D a t a S he et , Rev. 1.3, J a n. 2 00 5 HYB18T512400AF HYB18T512800AF HYB18T512160AF 512-Mbit DDR2 SDRAM DDR2 SDRAM RoHS Compliant Products M e m or y P r o du c t s N e v e r s t o p t h i n k i n g . Edition 2005-01 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2005. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. D a t a S he et , Rev. 1.3, J a n. 2 00 5 HYB18T512400AF HYB18T512800AF HYB18T512160AF 512-Mbit DDR2 SDRAM DDR2 SDRAM RoHS Compliant Products M e m or y P r o du c t s N e v e r s t o p t h i n k i n g . HYB18T512[40/80/16]0AF–[3/3S/3.7/5] Revision History: 2005-01 Previous Version: 2004-09 (Rev. 1.2) Rev. 1.3 Page Subjects (major changes since last revision) 113 Added tDS1, tDH1 derating for Single-Ended DQS for DDR2-400 and DDR2-533 All Added 50 Ohm support All Document contains green products only Chapter 8 Pull-up and Pull-Down Driver Characteristics have been updated We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Template: mp_a4_s_rev300 / 2004-11-30 HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Table of Contents 1 1.1 1.2 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 12 13 2 2.1 2.2 2.3 Pin Configuration and Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TFBGA Ball Out Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 20 23 24 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.22.1 3.22.2 3.23 3.23.1 3.23.2 3.23.3 3.23.4 3.24 3.24.1 3.24.2 3.25 3.26 3.26.1 3.26.2 3.27 3.28 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power On and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming the Mode Register and Extended Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . DDR2 SDRAM Mode Register Set (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDR2 SDRAM Extended Mode Register Set (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DLL Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Disable (Qoff) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-ended and Differential Data Strobe Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register EMR(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register EMR(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Off-Chip Driver (OCD) Impedance Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Die Termination (ODT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bank Activate Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read and Write Commands and Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Posted CAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Data Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Interruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Precharge Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Followed by a Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write followed by Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto-Precharge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read with Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write with Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read or Write to Precharge Command Spacing Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Concurrent Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto-Refresh Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-Refresh Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Other Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No Operation Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deselect Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Clock Frequency Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asynchronous CKE LOW Reset Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 28 28 29 29 31 33 33 33 34 35 36 39 45 46 47 49 50 53 56 57 58 58 60 62 62 65 66 67 67 67 68 69 73 73 73 74 74 4 Truth tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 5.1 5.2 AC & DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Data Sheet 5 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Table of Contents 5.3 5.4 5.5 5.5.1 5.6 5.7 5.8 5.9 DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Strength Output V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibrated Output Driver V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reduced Output Drive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power & Ground Clamp V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.1 6.1.1 Currents Measurement Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 IDD Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 On Die Termination (ODT) Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7 7.1 7.2 7.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Speed Grade Defenitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 AC Timing Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference Load for Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slew Rate Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Slew Rate - Differential signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input and Data Setup and Hold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition for Input Setup (tIS) and Hold Time (tIH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition for Data Setup (tDS) and Hold Time (tDH), differential Data Strobes . . . . . . . . . . . . . . . Definition Data Setup (tDS1) and Hold Time (tDH1), Single-Ended Data Strobes . . . . . . . . . . . . . . Slew Rate Definition for Input and Data Setup and Hold Times . . . . . . . . . . . . . . . . . . . . . . . . . . Setup (tIS) and Hold (tIH) Time Derating Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 10 Product Namenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Data Sheet 6 79 81 82 84 86 88 89 89 105 105 105 105 105 106 106 106 107 108 110 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Table 46 Table 47 Table 48 Table 49 Table 50 Table 51 Table 52 Table 53 Data Sheet High Performance DDR667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Performance for DDR2–400B and DDR2–533C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information for RoHS compliant products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Definition (BA[2:0] = 000B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-ended and Differential Data Strobe Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . . Off Chip Driver Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Off-Chip-Driver Adjust Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bank Selection for Precharge by Address Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimum Command Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command Delay Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential DC and AC Input and Output Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSTL_18 Output DC Current Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Strength Default Pull-up Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Strength Default Pull–down Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Strength Calibrated Pull-down Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Strength Calibrated Pull-up Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reduced Strength Default Pull-up Driver Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reduced Strength Default Pull–down Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power & Ground Clamp V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . IDD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDD Specification for DDR2–667C and DDR2-667D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDD Specification for DDR2–533C and DDR2–400B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDD Measurement Test Conditions for DDR2–667C and DDR2–667D . . . . . . . . . . . . . . . . . . . . . . IDD Measurement Test Condition for DDR2–533C and DDR2–400B . . . . . . . . . . . . . . . . . . . . . . . ODT current per terminated input pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definition Speed Bins for DDR667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definition Speed Bins for DDR533 and DDR400 . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Parameter by Speed Grade - DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 11 12 13 14 19 19 23 30 31 33 34 35 37 37 40 49 58 66 67 75 76 76 77 77 78 78 78 79 79 80 81 81 81 82 83 85 85 86 87 88 89 89 90 91 92 93 94 95 96 96 97 97 98 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM List of Tables Table 54 Table 55 Table 56 Table 57 Table 58 Table 59 Table 60 Table 61 Table 62 Table 63 Data Sheet Timing Parameter by Speed Grade - DDR2-400B & DDR2-533C . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics and Operating Conditions for DDR2-667 . . . . . . . . . . . . . . . ODT AC Electrical Characteristics and Operating Conditions for DDR2-533 and DDR2-400 . . . Derating Values for Input Setup and Hold Time (DDR2-667). . . . . . . . . . . . . . . . . . . . . . . . . . . . Derating Values for Input Setup and Hold Time (DDR2-400 & DDR2-533) . . . . . . . . . . . . . . . . . Derating Values for Data Setup and Hold Time of Differential DQS (DDR2-667) . . . . . . . . . . . . Derating Values for Data Setup and Hold Time of Differential DQS (DDR2-400 & -533). . . . . . . Derating Values for Data Setup and Hold Time of Single-ended DQS (DDR2-400 & -533). . . . . Nomenclature Fields and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 101 104 104 110 111 112 112 113 116 116 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Data Sheet Pin Configuration for ×4 components, P-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration for ×8 components, P-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration for ×16 components, P-TFBGA-84 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram 32 Mbit × 4 I/O ×4 Internal Memory Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram 16 Mbit × 8 I/O ×4 Internal Memory Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram 8 Mbit × 16 I/O ×4 Internal Memory Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Initialization Sequence after Power up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OCD Impedance Adjustment Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Diagram Adjust Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Diagram Drive Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Representation of ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT Timing for Active and Standby (Idle) Modes (Synchronous ODT timings). . . . . . . . . . . . . . . ODT Timing for Precharge Power-Down and Active Power-Down Mode. . . . . . . . . . . . . . . . . . . . ODT Mode Entry Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT Mode Exit Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bank Activate Command Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activate to Read Timing Example: Read followed by a write to the same bank . . . . . . . . . . . . . . Read to Write Timing Example: Read followed by a write to the same bank . . . . . . . . . . . . . . . . Read to Write Timing Example: Read followed by a write to the same bank . . . . . . . . . . . . . . . . Read to Write Timing Example: Read followed by a write to the same bank . . . . . . . . . . . . . . . . Write to Read Timing Example: Write followed by a read to the same bank . . . . . . . . . . . . . . . . . Basic Read Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operation Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operation Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read followed by Write Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seamless Read Operation Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seamless Read Operation Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basic Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Operation Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Operation Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write followed by Read Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seamless Write Operation Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seamless Write Operation Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Data Mask Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Operation with Data Mask Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Interrupt Timing Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Interrupt Timing Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operation Followed by Precharge Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operation Followed by Precharge Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operation Followed by Precharge Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operation Followed by Precharge Example 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Operation Followed by Precharge Example 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write followed by Precharge Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write followed by Precharge Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read with Auto-Precharge Example 1, followed by an Activation to the Same Bank (tRC Limit) . . Read with Auto-Precharge Example 2, followed by an Activation to the Same Bank (tRAS Limit) . Read with Auto-Precharge Example 3, followed by an Activation to the Same Bank . . . . . . . . . . Read with Auto-Precharge Example 4, followed by an Activation to the Same Bank, . . . . . . . . . . Write with Auto-Precharge Example 1 (tRC Limit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write with Auto-Precharge Example 2 (WR + tRP Limit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 20 21 22 24 25 26 27 28 36 38 38 39 41 42 43 44 45 46 47 47 48 48 48 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 59 59 60 60 61 61 63 63 64 64 65 65 68 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM List of Figures Figure 54 Figure 55 Figure 56 Figure 57 Figure 58 Figure 59 Figure 60 Figure 61 Figure 62 Figure 63 Figure 64 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Figure 70 Figure 71 Figure 72 Figure 73 Figure 74 Figure 75 Figure 76 Figure 77 Figure 78 Figure 79 Data Sheet Self Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Active Power-Down Mode Entry and Exit after an Activate Command . . . . . . . . . . . . . . . . . . . . . 70 Active Power-Down Mode Entry and Exit Example after a Read Command . . . . . . . . . . . . . . . . . 71 Active Power-Down Mode Entry and Exit Example after a Write Command . . . . . . . . . . . . . . . . . 71 Active Power-Down Mode Entry and Exit Example after a Write Command with AP . . . . . . . . . . 72 Precharge Power Down Mode Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Auto-Refresh command to Power-Down entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 MRS, EMRS command to Power-Down entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Input Frequency Change Example during Precharge Power-Down mode . . . . . . . . . . . . . . . . . . . 74 Asynchronous Low Reset Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Full Strength Default Pull-up Driver Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Full Strength Default Pull–down Driver Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Reduced Strength Default Pull-up Driver Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Reduced Strength Default Pull–down Driver Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . 90 AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . 90 Reference Load for Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Input Setup and Hold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Data Setup and Hold Time (Differential Data Strobes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Data Setup and Hold Time (Single Ended Data Strobes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Slew Rate Definition Nominal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Slew Rate Definition Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Package Pinout PG-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Package Pinout PG-TFBGA-84 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 10 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P 512-Mbit DDR2 SDRAM DDR2 SDRAM 1 HYB18T512400AF HYB18T512800AF HYB18T512160AF Overview This chapter gives an overview of the 512-Mbit DDR2 SDRAM product family and describes its main characteristics. 1.1 Features The 512-Mbit DDR2 SDRAM offers the following key features: • • • • • • • • • 1.8 V ± 0.1 V Power Supply 1.8 V ± 0.1 V (SSTL_18) compatible I/O DRAM organisations with 4, 8 and 16 data in/outputs Double Data Rate architecture: two data transfers per clock cycle, four internal banks for concurrent operation CAS Latency: (2), 3, 4 and 5 Burst Length: 4 and 8 Differential clock inputs (CK and CK) Bi-directional, differential data strobes (DQS and DQS) are transmitted / received with data. Edge aligned with read data and center-aligned with write data. DLL aligns DQ and DQS transitions with clock DQS can be disabled for single-ended data strobe operation • • • • • • • • • • • Table 1 Commands entered on each positive clock edge, data and data mask are referenced to both edges of DQS Data masks (DM) for write data Posted CAS by programmable additive latency for better command and data bus efficiency Off-Chip-Driver impedance adjustment (OCD) and On-Die-Termination (ODT) for better signal quality. Auto-Precharge operation for read and write bursts Auto-Refresh, Self-Refresh and power saving Power-Down modes Average Refresh Period 7.8 µs Full and reduced Strength Data-Output Drivers 1K page size for ×4 & ×8, 2K page size for ×16 Packages: P-TFBGA-60 for ×4 & ×8 components P-TFBGA-84 for ×16 components RoHS Compliant Products1) High Performance DDR667 Product Type Speed Code –3 –3S Unit Speed Grade DDR2–667C 4–4–4 DDR2–667D 5–5–5 — 333 333 MHz 333 266 MHz max. Clock Frequency @CL5 @CL4 @CL3 min. RAS-CAS-Delay min. Row Precharge Time min. Row Active Time min. Row Cycle Time fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 200 200 MHz 12 15 ns 12 15 ns 45 45 ns 57 60 ns 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Data Sheet 11 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Overview Table 2 High Performance for DDR2–400B and DDR2–533C Product Type Speed Code –3.7 –5 Unit Speed Grade DDR2–533C 4–4–4 DDR2–400B 3–3–3 — 266 200 MHz 266 200 MHz 200 200 MHz 15 15 ns 15 15 ns max. Clock Frequency @CL5 @CL4 @CL3 min. RAS-CAS-Delay min. Row Precharge Time min. Row Active Time min. Row Cycle Time 1.2 fCK5 fCK4 fCK3 tRCD tRP tRAS tRC 45 40 ns 60 55 ns Description All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and CK falling). All I/Os are synchronized with a single ended DQS or differential DQS-DQS pair in a source synchronous fashion. The 512-Mb DDR2 DRAM is a high-speed DoubleData-Rate-2 CMOS Synchronous DRAM device containing 536,870,912 bits and internally configured as a quad-bank DRAM. The 512-Mb device is organized as either 32 Mbit × 4 I/O × 4 banks, 16 Mbit × 8 I/O × 4 banks or 8 Mbit × 16 I/O × 4 banks chip. These synchronous devices achieve high speed transfer rates starting at 400 Mb/sec/pin for general applications. See Table 3 for performance figures. A 16-bit address bus for ×4 and ×8 organised components and a 15-bit address bus for ×16 components is used to convey row, column and bank address information in a RAS-CAS multiplexing style. The DDR2 device operates with a 1.8 V ± 0.1 V power supply. An Auto-Refresh and Self-Refresh mode is provided along with various power-saving power-down modes. The device is designed to comply with all DDR2 DRAM key features: 1. 2. 3. 4. 5. posted CAS with additive latency, write latency = read latency - 1, normal and weak strength data-output driver, Off-Chip Driver (OCD) impedance adjustment On-Die Termination (ODT) function. Data Sheet The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. The DDR2 SDRAM is available in P-TFBGA package. 12 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Overview 1.3 Ordering Information Table 3 Ordering Information for RoHS compliant products Part Number Org. Speed HYB18T512400AF–5 ×4 HYB18T512800AF–5 ×8 HYB18T512160AF–5 ×16 HYB18T512400AF–3.7 ×4 CAS1)RCD2)RP3) Clock CAS1)RCD2)RP3) Latencies (MHz) Latencies Clock Package (MHz) DDR2–400 3–3–3 200 — — DDR2–533 4–4–4 266 3–3–3 200 P-TFBGA-60 P-TFBGA-84 P-TFBGA-60 HYB18T512800AF–3.7 ×8 HYB18T512160AF–3.7 ×16 HYB18T512400AF–3 ×4 HYB18T512800AF–3 ×8 HYB18T512160AF–3 ×16 HYB18T512400AF–3S ×4 P-TFBGA-84 DDR2–667 4–4–4 333 3–3–3 200 P-TFBGA-60 P-TFBGA-84 5–5–5 333 4–4–4 266 P-TFBGA-60 HYB18T512800AF–3S ×8 HYB18T512160AF–3S ×16 P-TFBGA-84 1) CAS: Column Adress Strobe 2) RCD: Row Column Delay 3) RP: Row Precharge Note: For product nomenclature see Chapter 10 of this data sheet Data Sheet 13 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams 2 Pin Configuration and Block Diagrams The pin configuration of a DDR2 SDRAM is listed by function in Table 4. The abbreviations used in the Pin#/Buffer Type columns are explained in Table 5 and Table 6 respectively. The pin numbering for the FBGA package is depicted in Figure 1 for ×4, Figure 2 for ×8 and Figure 3 for ×16. Table 4 Ball#/Pin# Pin Configuration of DDR SDRAM Name Pin Type Buffer Type Function Clock Signals ×4/×8 organizations E8 CK I SSTL Clock Signal CK, Complementary Clock Signal CK F8 CK I SSTL Note: CK and CK are differential system clock inputs. All address and control inputs are sampled on the crossing of the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossing of CK and CK (both direction of crossing) F2 CKE I SSTL Clock Enable Note: CKE HIGH activates and CKE LOW deactivates internal clock signals and device input buffers and output drivers. Taking CKE LOW provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active PowerDown (row Active in any bank). CKE is synchronous for power down entry and exit and for self-refresh entry. Input buffers excluding CKE are disabled during self-refresh. CKE is used asynchronously to detect self-refresh exit condition. Self-refresh termination itself is synchronous. After VREF has become stable during power-on and initialisation sequence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and exit, VREF must be maintained to this input. CKE must be maintained HIGH throughout read and write accesses. Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down Clock Signals ×16 organization J8 CK I SSTL K8 CK I SSTL K2 CKE I SSTL Clock Signal CK, Complementary Clock Signal CK Clock Enable Control Signals ×4/×8 organizations F7 RAS I SSTL Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) G7 CAS I SSTL F3 WE I SSTL Note: RAS, CAS and WE (along with CS) define the command being entered. G8 CS I SSTL Chip Select Note: All command are masked when CS is registered HIGH. CS provides for external rank selection on systems with multiple memory ranks. CS is considered part of the command code. Data Sheet 14 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams Table 4 Ball#/Pin# Pin Configuration of DDR SDRAM Name Pin Type Buffer Type Function Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Control Signals ×16 organization K7 RAS I SSTL L7 CAS I SSTL K3 WE I SSTL L8 CS I SSTL Chip Select Address Signals ×4/×8 organizations G2 BA0 I SSTL Bank Address Bus 1:0 G3 BA1 I SSTL Note: BA[1:0] define to which bank an Activate, Read, Write or Precharge command is being applied. BA[1:0] also determines if the mode register or extended mode register is to be accessed during a MRS or EMRS(1) cycle H8 A0 I SSTL Address Signal 12:0, Address Signal 10/Autoprecharge H3 A1 I SSTL H7 A2 I SSTL J2 A3 I SSTL J8 A4 I SSTL J3 A5 I SSTL J7 A6 I SSTL K2 A7 I SSTL K8 A8 I SSTL K3 A9 I SSTL Note: Address Signal 10/Autoprecharge provides the row address for Activate commands and the column address and AutoPrecharge bit A10 (=AP) for Read/Write commands to select one location out of the memory array in the respective bank. A10(=AP) is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10=LOW) or all banks (A10=HIGH). If only one bank is to be precharged, the bank is selected by BA[1:0]. The address inputs also provide the op-code during Mode Register Set commands. H2 A10 I SSTL AP I SSTL K7 A11 I SSTL L2 A12 I SSTL L8 A13 I SSTL NC – – Address Signal 13 Note: 512 Mbit components Note: 256 Mbit components Address Signals ×16 organization L2 BA0 I SSTL L3 BA1 I SSTL L1 NC – – Data Sheet Bank Address Bus 1:0 15 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams Table 4 Pin Configuration of DDR SDRAM Ball#/Pin# Name Pin Type Buffer Type Function M8 A0 I SSTL Address Signal 12:0, Address Signal 10/Autoprecharge M3 A1 I SSTL M7 A2 I SSTL N2 A3 I SSTL N8 A4 I SSTL N3 A5 I SSTL N7 A6 I SSTL P2 A7 I SSTL P8 A8 I SSTL P3 A9 I SSTL M2 A10 I SSTL AP I SSTL P7 A11 I SSTL R2 A12 I SSTL Data Signals ×4/×8 organizations C8 DQ0 I/O SSTL Data Signal 3:0 C2 DQ1 I/O SSTL D7 DQ2 I/O SSTL Note: Bi-directional data bus. DQ[3:0] for ×4 components, DQ[7:0] for ×8 components D3 DQ3 I/O SSTL Data Signals ×8 organization D1 DQ4 I/O SSTL D9 DQ5 I/O SSTL B1 DQ6 I/O SSTL B9 DQ7 I/O SSTL Data Signal 7:4 Data Signals ×16 organization Data Sheet 16 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams Table 4 Pin Configuration of DDR SDRAM Ball#/Pin# Name Pin Type Buffer Type Function G8 DQ0 I/O SSTL Data Signal 15:0 G2 DQ1 I/O SSTL Note: Bi-directional data bus. DQ[15:0] for ×16 components H7 DQ2 I/O SSTL H3 DQ3 I/O SSTL H1 DQ4 I/O SSTL H9 DQ5 I/O SSTL F1 DQ6 I/O SSTL F9 DQ7 I/O SSTL C8 DQ8 I/O SSTL C2 DQ9 I/O SSTL D7 DQ10 I/O SSTL D3 DQ11 I/O SSTL D1 DQ12 I/O SSTL D9 DQ13 I/O SSTL B1 DQ14 I/O SSTL B9 DQ15 I/O SSTL Data Strobe ×4/×8 organisations B7 DQS I/O SSTL Data Strobe A8 DQS I/O SSTL Note: Output with read data, input with write data. Edge aligned with read data, centered with write data. For the ×16, LDQS corresponds to the data on DQ[7:0]; UDQS corresponds to the data on DQ[15:8]. The datastrobes DQS, LDQS, UDQS may be used in single ended mode or paired with the optional complementary signals DQS, LDQS, UDQS and RDQS to provide differential pair signaling to the system during both reads and writes. An EMRS(1) control bit enables or disables the complementary data strobe signals Data Strobe ×8 organisations B3 RDQS I SSTL Read Data Strobe A2 RDQS I SSTL Read Data Strobe Data Strobe Upper Byte Data Strobe ×16 organization B7 UDQS I/O SSTL A8 UDQS I/O SSTL F7 LDQS I/O SSTL E8 LDQS I/O SSTL Data Strobe Lower Byte Data Mask ×4/×8 organizations Data Sheet 17 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams Table 4 Pin Configuration of DDR SDRAM Ball#/Pin# Name Pin Type Buffer Type Function B3 DM I SSTL Data Mask Note: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. LDM and UDM are the input mask signals for ×16 components and control the lower or upper bytes. For ×8 components the data mask function is disabled, when RDQS/RDQS are enabled by EMRS(1) command. Data Mask ×16 organization B3 UDM I SSTL Data Mask Upper Byte F3 LDM I SSTL Data Mask Lower Byte Power Supplies ×4/×8/×16 organizations A9,C1,C3,C7, C9 VDDQ PWR – I/O Driver Power Supply A1 VDD VSSQ PWR – Power Supply PWR – Power Supply VSS PWR – Power Supply A7,B2,B8,D2, D8 A3,E3 Power Supplies ×4/×8 organizations E2 E1 E9,H9,L1 E7 J1,K9 VREF VDDL VDD VSSDL VSS AI – I/O Reference Voltage PWR – Power Supply PWR – Power Supply PWR – Power Supply PWR – Power Supply AI – I/O Reference Voltage PWR – I/O Driver Power Supply PWR – Power Supply PWR – Power Supply PWR – Power Supply PWR – Power Supply PWR – Power Supply Power Supplies ×16 organization J2 E9, G1, G3, G7, G9 VREF VDDQ VDDL E1, J9, M9, R1 VDD E7, F2, F8, H2, VSSQ J1 H8 J7 J3,N1,P9 VSSDL VSS Not Connected ×4/×8 organizations G1, L3,L7, L8 NC NC – Not Connected Note: No internal electrical connection is present Not Connected ×4 organization A2, B1, B9, D1, D9 Data Sheet NC NC – Not Connected 18 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams Table 4 Pin Configuration of DDR SDRAM Ball#/Pin# Name Pin Type Buffer Type Function – Not Connected SSTL On-Die Termination Control Not Connected ×16 organization A2, E2, L1, R3, NC R7, R8 NC Other Pins ×4/×8 organizations F9 ODT I Note: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When enabled, ODT is applied to each DQ, DQS, DQS and DM signal for ×4 and DQ, DQS, DQS, RDQS, RDQS and DM for ×8 configurations. For ×16 configuration ODT is applied to each DQ, UDQS, UDQS, LDQS, LDQS, UDM and LDM signal. The ODT pin will be ignored if the Extended Mode Register (EMRS(1)) is programmed to disable ODT. Other Pins ×16 organization K9 Table 5 ODT I SSTL On-Die Termination Control Abbreviations for Pin Type Abbreviation Description I Standard input-only pin. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected Table 6 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminated Logic (SSTL_18) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Data Sheet 19 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams 2.1 TFBGA Ball Out Diagrams ! 6331 $13 6$$1 $- " $13 6331 .# $1 6$$1 # 6$$1 $1 6$$1 .# 6331 $1 $ $1 6331 .# 6$$, 62%& 633 % 633$, #+ 6$$ #+% 7% & 2!3 #+ /$4 "! "! ' #!3 #3 !! 0 ! ( ! ! ! ! * ! ! ! ! + ! ! ! .# , .# .#! 6$$ .# 633 .# 6331 6$$1 .# 633 6$$ 6$$ 633 -004 Figure 1 Pin Configuration for ×4 components, P-TFBGA-60 (top view) Note: 1. VDDL and VSSDL are power and ground for the DLL.They are isolated on the device from VDD, VDDQ, VSS, and VSSQ Data Sheet 2. Ball position L8 is A13 for 512-Mbit and is Not Connected on 256-Mbit 20 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams 6$$ .# 2$13 633 $1 6331 6$$1 ! 6331 $13 6$$1 $- 2$13 " $13 6331 $1 $1 6$$1 # 6$$1 $1 6$$1 $1 6331 $1 $ $1 6331 $1 6$$, 62%& 633 % 633$, #+ 6$$ #+% 7% & 2!3 #+ /$4 "! "! ' #!3 #3 !! 0 ! ( ! ! ! ! * ! ! ! ! + ! ! ! .# , .# .#! .# 633 6$$ 6$$ 633 -004 Figure 2 Pin Configuration for ×8 components, P-TFBGA-60 (top view) Note: 4. VDDL and VSSDL are power and ground for the DLL. They are isolated on the device from VDD, VDDQ, VSS and VSSQ. 5. Ball position L8 is A13 for 512-Mbit and is Not Connected on 256-Mbit. 1. RDQS / RDQS are enabled by EMRS(1) command. 2. If RDQS / RDQS is enabled, the DM function is disabled 3. When enabled, RDQS & RDQS are used as strobe signals during reads. Data Sheet 21 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams ! 6331 5$13 6$$1 5$- " 5$13 6331 $1 $1 6$$1 # 6$$1 $1 6$$1 $1 6331 $1 $ $1 6331 $1 6$$ .# 633 % 6331 ,$13 6$$1 $1 6331 ,$- & ,$13 6331 $1 6$$1 $1 6$$1 ' 6$$1 $1 6$$1 $1 6331 $1 ( $1 6331 $1 6$$, 62%& 633 * 633 $, #+ 6$$ #+% 7% + 2!3 #+ /$4 "! "! , #!3 #3 ! !0 ! - ! ! ! ! . ! ! ! ! 0 ! ! ! .# 2 .# .# 6$$ .# 633 $1 6331 6$$1 .# 633 6$$ 6$$ 633 -004 Figure 3 Pin Configuration for ×16 components, P-TFBGA-84 (top view) Note: 3. VDDL and VDDSL are power and ground for the DLL. They are isolated on the device from VDD, VDDQ, VSS and VSSQ. 1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is data strobe for DQ[7:0] 2. LDM is the data mask signal for DQ[7:0], UDM is the data mask signal for DQ[15:8] Data Sheet 22 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams 2.2 512 Mbit DDR2 Addressing Table 7 512 Mbit DDR2 Addressing Configuration 128 Mb x 4 64 Mb x 8 32 Mb x 16 Note Bank Address BA[1:0] BA[1:0] BA[1:0] Number of Banks 4 4 4 Auto-Precharge A10 / AP A10 / AP A10 / AP Row Address A[13:0] A[13:0] A[12:0] Column Address A11, A[9:0] A[9:0] A[9:0] Number of Column Address Bits 11 10 10 1) Number of I/Os 4 8 16 2) Page Size [Bytes] 1024 (1K) 1024 (1K) 2048 (2K) 3) 1) Refered to as ’colbits’ 2) Refered to as ’org’ 3) PageSize = 2colbits × org/8 [Bytes Data Sheet 23 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P Figure 4 Data Sheet 2OW ! D DRE SS 5 8 ! ! "! "! -O D E 2E G IS TE R S #O M M A N D $E C O D E 1. 128Mb × 4 Organisation with 14 Row, 2 Bank and 11 Column External Adresses 2. This Functional Block Diagram is intended to facilitate user understanding of the operation of the 24 2EFR ESH#O UNTER "A N K # O N T RO L ,O G IC "A N K "A N K "A N K "A N K )/ ' A TIN G $- - A S K , O G IC 3E N S E ! M P LIFIE R -E M O RY !RR A Y X X #/ , #O LU M N # U M E $O E LC O D N R # E C M D N E $O LU O R # O E $ LU C M O D N E R $E C O D E R X 2O W ! D D RE S S ,A T C H $E C O D E R "A N K "A N K "A N K "A N K #+ #+ 7RITE &)& / $RIV E RS 2EA D,A TCH #O LU M N ! D D R E S S #O U N TE R,A TC H $A TA -A S K $1 3 'E N E R A TO R #/ , $ 1 3 $1 3 $A TA )N P U T 2E G IST E R #/ , -5 8 $, , #+ # + $RIVE RS 2! 3 #! 3 7% #3 #O N TRO L, O G IC $- $1 3 $ 1 3 $1 $ 1 /$ 4 2.3 #+ #+ #+ % HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams Block Diagrams /$4 # O NTR OL 2EC EIV ERS !DDRES S2 E GIS TER -0" 4 Block Diagram 32 Mbit × 4 I/O ×4 Internal Memory Banks Note: device; it does not represent an actual circuit implementation. 3. DM is a unidirectional signal (input only), but is internally loaded to match the load of the bidirectional DQ and DQS signals. Rev. 1.3, 2005-01 09112003-SDM9-IQ3P Figure 5 Data Sheet 2OW ! D DRE SS 5 8 ! ! "! "! -O D E 2E G IS TE R S #O M M A N D $E C O D E #O N TRO L, O G IC 1. 64Mb × 8 Organisation with 14 Row, 2 Bank and 10 Column External Adresses 2. This Functional Block Diagram is intended to facilitate user understanding of the operation of the 25 2EFR ESH#O UNTER "A N K # O N T RO L ,O G IC "A N K "A N K "A N K "A N K )/ ' A TIN G $- - A S K , O G IC 3E N S E ! M P LIFIE R -E M O RY !RR A Y X X #/ , #O LU M N # U M E $O E LC O D N R # E C M D N E $O LU O R # O E E $ LU C M O D N R $E C O D E R X 2O W ! D D RE S S ,A T C H $E C O D E R "A N K "A N K "A N K "A N K #+ #+ 7RITE &)& / $RIV E RS 2EA D,A TCH #O LU M N ! D D R E S S #O U N TE R,A TC H $A TA -A S K #/ , )N P U T 2E G IST E R $1 3 'E N E R A TO R $ 1 3 $1 3 $A TA #/ , -5 8 $, , #+ # + $RIVE RS 2! 3 #! 3 7% #3 #+ #+ #+ % $- 2$ 1 3 2 $ 1 3 $1 3 $ 1 3 $1 $ 1 /$ 4 HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams /$4 # O NTR OL 2EC EIV ERS !DDRES S2 E GIS TER -0" 4 Block Diagram 16 Mbit × 8 I/O ×4 Internal Memory Banks Note: device; it does not represent an actual circuit implementation. 3. DM is a unidirectional signal (input only), but is internally loaded to match the load of the bidirectional DQ and DQS signals. Rev. 1.3, 2005-01 09112003-SDM9-IQ3P Figure 6 Data Sheet 2OW ! D DRE SS 5 8 ! ! "! "! -O D E 2E G IS TE R S #O M M A N D $E C O D E #O N TRO L, O G IC 1. 32Mb × 16 Organisation with 13 Row, 2 Bank and 10 Column External Adresses 2. This Functional Block Diagram is intended to facilitate user understanding of the operation of the 26 2EFR ESH#O UNTER "A N K # O N T RO L ,O G IC )/ ' A TIN G $- - A S K , O G IC 3E N S E ! M P LIFIE R #O LU M N # U M E $O E LC O D N R # E C M D N E $O LU O R # O E $ LU C M O D N E R $E C O D E R #/ , "A N K "A N K "A N K "A N K -E M O RY !RR A Y X X X 2O W ! D D RE S S ,A T C H $E C O D E R "A N K "A N K "A N K "A N K #+ #+ 7RITE &)& / $R IVE R S 2EA D,A TCH #O LU M N ! D D R E S S #O U N TE R , A TC H $A TA -A S K #/ , )N P U T 2E G IST E R $1 3 'E N E RA TO R $ 1 3 $1 3 $A TA #/ , -5 8 $, , #+ # + $RIVE RS 2! 3 #! 3 7% #3 #+ #+ #+ % 5$ - , $ - ,$ 1 3 , $ 1 3 5$ 1 3 5 $ 1 3 $1 $ 1 /$ 4 HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Pin Configuration and Block Diagrams /$4 # O NTR OL 2EC EIV ERS !DDRES S2 E GIS TER -0" 4 Block Diagram 8 Mbit × 16 I/O ×4 Internal Memory Banks Note: device; it does not represent an actual circuit implementation. 3. LDM, UDM is a unidirectional signal (input only), but is internally loaded to match the load of the bidirectional LDQS and UDQS signals. Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3 Functional Description 3.1 Simplified State Diagram #+%, )NITIALIZATION 3EQUEN CE 3ELF 2EFRES H /#$ CALIB RATIO N 32& 02 3ETTIN G -23 OR %-2 3 #+%( )DLE !LLBANK S PRE CHARGED % -2 3 2%& 2EFRES HIN G #+% , #+% , !#4 #+%( 0RECHARG E 0OWE R $OWN !CTIVA TIN G #+% , #+%, #+%, !CTIV E0O W ER $OW N #+% ( #+% , !UTOMA TIC 3EQU ENC E #OM MA ND3E QUENCE "ANK !CTIV E 7RITE 2EAD 7RITE 2EAD 72! 2$! 2EAD 7RITING 2EA DIN G 7RITE 72! 2$! 2$! 7RITING WITH! 0 0202 ! 0202 ! 0202! 2EADIN GWITH !0 0RECHA RGING -0&4 Figure 7 Simplified State Diagram Note: This Simplified State Diagram is intended to provide a floorplan of the possible state transitions and the commands to control them. In particular situations involving more than one Data Sheet bank, enabling / disabling on-die termination, Power-Down entry / exit, timing restrictions during state transitions - among other things - are not captured in full detail. 27 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.2 Basic Functionality Read and write accesses to the DDR2 SDRAM are burst oriented; accesses start at a selected location and continue for the burst length of four or eight in a programmed sequence. The address bits registered coincident with the Read or Write command are used to select the starting column location for the burst access and to determine if the Auto-Precharge command is to be issued. Accesses begin with the registration of an Activate command, which is followed by a Read or Write command. The address bits registered coincident with the activate command are used to select the bank and row to be accessed. Prior to normal operation, the DDR2 SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command description and device operation. 3.3 Power On and Initialization DDR2 SDRAM’s must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation. Power-up and Initialization Sequence The following sequence is required for POWER UP and Initialization. 3. Apply NOP or Deselect commands and take CKE high. 4. Continue NOP or Deselect Commands for 400 ns, then issue a Precharge All command. 5. Issue EMRS(2) command. 6. Issue EMRS(3) command. 7. Issue EMRS(1) command to enable DLL. 8. Issue a MRS command for “DLL reset”. 9. Issue Precharge-all command. 10. Issue 2 or more Auto-refresh commands. 11. Issue the final MRS command to turn the DLL on and to set the necessary operating parameter. 12. At least 200 clocks after step 8, issue EMRS(1) commands to either execute the OCD calibration or select the OCD default. Issue the final EMRS(1) command to exit OCD calibration mode and set the necessary operating parameters. 13. The DDR2 SDRAM is now ready for normal operation. 1. Apply power and attempt to maintain CKE below 0.2 × VDDQ and ODT at a low state (all other inputs may be undefined). To guarantee ODT off, VREF must be valid and a low level must be applied to the ODT pin. Maximum power up interval for VDD / VDDQ is specified as 20.0 ms. The power interval is defined as the amount of time it takes for VDD / VDDQ to power-up from 0 V to 1.8 V ± 100 mV. At least one of these two sets of conditions must be met: – VDD, VDDL and VDDQ are driven from a single power converter output, AND – VTT is limited to 0.95 V max, AND – VREF tracks VDDQ/2 or – Apply VDD before or at the same time as VDDL. – Apply VDDL before or at the same time as VDDQ. – Apply VDDQ before or at the same time as VTT & VREF. 2. Start clock (CK, CK) and maintain stable power and clock condition for a minimum of 200 µs. CK, CK CKE ODT "low" tRP 400 ns NOP PRE ALL EMRS(2) tMRS tMRS EMRS(3) tMRS EMRS(1) tMRS MRS tRP PRE ALL tRFC 1st Auto refresh 2nd Auto refresh tRFC tMRS MRS Follow OCD flowchart EMRS(1) OCD tMRS EMRS(1) OCD Any Command min. 200 cycles to lock the DLL Extended Mode Register(1) Set with DLL enable Figure 8 Data Sheet Mode Register Set with DLL reset Mode Register Set w/o DLL reset OCD Drive(1) or OCD default OCD calibration mode exit Initialization Sequence after Power up 28 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.4 Programming the Mode Register and Extended Mode Registers For application flexibility, burst length, burst type, CAS latency, DLL reset function, write recovery time (WR) are user defined variables and must be programmed with a Mode Register Set (MRS) command. Additionally, DLL disable function, additive CAS latency, driver impedance, On Die Termination (ODT), single-ended strobe and Off Chip Driver impedance adjustment (OCD) are also user defined variables and must be programmed with an Extended Mode Register Set (EMRS) command. All banks must be in a precharged state and CKE must be high at least one cycle before the Mode Register Set Command can be issued. Either MRS or EMRS Commands are activated by the low signals of CS, RAS, CAS and WE at the positive edge of the clock. When both bank addresses BA[1:0] are 0, the DDR2 SDRAM enables the MRS command. When the bank addresses BA0 is 1 and BA1is 0, the DDR2 SDRAM enables the EMRS(1) command. The address input data during this cycle defines the parameters to be set as shown in the MRS and EMRS tables. A new command may be issued after the mode register set command cycle time (tMRD). Contents of the Mode Register (MR) or Extended Mode Registers (EMR(1, 2, 3)) can be altered by re-executing the MRS and EMRS Commands. If the user chooses to modify only a subset of the MR or EMR variables, all variables must be redefined when the MRS or EMRS commands are issued. MRS, EMRS and DLL Reset do not affect array contents, which means reinitialization including those can be executed any time after power-up without affecting array contents. After initial power up, all MRS and EMRS Commands must be issued before read or write cycles may begin. 3.5 DDR2 SDRAM Mode Register Set (MRS) The mode register stores the data for controlling the various operating modes of DDR2 SDRAM. It programs CAS latency, burst length, burst sequence, test mode, DLL reset, Write Recovery (WR) and various vendor specific options to make DDR2 SDRAM useful for various applications. command and clock cycle requirements during normal operation as long as all banks are in the precharged state. The mode register is divided into various fields depending on functionality. Burst length is defined by A[2:0] with options of 4 and 8 bit burst length. Burst address sequence type is defined by A3 and CAS latency is defined by A[6:4]. A7 is used for test mode and must be set to 0 for normal DRAM operation. A8 is used for DLL reset. A[11:9] are used for write recovery time (WR) definition for Auto-Precharge mode. With address bit A12 two Power-Down modes can be selected, a “standard mode” and a “low-power” Power-Down mode, where the DLL is disabled. Address bit A13 and all “higher” address bits have to be set to 0 for compatibility with other DDR2 memory products with higher memory densities. The default value of the mode register is not defined, therefore the mode register must be written after power-up for proper operation. The mode register is written by asserting low on CS, RAS, CAS, WE, BA[1:0], while controlling the state of address pins A[13:0]. The DDR2 SDRAM should be in all bank precharged (idle) mode with CKE already high prior to writing into the mode register. The mode register set command cycle time (tMRD) is required to complete the write operation to the mode register. The mode register contents can be changed using the same Data Sheet 29 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description "! "! "! ! ! ! ! REG A DDR ! ! ! ! ! ! ! ! ! 0$ 72 $,, 4- #, "4 ", W W W W W W W ! -0"4 Table 8 Mode Register Definition (BA[2:0] = 000B) Field Bits Type1) Description BA2 16 reg. addr. Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA2, Bank Address BA1 15 Bank Address [1] 0B BA1, Bank Address BA0 14 Bank Address [0] BA0, Bank Address 0B A13 13 Address Bus[13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B PD 12 w WR [11:9] w A13, Address bit 13 Active Power-Down Mode Select 0B PD, Fast exit PD, Slow exit 1B Write Recovery2) Note: All other bit combinations are illegal. 001B 010B 011B 100B 110B WR, 2 WR, 3 WR, 4 WR, 5 WR, 6 DLL 8 w DLL Reset 0B DLL, No DLL, Yes 1B TM 7 w Test Mode 0B TM, Normal Mode TM, Vendor specific test mode 1B CL [6:4] w CAS Latency Note: All other bit combinations are illegal. 010B 011B 100B 101B 011B Data Sheet CL, 2 CL, 3 CL, 4 CL, 5 CL, 6 30 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description Table 8 Mode Register Definition (BA[2:0] = 000B) Field Bits Type1) Description BT 3 w Burst Type BT, Sequential 0B 1B BT, Interleaved BL [2:0] w Burst Length Note: All other bit combinations are illegal. 010B BL, 4 011B BL, 8 1) w = write only register bits 2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and rounding up to the next integer: WR [cycles] ≥ tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN. 3.6 DDR2 SDRAM Extended Mode Register Set (MRS) The Extended Mode Register EMR(1) stores the data for enabling or disabling the DLL, output driver strength, additive latency, OCD program, ODT, DQS and output buffers disable, RQDS and RDQS enable. The default value of the extended mode register "! "! "! ! ! ! ! ! EMR(1) is not defined, therefore the extended mode register must be written after power-up for proper operation. The extended mode register is written by asserting low on CS, RAS, CAS, WE, BA1 and high on BA0, while controlling the state of the address pins ! ! ! ! ! ! ! ! ! 1OFF 2$1 3 $13 /#$ 0R OGRAM 2TT !, 2TT $)# $,, W W W W W W W REG A DDR W -0"4 Table 9 Extended Mode Register Definition (BA[2:0] = 001B) Field Bits Type1) Description BA2 16 reg. addr. Bank Address [2] Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA2, Bank Address BA1 15 Bank Address [1] 0B BA1, Bank Address BA0 14 Bank Address [0] BA0, Bank Address 0B Data Sheet 31 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description Table 9 Extended Mode Register Definition (BA[2:0] = 001B) Field Bits Type1) Description A13 13 w Address Bus[13] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B A13, Address bit 13 Qoff 12 Output Disable QOff, Output buffers enabled 0B 1B QOff, Output buffers disabled RDQS 11 Read Data Strobe Output (RDQS, RDQS) 0B RDQS, Disable RDQS, Enable 1B DQS 10 Complement Data Strobe (DQS Output) 0B DQS, Enable DQS, Disable 1B OCD [9:7] Program Off-Chip Driver Calibration Program 000B OCD, OCD calibration mode exit, maintain setting 001B OCD, Drive (1) 010B OCD, Drive (0) 100B OCD, Adjust mode 111B OCD, OCD calibration default AL Additive Latency [5:3] Note: All other bit combinations are illegal. 000B 001B 010B 011B 100B 101B AL, 0 AL, 1 AL, 2 AL, 3 AL, 4 AL, 5 RTT 2,6 Nominal Termination Resistance of ODT 00B RTT, ∞ (ODT disabled) 01B RTT, 75 Ohm 10B RTT, 150 Ohm 11B RTT, 50 Ohm2) DIC 1 Off-chip Driver Impedance Control 0B DIC, Full (Driver Size = 100%) 1B DIC, Reduced DLL 0 DLL Enable DLL, Enable 0B 1B DLL, Disable 1) w = write only register bits 2) optional for DDR2-400/533 & 667 Data Sheet 32 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description A0 is used for DLL enable or disable. A1 is used for enabling half-strength data-output driver. A2 and A6 enables On-Die termination (ODT) and sets the Rtt value. A[5:3] are used for additive latency settings and A[9:7] enables the OCD impedance adjustment mode. A10 enables or disables the differential DQS and RDQS signals, A11 disables or enables RDQS. 3.7 Address bit A12 have to be set to 0 for normal operation. With A12 set to 1 the SDRAM outputs are disabled and in Hi-Z. 1 on BA0 and 0 for BA1 have to be set to access the EMRS(1). A13 and all “higher” address bits have to be set to 0 for compatibility with other DDR2 memory products with higher memory densities. Refer to Extended Mode Register Definition. DLL Enable/Disable The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon returning to normal operation after having the DLL disabled. The DLL is automatically disabled when entering Self-Refresh operation and is automatically reenabled and reset upon exit of Self-Refresh operation. 3.8 Any time the DLL is reset, 200 clock cycles must occur before a Read command can be issued to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to occur may result in a violation of the tAC or tDQSCK parameters. Output Disable (Qoff) DRAM outputs allows users to measure IDD currents during Read operations, without including the output buffer current and external load currents. Under normal operation, the DRAM outputs are enabled during Read operation for driving data (Qoff bit in the EMR(1) is set to 0). When the Qoff bit is set to 1, the DRAM outputs will be disabled. Disabling the 3.9 Single-ended and Differential Data Strobe Signals in ×8 components only. If RDQS is enabled in ×8 components, the DM function is disabled. RDQS is active for reads and don’t care for writes. Table 10 lists all possible combinations for DQS, DQS, RDQS, RQDS which can be programmed by A[11:10] address bits in EMRS. RDQS and RDQS are available Table 10 Single-ended and Differential Data Strobe Signals EMRS(1) Strobe Function Matrix Signaling A11 A10 RDQS/DM (RDQS Enable) (DQS Enable) RDQS DQS DQS 0 (Disable) 0 (Enable) DM Hi-Z DQS DQS 0 (Disable) 1 (Disable) DM Hi-Z DQS Hi-Z single-ended DQS signals 1 (Enable) 0 (Enable) RDQS RDQS DQS DQS differential DQS signals 1 (Enable) 1 (Disable) RDQS Hi-Z DQS Hi-Z single-ended DQS signals Data Sheet 33 differential DQS signals Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.10 Extended Mode Register EMR(2) The Extended Mode Registers EMR(2) and EMR(3) are reserved for future use and must be programmed when setting the mode register during initialization.The extended mode register EMR(2) is written by asserting LOW on CS, RAS, CAS, WE, BA0 and HIGH on BA1, while controlling the states of the address pins. The DDR2 SDRAM should be in all bank precharge with "! "! "! ! ! ! ! ! CKE already high prior to writing into the extended mode register. The mode register set command cycle time (tMRD) must be satisfied to complete the write operation to the EMR(2). Mode register contents can be changed using the same command and clock cycle requirements during normal operation as long as all banks are in precharge state. ! ! ! ! ! ! ! ! ! REG A DD R -0"4 Table 11 EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B) Field Bits Type1) Description BA2 16 reg.addr Bank Address[2] Note: BA2 is not available on 256Mbit and 512Mbit components 0B BA2, Bank Address BA1 15 Bank Adress[1] BA1, Bank Address 1B BA0 14 Bank Adress[0] 0B BA0, Bank Address A [13:0] w Address Bus[13:0] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B A[13:0], Address bits 1) w = write only Data Sheet 34 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.11 Extended Mode Register EMR(3) The Extended Mode Register EMR(3) is reserved for future use and all bits except BA0 and BA1 must be programmed to 0 when setting the mode register during "! "! "! ! ! ! ! ! initialization. The EMRS(3) is written by asserting low on CS, RAS, CAS, WE, BA2 and high on BA0 and BA1, while controlling the state of the address pins. ! ! ! ! ! ! ! ! ! REG A DD R -0"4 Table 12 EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B) Field Bits Type1) Description BA2 16 reg.addr Bank Address[2] Note: BA2 is not available on 256Mbit and 512Mbit components 0B BA2, Bank Address BA1 15 Bank Adress[1] 1B BA1, Bank Address BA0 14 Bank Adress[0] BA0, Bank Address 1B A [13:0] w Address Bus[13:0] Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B A[13:0], Address bits 1) w = write only Data Sheet 35 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.12 Off-Chip Driver (OCD) Impedance Adjustment DDR2 SDRAM supports driver calibration feature and the flow chart below is an example of the sequence. Every calibration mode command should be followed by “OCD calibration mode exit” before any other command being issued. MRS should be set before entering OCD impedance adjustment and On Die Termination (ODT) should be carefully controlled depending on system environment. OCD Impedance Adjustment Flow Chart 3TART %-23 /#$ CALIB RA TIO NMO DEEXIT %-23 $R IV E $1$1 3(IG H $1 3,OW %-23 $R IV E $1$1 3,OW $1 3( IG H !,,/ + !,,/+ 4EST 4EST .EED#A LIB RA TIO N .EE D#A LIB R ATIO N %-2 3 /#$ CALIBRATIO NMO DEE XIT %-23 /#$ CALIB RA TIO NMO DEEXIT %-23 %NTER !D JU ST ODE %-2 3 %NTER !DJUS T-ODE ",CODEIN PUTTOA LL$1 S )NC$E COR./ 0 ",CODE IN PUTTOALL$1 S )NC$E CO R./ 0 %-2 3 /#$ CA LIB RATIO NM ODE EXIT %-23 / #$ CA LIB RATIO NMO DEEXIT %-23 /#$ CA LIB RATIO NMO DEE XIT %ND -0&4 Figure 9 OCD Impedance Adjustment Flow Chart Note: MR should be set before entering OCD impedance adjustment and ODT should be carefully controlled depending on system environment Data Sheet 36 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description Extended Mode Register Set for OCD impedance adjustment OCD impedance adjustment can be done using the following EMRS(1) mode. In drive mode all outputs are driven out by DDR2 SDRAM and drive of RDQS is dependent on EMR(1) bit enabling RDQS operation. In Drive(1)mode, all DQ, DQS (and RDQS) signals are driven HIGH and all DQS (and RDQS) signals are driven LOW. InDrive(0) mode, all DQ, DQS (and RDQS) signals are driven LOW and all DQS (and RDQS) signals are driven HIGH. In adjust mode, BL = 4 of operation code data must be used. In case of OCD calibration default, output driver characteristics have a nominal impedance value of 18 Ohms during nominal Table 13 temperature and voltage conditions. Output driver characteristics for OCD calibration default are specified in the following table. OCD applies only to normal full strength output drive setting defined by EMR(1) and if half strength is set, OCD default driver characteristics are not applicable. When OCD calibration adjust mode is used, OCD default output driver characteristics are not applicable. After OCD calibration is completed or driver strength is set to default, subsequent EMRS(1) commands not intended to adjust OCD characteristics must specify A[9:7] as’000’ in order to maintain the default or calibrated value. Off Chip Driver Program A9 A8 A7 Operation 0 0 0 OCD calibration mode exit 0 0 1 Drive(1) DQ, DQS, (RDQS) high and DQS (RDQS) low 0 1 0 Drive(0) DQ, DQS, (RDQS) low and DQS (RDQS) high 1 0 0 Adjust mode 1 1 1 OCD calibration default OCD impedance adjust To adjust output driver impedance, controllers must issue the ADJUST EMRS(1) command along with a 4 bit burst code to DDR2 SDRAM as in the following table. For this operation, Burst Length has to be set to BL = 4 via MRS command before activating OCD and controllers must drive the burst code to all DQs at the same time. DT0 in the table means all DQ bits at bit time 0, DT1 at bit time 1, and so forth. The driver output impedance is adjusted for all DDR2 SDRAM DQs Table 14 simultaneously and after OCD calibration, all DQs of a given DDR2 SDRAM will be adjusted to the same driver strength setting. The maximum step count for adjustment is 16 and when the limit is reached, further increment or decrement code has no effect. The default setting may be any step within the maximum step count range. When Adjust mode command is issued, AL from previously set value must be applied. Off-Chip-Driver Adjust Program 4 bit burst code inputs to all DQs Operation DT0 DT1 DT2 DT3 Pull-up driver strength Pull-down driver strength 0 0 0 0 NOP (no operation) NOP (no operation) 0 0 0 1 Increase by 1 step NOP 0 0 1 0 Decrease by 1 step NOP 0 1 0 0 NOP Increase by 1 step 1 0 0 0 NOP Decrease by 1 step 0 1 0 1 Increase by 1 step Increase by 1 step 0 1 1 0 Decrease by 1 step Increase by 1 step 1 0 0 1 Increase by 1 step Decrease by 1 step 1 0 1 0 Decrease by 1 step Decrease by 1 step Other Combinations Data Sheet Illegal 37 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description For proper operation of adjust mode, WL = RL - 1 = AL + CL - 1 clocks and tDS / tDH should be met as shown in Figure 10. Input data pattern for adjustment, DT[0:3] is fixed and not affected by MRS addressing mode (i.e. sequential or interleave). Burst length of 4 have to be programmed in the MRS for OCD impedance adjustment. CK, CK CMD NOP EMRS(1) NOP NOP NOP NOP NOP WL EMRS(1) NOP tWR DQS DQS_in tDS tDH DQ_in DT0 DT1 DT2 DT3 DM Figure 10 OCD1 OCD calibration mode exit OCD adjust mode Timing Diagram Adjust Mode Drive Mode driven out tOIT after “enter drive mode” command and all output drivers are turned-off tOIT after “OCD calibration mode exit” command. See Figure 11. Both Drive(1) and Drive(0) are used for controllers to measure DDR2 SDRAM Driver impedance before OCD impedance adjustment. In this mode, all outputs are CK, CK CMD EMRS(1) NOP NOP NOP NOP NOP NOP NOP tOIT tOIT DQS_in EMRS(1) DQS high & DQS low for Drive(1), DQS low & DQS high for Drive 0 DQS high for Drive(1) DQS high for Drive(0) DQ_in OCD calibration mode exit Enter Drive Mode Figure 11 Data Sheet Timing Diagram Drive Mode 38 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description On-Die Termination (ODT) On-Die Termination (ODT) is a new feature on DDR2 components that allows a DRAM to turn on/off termination resistance for each DQ, DQS, DQS, DM for ×4 and DQ, DQS, DQS, DM, RDQS (DM/RDQS share the same pin) and RDQS for ×8 configuration via the ODT control pin. DQS and RDQS are only terminated when enabled by EMR(1). the ODT control pin. UDQS and LDQS are terminated only when enabled in the EMRS(1) by address bit A10 = 0. The ODT feature is designed to improve signal integrity of the memory channel by allowing the DRAM controller to independently turn on/off termination resistance for any or all DRAM devices. The ODT function can be used for all active and standby modes. ODT is turned off and not supported in Self-Refresh mode. For ×16 configuration ODT is applied to each DQ, UDQS, UDQS, LDQS, LDQS, UDM and LDM signal via VDDQ VDDQ sw2 Rval1 Rval2 EA DRAM Input Buffer Rval3 Rval3 sw1 sw2 sw3 EL Rval2 Input Pin ODT_funct2 VSSQ VSSQ Functional Representation of ODT Target: Rval1 = Rval2 = Rval3 = 2 × Rtt Switch sw1, sw2 or sw3 are enabled by the ODT pin. Selection between sw1, sw2 or sw3 is determined by “Rtt (nominal)” in EMRS(1) address bits A6 & A2. Data Sheet sw3 Rval1 VSSQ Figure 12 VDDQ SE sw1 CO 3.13 The ODT pin will be ignored if the Extended Mode Register (EMRS(1)) is programmed to disable ODT. 39 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description ODT Truth Tables organisations (×4, ×8 and ×16). To activate termination of any of these pins, the ODT function has to be enabled in the EMRS(1) by address bits A6 and A2. The ODT Truth Table shows which of the input pins are terminated depending on the state of address bit A10 and A11 in the EMRS(1) for all three device Table 15 ODT Truth Table Input Pin EMRS(1) Address Bit A10 EMRS(1) Address Bit A11 x4 components DQ[3:0] X DQS X DQS 0 DM X X x8 components DQ[7:0] X DQS X DQS 0 X RDQS X 1 RDQS 0 1 DM X 0 x16 components DQ[7:0] X DQ[15:8] X LDQS X LDQS 0 UDQS X UDQS 0 LDM X UDM X X X Note: X = don’t care; 0 = bit set to low; 1 = bit set to high Data Sheet 40 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description ODT timing modes Depending on the operating mode asynchronous or synchronous ODT timings apply. • Asynchronous ODT timings (tAOFPD, tAONPD) apply when the on-die DLL is disabled. • Synchronous ODT timings (tAOND, tAOFD, tAON, tAOF) apply for all other modes. These modes are: T1 T0 T3 T2 Slow Exit Active Power Down Mode (with MRS bit A12 is set to “1”) Precharge Power Down Mode T4 T5 T6 T7 T8 CK, CK CKE t IS t IS t IS ODT tAOND (2 tck) tAOFD (2.5 tck) Rtt DQ tAON(min) tAOF(min) tAON(max) tAOF(max) ODT01 Figure 13 ODT Timing for Active and Standby (Idle) Modes (Synchronous ODT timings) Note: to turn on. ODT turn on time max. (tAON.MAX) is when the ODT resistance is fully on. Both are measured from tAOND. 3. ODT turn off time min. (tAOF.MIN) is when the device starts to turn off the ODT resistance.ODT turn off time max. (tAOF.MAX) is when the bus is in high impedance. Both are measured from tAOFD. 1. Synchronous ODT timings apply for Active Mode and Standby Mode with CKE HIGH and for the “Fast Exit” Active Power Down Mode (MRS bit A12 set to “0”). In all these modes the on-die DLL is enabled. 2. ODT turn-on time (tAON.MIN) is when the device leaves high impedance and ODT resistance begins Data Sheet 41 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T 1 T 0 T 3 T 2 T 4 T 5 T 6 T 7 T 8 CK, CK CKE "low" t ODT t IS IS tAOFPDmax tAOFPDmin DQ Rtt tAONPD,min tAONPD,max ODT02 Figure 14 ODT Timing for Precharge Power-Down and Active Power-Down Mode Note: Asynchronous ODT timings apply for Precharge Power-Down Mode and “Slow Exit” Active Power Down Mode (MRS bit A12 set to “1”), where the on-die DLL is disabled in this mode of operation. ODT timing mode switch When entering the Power Down Modes “Slow Exit” Active Power Down and Precharge Power Down two additional timing parameters (tANPD and tAXPD) define if synchronous or asynchronous ODT timings have to be applied. Mode entry As long as the timing parameter tANPD.MIN is satisfied when ODT is turned on or off before entering these power-down modes, synchronous timing parameters Data Sheet can be applied. If tANPD.MIN is not asynchronous timing parameters apply. 42 satisfied, Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T-5 T-4 T-3 T-2 T-1 T0 T1 T2 CK, CK tANPD (3 tck) tIS CKE ODT turn-off, tANPD >= 3 tck : tIS ODT Synchronous timings apply RTT tAOFD ODT turn-off, tANPD <3 tck : ODT Asynchronous timings apply RTT tAOFPDmax ODT turn-on, tANPD >= 3 tck : tIS ODT tAOND Synchronous timings apply RTT tIS ODT turn-on, tANPD < 3 tck : tAONPDmax ODT Asynchronous timings apply RTT ODT03 Figure 15 Data Sheet ODT Mode Entry Timing Diagram 43 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description Mode exit As long as the timing parameter tAXPD.MIN is satisfied when ODT is turned on or off after exiting these powerdown modes, synchronous timing parameters can be T0 T1 T5 applied. If tAXPD.MIN is not satisfied, asynchronous timing parameters apply. T6 T7 T8 T9 T10 CK, CK t IS tAXPD CKE t IS ODT turn-off, tAXPD >= tAXPDmin: Synchronous timings apply ODT Rtt tAOFD ODT turn-off, tAXPD < tAXPDmin: Asynchronous timings apply t IS ODT Rtt tAOFPDmax ODT turn-on, tAXPD >= tAXPDmin: Synchronous timings apply t IS ODT Rtt t IS tAOND ODT turn-on, tAXPD < tAXPDmin: Asynchronous timings apply ODT Rtt tAONPDmax ODT04 Figure 16 Data Sheet ODT Mode Exit Timing Diagram 44 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.14 Bank Activate Command latency must be programmed into the device to delay the R/W command which is internally issued to the device. The additive latency value must be chosen to assure tRCD.MIN is satisfied. Additive latencies of 0, 1, 2, 3, 4 and 5 are supported. Once a bank has been activated it must be precharged before another Bank Activate command can be applied to the same bank. The bank active and precharge times are defined as tRAS and tRP, respectively. The minimum time interval between successive Bank Activate commands to the same bank is determined by tRC. The minimum time interval between Bank Active commands to different banks is tRRD. The Bank Activate command is issued by holding CAS and WE HIGH with CS and RAS LOW at the rising edge of the clock. The bank addresses BA[1:0] are used to select the desired bank. The row addresses A0 through A13 are used to determine which row to activate in the selected bank for ×4 and ×8 organized components. For ×16 components row addresses A0 through A12 have to be applied. The Bank Activate command must be applied before any Read or Write operation can be executed. Immediately after the bank active command, the DDR2 SDRAM can accept a read or write command (with or without Auto-Precharge) on the following clock cycle. If a R/W command is issued to a bank that has not satisfied the tRCD.MIN specification, then additive T0 T1 T2 T3 T4 Tn Tn+1 Tn+2 Tn+3 CK, CK Internal RAS-CAS delay tRCDmin. Address Bank A Bank A Row Addr. Col. Addr. Bank B Row Addr. Bank B Col. Addr. Bank A Addr. NOP Bank B Addr. Bank A Row Addr. Bank A Precharge NOP Bank B Precharge Bank A Activate Bank A to Bank B delay tRRD. additive latency AL=2 Read A Begins Command Bank A Activate Posted CAS Read A Bank B Activate Posted CAS Read B tRAS Row Active Time (Bank A) tRP Row Precharge Time (Bank A) tCCD tRC Row Cycle Time (Bank A) ACT Figure 17 Bank Activate Command Cycle tRCD = 3, AL = 2, tRP = 3, tRRD = 2 Data Sheet 45 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.15 Read and Write Commands and Access Modes After a bank has been activated, a read or write cycle can be executed. This is accomplished by setting RAS HIGH, CS and CAS LOW at the clock’s rising edge. WE must also be defined at this time to determine whether the access cycle is a read operation (WE HIGH) or a write operation (WE LOW). The DDR2 SDRAM provides a wide variety of fast access modes. A single Read or Write Command will initiate a serial read or write operation on successive clock cycles at data rates of up to 533 Mb/sec/pin for main memory. The boundary of the burst cycle is restricted to specific segments of the page length. Command (CA[11, 9:0]). The second, third and fourth access will also occur within this segment, however, the burst order is a function of the starting address, and the burst sequence. In case of a 8-bit burst operation (burst length = 8) the page length of 2048 is divided into 256 uniquely addressable segments (8-bits × 4 I/O each). The 8-bit burst operation will occur entirely within one of the 256 segments (defined by CA[7:0]) beginning with the column address supplied to the device during the Read or Write Command (CA[11, 9:0]). A new burst access must not interrupt the previous 4 bit burst operation in case of BL = 4 setting. Therefore the minimum CAS to CAS delay (tCCD) is a minimum of 2 clocks for read or write cycles. For example, the 32 Mbit × 4 I/O × 4 Bank chip has a page length of 2048 bits (defined by CA[11, 9:0]). In case of a 4-bit burst operation (burst length = 4) the page length of 2048 is divided into 512 uniquely addressable segments (4-bits × 4 I/O each). The 4-bit burst operation will occur entirely within one of the 512 segments (defined by CA[8:0]) starting with the column address supplied to the device during the Read or Write T0 T1 T2 T3 For 8 bit burst operation (BL = 8) the minimum CAS to CAS delay (tCCD) is 4 clocks for read or write cycles. Burst interruption is allowed with 8 bit burst operation. For details see Chapter 3.20. T4 T5 T6 T7 T12 CK, CK CMD READ A NOP READ B tC C D NOP READ C NOP NOP NOP NOP NOP tC C D DQS, DQS DQ Dout A0 Dout A1 Dout A2 Dout A3 Dout B0 Dout B1 Dout B2 Dout B3 Dout C0 Dout C1 Dout C2 Dout C3 RB Figure 18 Read Timing Example CL = 3, AL = 0, RL = 3, BL = 4 Data Sheet 46 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.16 Posted CAS Posted CAS operation is supported to make command and data bus efficient for sustainable bandwidths in DDR2 SDRAM. In this operation, the DDR2 SDRAM allows a Read or Write command to be issued immediately after the bank activate command (or any time during the RAS to CAS delay time, tRCD period). The command is held for the time of the Additive Latency (AL) before it is issued inside the device. The Read Latency (RL) is the sum of AL and the CAS 1 0 2 3 4 latency (CL). Therefore if a user chooses to issue a Read/Write command before the tRCD.MIN, then AL greater than 0 must be written into the EMR(1). The Write Latency (WL) is always defined as RL - 1 (Read Latency -1) where Read Latency is defined as the sum of Additive Latency plus CAS latency (RL=AL+CL). If a user chooses to issue a Read command after the tRCD.MIN period, the Read Latency is also defined as RL = AL + CL. 5 6 7 8 9 10 11 CK, CK WL = RL -1 = 4 CMD Activate Read Bank A Bank A Write Bank A AL = 2 DQS, DQS CL = 3 tRCD RL = AL + CL = 5 DQ Dout0Dout1 Dout2Dout3 Din0 Din1 Din2 Din3 PostCAS Figure 19 Activate to Read Timing Example: Read followed by a write to the same bank Activate to Read delay < tRCD.MIN: AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL -1) = 4, BL = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 CK, CK WL = RL -1 = 4 CMD Write Bank A Activate Read Bank A Bank A AL = 2 DQS, DQS CL = 3 tRCD RL = AL + CL = 5 DQ Dout0 Dout1Dout2 Dout3 Dout4 Dout5 Dout6 Dout7 Din0 Din1 Din2 Din3 PostCAS3 Figure 20 Read to Write Timing Example: Read followed by a write to the same bank Activate to Read delay < tRCD.MIN: AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL -1) = 4, BL = 8 Data Sheet 47 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 0 1 2 3 4 5 6 7 8 9 10 11 CK, CK AL = 0 CMD Activate Bank A Read Bank A Write Bank A CL = 3 DQS, DQS WL = RL -1 = 2 tRCD RL = AL + CL = 3 DQ Dout0 Dout1 Dout2 Dout3 Din0 Din1 Din2 Din3 PostCAS2 Figure 21 Read to Write Timing Example: Read followed by a write to the same bank Activate to Read delay = tRCD.MIN: AL = 0, CL = 3, RL = (AL + CL) = 3, WL = (RL -1) = 2, BL = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CK, CK WL = 3 CMD Activate Bank A Write Bank A Read Bank A tRCD > tRCDmin. DQS, DQS RL = 4 DQ Dout0 Dout1 Dout2 Dout3 Din0 Din1 Din2 Din3 PostCAS5 Figure 22 Read to Write Timing Example: Read followed by a write to the same bank Activate to Read delay > tRCD.MIN: AL = 1, CL = 3, RL = 4, WL = 3, BL = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CK, CK WL = 3 CMD Activate Bank A Write Bank A Read Bank A tRCD > tRCDmin. DQS, DQS RL = 4 DQ Dout0 Dout1 Dout2 Dout3 Din0 Din1 Din2 Din3 PostCAS5 Figure 23 Write to Read Timing Example: Write followed by a read to the same bank AL = 2, CL = 3, RL = 5, WL = 4, tWTR = 2, BL = 4 Data Sheet 48 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.17 Burst Mode Operation Burst mode operation is used to provide a constant flow of data to memory locations (write cycle), or from memory locations (read cycle). The parameters that define how the burst mode will operate are burst sequence and burst length. The DDR2 SDRAM supports 4 bit and 8 bit burst modes only. For 8 bit burst mode, full interleave address ordering is supported, however, sequential address ordering is nibble based for ease of implementation. The burst length is programmable and defined by the addresses A[2:0] of Table 16 the MR. The burst type, either sequential or interleaved, is programmable and defined by the address bit 3 (A3) of the MR. Seamless burst read or write operations are supported. Interruption of a burst read or write operation is prohibited, when burst length = 4 is programmed. For burst interruption of a read or write burst when burst length = 8 is used, see Chapter 3.21. A Burst Stop command is not supported on DDR2 SDRAM devices. Burst Length and Sequence Burst Length Starting Address (A2 A1 A0) Sequential Addressing (decimal) Interleave Addressing (decimal) 4 x00 0, 1, 2, 3 0, 1, 2, 3 x01 1, 2, 3, 0 1, 0, 3, 2 x10 2, 3, 0, 1 2, 3, 0, 1 x11 3, 0, 1, 2 3, 2, 1, 0 000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 001 1, 2, 3, 0, 5, 6, 7, 4 1, 0, 3, 2, 5, 4, 7, 6 010 2, 3, 0, 1, 6, 7, 4, 5 2, 3, 0, 1, 6, 7, 4, 5 011 3, 0, 1, 2, 7, 4, 5, 6 3, 2, 1, 0, 7, 6, 5, 4 100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 101 5, 6, 7, 4, 1, 2, 3, 0 5, 4, 7, 6, 1, 0, 3, 2 110 6, 7, 4, 5, 2, 3, 0, 1 6, 7, 4, 5, 2, 3, 0, 1 111 7, 4, 5, 6, 3, 0, 1, 2 7, 6, 5, 4, 3, 2, 1, 0 8 Note: 1. PageSize and Length is a function of I/O organization: 128Mb x 4 organization (CA[9:0], CA11); Page Size = 1 kByte; Page Length = 2048 64Mb x 8 organization (CA[9:0]); Page Size = 1 kByte; Page Length = 1024 32Mb x 16 organization (CA[9:0]); Page Size = 2 kByte; Page Length = 1024 2. Order of burst access for sequential addressing is “nibble-based” and therefore different from SDR or DDR components Data Sheet 49 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.18 Read Command The Read command is initiated by having CS and CAS LOW while holding RAS and WE HIGH at the rising edge of the clock. The address inputs determine the starting column address for the burst. The delay from the start of the command until the data from the first cell appears on the outputs is equal to the value of the read latency (RL). The data strobe output (DQS) is driven LOW one clock cycle before valid data (DQ) is driven t CH onto the data bus. The first bit of the burst is synchronized with the rising edge of the data strobe (DQS). Each subsequent data-out appears on the DQ pin in phase with the DQS signal in a source synchronous manner. The RL is equal to an additive latency (AL) plus CAS latency (CL). The CL is defined by the Mode Register Set (MRS). The AL is defined by the Extended Mode Register Set (EMRS(1)). t CL t CK CLK CLK, CLK CLK t DQSCK t AC DQS DQS, DQS DQS t RPRE t RPST t LZ DQ Dout t DQSQmax t QH Dout Dout Dout t DQSQmax t HZ t QH DO-Read Figure 24 Basic Read Timing Diagram T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD Posted CAS READ A NOP NOP NOP NOP NOP NOP NOP NOP <= t DQSCK DQS, DQS AL = 2 CL = 3 RL = 5 DQ Dout A0 Dout A1 Dout A2 Dout A3 BRead523 Figure 25 Read Operation Example 1 RL = 5 (AL = 2, CL = 3, BL = 4) Data Sheet 50 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD READ A NOP NOP NOP NOP NOP NOP NOP NOP < = tD Q S C K DQS, DQS CL = 3 RL = 3 DQ's Dout A0 Dout A1 Dout A2 Dout A3 Dout A4 Dout A5 Dout A6 Dout A7 BRead303 Figure 26 Read Operation Example 2 RL = 3 (AL = 0, CL = 3, BL = 8) T0 T3 T1 T4 T5 T6 T7 T8 T9 CK, CK CMD P o ste d C A S READ A NOP NOP P o ste d C A S W R IT E A NOP NOP NOP NOP NOP BL/2 + 2 DQS, DQS WL = RL - 1 = 4 RL = 5 DQ Dout A0 Dout A1 Dout A2 Dout A3 Din A0 Din A1 Din A2 Din A3 BRBW514 Figure 27 Read followed by Write Example RL = 5, WL = (RL-1) = 4, BL = 4 The minimum time from the read command to the write command is defined by a read-to-write turn-around time, which is BL/2 + 2 clocks. Data Sheet 51 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD Posted CAS READ A Posted CAS NOP READ B NOP NOP NOP NOP NOP NOP DQS, DQS AL = 2 CL = 3 RL = 5 DQ Dout A0 Dout A1 Dout A2 Dout A3 Dout B0 Dout B1 Dout B2 Dout B3 SBR523 Figure 28 Seamless Read Operation Example 1 RL = 5, AL = 2, CL = 3, BL = 4 The seamless read operation is supported by enabling a read command at every BL / 2 number of clocks. This operation is allowed regardless of same or different banks as long as the banks are activated. T0 T1 T2 T3 T4 T5 T6 T7 T9 T8 CK, CK CMD Posted CAS READ A NOP NOP NOP Posted CAS NOP READ B NOP NOP NOP NOP DQS, DQS CL = 3 DQ RL = 3 Dout A0 Dout A1 Dout A2 Dout A3 Dout A4 Dout A5 Dout A6 Dout A7 Dout B0 Dout B1 Dout B2 Dout B3 Dout B4 SBR_BL8 Figure 29 Seamless Read Operation Example 2 RL = 3, AL = 0, CL = 3, BL = 8 (non interrupting) The seamless, non interrupting 8-bit read operation is supported by enabling a read command at every BL/2 number of clocks. This operation is allowed regardless of same or different banks as long as the banks are activated. Data Sheet 52 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.19 Write Command successive edges of the DQS until the burst length is completed. When the burst has finished, any additional data supplied to the DQ pins will be ignored. The DQ signal is ignored after the burst write operation is complete. The time from the completion of the burst write to bank precharge is named “write recovery time” (tWR) and is the time needed to store the write data into the memory array. tWR is an analog timing parameter (see Chapter 5) and is not the programmed value for WR in the MRS. The Write command is initiated by having CS, CAS and WE LOW while holding RAS HIGH at the rising edge of the clock. The address inputs determine the starting column address. Write latency (WL) is defined by a read latency (RL) minus one and is equal to (AL + CL – 1). A data strobe signal (DQS) has to be driven LOW (preamble) a time tWPRE prior to the WL. The first data bit of the burst cycle must be applied to the DQ pins at the first rising edge of the DQS following the preamble. The tDQSS specification must be satisfied for write cycles. The subsequent burst bit data are issued on t DQSH t DQSL DQS DQS, DQS DQS t t WPRE Din t Figure 30 Din Din WPST Din t DH DS Basic Write Timing T0 T1 T2 T3 T4 T5 T6 T7 T9 CK, CK CMD Posted CAS WRITE A NOP NOP NOP NOP NOP NOP <= t DQSS Precharge Completion of the Burst Write DQS, DQS tWR WL = RL-1 = 4 DQ NOP DIN A0 DIN A1 DIN A2 DIN A3 BW543 Figure 31 Write Operation Example 1 RL = 5 (AL = 2, CL = 3), WL = 4, BL = 4 Data Sheet 53 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T9 CK, CK CMD Posted CAS WRITE A NOP NOP NOP NOP NOP NOP Precharge Bank A Activate Completion of the Burst Write <= t DQSS DQS, DQS tRP tWR WL = RL-1 = 2 DQ DIN A0 DIN A1 DIN A2 DIN A3 BW322 Figure 32 Write Operation Example 2 RL = 3 (AL = 0, CL = 3), WL = 2, BL = 4 T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 CK, CK Write to Read = (CL - 1)+ BL/2 +tWTR(2) = 6 CMD NOP NOP Posted CAS NOP NOP READ A NOP NOP NOP NOP DQS, DQS DQ CL=3 AL=2 tWTR WL = RL - 1 = 4 DIN A0 DIN A1 DIN A2 DIN A3 RL=5 BWBR Figure 33 Write followed by Read Example RL = 5 (AL = 2, CL = 3), WL = 4, tWTR = 2, BL = 4 The minimum number of clocks from the write command to the read command is (CL - 1) +BL/2 + tWTR, where tWTR is the write-to-read turn-around time tWTR expressed in clock cycles. The tWTR is not a write recovery time (tWR) but the time required to transfer 4 bit write data from the input buffer into sense amplifiers in the array. Data Sheet 54 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD Posted CAS NOP WRITE A Posted CAS WRITE B NOP NOP NOP NOP NOP NOP DQS, DQS WL = RL - 1 = 4 DQ DIN A0 DIN A1 DIN A2 DIN A3 DIN B0 DIN B1 DIN B2 DIN B3 SBR Figure 34 Seamless Write Operation Example 1 RL = 5, WL = 4, BL = 4 The seamless write operation is supported by enabling a write command every BL/2 number of clocks. This operation is allowed regardless of same or different banks as long as the banks are activated. T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD W R IT E A NOP NOP NOP W R IT E B NOP NOP NOP NOP DQS, DQS W L = RL - 1 = 2 DQ DIN A0 DIN A1 DIN A2 DIN A3 DIN A4 DIN A5 DIN A5 DIN A7 DIN B0 DIN B1 DIN B2 DIN B3 DIN B4 DIN B5 DIN SBW_BL8 Figure 35 Seamless Write Operation Example 2 RL = 3, WL = 2, BL = 8, non interrupting The seamless non interrupting 8-bit write operation is supported by enabling a write command at every BL/2 number of clocks. This operation is allowed regardless of same or different banks as long as the banks are activated. Data Sheet 55 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.20 Write Data Mask One write data mask input (DM) for ×4 and ×8 components and two write data mask inputs (LDM, UDM) for ×16 components are supported on DDR2 SDRAM’s, consistent with the implementation on DDR SDRAM’s. It has identical timings on write operations as the data bits, and though used in a uni-directional manner, is internally loaded identically to data bits to insure matched system timing. Data mask is not used during read cycles. If DM is HIGH during a write burst coincident with the write data, the write data bit is not written to the memory. For ×8 components the DM function is disabled, when RDQS / RDQS are enabled by EMRS(1). T $13 ( T $13 , $13$ 13 T 703 4 T 702 % $1 $IN $IN $IN T $3 $IN T $( $- DONgTCARE -04 4 Figure 36 Write Data Mask Timing 4 4 4 4 4 4 4 4 4 4 4 4 #,+ #,+ #-$ 7RITE! ./0 ./0 ./0 ./0 ./0 ./0 0REC H ARG E ./0 "ANK ! !CTIVA TE ./0 T$13 3 $13 $13 7, 2, $1 T72 $IN ! $IN ! $IN ! T20 $IN ! $- -044 Figure 37 Write Operation with Data Mask Example RL = 3 (AL = 0, CL = 3), WL = 2, tWR = 3, BL = 4 Data Sheet 56 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.21 Burst Interruption Interruption of a read or write burst is prohibited for burst length of 4 and only allowed for burst length of 8 under the following conditions: 6. Read or Write burst with Auto-Precharge enabled is not allowed to be interrupted. 7. Read burst interruption is allowed by a Read with Auto-Precharge command. 8. Write burst interruption is allowed by a Write with Auto-Precharge command. 9. All command timings are referenced to burst length set in the mode register. They are not referenced to the actual burst. For example, Minimum Read to Precharge timing is AL + BL/2 where BL is the burst length set in the mode register and not the actual burst (which is shorter because of interrupt). Minimum Write to Precharge timing is WL + BL/ 2 + tWR, where tWR starts with the rising clock after the un-interrupted burst end and not from the end of the actual burst end. 1. A Read Burst can only be interrupted by another Read command. Read burst interruption by a Write or Precharge Command is prohibited. 2. A Write Burst can only be interrupted by another Write command. Write burst interruption by a Read or Precharge Command is prohibited. 3. Read burst interrupt must occur exactly two clocks after the previous Read command. Any other Read burst interrupt timings are prohibited. 4. Write burst interrupt must occur exactly two clocks after the previous Write command. Any other Read burst interrupt timings are prohibited. 5. Read or Write burst interruption is allowed to any bank inside the DDR2 SDRAM. T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD READ A NOP READ B NOP NOP NOP NOP NOP NOP NOP DQ S, DQS DQ Dout A0 Dout A1 Dout A2 Dout A3 Dout B0 Dout B1 Dout B2 Dout B3 Dout B4 Dout B5 Dout B6 Dout B7 RBI Figure 38 Read Interrupt Timing Example 1 CL = 3, AL = 0, RL = 3, BL = 8 T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD NOP W R IT E A NOP W R IT E B NOP NOP NOP NOP NOP NOP DQ S, DQS DQ Din A0 Din A1 Din A2 Din A3 Din B0 Din B1 Din B2 Din B3 Dout B4 Din B5 Din B6 Din B7 WBI Figure 39 Write Interrupt Timing Example 2 CL = 3, AL = 0, WL = 2, BL = 8 Data Sheet 57 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.22 Precharge Command The Pre-charge Command can be used to precharge each bank independently or all banks simultaneously. 3 address bits A10, BA[1:0] are used to define which bank to precharge when the command is issued. The Precharge Command is used to precharge or close a bank that has been activated. The Precharge Command is triggered when CS, RAS and WE are LOW and CAS is HIGH at the rising edge of the clock. Table 17 Bank Selection for Precharge by Address Bits A10 BA1 BA0 Precharge Bank(s) 0 0 0 Bank 0 only 0 0 1 Bank 1 only 0 1 0 Bank 2 only 0 1 1 Bank 3 only 1 Don’t Care Don’t Care all banks Note: The bank address assignment is the same for activating and precharging a specific bank. 3.22.1 Read Followed by a Precharge The following rules apply as long as the tRTP timing parameter - Internal Read to Precharge Command delay time - is less or equal two clocks, which is the case for operating frequencies less or equal 266 MHz (DDR2 400 and 533 speed sorts). The term (tRTP - 2×tCK) is 0 clocks for operating frequencies less or equal 266 MHz (DDR2-400 and DDR2-533 product speed sorts). The term (tRTP - 2×tCK) is one clock for frequencies higher then 266 MHz (DDR2-667 speed sort). Minimum Read to Precharge command spacing to the same bank = AL + BL/2 clocks. For the earliest possible precharge, the Precharge command may be issued on the rising edge which is “Additive Latency (AL) + BL/2 clocks” after a Read Command, as long as the minimum tRAS timing is satisfied. A new bank active command may be issued to the same bank if the following two conditions are satisfied simultaneously: T0 T1 T2 T3 1. The RAS precharge time (tRP) has been satisfied from the clock at which the precharge begins. 2. The RAS cycle time (tRC.MIN) from the previous bank activation has been satisfied. T4 T5 T6 T7 T8 CK, CK CMD Posted CAS NOP NOP READ A Precharge AL + BL/2 clks Bank A Activate NOP NOP NOP NOP tRP DQS, DQS AL = 1 CL = 3 RL = 4 DQ Dout A0 >=tRAS Dout A1 Dout A2 Dout A3 CL = 3 >=tRC >=tRTP BR-P413 Figure 40 Read Operation Followed by Precharge Example 1 RL = 4 (AL = 1, CL = 3), BL = 4, tRTP ≤ 2 CKs Data Sheet 58 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD Posted CAS NOP NOP NOP READ A NOP Precharge NOP NOP AL + BL/2 clks Bank A Activate tRP DQS, DQS AL = 1 CL = 3 RL = 4 DQ Dout A0 >=tRAS Dout A1 Dout A2 Dout A3 Dout A4 Dout A5 Dout A6 Dout A7 CL = 3 >=tRC >=tRTP first 4-bit prefetch Figure 41 BR-P413(8) second 4-bit prefetch Read Operation Followed by Precharge Example 2 RL = 4 (AL = 1, CL = 3), BL = 8, tRTP ≤ 2 CKs T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD Posted CAS NOP NOP READ A NOP NOP Precharge AL + BL/2 clks Bank A Activate NOP NOP tRP DQS, DQS AL = 2 CL = 3 RL = 5 DQ Dout A0 >=tRAS Dout A1 Dout A2 Dout A3 CL = 3 >=tRC >=tRTP Figure 42 BR-P523 Read Operation Followed by Precharge Example 3 RL = 5 (AL = 2, CL = 3), BL = 4, tRTP ≤ 2 CKs Data Sheet 59 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD Posted CAS NOP NOP READ A Precharge A NOP NOP NOP AL + BL/2 clocks Bank A Activate NOP tRP DQS, DQS AL = 2 CL = 4 RL = 6 DQ Dout A0 >=tRAS Dout A1 Dout A2 Dout A3 CL = 4 >=tRC >=tRTP Figure 43 BR-P624 Read Operation Followed by Precharge Example 4 T1 T2 CK, CK READ A NOP NOP T4 NOP NOP T5 T6 P re ch a rg e A L + B L /2 clks + 1 DQS, DQS CL = 4 E- RL = 4 DQ T7 T8 NOP NOP RE CMD T3 LE T0 A RL = 6, (AL = 2, CL = 4), BL = 4, tRTP ≤ 2 CKs B ank A A ctiva te tR P Dout A0 Dout A1 Dout A2 Dout A3 Dout A4 Dout A5 Dout A6 Dout A7 PR > = tR A S first 4-bit prefetch Figure 44 > = tR T P BR-P404(8) second 4-bit prefetch Read Operation Followed by Precharge Example 5 RL = 4, (AL = 0, CL = 4), BL = 8, tRTP > 2 CKs 3.22.2 Write followed by Precharge Minimum Write to Precharge command spacing to the same bank = WL + BL/2 + tWR. For write cycles, a delay must be satisfied from the completion of the last burst write cycle until the Precharge command can be issued. This delay is known as a write recovery time (tWR) referenced from the completion of the burst write Data Sheet to the Precharge command. No Precharge command should be issued prior to the tWR delay, as DDR2 SDRAM does not support any burst interrupt by a Precharge command. tWR is an analog timing parameter (see Chapter 7) and is not the programmed value WR in the MR. 60 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD Posted CAS WRITE A NOP NOP NOP NOP NOP NOP NOP Precharge A Completion of the Burst Write DQS, DQS tWR WL = 3 DQ DIN A0 DIN A1 DIN A2 DIN A3 BW-P3 Figure 45 Write followed by Precharge Example 1 WL = (RL - 1) = 3, BL = 4, tWR = 3 T0 T1 T2 T3 T4 T5 T6 T7 T9 CK, CK CMD Posted CAS WRITE A NOP NOP NOP NOP NOP NOP NOP Precharge A Completion of the Burst Write DQS, DQS tWR WL = 4 DQ DIN A0 DIN A1 DIN A2 DIN A3 BW-P4 Figure 46 Write followed by Precharge Example 2 WL = (RL - 1) = 4, BL = 4, tWR = 3 Data Sheet 61 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.23 Auto-Precharge Operation Before a new row in an active bank can be opened, the active bank must be precharged using either the Precharge Command or the Auto-Precharge function. When a Read or a Write Command is given to the DDR2 SDRAM, the CAS timing accepts one extra address, column address A10, to allow the active bank to automatically begin precharge at the earliest possible moment during the burst read or write cycle. If A10 is LOW when the Read or Write Command is issued, then normal Read or Write burst operation is executed and the bank remains active at the completion of the burst sequence. If A10 is HIGH when the Read or Write Command is issued, then the AutoPrecharge function is enabled. During Auto-Precharge, a Read Command will execute as normal with the exception that the active bank will begin to precharge 3.23.1 internally on the rising edge which is CAS Latency (CL) clock cycles before the end of the read burst. AutoPrecharge is also implemented for Write Commands. The Precharge operation engaged by the AutoPrecharge command will not begin until the last data of the write burst sequence is properly stored in the memory array. This feature allows the precharge operation to be partially or completely hidden during burst read cycles (dependent upon CAS Latency) thus improving system performance for random data access. The RAS lockout circuit internally delays the Precharge operation until the array restore operation has been completed so that the Auto-Precharge command may be issued with any read or write command. Read with Auto-Precharge If A10 is 1 when a Read Command is issued, the Read with Auto-Precharge function is engaged. The DDR2 SDRAM starts an Auto-Precharge operation on the rising edge which is (AL + BL/2) cycles later from the Read with AP command if tRAS.MIN and tRTP are satisfied. If tRAS.MIN is not satisfied at the edge, the start point of Auto-Precharge operation will be delayed until tRAS.MIN is satisfied. If tRTP.MIN is not satisfied at the edge, the start point of Auto-Precharge operation will be delayed until tRTP.MIN is satisfied. Auto-Precharge to the next Activate command becomes AL + tRTP + tRP. For BL = 8 the time from Read with Auto-Precharge to the next Activate command is AL + 2 + tRTP + tRP. Note that (tRTP + tRP) has to be rounded up to the next integer value. In any event internal precharge does not start earlier than two clocks after the last 4-bit prefetch. In case the internal precharge is pushed out by tRTP, tRP starts at the point where the internal precharge happens (not at the next rising clock edge after this event). So for BL = 4 the minimum time from Read with 1. The RAS precharge time (tRP) has been satisfied from the clock at which the Auto-Precharge begins. 2. The RAS cycle time (tRC) from the previous bank activation has been satisfied. Data Sheet A new bank active command may be issued to the same bank if the following two conditions are satisfied simultaneously: 62 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD P o ste d C A S R E A D w /A P NOP NOP NOP NOP NOP NOP NOP B ank A ctiva te A10 ="high" AL + BL/2 A u to -P re ch a rg e B e g in s DQS, DQS AL = 2 CL = 3 tRP RL = 5 DQ Dout A0 Dout A1 Dout A2 Dout A3 tRAS tRCmin. BR-AP5231 Figure 47 Read with Auto-Precharge Example 1, followed by an Activation to the Same Bank (tRC Limit) RL = 5 (AL = 2, CL = 3), BL = 4, tRTP ≤ 2 CKs T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK CMD P o ste d C A S R E A D w /A P NOP NOP NOP NOP NOP B ank A ctiv a te NOP NOP A10 ="high" A u to -P re ch a rg e B e g in s tRAS(min) DQS, DQS AL = 2 CL = 3 tRP RL = 5 DQ Dout A0 Dout A1 Dout A2 Dout A3 tRC BR-AP5232 Figure 48 Read with Auto-Precharge Example 2, followed by an Activation to the Same Bank (tRAS Limit) RL = 5 (AL = 2, CL = 3), BL = 4, tRTP ≤ 2 CKs Data Sheet 63 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 T8 CK, CK P o ste d C A S R E A D w /A P CMD NOP NOP NOP A10 ="high" NOP NOP NOP AL + BL/2 NOP B ank A ctiva te tRP A u to -P re ch a rg e B e g in s DQS, DQS AL = 1 CL = 3 RL = 4 DQ Dout A0 Dout A1 Dout A2 Dout A3 Dout A4 Dout A5 Dout A6 Dout A7 >= tRTP BR-AP413(8)2 second 4-bit prefetch first 4-bit prefetch Read with Auto-Precharge Example 3, followed by an Activation to the Same Bank RL = 4 (AL = 1, CL = 3), BL = 8, tRTP ≤ 2 CKs T1 T2 CK, CK Posted CAS READ w/AP A10 ="high" NOP NOP T4 NOP NOP T5 T6 NOP T7 NOP NOP RE CMD T3 LE T0 A Figure 49 T8 Bank Activate AL + tRTP + tRP Auto-Precharge Begins AL = 1 DQ CL = 4 E- DQS, DQS RL = 5 Dout A0 tRTP Dout A1 Dout A2 Dout A3 PR tRP BR-AP4133 first 4-bit prefetch Figure 50 Read with Auto-Precharge Example 4, followed by an Activation to the Same Bank, RL = 5 (AL = 1, CL = 4), BL = 4, tRTP = 3 CKs Data Sheet 64 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.23.2 Write with Auto-Precharge 1. The last data-in to bank activate delay time (tDAL = WR + tRP) has been satisfied. 2. The RAS cycle time (tRC) from the previous bank activation has been satisfied. If A10 is HIGH when a Write Command is issued, the Write with Auto-Precharge function is engaged. The DDR2 SDRAM automatically begins precharge operation after the completion of the write burst plus the write recovery time delay (WR), programmed in the MRS register, as long as tRAS is satisfied. The bank undergoing Auto-Precharge from the completion of the write burst may be reactivated if the following two conditions are satisfied. T0 T1 T2 T3 In DDR2 SDRAM’s the write recovery time delay (WR) has to be programmed into the MRS mode register. As long as the analog tWR timing parameter is not violated, WR can be programmed between 2 and 6 clock cycles. Minimum Write to Activate command spacing to the same bank = WL + BL/2 + tDAL. T4 T5 T6 T7 CK, CK W R IT E w /A P CMD NOP NOP A10 ="high" NOP NOP NOP NOP Completion of the Burst Write NOP B ank A A c tiv a te A u to -P re ch a rg e B e g in s DQS, DQS WR WL = RL-1 = 2 tRP tDAL DQ DIN A0 DIN A1 DIN A2 DIN A3 tRCmin. >=tRASmin. BW-AP223 Write with Auto-Precharge Example 1 (tRC Limit) Figure 51 WL = 2, tDAL = 6 (WR = 3, tRP = 3), BL = 4 T0 T3 T4 T5 T6 NOP NOP NOP T8 T7 T9 T12 CK, CK P o ste d C A S W R IT E w /A P CMD A10 ="high" NOP NOP NOP NOP B ank A A ctiva te Completion of the Burst Write A u to -P re ch a rg e B e g in s DQS, DQS WR WL = RL-1 = 4 tRP tDAL DQ DIN A0 DIN A1 DIN A2 DIN A3 >=tRC >=tRAS BW-AP423 Figure 52 Write with Auto-Precharge Example 2 (WR + tRP Limit) WL = 4, tDAL = 6 (WR = 3, tRP = 3), BL = 4 Data Sheet 65 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.23.3 Read or Write to Precharge Command Spacing Summary The following table summarizes the minimum command delays between Read, Read w/AP, Write, Write w/AP to the Precharge commands to the same banks and Precharge-All commands. Table 18 Minimum Command Delays From Command To Command Minimum Delay between “From Command” to “To Command” Unit Note READ PRECHARGE (to same banks as READ) AL + BL/2 + max(tRTP, 2) - 2×tCK tCK 1)2) PRECHARGE-ALL AL + BL/2 + max(tRTP, 2) - 2×tCK 1)2) PRECHARGE (to same banks as READ w/AP) AL + BL/2 + max(tRTP, 2) - 2×tCK tCK tCK PRECHARGE-ALL AL + BL/2 + max(tRTP, 2) - 2×tCK 1)2) PRECHARGE (to same banks as WRITE) WL + BL/2 + tWR tCK tCK PRECHARGE-ALL WL + BL/2 + tWR 2) PRECHARGE (to same banks as WRITE w/AP) WL + BL/2 + WR tCK tCK PRECHARGE-ALL WL + BL/2 + WR 2) PRECHARGE (to same banks as PRECHARGE) 1 tCK tCK PRECHARGE-ALL 1 tCK tCK tCK 2) READ w/AP WRITE WRITE w/AP PRECHARGE PRECHARGE-ALL PRECHARGE 1 PRECHARGE-ALL 1 1)2) 2) 2) 2) 2) 2) 1) RU{tRTP(ns) / tCK(ns)} must be used, where RU stands for “Round Up” 2) For a given bank, the precharge period should be counted from the latest precharge command, either one bank precharge or precharge-all, issued to that bank. The precharge period is satisfied after tRP,all depending on the latest precharge command issued to that bank Data Sheet 66 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.23.4 Concurrent Auto-Precharge DDR2 devices support the “Concurrent AutoPrecharge” feature. A Read with Auto-Precharge enabled, or a Write with Auto-Precharge enabled, may be followed by any command to the other bank, as long as that command does not interrupt the read or write data transfer, and all other related limitations (e.g. contention between Read data and Write data must be avoided externally and on the internal data bus). Table 19 The minimum delay from a Read or Write command with Auto-Precharge enabled, to a command to a different bank, is summarized in the Command Delay Table. As defined, the WL = RL - 1 for DDR2 devices which allows the command gap and corresponding data gaps to be minimized. Command Delay Table From Command To Command (different bank, non-interrupting command) Minimum Delay with Concurrent Auto- Unit Precharge Support WRITE w/AP Read w/AP Read or Read w/AP (CL -1) + (BL/2) + tWTR Write or Write w/AP BL/2 Precharge or Activate 1 Read or Read w/AP BL/2 Write or Write w/AP BL/2 + 2 Precharge or Activate 1 tCK tCK tCK tCK tCK tCK Note 1) 1) 1) This rule only applies to a selective Precharge command to another bank, a Precharge-All command is illegal 3.24 Refresh DDR2 SDRAM requires a refresh of all rows in any rolling 64 ms interval. The necessary refresh can be generated in one of two ways: by explicit Auto-Refresh commands or by an internally timed Self-Refresh mode. 3.24.1 Auto-Refresh Command Auto-Refresh is used during normal operation of the DDR2 SDRAM’s. This command is non persistent, so it must be issued each time a refresh is required. The refresh addressing is generated by the internal refresh controller. This makes the address bits ”don’t care” during an Auto-Refresh command. The DDR2 SDRAM requires Auto-Refresh cycles at an average periodic interval of tREFI.MAX. external address bus is required once this cycle has started. When the refresh cycle has completed, all banks of the SDRAM will be in the precharged (idle) state. A delay between the Auto-Refresh Command and the next Activate Command or subsequent Auto-Refresh Command must be greater than or equal to the AutoRefresh cycle time (tRFC). To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided. A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM, meaning that the maximum absolute interval between any Auto-Refresh command and the next Auto-Refresh command is 9 × tREFI. When CS, RAS and CAS are held LOW and WE HIGH at the rising edge of the clock, the chip enters the AutoRefresh mode. All banks of the SDRAM must be precharged and idle for a minimum of the precharge time (tRP) before the Auto-Refresh Command can be applied. An internal address counter supplies the addresses during the refresh cycle. No control of the Data Sheet 67 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 CK, CK "high" CKE CMD P re ch a rg e NOP > = t RFC > = t RFC > = tRP NOP AUTO REFRESH NOP AUTO REFRESH NOP NOP ANY AR Figure 53 Auto Refresh Timing 3.24.2 Self-Refresh Command clock after Self-Refresh entry is registered, however, the clock must be restarted and stable before the device can exit Self-Refresh operation. The Self-Refresh command can be used to retain data, even if the rest of the system is powered down. When in the Self-Refresh mode, the DDR2 SDRAM retains data without external clocking. The DDR2 SDRAM device has a built-in timer to accommodate SelfRefresh operation. The Self-Refresh Command is defined by having CS, RAS, CAS and CKE held LOW with WE HIGH at the rising edge of the clock. The device must be in idle state and ODT must be turned off before issuing Self Refresh command, by either driving ODT pin LOW or using EMRS(1) command. Once the command is registered, CKE must be held LOW to keep the device in Self-Refresh mode. The DLL is automatically disabled upon entering Self Refresh and is automatically enabled upon exiting Self Refresh. When the DDR2 SDRAM has entered Self-Refresh mode all of the external control signals, except CKE, are “don’t care”. The DRAM initiates a minimum of one Auto Refresh command internally within tCKE period once it enters Self Refresh mode. The clock is internally disabled during Self-Refresh Operation to save power. The minimum time that the DDR2 SDRAM must remain in Self Refresh mode is tCKE. The user may change the external clock frequency or halt the external clock one Data Sheet The procedure for exiting Self Refresh requires a sequence of commands. First, the clock must be stable prior to CKE going back HIGH. Once Self-Refresh Exit command is registered, a delay of at least tXSNR must be satisfied before a valid command can be issued to the device to allow for any internal refresh in progress. CKE must remain HIGH for the entire Self-Refresh exit period tXSRD for proper operation. Upon exit from Self Refresh, the DDR2 SDRAM can be put back into Self Refresh mode after tXSNR expires. NOP or deselect commands must be registered on each positive clock edge during the Self-Refresh exit interval tXSNR. ODT should be turned off during tXSNR. The use of Self Refresh mode introduces the possibility that an internally timed refresh event can be missed when CKE is raised for exit from Self Refresh mode. Upon exit from Self Refresh, the DDR2 SDRAM requires a minimum of one extra auto refresh command before it is put back into Self Refresh Mode. 68 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T4 T3 T5 Tm Tn Tr CK/CK tRP tis tis tCKE CKE tis tAOFD >=tXSRD >= tXSNR ODT Self Refresh Entry CMD NOP CK/CK may be halted Figure 54 CK/CK must be stable 3. tXSNR has to be satisfied for any command except a Read or a Read with Auto-Precharge command 4. Since CKE is an SSTL input, VREF must be maintained during Self Refresh. 1. Device must be in the “All banks idle” state before entering Self Refresh mode. 2. tXSRD (≥ 200 tCK) has to be satisfied for a Read or a Read with Auto-Precharge command. Power-Down Power-down is synchronously entered when CKE is registered LOW, along with NOP or Deselect command. CKE is not allowed to go LOW while mode register or extended mode register command time, or read or write operation is in progress. CKE is allowed to go LOW while any other operation such as row activation, Precharge, Auto-Precharge or Auto-Refresh is in progress, but power-down IDD specification will not be applied until finishing those operations. For Active Power-down two different power saving modes can be selected within the MRS register, address bit A12. When A12 is set to LOW this mode is referred as “standard active power-down mode” and a fast power-down exit timing defined by the tXARD timing parameter can be used. When A12 is set to HIGH this mode is referred as a power saving “low power active power-down mode”. This mode takes longer to exit from the power-down mode and the tXARDS timing parameter has to be satisfied. The DLL should be in a locked state when power-down is entered. Otherwise DLL should be reset after exiting power-down mode for proper read operation. DRAM design guarantees it’s DLL in a locked state with any CKE intensive operations as long as DRAM controller complies with DRAM specifications. Entering power-down deactivates the input and output buffers, excluding CK, CK, ODT and CKE. Also the DLL is disabled upon entering Precharge Power-down or slow exit active power-down, but the DLL is kept enabled during fast exit active power-down. In powerdown mode, CKE LOW and a stable clock signal must be maintained at the inputs of the DDR2 SDRAM, and all other input signals are “Don’t Care”. Power-down duration is limited by 9 times tREFI of the device. If power-down occurs when all banks are precharged, this mode is referred to as Precharge Power-down; if power-down occurs when there is a row active in any bank, this mode is referred to as Active Power-down. Data Sheet Read Command Self Refresh Timing Note: 3.25 Non-Read Command 69 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description Power-Down Entry Active Power-down mode can be entered after an Activate command. Precharge Power-down mode can be entered after a Precharge, Precharge-All or internal precharge command. It is also allowed to enter powermode after an Auto-Refresh command or MRS / EMRS(1) command when tMRD is satisfied. Active Power-down mode entry is prohibited as long as a Write Burst and the internal write recovery is in progress. In case of a write command, active powerdown mode entry is allowed when WL + BL/2 + tWTR is satisfied. In case of a write command with Auto-Precharge, Power-down mode entry is allowed after the internal precharge command has been executed, which is WL + BL/2 + WR starting from the write with AutoPrecharge command. In this case the DDR2 SDRAM enters the Precharge Power-down mode. Active Power-down mode entry is prohibited as long as a Read Burst is in progress, meaning CKE should be kept HIGH until the burst operation is finished. Therefore Active Power-Down mode entry after a Read or Read with Auto-Precharge command is allowed after RL + BL/2 is satisfied. Power-Down Exit applied with power-down exit latency, tXP, tXARD or tXARDS, after CKE goes HIGH. Power-down exit The power-down state is synchronously exited when CKE is registered HIGH (along with a NOP or Deselect command). A valid, executable command can be T0 T1 latencies are defined in Chapter 7.2. T2 Tn Tn+1 Tn+2 CK, CK CMD CKE A ctivate NOP NOP NOP NOP NOP V alid C om m and tIS tIS tXARD or tXARDS *) Act.PD 0 Active Power-Down Exit Active Power-Down Entry Figure 55 Active Power-Down Mode Entry and Exit after an Activate Command Note: Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed state in the MR, address bit A12. Example : Active Power-Down Mode Entry and Exit after Read Command : RL = 4 (AL = 1, CL =3), BL = 4 Data Sheet 70 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 T7 Tn T8 Tn+1 Tn+2 CK, CK READ R E A D w /A P NOP NOP NO P NOP NOP NOP NOP NOP NOP PY CMD NOP V a lid C o m m an d tIS CKE RL + BL/2 tIS DQS, DQS CL = 3 CO AL = 1 RL = 4 DQ Dout A0 Dout A1 Dout A2 Dout A3 Active Power-Down Entry Figure 56 tXARD or tXARDS *) Active Power-Down Exit Act.PD 1 Active Power-Down Mode Entry and Exit Example after a Read Command T0 T1 T2 T3 P re ch a rg e *) NOP NOP NOP Tn+1 NOP NOP Tn+2 V a lid C om m a nd NOP tIS C KE tRP tIS tXP Precharge Power-Down Exit RE Precharge Power-Down Entry Figure 57 NOP -R CMD Tn EL CK, CK EA Note: Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed state in the MR, address bit A12. Active Power-Down Mode Entry and Exit Example after a Write Command WL = 2, tWTR = 2, BL = 4 Note: Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed state in the MR, address bit A12. Data Sheet 71 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 T5 T6 Tn T7 Tn+1 Tn+2 CK, CK W R IT E w /A P NOP NOP NOP NOP CKE NOP NOP WL + BL/2 + WR NOP tIS WR CO DQ DIN A0 DIN A1 DIN A2 DIN A3 Active Power-Down Entry Figure 58 NOP V a lid C o m m a nd NOP tIS DQS, DQS WL = RL - 1 = 2 NOP PY CMD tXARD or tXARDS *) Active Power-Down Exit Act.PD 3 Active Power-Down Mode Entry and Exit Example after a Write Command with AP WL = 2, WR = 3, BL = 4 Note: Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed state in the MR, address bit A12. WR is the programmed value in the MRS mode register. T0 T1 T2 T3 Tn Tn+1 Tn+2 CK, CK CMD Precharge NOP NOP NOP NOP NOP NOP Valid Command NOP tIS CKE tIS tXP tRP Precharge Power-Down Entry Figure 59 Precharge Power-Down Exit Precharge Power Down Mode Entry and Exit Note: "Precharge" may be an external command or an internal precharge following Write with AP. Data Sheet 72 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description T0 T1 T2 T3 T4 Tn CK, CK tRFC Auto Refresh CMD tXP Valid Command CKE tis CKE can go low one clock after an Auto-Refresh command When tRFC expires the DRAM is in Precharge Power-Down Mode Figure 60 ARPD Auto-Refresh command to Power-Down entry T0 T1 T2 T3 T4 T5 T6 T7 CK, CK CMD MRS or EMRS t MRD CKE Enters Precharge Power-Down Mode Figure 61 MRS, EMRS command to Power-Down entry 3.26 Other Commands 3.26.1 No Operation Command The No Operation Command (NOP) should be used in cases when the SDRAM is in a idle or a wait state. The purpose of the No Operation Command is to prevent the SDRAM from registering any unwanted commands between operations. A No Operation Command is 3.26.2 registered when CS is LOW with RAS, CAS, and WE held HIGH at the rising edge of the clock. A No Operation Command will not terminate a previous operation that is still executing, such as a burst read or write cycle. Deselect Command The Deselect Command performs the same function as a No Operation Command. Deselect Command occurs Data Sheet MRS_PD when CS is brought HIGH, the RAS, CAS, and WE signals become don’t care. 73 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Functional Description 3.27 Input Clock Frequency Change cycles after tRP and tAOFD have been satisfied the input clock frequency can be changed. A stable new clock frequency has to be provided, before CKE can be changed to a HIGH logic level again. After tXP has been satisfied a DLL RESET command via EMRS(1) has to be issued. During the following DLL re-lock period of 200 clock cycles, ODT must remain off. After the DLLre-lock period the DRAM is ready to operate with the new clock frequency. During operation the DRAM input clock frequency can be changed under the following conditions: • • During Self-Refresh operation DRAM is in Precharge Power-down mode and ODT is completely turned off. In the Precharge Power-down mode the DDR2SDRAM has to be in Precharged Power-down mode and idle. ODT must be already turned off and CKE must be at a logic LOW state. After a minimum of two clock T0 T1 T2 T3 T4 Tx Tx+1 Ty Ty+2 Ty+1 Tz Ty+3 CK, CK CMD NOP NOP NOP NOP NOP NOP NOP NOP NOP D LL RESET NOP V alid C om m and CKE tRP tAOFD tXP Minimum 2 clocks required before changing the frequency Frequency Change occurs here 200 clocks Stable new clock before power-down exit ODT is off during DLL RESET Frequ.Ch. Figure 62 Input Frequency Change Example during Precharge Power-Down mode 3.28 Asynchronous CKE LOW Reset Event In a given system, Asynchronous Reset event can occur at any time without prior knowledge. In this situation, memory controller is forced to drop CKE asynchronously LOW, immediately interrupting any valid operation. DRAM requires CKE to be maintained HIGH for all valid operations as defined in this data sheet. If CKE asynchronously drops LOW during any valid operation, the DRAM is not guaranteed to preserve the contents of the memory array. If this event occurs, the memory controller must satisfy a time delay (tDELAY) before turning off the clocks. Stable clocks must exist at the input of DRAM before CKE is raised HIGH again. The DRAM must be fully re-initialized as described the initialization sequence (Power On and Initialization, step 4 through 13). DRAM is ready for normal operation after the initialization sequence. See Chapter 7 for tDELAY specification. stable clocks CK, CK tdelay CKE CKE drops low due to an asynchronous reset event Figure 63 Data Sheet Clocks can be turned off after this point Asynchronous Low Reset Event 74 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Truth tables 4 Truth tables Table 20 Command Truth Table Function CKE CS RAS CAS WE BA0 A[12:11] A10 A[9:0] BA1 Previous Current Cycle Cycle Note1)2)3) (Extended) Mode Register Set H H L L L L BA OP Code 4)5) Auto-Refresh H H L L L H X X X X 4) Self-Refresh Entry H L L L L H X X X X 4)6) Self-Refresh Exit L H H X X X X X X X 4)6)7) L H H H Single Bank Precharge H H L L H L BA X L X 4)5) Precharge all Banks H H L L H L X X H X 4) Bank Activate H H L L H H BA Row Address Write H H L H L L BA Column L Column 4)5)8) Write with AutoPrecharge H H L H L L BA Column H Column 4)5)8) Read H H L H L H BA Column L Column 4)5)8) Read with AutoPrecharge H H L H L H BA Column H Column 4)5)8) No Operation H X L H H H X X X X 4) Device Deselect H X H X X X X X X X 4) Power Down Entry H L H X X X X X X X 4)9) L H H H Power Down Exit L H H X X X X X X X 4)9) L H H H 4)5) 1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. 2) “X” means “H or L (but a defined logic level)”. 3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock. 5) Bank addresses (BAx) determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register. 6) VREF must be maintained during Self Refresh operation. 7) Self Refresh Exit is asynchronous. 8) Burst reads or writes at BL = 4 cannot be terminated. See Chapter 3.21 for details. 9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh requirements outlined in Chapter 3.24 Data Sheet 75 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Truth tables Table 21 Clock Enable (CKE) Truth Table for Synchronous Transitions Current State1) CKE Previous Cycle6) Current Cycle6) (N-1) (N) Power-Down Command (N)2) 3) RAS, CAS, WE Action (N)2) Note4)5) Maintain Power-Down 7)8)11) L L X L H DESELECT or NOP Power-Down Exit 7)9)10)11) L L X 8)11)12) L H DESELECT or NOP Self Refresh Exit 9)12)13)14) Bank(s) Active H L DESELECT or NOP Active Power-Down Entry 7)9)10)11)15) All Banks Idle H L DESELECT or NOP Precharge Power-Down Entry 9)10)11)15) H L AUTOREFRESH 7)11)14)16) Any State other H than listed above H Refer to the Command Truth Table Self Refresh Maintain Self Refresh Self Refresh Entry 17) 1) Current state is the state of the DDR2 SDRAM immediately prior to clock edge N. 2) Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N) 3) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. See Chapter 3.24.2. 4) CKE must be maintained HIGH while the device is in OCD calibration mode. 5) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 6) CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. 7) The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh requirements 8) “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)). 9) All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. 10) Valid commands for Power-Down Entry and Exit are NOP and DESELECT only. 11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2×tCKE + tIH. 12) VREF must be maintained during Self Refresh operation. 13) On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read commands may be issued only after tXSRD (200 clocks) is satisfied. 14) Valid commands for Self Refresh Exit are NOP and DESELCT only. 15) Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or Refresh operations are in progress. See Chapter 3.25 and Chapter 3.24 for a detailed list of restrictions. 16) Self Refresh mode can only be entered from the All Banks Idle state. 17) Must be a legal command as defined in the Command Truth Table. Table 22 Data Mask (DM) Truth Table Name (Function) DM DQs Note Write Enable L Valid 1) Write Inhibit H X 1) 1) Used to mask write data; provided coincident with the corresponding data. Data Sheet 76 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 5 AC & DC Operating Conditions 5.1 Absolute Maximum Ratings Table 23 Absolute Maximum Ratings Symbol Parameter VDD VDDQ VDDL VIN, VOUT TSTG Rating Unit Note Voltage on VDD pin relative to VSS –1.0 to +2.3 V 1)2) Voltage on VDDQ pin relative to VSS –0.5 to +2.3 V 1)2) Voltage on VDDL pin relative to VSS –0.5 to +2.3 V 1)2) Voltage on any pin relative to VSS –0.5 to +2.3 V 1) Storage Temperature –55 to +100 °C 1)3) 1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2) VDD, VDDQ and VDDL must be within 300 mV of each other at all times, and VREF must not be greater than 0.6 x VDDQ. However when VDD, VDDQ and VDDL are less than 500 mV, VREF may be equal to or less than 300 mV. 3) Storage Temperature is the case surface temperature on the center/top side of the DRAM. Table 24 DRAM Component Operating Temperature Range Symbol Parameter Rating Unit Note TOPER Operating Temperature 0 to 95 °C 1)2)3)4) 1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters. 3) Above 85 °C case temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs. 4) Self-Refresh period is hard-coded in the chip and therefore it is imperative that the system ensures the DRAM is below 85 °C case temperature before initiating self-refresh operation. Data Sheet 77 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 5.2 DC Characteristics Table 25 Recommended DC Operating Conditions (SSTL_18) Symbol Parameter Min. Typ. Max. VDD VDDDL VDDQ VREF VTT Supply Voltage 1.7 1.8 Supply Voltage for DLL 1.7 Supply Voltage for Output Input Reference Voltage 1) 2) 3) 4) Rating Unit Note 1.9 V 1) 1.8 1.9 V 1) 1.7 1.8 1.9 V 1) 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 2)3) 4) Termination Voltage VREF – 0.04 VREF VREF + 0.04 V VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ. Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in die dc level of VREF. Table 26 ODT DC Electrical Characteristics Parameter / Condition Symbol Min. Nom. Max. Unit Note Termination resistor impedance value for EMRS(1)[A6,A2] = [0,1]; 75 Ohm Rtt1(eff) 60 75 90 Ω 1) Termination resistor impedance value for EMRS(1)[A6,A2] =[1,0]; 150 Ohm Rtt2(eff) 120 150 180 Ω 1) Termination resistor impedance value for EMRS(1)(A6,A2)=[1,1]; 50 Ohm Rtt3(eff) 40 50 60 Ω 1) 2) delta VM –6.00 — + 6.00 % 1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively. Rtt(eff) = (VIH(ac) – VIL(ac)) /(I(VIHac) – I(VILac)). 2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) – 1) x 100% Deviation of VM with respect to VDDQ / 2 Table 27 Input and Output Leakage Currents Symbol Parameter / Condition Min. Max. Unit Note IIL Input Leakage Current; any input 0 V < VIN < VDD –2 +2 µA 1) IOL Output Leakage Current; 0 V < VOUT < VDDQ –5 +5 µA 2) 1) all other pins not under test = 0 V 2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off Data Sheet 78 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 5.3 DC & AC Characteristics DDR2 SDRAM pin timing are specified for either single ended or differential mode depending on the setting of the EMRS(1) “Enable DQS” mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timing are measured is mode dependent. In single ended mode, timing relationships are measured Table 28 Symbol VIH(dc) VIL(dc) VIH(ac) VIL(ac) Table 29 relative to the rising or falling edges of DQS crossing at VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is verified by design and characterization but not subject to production test. In single ended mode, the DQS (and RDQS) signals are internally disabled and don’t care. DC & AC Logic Input Levels Parameter DDR2-400, DDR2-533 DDR2-667 Min. Max. Min. Max. Unit DC input logic high VREF + 0.125 VREF + 0.125 –0.3 –0.3 VDDQ + 0.3 VREF – 0.125 V DC input low VDDQ + 0.3 VREF – 0.125 AC input logic high VREF + 0.250 — VREF + 0.200 — V AC input low — VREF – 0.250 — VREF – 0.200 V V Single-ended AC Input Test Conditions Symbol Condition VREF VSWING.MAX Value Unit Note Input reference voltage 0.5 x VDDQ V 1) Input signal maximum peak to peak swing 1.0 V 1) 2)3) 1.0 V / ns 1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test. 2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to VIL(ac).MAX for falling edges as shown in Figure 64 3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) SLEW Input signal minimum Slew Rate on the negative transitions. Start of Falling Edge Input Timing Start of Rising Edge Input Timing V DDQ V IH (ac) .MIN V IH (dc) .MIN V SWING.MAX V REF V IL (dc) .MAX V V delta TF Falling Slew = Data Sheet SS delta TR V REF - V IL (ac).MAX Rising Slew = V IH(ac).MIN -V REF delta TR delta TF Figure 64 IL (ac) .MAX Single-ended AC Input Test Conditions Diagram 79 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions Table 30 Differential DC and AC Input and Output Logic Levels Symbol Parameter Min. VIN(dc) VID(dc) VID(ac) VIX(ac) DC input signal voltage –0.3 DC differential input voltage 0.25 AC differential input voltage 0.5 AC differential cross point input voltage VOX(ac) AC differential cross point output voltage Max. Unit Note — 1) — 2) V 3) 0.5 × VDDQ – 0.175 VDDQ + 0.3 VDDQ + 0.6 VDDQ + 0.6 0.5 × VDDQ + 0.175 V 4) 0.5 × VDDQ – 0.125 0.5 × VDDQ + 0.125 V 5) VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc. VID(dc) specifies the input differential voltage VTR– VCP required for switching. The minimum value is equal to VIH(dc) – VIL(dc). VID(ac) specifies the input differential voltage VTR – VCP required for switching. The minimum value is equal to VIH(ac) – VIL(ac). The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac) indicates the voltage at which differential input signals must cross. 5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac) indicates the voltage at which differential input signals must cross. 1) 2) 3) 4) VDDQ VTR Crossing Point VID VIX or VOX VCP VSSQ SSTL18_3 Figure 65 Data Sheet Differential DC and AC Input and Output Logic Levels Diagram 80 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 5.4 Output Buffer Characteristics Table 31 SSTL_18 Output DC Current Drive Symbol IOH IOL Parameter SSTL_18 Output Minimum Source DC Current –13.4 Unit Note mA 1)2) 2)3) Output Minimum Sink DC Current 13.4 mA 1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT–VDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ – 280 mV. 2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN. plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement. 3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV. Table 32 SSTL_18 Output AC Test Conditions Symbol Parameter VOH VOL VOTR SSTL_18 VTT + 0.603 VTT – 0.603 0.5 × VDDQ Minimum Required Output Pull-up Maximum Required Output Pull-down Unit Note V 1) V 1) Output Timing Measurement Reference Level V 1) SSTL_18 test load for VOH and VOL is different from the referenced load described in Chapter 8.1. The SSTL_18 test load has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that ± 335 mV must be developed across the effectively 25 Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA × 45 Ohm = 603 mV). Table 33 OCD Default Characteristics Symbol Description Min. Nominal Max. Unit Note — Output Impedance 12.6 18 23.4 Ohms 1)2) — Pull-up / Pull down mismatch 0 — 4 Ohms 1)2)3) — Output Impedance step size for OCD calibration 0 — 1.5 Ohms 4) 1)5)6)7)8) Output Slew Rate 1.5 — 5.0 V / ns 1) Absolute Specifications (TOPER; VDD = 1.8 V ± 0.1 V; VDDQ = 1.8 V ± 0.1 V), altering OCD from default state no longer SOUT 2) 3) 4) 5) 6) 7) 8) requires DRAM to meet timing, voltage and slew rate specifications on I/O’s. Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT–VDDQ) / IOH must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V; VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV. Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 ± 0.75 Ohms under nominal conditions. Slew Rates according to Chapter 8.2.1 VIL(ac) to VIH(ac) with the load specified in Figure 72. The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC. This is verified by design and characterization but not subject to production test. Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS specification. DRAM output Slew Rate specification applies to 400, 533 and 667 MHz speed bins. Data Sheet 81 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 5.5 Full Strength Output V-I Characteristics DDR2 SDRAM output driver characteristics are defined for full strength default operation as selected by the EMRS(1) bits A[9:7] =’111’. Figure 66 and Figure 67 Table 34 Voltage (V) show the driver characteristics graphically and the tables show the same data suitable for input into simulation tools. Full Strength Default Pull-up Driver Characteristics Pull-up Driver Current [mA] Min.1) IBIS Target low2) IBIS Target high2) Max.3) 0.0 0.00 0.00 0.00 0.00 0.1 –4.30 –5.55 –5.90 –7.95 0.2 –8.6 –11.10 –11.8 –15.90 0.3 –12.9 –16.0 –17.0 –23.85 0.4 –16.9 –20.3 –22.2 –31.80 0.5 –20.05 –24.0 –27.5 –39.75 0.6 –22.10 –27.2 –32.4 –47.70 0.7 –23.27 –29.8 –36.9 –55.55 0.8 –24.10 –31.9 –40.8 –62.95 0.9 –24.73 –33.4 –44.5 –69.55 1.0 –25.23 –34.6 –47.7 –75.35 1.1 –25.65 –35.5 –50.4 –80.35 1.2 –26.02 –36.2 –52.5 –84.55 1.3 –26.35 –36.8 –54.2 –87.95 1.4 –26.65 –37.2 –55.9 –90.70 1.5 –26.93 –37.7 –57.1 –93.00 1.6 –27.20 –38.0 –58.4 –95.05 1.7 –27.46 –38.4 –59.6 –97.05 1.8 — –38.6 –60.8 –99.05 1.9 — — — –101.05 1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow–slow process 2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process 3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast–fast process Data Sheet 82 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions PY 0LQLPXP ,%,67DUJHW/RZ ,%,67DUJHW+LJK 0D[LPXP CO 3X OOXSFX UUHQ WP$ Figure 66 Full Strength Default Pull-up Driver Diagram Table 35 Full Strength Default Pull–down Driver Characteristics Voltage (V) E 9''4WR92879 Pull-down Driver Current [mA] Min.1) Nominal Default low2) Nominal Default high2) Max.3) 0.0 0.00 0.00 0.00 0.00 0.1 4.30 5.65 5.90 7.95 0.2 8.60 11.30 11.80 15.90 0.3 12.90 16.50 16.80 23.85 0.4 16.90 21.20 22.10 31.80 0.5 20.05 25.00 27.60 39.75 0.6 22.10 28.30 32.40 47.70 0.7 23.27 30.90 36.90 55.05 0.8 24.10 33.00 40.90 62.95 0.9 24.73 34.50 44.60 69.55 1.0 25.23 35.50 47.70 75.35 1.1 25.65 36.10 50.40 80.35 1.2 26.02 36.60 52.60 84.55 1.3 26.35 36.90 54.20 87.95 1.4 26.65 37.10 55.90 90.70 1.5 26.93 37.40 57.10 93.00 1.6 27.20 37.60 58.40 95.05 1.7 27.46 37.70 59.60 97.05 1.8 — 37.90 60.90 99.05 1.9 — — — 101.05 1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow-slow process 2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process 3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast-fast process Data Sheet 83 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions PY CO 3XOOGR ZQFXUUHQ WP$ 0LQLPXP ,%,67DUJHW/RZ ,%,67DUJHW+LJK 0D[LPXP E 9287WR96649 Figure 67 Full Strength Default Pull–down Driver Diagram 5.5.1 Calibrated Output Driver V-I Characteristics DDR2 SDRAM output driver characteristics are defined for full strength calibrated operation as selected by the procedure outlined in the Off-Chip Driver (OCD) Impedance Adjustment. The Table 36 and Table 37 show the data in tabular format suitable for input into simulation tools. The nominal points represent a device at exactly 18 ohms. The nominal low and nominal high values represent the range that can be achieved with a maximum 1.5 ohms step size with no calibration error at the exact nominal conditions only (i.e. perfect calibration procedure, 1.5 ohm maximum step size guaranteed by specification). Real system calibration error needs to be added to these values. It must be understood that these V-I curves are represented here or in supplier IBIS models need to be adjusted to a wider range as a result of any system calibration error. Since this is a system specific phenomena, it cannot be quantified here. The values in the calibrated tables represent just the DRAM portion of uncertainty while Data Sheet looking at one DQ only. If the calibration procedure is used, it is possible to cause the device to operate outside the bounds of the default device characteristics tables and figure. In such a situation, the timing parameters in the specification cannot be guaranteed. It is solely up to the system application to ensure that the device is calibrated between the minimum and maximum default values at all times. If this can’t be guaranteed by the system calibration procedure, recalibration policy and uncertainty with DQ to DQ variation, it is recommended that only the default values to be used. The nominal maximum and minimum values represent the change in impedance from nominal LOW and HIGH as a result of voltage and temperature change from the nominal condition to the maximum and minimum conditions. If calibrated at an extreme condition, the amount of variation could be as much as from the nominal minimum to the nominal maximum or vice versa. 84 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions Table 36 Voltage (V) Full Strength Calibrated Pull-down Driver Characteristics Calibrated Pull-down Driver Current [mA] Nominal Minimum1) (21 Ohms) Nominal Low2) (18.75 Ohms) Nominal3) (18 ohms) Nominal High2) Nominal (17.25 Ohms) Maximum4) (15 Ohms) 0.2 9.5 10.7 11.5 11.8 13.3 0.3 14.3 16.0 16.6 17.4 20.0 0.4 18.7 21.0 21.6 23.0 27.0 1) The driver characteristics evaluation conditions are Nominal Minimum 95 °C (TCASE). VDDQ = 1.7 V, any process 2) The driver characteristics evaluation conditions are Nominal Low and Nominal High 25 °C (TCASE), VDDQ = 1.8V, any process 3) The driver characteristics evaluation conditions are Nominal 25 °C (TCASE), VDDQ = 1.8 V, typical process 4) The driver characteristics evaluation conditions are Nominal Maximum 0 °C (TCASE), VDDQ = 1.9 V, any process Table 37 Voltage (V) Full Strength Calibrated Pull-up Driver Characteristics Calibrated Pull-up Driver Current [mA] Nominal Minimum1) (21 Ohms) Nominal Low2) (18.75 Ohms) Nominal (18 ohms)3) Nominal High2) (17.25 Ohms) Nominal Maximum4) (15 Ohms) 0.2 –9.5 –10.7 –11.4 –11.8 –13.3 0.3 –14.3 –16.0 –16.5 –17.4 –20.0 0.4 –18.3 –21.0 –21.2 –23.0 –27.0 1) The driver characteristics evaluation conditions are Nominal Minimum 95 °C (TCASE). VDDQ = 1.7 V, any process 2) The driver characteristics evaluation conditions are Nominal Low and Nominal High 25 °C (TCASE), VDDQ = 1.8V, any process 3) The driver characteristics evaluation conditions are Nominal 25 °C (TCASE), VDDQ = 1.8 V, typical process 4) The driver characteristics evaluation conditions are Nominal Maximum 0 °C (TCASE), VDDQ = 1.9 V, any process Data Sheet 85 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 5.6 Reduced Output Drive Characteristics A driver mode with reduced output drive characteristics can be selected by setting address bit A1 in the EMRS(1) extended mode register to 1. Table 38 Voltage (V) Reduced Strength Default Pull-up Driver Characteristics Pull-up Driver Current [mA] Min.1) IBIS Target low2) IBIS Target high2) Max.3) 0.0 0.00 0.00 0.00 0.00 0.1 –1.72 –3.20 –3.70 –4.77 0.2 –3.44 –6.20 –7.22 –9.54 0.3 –5.16 –9.04 –10.56 –14.31 0.4 –6.76 –11.69 –13.75 –19.08 0.5 –8.02 –14.11 –16.78 –23.85 0.6 –8.84 –16.27 –19.61 –28.62 0.7 –9.31 –18.16 –22.20 –33.33 0.8 –9.64 –19.77 –24.50 –37.77 0.9 –9.89 –21.10 –26.46 –41.73 1.0 –10.09 –22.15 –28.07 –45.21 1.1 –10.26 –22.96 –29.36 –48.21 1.2 –10.41 –23.61 –30.40 –50.73 1.3 –10.54 –24.61 –31.24 –52.77 1.4 –10.66 –24.64 –31.93 –54.42 1.5 –10.77 –25.07 –32.51 –55.80 1.6 –10.88 –25.47 –33.01 –57.03 1.7 –10.98 –25.85 –33.46 –58.23 1.8 — –26.21 –33.89 –59.43 1.9 — — — –60.63 1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow–slow process 2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process 3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast–fast process Data Sheet 86 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 0,00 PY -40,00 CO Pull-up Current (mA) -20,00 -60,00 Minimum IBIS Target Low IBIS Target High Maximum 0 0,2 0,4 0,6 0,8 1 SE -80,00 1,2 1,4 1,6 1,8 2 VDDQ to VOUT (V) Figure 68 Reduced Strength Default Pull-up Driver Diagram Table 39 Reduced Strength Default Pull–down Driver Characteristics Voltage (V) Pull-down Driver Current [mA] Min.1) IBIS Target low2) IBIS Target high2) Max.3) 0.0 0.00 0.00 0.00 0.00 0.1 1.72 3.24 4.11 4.77 0.2 3.44 6.25 8.01 9.54 0.3 5.16 9.03 11.67 14.31 0.4 6.76 11.52 15.03 19.08 0.5 8.02 13.66 18.03 23.85 0.6 8.84 15.41 20.61 28.62 0.7 9.31 16.77 22.71 33.33 0.8 9.64 17.74 24.35 37.77 0.9 9.89 18.83 25.56 41.73 1.0 10.09 18.80 26.38 45.21 1.1 10.26 19.06 26.90 48.21 1.2 10.41 19.23 27.24 50.73 1.3 10.54 19.35 27.47 52.77 1.4 10.66 19.46 27.64 54.42 1.5 10.77 19.56 27.78 55.80 1.6 10.88 19.65 27.89 57.03 1.7 10.98 19.73 27.97 58.23 1.8 — 19.80 28.02 59.43 1.9 — — — 60.63 1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow-slow process 2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process 3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast-fast process Data Sheet 87 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 80 80 70 70 PY Pull-Down Current (mA) Pull-Down Current (mA) 60 60 Minimum Minimum Nominal Default Low NoIBIS Target Low IBIS Target High Maximum Maximum 50 50 40 40 CO 30 30 20 20 10 10 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 SE 0 0 VOUT to VSSQ (V) VOUT to VSSQ (V) Figure 69 Reduced Strength Default Pull–down Driver Diagram 5.7 Input / Output Capacitance Table 40 Input / Output Capacitance Symbol Parameter DDR2-400 & DDR-2-533 DDR2-667 Min. Max. Min. Unit Max. CCK Input capacitance, CK and CK 1.0 2.0 1.0 2.0 pF CDCK Input capacitance delta, CK and CK — 0.25 — 0.25 pF CI Input capacitance, all other input-only pins 1.0 2.0 1.0 2.0 pF CDI Input capacitance delta, all other input-only pins — 0.25 — 0.25 pF CIO Input/output capacitance, DQ, DM, DQS, DQS, RDQS, RDQS 2.5 4.0 2.5 3.5 pF CDIO Input/output capacitance delta, DQ, DM, DQS, DQS, RDQS, RDQS — 0.5 — 0.5 pF Data Sheet 88 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions 5.8 Power & Ground Clamp V-I Characteristics Power and Ground clamps are provided on address (A[13:0], BA[11:0]), RAS, CAS, CS, WE, and ODT pins. Table 41 The V-I characteristics for pins with clamps is shown in Table 41. Power & Ground Clamp V-I Characteristics Voltage across clamp (V) Minimum Power Clamp Current (mA) Minimum Ground Clamp Current (mA) 0.0 0 0 0.1 0 0 0.2 0 0 0.3 0 0 0.4 0 0 0.5 0 0 0.6 0 0 0.7 0 0 0.8 0.1 0.1 0.9 1.0 1.0 1.0 2.5 2.5 1.1 4.7 4.7 1.2 6.8 6.8 1.3 9.1 9.1 1.4 11.0 11.0 1.5 13.5 13.5 1.6 16.0 16.0 1.7 18.2 18.2 1.8 21.0 21.0 5.9 Overshoot and Undershoot Specification Table 42 AC Overshoot / Undershoot Specification for Address and Control Pins Parameter DDR2-400 DDR2-533 DD2-667 Unit Maximum peak amplitude allowed for overshoot area 0.9 0.9 0.9 V Maximum peak amplitude allowed for undershoot area 0.9 0.9 0.9 V Maximum overshoot area above VDD 1.33 1.00 0.80 V.ns Maximum undershoot area below VSS 1.33 1.00 0.80 V.ns Data Sheet 89 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC & DC Operating Conditions Maximum Amplitude Volts (V) Overshoot Area VDD VSS Undershoot Area Maximum Amplitude Time (ns) Figure 70 AC Overshoot / Undershoot Diagram for Address and Control Pins Table 43 AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins Parameter DDR2-533 DD2-667 Unit Maximum peak amplitude allowed for overshoot area 0.9 DDR2-400 0.9 0.9 V Maximum peak amplitude allowed for undershoot area 0.9 0.9 0.9 V Maximum overshoot area above VDDQ 0.38 0.28 0.23 V.ns Maximum undershoot area below VSSQ 0.38 0.28 0.23 V.ns Maximum Amplitude Volts (V) Overshoot Area VDDQ VSSQ Maximum Amplitude Undershoot Area Time (ns) Figure 71 Data Sheet AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins 90 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Currents Measurement Specifications and Conditions 6 Currents Measurement Specifications and Conditions Table 44 IDD Measurement Conditions Parameter Symbol Note Operating Current One bank Active - Precharge tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. IDD0 1)2)3)4)5)6) Operating Current - One bank Active - Read - Precharge IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. IDD1 1)2)3)4)5)6) Precharge Power-Down Current IDD2P All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are floating. 1)2)3)4)5)6) Precharge Standby Current IDD2N All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching, Data bus inputs are switching. 1)2)3)4)5)6) Precharge Quiet Standby Current IDD2Q All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable, Data bus inputs are floating. 1)2)3)4)5)6) Active Power-Down Current IDD3P(0) All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs are floating. MRS A12 bit is set to “0” (Fast Power-down Exit). 1)2)3)4)5)6) Active Power-Down Current IDD3P(1) All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit); 1)2)3)4)5)6) Active Standby Current All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IDD3N 1)2)3)4)5)6) Operating Current Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IOUT = 0 mA. IDD4R 1)2)3)4)5)6) Operating Current Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IDD4W 1)2)3)4)5)6) Burst Refresh Current IDD5B tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. 1)2)3)4)5)6) Distributed Refresh Current IDD5D tCK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. 1)2)3)4)5)6) Data Sheet 91 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Currents Measurement Specifications and Conditions Table 44 IDD Measurement Conditions Parameter Symbol Note Self-Refresh Current CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data bus inputs are floating. IDD6 Operating Bank Interleave Read Current IDD7 1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD); tCK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs are stable during deselects; Data bus is switching. 2. Timing pattern: DDR2-400-333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks) DDR2-533-333: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks) DDR2-533-444: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D (16 clocks) DDR2-667-444: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D (19 clocks) DDR2-667-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks) 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V 2) IDD specifications are tested after the device is properly initialized. 3) IDD parameter are specified with ODT disabled. 4) 5) 6) 7) 1)2)3)4)5)6) 1)2)3)4)5)6)7) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS. Definitions for IDD: see Table 2 Timing parameter minimum and maximum values for IDD current measurements are defined in chapter 7.. A = Activate, RA = Read with Auto-Precharge, D=DESELECT Table 45 Definition for IDD Parameter Description LOW defined as VIN ≤ VIL(ac).MAX HIGH defined as VIN ≥ VIH(ac).MIN STABLE defined as inputs are stable at a HIGH or LOW level FLOATING defined as inputs are VREF = VDDQ / 2 SWITCHING defined as: Inputs are changing between high and low every other clock (once per two clocks) for address and control signals, and inputs changing between high and low every other clock (once per clock) for DQ signals not including mask or strobes Data Sheet 92 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Currents Measurement Specifications and Conditions Table 46 IDD Specification for DDR2–667C and DDR2-667D Product Type Speed Code –3 –3S Speed Grade DDR2–667C DDR2–667D Symbol Max. Max. IDD0 75 71 95 90 90 85 110 104 50 50 mA 5 5 mA 40 40 mA 50 50 mA 19 19 mA 1) IDD1 IDD2N IDD2P IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 1) 2) 3) 4) Unit Note mA ×4/×8 ×16 mA ×4/×8 ×16 ×4/×8 ×16 6 6 mA 2) 130 130 mA ×4/×8 150 150 mA ×16 140 140 mA ×4/×8 170 170 mA ×16 140 140 mA 3) 6 6 mA 3) 5 5 mA 3)4) 155 147 mA ×4/×8 240 228 mA ×16 MRS(12)=0 MRS(12)=1 0 ≤ TCASE ≤ 85 °C standard products Data Sheet 93 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Currents Measurement Specifications and Conditions Table 47 IDD Specification for DDR2–533C and DDR2–400B Product Type Speed Code –3.7 –5 Speed Grade DDR2–533C DDR2–400B Symbol Max. Max. IDD0 65 IDD1 IDD2N IDD2P IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD5D IDD6 IDD7 1) 2) 3) 4) Unit Note 55 mA ×4/×8 80 70 mA ×16 75 60 mA ×4/×8 90 75 mA ×16 40 32 mA 4 4 mA 30 25 mA 40 35 mA 16 13 mA 1) ×4/×8 ×16 5 5 mA 2) 90 70 mA ×4/×8 100 85 mA ×16 ×4/×8 95 75 mA 110 90 mA ×16 130 120 mA 3) 6 6 mA 3) 4 4 mA 3)4) 140 130 mA ×4/×8 220 210 mA ×16 MRS(12)=0 MRS(12)=1 0 ≤ TCASE ≤ 85 °C standard products Data Sheet 94 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Currents Measurement Specifications and Conditions 6.1 IDD Test Conditions For testing the IDD parameters, the following timing parameters are used: Table 48 IDD Measurement Test Conditions for DDR2–667C and DDR2–667D Parameter Symbol –3 –3S Unit Note CAS Latency CL(IDD) 4 5 tCK Clock Cycle Time tCK(IDD) tRCD(IDD) tRC(IDD) 3 3 ns 12 15 ns 57 60 ns 7.5 7.5 ns 1) 10 10 ns 2) 45 45 ns 70000 70000 ns 12 15 ns 75 75 ns 105 105 ns 7.8 7.8 µs DDR2–667C 4–4–4 DDR2–667D 5–5–5 Active to Read or Write delay Active to Active / Auto-Refresh command period tRRD(IDD) tRRD(IDD) Active to Precharge Command tRAS.MIN(IDD) tRAS.MAX(IDD) Precharge Command Period tRP(IDD) Auto-Refresh to Active / Auto-Refresh tRFC(IDD) Active bank A to Active bank B command delay command period Auto-Refresh to Active / Auto-Refresh tRFC(IDD) command period tREFI Average periodic Refresh interval 1) ×4 & ×8 (1 kB page size) 2) ×16 (2 kB page size); not on 256M component Table 49 IDD Measurement Test Condition for DDR2–533C and DDR2–400B Parameter Symbol –3.7 –5 Unit Note DDR2–533C 4–4–4 DDR2–400B 3–3–3 CAS Latency CL(IDD) 4 3 tCK Clock Cycle Time tCK(IDD) tRCD(IDD) tRC(IDD) 3.75 5 ns 15 15 ns 60 55 ns Active bank A to Active bank B command delay tRRD(IDD) 7.5 7.5 ns 1) 10 10 ns 2) Active to Precharge Command tRAS.MIN(IDD) tRAS.MAX(IDD) tRP(IDD) tRFC(IDD) 45 40 ns 70000 70000 ns Active to Read or Write delay Active to Active / Auto-Refresh command period Precharge Command Period Auto-Refresh to Active / AutoRefresh command period Average periodic Refresh interval tREFI 15 15 ns 105 105 ns 7.8 7.8 µs 1) ×4 & ×8 (1 kB page size) 2) ×16 (2 kB page size); not on 256M component Data Sheet 95 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Currents Measurement Specifications and Conditions 6.1.1 On Die Termination (ODT) Current The ODT function adds additional current consumption to the DDR2 SDRAM when enabled by the EMRS(1). Depending on address bits A6 & A2 in the EMRS(1) a full or reduced termination can be selected. The current Table 50 consumption for any terminated input pin depends on whether the input pin is in tri-state or driving “0” or “1”, as long a ODT is enabled during a given period of time.. See Table 50 ODT current per terminated input pin ODT Current Enabled ODT current per DQadded IDDQ current for ODT enabled; ODT is HIGH; Data Bus inputs are floating IODTO Active ODT current per DQadded IDDQ current IODTT for ODT enabled; ODT is HIGH; worst case of Data Bus inputs are stable or switching. EMRS(1) State Min. Typ. Max. Unit A6 = 0, A2 = 1 5 6 7.5 mA/DQ A6 = 1, A2 = 0 2.5 3 3.75 mA/DQ A6 = 1, A2 = 1 7.5 9 11.25 mA/DQ A6 = 0, A2 = 1 10 12 15 mA/DQ A6 = 1, A2 = 0 5 6 7.5 mA/DQ A6 = 1, A2 = 0 15 18 22.5 mA/DQ Note: For power consumption calculations the ODT duty cycle has to be taken into account Data Sheet 96 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Electrical Characteristics 7 Electrical Characteristics 7.1 Speed Grade Defenitions Table 51 Speed Grade Definition Speed Bins for DDR667 Speed Grade DDR2–667C DDR2–667D IFX Sort Name –3 –3S CAS-RCD-RP latencies 4–4–4 5–5–5 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Unit Note tCK Symbol Min. Max. Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 ns 1)2)3)4) 3 8 3.75 8 ns 1)2)3)4) 3 8 3 8 ns 1)2)3)4) 45 70000 45 70000 ns 1)2)3)4)5) 57 — 60 — ns 1)2)3)4) 12 — 15 — ns 1)2)3)4) 12 — 15 — ns 1)2)3)4) 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements” according to Chapter 8.1 only. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS/DQS, RDQS/RDQS is defined in Chapter 8.3. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. Table 52 Speed Grade Definition Speed Bins for DDR533 and DDR400 Speed Grade DDR2–533C DDR2–400B IFX Sort Name –3.7 –5 CAS-RCD-RP latencies 4–4–4 3–3–3 Parameter Clock Frequency @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Data Sheet Unit Note tCK Symbol Min. Max. Min. Max. — tCK tCK tCK tRAS tRC tRCD tRP 5 8 5 8 ns 1)2)3)4) 3.75 8 5 8 ns 1)2)3)4) 3.75 8 5 8 ns 1)2)3)4) 45 70000 40 70000 ns 1)2)3)4)5) 60 — 55 — ns 1)2)3)4) 15 — 15 — ns 1)2)3)4) 15 — 15 — ns 1)2)3)4) 97 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Electrical Characteristics 1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the “Reference Load for Timing Measurements” according to Chapter 8.1 only. 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS/DQS, RDQS/RDQS is defined in Chapter 8.3. 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI. 7.2 AC Timing Parameters Table 53 Timing Parameter by Speed Grade - DDR2-667 Parameter Symbol DQ output access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time Minimum time clocks remain ON after CKE asynchronously drops LOW DQ and DM input hold time (differential data strobe) DQ and DM input pulse width (each input) DQS output access time from CK / CK DQS input low (high) pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals) Write command to 1st DQS latching transition DQ and DM input setup time (differential data strobe) DQS falling edge hold time from CK (write cycle) DQS falling edge to CK setup time (write cycle) Clock half period Data-out high-impedance time from CK / CK Address and control input hold time Address and control input pulse width (each input) DQ low-impedance time from CK / CK DQS low-impedance from CK / CK Mode register set command cycle time OCD drive mode output delay Data Sheet 98 Unit Note 1)2)3)4)5)6) Min. Max. tAC tCCD tCH tCKE tCL tDAL tDELAY –450 +450 ps 2 — 0.45 0.55 3 — 0.45 0.55 WR + tRP — tCK tCK tCK tCK tCK tIS + tCK + tIH –– ns 8) tDH(base) tDIPW tDQSCK tDQSL,H tDQSQ tDQSS tDS(base) tDSH tDSS tHP tHZ tIH(base) tIPW 175 –– ps 9) 0.35 — tCK –400 +400 ps tIS(base) tLZ(DQ) tLZ(DQS) tMRD tOIT Address and control input setup time DDR2-667 0.35 — tCK 240 — ps – 0.25 + 0.25 tCK 100 — ps 0.2 — 0.2 — tCK tCK 7) 10) 9) 11) MIN. (tCL, tCH) — tAC.MAX ps 12) 275 — ps 9) 0.6 — tCK 200 — ps 9) 2 x tAC.MIN ps 12) tAC.MIN tAC.MAX tAC.MAX ps 12) 2 — tCK 0 12 ns Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Electrical Characteristics Table 53 Timing Parameter by Speed Grade - DDR2-667 Parameter Symbol DDR2-667 Unit Note 1)2)3)4)5)6) Min. Max. tHP – tQHS — 340 — ps — 7.8 µs 13)14) — 3.9 µs 13)15) 105 — ns 1) 0.9 1.1 12) 0.40 0.60 tCK tCK 7.5 — ns 16)17) 10 — ns 17)18) 7.5 — ns 0.35 — 0.40 0.60 tCK tCK Write recovery time for write without Auto-Precharge tRTP tWPRE tWPST tWR 15 — ns Write recovery time for write with Auto-Precharge WR tWR/tCK Internal Write to Read command delay tWTR tXARD 7.5 — ns 20) 2 — tCK 21) tXARDS 7 – AL — tCK 21) 2 — tCK tRFC +10 — ns 200 — tCK tQH tQHS tREFI Data output hold time from DQS Data hold skew factor Average periodic refresh Interval tRFC tRPRE tRPST tRRD Auto-Refresh to Active/Auto-Refresh command period Read preamble Read postamble Active bank A to Active bank B command period Internal Read to Precharge command delay Write preamble Write postamble Exit power down to any valid command (other than NOP or Deselect) Exit active power-down mode to Read command (slow exit, lower power) Exit precharge power-down to any valid command (other tXP than NOP or Deselect) tXSNR tXSRD Exit Self-Refresh to non-Read command Exit Self-Refresh to Read command 12) 19) tCK 1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V. See notes 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8 of this data sheet. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the Reference Load for Timing Measurements according to Chapter 8.1 only. 4) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS/DQS, RDQS/RDQS is defined in Chapter 8.3 of this data sheet. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock frequency change during power-down, a specific procedure is required as describes in Chapter 2.12. 9) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS/DQS and associated DQ in any given cycle. 3)4)5)6) Data Sheet 99 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Electrical Characteristics 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 14) 0 ≤ TCASE ≤ 85 °C 15) 85 °C < TCASE ≤ 95 °C 16) x4 & x8 (1k page size) 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1.5 18) x16 (2k page size), not on 256Mbit component 19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. Data Sheet 100 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Electrical Characteristics Table 54 Timing Parameter by Speed Grade - DDR2-400B & DDR2-533C Parameter Symbol DDR2–533C DDR2–400B Unit Note 1)2)3)4)5) Min. Max. Min. Max. –500 +500 –600 +600 ps CAS A to CAS B command period tCCD 2 — 2 — tCH CKE minimum high and low pulse tCKE 0.45 0.55 0.45 0.55 3 — 3 — tCK tCK tCK tCL tDAL 0.45 0.55 0.45 0.55 WR + tRP — WR + tRP — tCK tCK Minimum time clocks remain ON after CKE asynchronously drops LOW tDELAY tIS + tCK + tIH –– tIS + tCK + tIH — ns 8) DQ and DM input hold time (differential data strobe) tDH(base) 225 –– 275 –– ps 9) DQ and DM input hold time (single tDH1(base) –25 ended data strobe) — 25 — ps 9) DQ and DM input pulse width (each tDIPW input) 0.35 — 0.35 — tCK DQS output access time from CK / tDQSCK CK –450 +450 –500 +500 ps DQS input low (high) pulse width (write cycle) tDQSL,H 0.35 — 0.35 — tCK DQS-DQ skew (for DQS & associated DQ signals) tDQSQ — 300 — 350 ps Write command to 1st DQS latching transition tDQSS WL – 0.25 WL + 0.25 WL – 0.25 WL + 0.25 tCK DQ and DM input setup time (differential data strobe) tDS(base) 100 — 150 — ps 9) DQ and DM input setup time (single ended data strobe) tDS1(base) –25 — 25 — ps 9) DQS falling edge hold time from CK (write cycle) tDSH 0.2 — 0.2 — tCK DQS falling edge to CK setup time tDSS (write cycle) 0.2 — 0.2 — tCK DQ output access time from CK / CK tAC CK, CK high-level width 6) width CK, CK low-level width Auto-Precharge write recovery + precharge time Clock half period Data-out high-impedance time from CK / CK tHP tHZ Address and control input hold time tIH(base) Address and control input pulse width (each input) Data Sheet tIPW MIN. (tCL, tCH) 7) 10) 11) MIN. (tCL, tCH) — tAC.MAX — tAC.MAX ps 12) 375 — 475 — ps 9) 0.6 — 0.6 — tCK 101 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Electrical Characteristics Table 54 Timing Parameter by Speed Grade - DDR2-400B & DDR2-533C (cont’d) Parameter Symbol DDR2–533C DDR2–400B Unit Note 1)2)3)4)5) Min. Max. Min. Max. 250 — 350 — ps 9) DQ low-impedance time from CK / tLZ(DQ) CK 2 x tAC.MIN tAC.MAX 2 x tAC.MIN tAC.MAX ps 12) DQS low-impedance from CK / CK tLZ(DQS) tAC.MIN tAC.MAX tAC.MIN tAC.MAX ps 12) Address and control input setup time tIS(base) 6) Mode register set command cycle time tMRD 2 — 2 — tCK OCD drive mode output delay tOIT tQH tQHS tREFI 0 12 0 12 ns tHP – tQHS — tHPQ – tQHS — — 400 — 450 ps — 7.8 — 7.8 µs 13)14) — 3.9 — 3.9 µs 13)15) Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Auto-Refresh to Active/AutoRefresh command period tRFC 105 — 105 — ns 1) Read preamble tRPRE tRPST tRRD 0.9 1.1 0.9 1.1 12) 0.40 0.60 0.40 0.60 tCK tCK 7.5 — 7.5 — ns 16)17) 10 — 10 — ns 18)17) Read postamble Active bank A to Active bank B command period 12) Internal Read to Precharge command delay tRTP 7.5 — 7.5 — ns Write preamble tWPRE tWPST tWR 0.35xtCK — 0.35xtCK — 0.40 0.60 0.40 0.60 tCK tCK 15 — 15 — ns Write recovery time for write with Auto-Precharge WR tWR/tCK Internal Write to Read command delay tWTR 7.5 — 10 — ns 20) Exit power down to any valid command (other than NOP or Deselect) tXARD 2 — 2 — tCK 21) Exit active power-down mode to Read command (slow exit, lower power) tXARDS 6 – AL — 6 – AL — tCK 21) 2 — 2 — tCK Write postamble Write recovery time for write without Auto-Precharge Exit precharge power-down to any tXP valid command (other than NOP or Deselect) tWR/tCK tCK Exit Self-Refresh to non-Read command tXSNR tRFC +10 — tRFC +10 — ns Exit Self-Refresh to Read command tXSRD 200 — 200 — tCK 1) 19) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V. See notes 3)4)5)6) Data Sheet 102 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Electrical Characteristics 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other Slew Rates see Chapter 8 of this data sheet. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the Reference Load for Timing Measurements according to Chapter 8.1 only. 4) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals other than CK/CK, DQS/DQS, RDQS/RDQS is defined in Chapter 8.3 of this data sheet. 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock frequency change during power-down, a specific procedure is required as describes in Chapter 2.12. 9) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS/DQS and associated DQ in any given cycle. 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C and 95 °C. 14) 0 ≤ TCASE ≤ 85 °C 15) 85 °C < TCASE ≤ 95 °C 16) x4 & x8 (1k page size) 17) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1.5 18) x16 (2k page size), not on 256 Mbit component 19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz. 21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied. Data Sheet 103 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Electrical Characteristics 7.3 ODT AC Electrical Characteristics Table 55 ODT AC Electrical Characteristics and Operating Conditions for DDR2-667 Symbol Parameter / Condition Values Unit Min. Max. tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD ODT turn-on delay 2 2 ODT turn-on ns ODT turn-on (Power-Down Modes) tAC.MIN tAC.MAX + 0.7 ns tAC.MIN + 2 ns 2 tCK + tAC.MAX + 1 ns ODT turn-off delay 2.5 tCK Note tCK 2.5 1) ns tAC.MIN tAC.MAX + 0.6 ns ns ODT turn-off (Power-Down Modes) tAC.MIN + 2 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT to Power Down Mode Entry Latency 3 — tCK ODT Power Down Exit Latency 8 — tCK ODT turn-off 2) 1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measure from tAOND. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Table 56 Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD ODT AC Electrical Characteristics and Operating Conditions for DDR2-533 and DDR2-400 Parameter / Condition Values Unit Min. Max. ODT turn-on delay 2 2 ODT turn-on ODT turn-on (Power-Down Modes) tAC.MIN tAC.MAX + 1 ns tAC.MIN + 2 ns 2 tCK + tAC.MAX + 1 ns ns ODT turn-off delay 2.5 tCK 2.5 tCK ns tAC.MIN tAC.MAX + 0.6 ns ns ODT turn-off (Power-Down Modes) tAC.MIN + 2 ns 2.5 tCK + tAC.MAX + 1 ns ns ODT to Power Down Mode Entry Latency 3 — tCK ODT Power Down Exit Latency 8 — tCK ODT turn-off Note 1) 2) 1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measure from tAOND. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Data Sheet 104 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions 8 AC Timing Measurement Conditions 8.1 Reference Load for Timing Measurements Figure 72 represents the timing reference load used in defining the relevant timing parameters of the device. It is not intended to either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally a coaxial transmission line terminated at the tester electronics. This reference load is also used for output Slew Rate characterization. The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal. VDDQ CK, CK DUT DQ DQS DQS RDQS RDQS 25 Ohm VTT = VDDQ / 2 Timing Reference Points Figure 72 Reference Load for Timing Measurements 8.2 Slew Rate Measurement Conditions 8.2.1 Output Slew Rate For DQ and single ended DQS signals output Slew Rate for falling and rising edges is measured between VTT – 250 mV and VTT + 250 mV. For differential signals (DQS / DQS) output Slew Rate is measured between DQS - DQS = –500 mV and 8.2.2 Input Slew Rate - Differential signals Input Slew Rate for differential signals (CK / CK, DQS / DQS, RDQS / RDQS) for rising edges are measured from CK - CK = –250 mV to CK – CK = +500 mV and Data Sheet DQS – DQS = + 500 mV. Output Slew Rate is defined with the reference load according to Figure 72 and verified by design and characterization, but not subject to production test. from CK – CK = +250 mV to CK – CK = –500mV for falling edges. 105 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions 8.3 Input and Data Setup and Hold Time 8.3.1 Definition for Input Setup (tIS) and Hold Time (tIH) Address and control input setup time (tIS) is referenced from the input signal crossing at the VIH(ac) level for a rising signal and VIL(ac) for a falling signal applied to the device under test. Address and control input hold time (tIH) is referenced from the input signal crossing at the VIL(dc) level for a rising signal and VIH(dc) for a falling signal applied to the device under test. CK CK t t IS t IH IS t IH VDDQ VIH(ac) min VIH(dc) min VREF VIL(dc) max VIL(ac) max VSS Figure 73 Input Setup and Hold Time 8.3.2 Definition for Data Setup (tDS) and Hold Time (tDH), differential Data Strobes Data input setup time (tDS) with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(ac) level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL(ac) level to the differential data strobe crosspoint for a falling signal applied to the device under test. differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIL(dc) level to the differential data strobe crosspoint for a rising signal and VIH(dc) to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS/DQS signals must be monotonic between VIL(dc).MAX and VIH(dc).MIN. Data input hold time (tDH) with VIL(dc).MAX and VIH(dc).MIN. DQS/DQS signals must be monotonic between DQS DQS t DS t DH t t DS DH VDDQ VIH(ac) min VIH(dc) min VREF VIL(dc) max VIL(ac) max VSS Figure 74 Data Sheet Data Setup and Hold Time (Differential Data Strobes) 106 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions 8.3.3 Definition Data Setup (tDS1) and Hold Time (tDH1), Single-Ended Data Strobes Data input setup time (tDS1) with single-ended data strobe enabled MR[bit10]=1, is referenced from the input signal crossing at the VIH(ac) level to the singleended data strobe crossing VIH/L(dc) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(ac) level to the single-ended data strobe crossing VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. input signal crossing at the VIH(dc) level to the singleended data strobe crossing VIH/L(ac) at the end of its transition for a rising signal and from the input signal crossing at the VIL(dc) level to the single-ended data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be monotonic between VIL(dc.MAX and VIH(dc).MIN. Data input hold time (tDH1) with single-ended data strobe enabled MR[bit10]=1, is referenced from the VDDQ VIH(ac) min VIH(dc) min VREF DQS VIL(dc) max VIL(ac) max VSS t DS t t DH DS t DH VDDQ VIH(ac) min VIH(dc) min VREF DQ VIL(dc) max VIL(ac) max VSS Figure 75 Data Sheet Data Setup and Hold Time (Single Ended Data Strobes) 107 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions 8.3.4 Slew Rate Definition for Input and Data Setup and Hold Times Setup (tIS & tDS) nominal Slew Rate for a rising signal is defined as the Slew Rate between the last crossing of VREF(dc) and the first crossing of VIH(ac).MIN. Setup (tIS & tDS) nominal Slew Rate for a falling signal is defined as the Slew Rate between the last crossing of VREF(dc) and the first crossing of VIL(ac).MAX. If the actual signal is always earlier than the nominal Slew Rate line between shaded ‘VREF(dc) to ac region’, use nominal Slew Rate for derating value (see Figure 76). If the actual signal is later than the nominal Slew Rate line anywhere between shaded ‘VREF(dc) to ac region’, the Slew Rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.(see Figure 77) Hold (tIH & tDH) nominal Slew Rate for a rising signal is defined as the Slew Rate between the last crossing of VIL(dc).MAX and the first crossing of VREF(dc). Hold (tIH & tDH) nominal Slew Rate for a falling signal is defined as the Slew Rate between the last crossing of VIH(dc).MIN and the first crossing of VREF(dc). If the actual signal is always later than the nominal Slew Rate line between shaded ‘dc to VREF region’, use nominal Slew Rate for derating value (see Figure 76). If the actual signal is earlier than the actual signal from the dc level to VREF level is used for derating value (see Figure 77) #+# + FO RT)3 AN DT)( $13 $ 1 3 FO RT$ 3 AN DT$ ( T)3 T$3 T)( T$( T)( T)3 T$3 $( T 6)(D CM IN DCTO62 %& REG ION 62%& DCTO62 % & REGIO N $ELTA4&3 3ETU P3LEW 2ATE 3ETU P3LEW 2ATE (OLD3LEW 2ATE (OLD 3LEW2 ATE Figure 76 Data Sheet 6),D X CM A 62%& TO AC REGION 6$$1 6)(A CM IN 62%& TO AC REGION $ELTA42( $ELTA423 6),A X CM A 633 $ELTA4 &( 62%& DC 6), AC MA X $ELTA 4&3 6)( AC MIN 6 2%&DC $ELTA 423 62%&DC 6), DC MAX $ELTA 42( 6)(DC MIN 62%&DC $ELTA 4 &( FALLIN GSIGN AL RIS IN GSIG NAL RISING SIGNA L FALLIN GS IG NAL Slew Rate Definition Nominal 108 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions #+# + FO RT)3A N DT)( $13 $ 1 3 FO RT$ 3 AN D T$ ( T)3 T$3 T)( T$( T)3 T)( T$3 T$( 6$$1 6)(ACMIN 62% & TOAC REG IO N 6)(DCMIN DCTO6R E F REG IO N 62%& DCTO6R E F REG IO N 6),DCMAX 62% & TOAC REG IO N 6),ACMAX 633 $ELTA4& 3 &( $ELTA42 ( $ELTA 42 3 $ELTA4 TANG E NTLIN E NOM IN ALLIN E 3ETU P3LEW 2ATE (OLD3LEW 2ATE (OLD 3LEW2ATE Figure 77 Data Sheet TANG EN TLINE ;6 2%&DC 6), AC MA X= $ELTA 4 &3 FALLIN G SIGNA L TANG EN TLINE ;6 )(AC MIN 62%&DC = RISING SIG NAL $ELTA 42 3 TANGE NTLIN E;62 %& DC 6), DC MA X= 3ETU P3LEW 2ATE $ELTA42( TAN GEN TLINE ;6 )(DC MIN 6 2%&DC = $ELTA 4& ( RISING SIGNA L FALLIN G SIGNA L Slew Rate Definition Tangent 109 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions 8.3.5 Setup (tIS) and Hold (tIH) Time Derating Tables 1. For all input signals the total input setup time and input hold time required is calculated by adding the data sheet value to the derating value respectively. Example: tIS(total setup tine) = tIS(base) + ∆ tIS 2. For slow Slew Rate the total setup time might be negative (i.e. a valid input signal will not have reached VIH(ac) / VIL(ac) at the time of the rising clock) Table 57 a valid input signal is still required to complete the transition and reach VIH(ac) / VIL(ac). For Slew Rates in between the values listed in the next tables, the derating values may be obtained by linear interpolation. These values are not subject to production test. They are verified only by design and characterization. Derating Values for Input Setup and Hold Time (DDR2-667) Command / Address Slew Rate (V/ns) CK, CK Differential Slew Rate 2.0 V/ns 1.5 V/ns Unit Note 1.0 V/ns ∆ tIS ∆ tIH ∆ tIS ∆ tIH ∆ tIS ∆ tIH 4.0 +150 +94 +180 +124 +210 +154 ps 1)2) 3.5 +143 +89 +173 +119 +203 +149 ps 1) 3.0 +133 +83 +163 +113 +193 +143 ps 1) 2.5 +120 +75 +150 +105 +180 +135 ps 1) 2.0 +100 +45 +130 +75 +160 +105 ps 1) 1.5 +67 +21 +97 +51 +127 +81 ps 1) 1.0 0 0 +30 +30 +60 +60 ps 1) 0.9 –5 –14 +25 +16 +55 +46 ps 1) 0.8 –13 –31 +17 –1 +47 +29 ps 1) 0.7 –22 –54 +8 –24 +38 +6 ps 1) 0.6 –34 –83 –4 –53 +26 –23 ps 1) 0.5 –60 –125 –30 –95 0 –65 ps 1) 0.4 –100 –188 –70 –158 –40 –128 ps 1) 0.3 –168 –292 –138 –262 –108 –232 ps 1) 0.25 –200 –375 –170 –345 –140 –315 ps 1) 0.2 –325 –500 –295 –470 –265 –440 ps 1) 0.15 –517 –708 –487 –678 –457 –648 ps 1) –940 –1065 ps 1) 0.1 –1000 –1125 –970 –1095 1) For all input signals tIS(total) = tIS(base) + ∆tIS and tIH(total) = tIH(base) + ∆tIH 2) For slow slewrate the total setup time might be negative (i.e. valid input signal will not have reached VIH(ac) / VIL(ac) at the time of the rising clock) a valid signal is still required to complete the transistion and reach VIH(ac) / VIL(ac). For slew rates in between the values listed in the next tables, the derating values may be obtained by linear interpolation. These values are not subject to production test. They are verified only by design and characterisation. Data Sheet 110 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions Table 58 Derating Values for Input Setup and Hold Time (DDR2-400 & DDR2-533) Command / Address Slew Rate (V/ns) CK, CK Differential Slew Rate 2.0 V/ns 1.5 V/ns Unit Note 1.0 V/ns ∆ tIS ∆ tIH ∆ tIS ∆ tIH ∆ tIS ∆ tIH 4.0 +187 +94 +217 +124 +247 +154 ps 1)2) 3.5 +179 +89 +209 +119 +239 +149 ps 1) 3.0 +167 +83 +197 +113 +227 +143 ps 1) 2.5 +150 +75 +180 +105 +210 +135 ps 1) 2.0 +125 +45 +155 +75 +185 +105 ps 1) 1.5 +83 +21 +113 +51 +143 +81 ps 1) 1.0 0 0 +30 +30 +60 +60 ps 1) 0.9 –11 –14 +19 +16 +49 +46 ps 1) 0.8 –25 –31 +5 –1 +35 +29 ps 1) 0.7 –43 –54 –13 –24 +17 +6 ps 1) 0.6 –67 –83 –37 –53 –7 –23 ps 1) 0.5 –110 –125 –80 –95 –50 –65 ps 1) 0.4 –175 –188 –145 –158 –115 –128 ps 1) 0.3 –285 –292 –255 –262 –225 –232 ps 1) 0.25 –350 –375 –320 –345 –290 –315 ps 1) 0.2 –525 –500 –495 –470 –465 –440 ps 1) 0.15 –800 –708 –770 –678 –740 –648 ps 1) –1390 –1065 ps 1) 0.1 –1450 –1125 –1420 –1095 1) For all input signals tIS(total) = tIS(base) + ∆tIS and tIH(total) = tIH(base) + ∆tIH 2) For slow slewrate the total setup time might be negative (i.e. valid input signal will not have reached VIH(ac) / VIL(ac) at the time of the rising clock) a valid signal is still required to complete the transistion and reach VIH(ac) / VIL(ac). For slew rates in between the values listed in the next tables, the derating values may be obtained by linear interpolation. These values are not subject to production test. They are verified only by design and characterisation. Data Sheet 111 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions Derating Values for Data Setup and Hold Time of Differential DQS (DDR2-667) DQ Slew Rate (V/ns) Table 59 DQS, DQS Differential Slew Rate1)2) 2.0 +100 +45 +100 +45 +100 +45 — 1.5 +67 +21 +67 1.0 0 0 0.9 — 0.8 4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ tDS tDH tDS tDH tDS tDH tDS tDH ∆ tDH tDS ∆ ∆ ∆ ∆ ∆ ∆ ∆ tDH tDS tDH tDS tDH tDS tDH tDS — — — — — — — — — — +21 +67 +21 +97 +33 — — — — — — — — — — 0 0 0 +12 +12 +24 +24 — — — — — — — — — –5 –14 –5 –14 +7 –2 +19 +10 +31 +22 — — — — — — — — — — –13 –31 –1 –19 +11 –7 +17 — — — — 0.7 — — — — — — –10 –42 +2 — 0.6 — — — — — — — — –10 –59 +2 0.5 — — — — — — — — — 0.4 — — — — — — — — — 0 — +23 +5 +35 –30 +14 –18 +26 –6 +38 +6 — –47 +14 –35 +26 –23 +538 –11 — –24 –89 –12 –77 0 –65 +12 –53 — — –140 –20 –28 –28 –116 — –52 1) All units in ps. 2) For all input signals tDS(total) = tDS(base) + ∆tDS and tDH(total) = tDH(base) + ∆tDH Derating Values for Data Setup and Hold Time of Differential DQS (DDR2-400 & -533) DQ Slew Rate (V/ns) Table 60 DQS, DQS Differential Slew Rate1)2) 2.0 +125 +45 +125 +45 +125 +45 — 1.5 +83 +21 +83 1.0 0 0 0 0.9 — — –11 –14 –11 –14 +1 0.8 — — — — –25 –31 –13 –19 –1 0.7 — — — — — — –31 –42 –19 –30 –7 0.6 — — — — — — — — 0.5 — — — — — — — 0.4 — — — — — — — 4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ tDS tDH tDS tDH tDS tDH tDS tDH ∆ tDH tDS ∆ ∆ ∆ ∆ ∆ ∆ ∆ tDH tDS tDH tDS tDH tDS tDH tDS — — — — — — — — — — +21 +83 +21 +95 +33 — — — — — — — — — — 0 0 +12 +12 +24 +24 — — — — — — — — +13 +10 +25 +22 — — — — — — +17 — — — — –6 +17 +6 — — –43 –59 –31 –47 –19 –35 –7 –23 +5 –11 — — — –74 –89 –62 –77 –50 –65 –38 –53 — — — — 0 — –2 –7 +11 +5 +23 –18 +5 — –127 –140 –115 –128 –103 –116 1) All units in ps. 2) For all input signals tDS(total) = tDS(base) + ∆tDS and tDH(total) = tDH(base) + ∆tDH Data Sheet 112 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM AC Timing Measurement Conditions DQ Slew Rate (V/ns) Table 61 Derating Values for Data Setup and Hold Time of Single-ended DQS (DDR2-400 & -533) DQS, DQS Single-ended Slew Rate1)2) 2.0 V/ns 1.5 V/ns 1.0 V/ns 0.9 V/ns 0.8 V/ns 0.7 V/ns 0.6 V/ns 0.5 V/ns 0.4 V/ns ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 2.0 +188 +188 +167 +146 +125 +63 — ∆ ∆ ∆ ∆ ∆ ∆ ∆ — — — — — — — — — — 1.5 +146 +167 +125 +125 +83 +42 +81 +43 — — — — — — — — — — 1.0 +63 +125 +42 +83 0 0 -13 — — — — — — — — 0.9 — — +31 +69 -11 -14 -13 -13 -18 -27 -29 -45 — — — — — — 0.8 — — — — -25 -31 -27 -30 -32 -44 -43 -62 -60 –86 — — — — 0.7 — — — — — — -45 -53 -50 -67 -61 -85 -78 -109 -108 -152 — — 0.6 — — — — — — — — -74 -96 -85 -114 -102 -138 -132 -181 -183 -246 0.5 — — — — — — — — — — -128 -156 -145 -180 -175 -223 -226 -288 0.4 — — — — — — — — — — — -2 — ∆ +1 -7 — -210 -243 -240 -286 -291 -351 1) All units in ps. 2) For all input signals tDS1(total) = tDS1(base) + ∆tDS1 and tDH1(total) = tDH1(base) + ∆tDH1 Data Sheet 113 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Package Dimensions 9 Package Dimensions X ! X !8 " -! 8 # -! 8 -). # X - ! " # - 4 ).' 0,!.% # 3%! $ UMM Y PADSWITHOU TB ALL IDDLEO FP ACK A GESEDGES 0 A CK AGE ORIE NTATIONMA RK! " ADUNITMA RKING "5 $ IES ORTFIDUCIAL Figure 78 Data Sheet Package Pinout PG-TFBGA-60 (top view) 114 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Package Dimensions X ! X !8 " -! 8 # ). !8 # X - ! " # - ). '0 ,!.% # 3%!4 $ UMM Y PADS W ITH OUTB ALL IDDLEOFPACK AGESEDG ES 0 A CK A GEORIENTATIONM ARK! " ADU NITM ARKING "5 - $ IESO RTFIDUCIAL Figure 79 Data Sheet Package Pinout PG-TFBGA-84 (top view) 115 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P HYB18T512[40/80/16]0AF–[3/3S/3.7/5] 512-Mbit DDR2 SDRAM Product Namenclature 10 Product Namenclature Table 62 Nomenclature Fields and Examples Example for Field Number DDR2 DRAM 1 2 3 4 5 HYB 18 T 512 16 6 7 8 9 10 0 A C –3.7 Table 63 DDR2 Memory Components Field Description Values Coding 1 INFINEON Component Prefix HYB Constant 2 Interface Voltage [V] 18 SSTL1.8 3 DRAM Technology T DDR2 4 Component Density [Mbit] 5+6 Number of I/Os 256 256 M 512 512 M 1G 1 Gb 40 ×4 80 ×8 160 ×16 7 Product Variations 0 .. 9 look up table 8 Die Revision A First B Second 9 Package, Lead-Free Status C FBGA, lead-containing F FBGA, lead-free 10 Speed Grade –3 DDR2–667C 4–4–4 –3S DDR2–667D 5–5–5 –3.7 DDR2–533C 4–4–4 –5 DDR2–400B 3–3–3 11 Data Sheet 11 N/A for Components 116 Rev. 1.3, 2005-01 09112003-SDM9-IQ3P www.infineon.com Published by Infineon Technologies AG