Ηs) 7 5 4 3 2 1 0 -50 200 RDT (KΗ) 5 5 Logic "0" Input Voltage (V) Logic "1" Input Voltage (V) 6 4 M in. 2 1 0 12 14 16 18 Supply Voltage (V) Figure 10B. Logic "1" Input Voltage vs. Supply Voltage 10 0 25 50 75 100 125 100 125 Figure 10A. Logic "1" Input Voltage vs. Temperature 6 10 -25 Temperature (oC) Figure 9C. Deadtime vs. RDT 3 M in. 20 4 3 2 M ax. 1 0 -50 -25 0 25 50 75 Temperature (oC) Figure 11A. Logic "0" Input Voltage vs. Temperature www.irf.com IR2184(4)(S) & (PbF) 5 4 3 2 M ax. 1 0 10 12 14 16 18 20 SD Input Positive Going Threshold (V) Logic "0" Input Voltage (V) 6 6 5 4 3 M in. 2 1 0 -50 -25 0 Supply Voltage (V) 4 M in. 2 1 0 14 16 18 Supply Voltage (V) Figure 12B. SD Input Positive Going Threshold vs. Supply Voltage www.irf.com 20 SD Input Negative Going Threshold (V) SD Input Positive Going Threshold (V) 5 12 75 100 125 Figure 12A. SD Input Positive Going Threshold vs. Temperature 6 10 50 Temperature (oC) Figure 11B. Logic "0" Input Voltage vs. Supply Voltage 3 25 5 4 3 2 1 M ax. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 13A. SD Input Negative Going Threshold vs. Temperature 11 5 5 4 4 High Level Output (V) SD Input Negative Going Threshold (V) IR2184(4)(S) & (PbF) 3 2 1 3 2 M ax. 1 M ax. 0 -50 0 10 12 14 16 18 20 -25 0 25 Supply Voltage (V) 4 Low Level Output (V) High Level Output (V) 100 125 0.5 5 3 M ax. 1 0 10 12 14 16 18 Supply Voltage (V) Figure 14B. High Level Output vs. Supply Voltage 12 75 Figure 14A. High Level Output vs. Temperature Figure 13B. SD Input Negative Going Threshold vs. Supply Voltage 2 50 Temperature (oC) 20 0.4 0.3 0.2 M ax. 0.1 0.0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 15A. Low Level Output vs. Temperature www.irf.com Low Level Output (V) 0.5 0.4 0.3 0.2 M ax. 0.1 0.0 10 12 14 16 18 20 Offset Supply Leakage Current ( ΗA) IR2184(4)(S) & (PbF) 500 400 300 200 100 M ax. 0 -50 -25 0 75 100 125 Figure 16A. Offset Supply Leakage Current vs. Temperature Figure 15B. Low Level Output vs. Supply Voltage 500 250 V BS Supply Current ( ΗA) Offset Supply Leakage Current ( ΗA) 50 Temperature (oC) Supply Voltage (V) 400 300 200 100 25 M ax. 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 16B. Offset Supply Leakage Current vs. VB Boost Voltage www.irf.com 200 M ax. 150 100 Typ. 50 M in. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. VBS Supply Current vs. Temperature 13 IR2184(4)(S) & (PbF) 5 V CC Supply Current (mA) V BS Supply Current ( ΗA) 250 200 150 M ax. 100 Typ. 50 M in. 12 14 16 18 3 2 M ax. Typ. 1 M in. 0 -50 0 10 4 20 -25 0 Figure 17B. VBS Supply Current vs. VBS Floating Supply Voltage Logic "1" Input Bias Current ( ΗA) V CC Supply Current (mA) 4 3 M ax. 2 Typ. M in. 0 12 14 16 18 VCC Supply Voltage (V) Figure 18B. VCC Supply Current vs. VCC Supply Voltage 14 75 100 125 100 125 Figure 18A. VCC Supply Current vs. Temperature 5 10 50 Temperature (oC) VBS Floating Supply Voltage (V) 1 25 20 120 100 80 60 40 M ax. Typ. 20 0 -50 -25 0 25 50 75 Temperature (oC) Figure 19A. Logic "1" Input Bias Current vs. Temperature www.irf.com Logic "0" Input Bias Current ( ΗA) Logic "1" Input Bias Current ( ΗA) IR2184(4)(S) & (PbF) 120 100 80 60 M ax. 40 Typ. 20 0 10 12 14 16 18 20 5 4 3 2 M ax. 1 0 -50 -25 0 V CC and V BS UV Threshold (+) (V) Logic "0" Input Bias Current ( ΗA) 5 4 3 2 M ax. 1 0 14 16 18 Supply Voltage (V) Figure 20B. Logic "0" Input Bias Current vs. Supply Voltage www.irf.com 75 100 125 Figure 20A. Logic "0" Input Bias Current vs. Temperature Figure 19B. Logic "1" Input Bias Current vs. Supply Voltage 12 50 Temperature (oC) Supply Voltage (V) 10 25 20 12 11 10 M ax. Typ. 9 M in. 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 21. VCC and VBS Undervoltage Threshold (+) vs. Temperature 15 IR2184(4)(S) & (PbF) 5 11 Output Source Current (A) V CC and V BS UVThreshold (-) (V) 12 10 M ax. 9 Typ. 8 M in. 7 6 -50 -25 0 25 50 75 100 4 3 Typ. 2 1 M in. 0 -50 125 -25 0 25 Temperature (oC) 100 125 Figure 23A. Output Source Current vs. Temperature 5.0 Output Sink Current (A) 5 Output Source Current (A) 75 Temperature (oC) Figure 22. VCC and VBS Undervoltage Threshold (-) vs. Temperature 4 3 2 Typ. 1 4.0 3.0 Typ. 2.0 M in. M in. 0 10 16 50 12 14 16 18 20 1.0 -50 -25 0 25 50 75 100 Supply Voltage (V) Temperature (oC) Figure 23B. Output Source Current vs. Supply Voltage Figure 24A. Output Sink Current vs. Temperature 125 www.irf.com 5 140 4 120 Temprature (oC) Output Sink Current (A) IR2184(4)(S) & (PbF) 3 2 Typ. 1 100 80 140v 70v 60 0v 40 M in. 0 20 10 12 14 16 18 20 1 Supply Voltage (V) 140 120 120 100 140v 70v 0v Temperature (oC) Temperature (oC) 1000 Frequency (KHz) 140 60 100 Fig u re 21. IR 2181 vs . Fre q u e n cy (IR FB C 20), R gate =33 Ω, V C C =15V Figure 24B. Output Sink Current vs. Supply Voltage 80 10 100 140v 80 70v 0v 60 40 40 20 20 1 10 100 1000 Frequency (KHz) Fig u re 22. IR 2181 vs . Fre q u e n cy (IR FB C 30), R gate =22 Ω, V C C =15V www.irf.com 1 10 100 1000 Frequency (KHz) Fig u re 23. IR 2181 vs . Fre q u e n cy (IR FB C 40), R gate =15 Ω, V C C =15V 17 IR2184(4)(S) & (PbF) 140v 140 140 70v 0v 120 Temperature (oC) Temperature (oC) 120 100 80 60 40 100 80 60 140v 70v 40 20 0v 20 1 10 100 1000 1 Frequency (KHz) 140 120 120 100 80 140v 70v 0v Temperature o(C) Temperature (oC) 1000 Fig u re 25. IR 21814 vs . Fre q u e n cy (IR FB C 20), R gate =33 Ω , V C C =15V 140 40 100 140v 80 70v 60 0v 40 20 20 1 10 100 1000 Frequency (KHz) Fig u re 26. IR 21814 vs . Fre q u e n cy (IR FB C 30), R gate =22 Ω , V C C =15V 18 100 Frequency (KHz) Fig u re 24. IR 2181 vs . Fre q u e n cy (IR FP E50), R gate =10 Ω, V C C =15V 60 10 1 10 100 1000 Frequency (KHz) Fig u re 27. IR 21814 vs . Fre q u e n cy (IR FB C 40), R gate =15 Ω, V C C =15V www.irf.com IR2184(4)(S) & (PbF) 140v 140 120 70v 100 0v 120 Temperature (oC) Temperature (oC) 140 80 60 100 80 60 40 40 20 20 1 10 100 140v 70v 0v 1 1000 100 1000 Frequency (KHz) Frequency (KHz) Fig u re 28. IR 21814 vs . Fre q u e n cy (IR FP E50), R gate =10 Ω, V C C =15V Fig u re 29. IR 2181s vs . Fre q u e n cy (IR FB C 20), R gate =33 Ω, V C C =15V 140 140v 70v 140 120 140v 100 70v 80 0v 60 Temperature o(C) 120 Temperature (oC) 10 0v 100 80 60 40 40 20 20 1 10 100 1000 Frequency (KHz) Fig u re 30. IR 2181s vs . Fre q u e n cy (IR FB C 30), R gate =22 Ω , V C C =15V www.irf.com 1 10 100 1000 Frequency (KHz) Fig u re 31. IR 2181s vs . Fre q u e n cy (IR FB C 40), R gate =15 Ω, V C C =15V 19 IR2184(4)(S) & (PbF) 140V 70V 0V 140 140 120 Temperature (oC) Tempreture (oC) 120 100 80 60 40 100 80 60 140v 70v 0v 40 20 20 1 10 100 1000 1 Frequency (KHz) 120 120 100 140v 70v 0v Temperature o(C) Temperature (oC) 140 100 140v 80 70v 0v 60 40 40 20 20 1 10 100 1000 Frequency (KHz) Figure 34. IR21814s vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 20 1000 Figure 33. IR21814s vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V 140 60 100 Frequency (KHz) Figure 32. IR2181s vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V 80 10 1 10 100 1000 Frequency (KHz) Figure 35. IR21814s vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V www.irf.com IR2184(4)(S) & (PbF) 140v 70v 140 0v Temperature o(C) 120 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 36. IR21814s vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V www.irf.com 21 IR2184(4)(S) & (PbF) 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC 22 MIN .0532 K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) www.irf.com IR2184(4)(S) & (PbF) 14-Lead PDIP 14-Lead SOIC (narrow body) www.irf.com 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) 23 IR2184(4)(S) & (PbF) LEADFREE PART MARKING INFORMATION IRxxxxxx Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2184 order IR2184 8-Lead SOIC IR2184S order IR2184S 14-Lead PDIP IR21844 order IR21844 14-Lead SOIC IR21844 order IR21844S Leadfree Part 8-Lead PDIP IR2184 order IR2184PbF 8-Lead SOIC IR2184S order IR2184SPbF 14-Lead PDIP IR21844 order IR21844PbF 14-Lead SOIC IR21844 order IR21844SPbF Thisproduct has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 4/4/2006 24 www.irf.com