IRF IRS2183

Data Sheet No. PD60265
IRS2183/IRS21834(S)PbF
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
• Fully operational to +600 V
• Tolerant to negative transient voltage, dV/dt
Packages
8-Lead PDIP
IRS2183
immune
• Gate drive supply range from 10 V to 20 V
• Undervoltage lockout for both channels
• 3.3 V and 5 V input logic compatible
• Matched propagation delay for both channels
• Logic and power ground +/- 5 V offset
• Lower di/dt gate driver for better noise immunity
• Output source/sink current capability 1.4 A/1.8 A
14-Lead PDIP
IRS21834
14-Lead SOIC
IRS21834S
Description
8-Lead SOIC
IRS2183S
The IRS2183/IRS21834 are high voltage,
high speed power MOSFET and IGBT
drivers with dependent high and low Feature Comparison
Crossside referenced output channels. ProDeadtime
Ton/Toff
Input
conduction
Ground Pins
Part
prietary HVIC and latch immune CMOS
prevention
logic
(ns)
(ns)
logic
technologies enable ruggedized mono2181
COM
HIN/LIN
no
none
180/220
lithic construction. The logic input is
21814
VSS/COM
compatible with standard CMOS or
2183
Internal 5000
COM
HIN/LIN
yes
180/220
21834
Program 400-5000
VSS/COM
LSTTL output, down to 3.3 V logic. The
2184
Internal 5000
COM
IN/SD
yes
680/270
output drivers feature a high pulse cur21844
Program 400-5000
VSS/COM
rent buffer stage designed for minimum
driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT
in the high side configuration which operates up to 600 V.
Typical Connection
up to 600 V
VCC
VCC
VB
HIN
HIN
HO
LIN
LIN
VS
COM
LO
TO
LOAD
up to 600 V
IRS2183
HO
VCC
VCC
VB
HIN
HIN
VS
LIN
LIN
IRS21834
TO
LOAD
DT
(Refer to Lead Assignment for correct pin
VSS
configuration) These diagrams show electrical
connections only. Please refer to our Application
Notes and DesignTips for proper circuit board layout.
www.irf.com
RDT
VSS
COM
LO
1
IRS2183/IRS21834(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
VB
High side floating absolute voltage
-0.3
620 (Note 1)
VS
High side floating supply offset voltage
VB - 20
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
20 (Note 1)
VLO
Low side output voltage
-0.3
VCC + 0.3
DT
Programmable deadtime pin voltage (IR21834 only)
VSS - 0.3
VCC + 0.3
VIN
Logic input voltage (HIN & LIN )
VSS - 0.3
VCC + 0.3
VSS
Logic ground (IR21834 only)
VCC - 20
VCC + 0.3
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25 °C
Thermal resistance, junction to ambient
—
50
(8-lead PDIP)
—
1.0
(8-lead SOIC)
—
0.625
(14-lead PDIP)
—
1.6
(14-lead SOIC)
—
1.0
(8-lead PDIP)
—
125
(8-lead SOIC)
—
200
(14-lead PDIP)
—
75
—
120
TJ
Junction temperature
(14-lead SOIC)
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
Units
V
V/ns
W
°C/W
°C
Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15 V differential.
Symbol
Definition
VB
High side floating supply absolute voltage
VS
High side floating supply offset voltage
Min.
Max.
V S + 10
VS + 20
Note 2
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage (HIN & LIN)
VSS
VCC
DT
Programmable deadtime pin voltage (IR21834 only)
VSS
VSS
Logic ground (IR21834 only)
-5
5
Ambient temperature
-40
125
TA
Units
V
VCC
°C
Note 2: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
www.irf.com
2
IRS2183/IRS21834(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
toff
Turn-on propagation delay
—
180
270
Turn-off propagation delay
—
220
330
MT
Delay matching | ton - toff
|
—
0
35
tr
Turn-on rise time
—
40
60
tf
Turn-off fall time
—
20
35
Deadtime: LO turn-off to HO turn-on(DTLO-HO) &
280
DT
HO turn-off to LO turn-on (DTHO-LO)
MDT
Deadtime matching = | DTLO-HO - DTHO-LO |
VS = 0V
VS = 0V or 600V
ns
VS = 0 V
RDT= 0 Ω
400
520
4
5
6
µs
RDT = 200 kΩ (IR21834)
—
0
50
ns
RDT=0 Ω
—
0
600
RDT = 200kΩ (IR21834)
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, DT= V SS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN
parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and
Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage for HIN & logic “0” for LIN
2.5
—
—
VIL
Logic “0” input voltage for HIN & logic “1” for LIN
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
—
1.2
VOL
Low level output voltage, VO
—
—
0.2
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
60
150
IQCC
Quiescent VCC supply current
0.4
1.0
1.6
IIN+
Logic “1” input bias current
—
25
60
IIN-
Logic “0” input bias current
—
—
1.0
8.0
8.9
9.8
7.4
8.2
9.0
Hysteresis
0.3
0.7
—
IO+
Output high short circuit pulsed current
1.4
1.9
—
IO-
Output low short circuit pulsed current
1.8
2.3
—
VCCUV+
VCC and VBS supply undervoltage positive going
VBSUV+
threshold
VCCUV-
VCC and VBS supply undervoltage negative going
VBSUV-
threshold
VCCUVH
VBSUVH
VCC = 10 V to 20 V
V
VB = VS = 600 V
µA
mA
VIN = 0 V or 5 V
HIN = 5 V, LIN = 0 V
µA
HIN = 0 V, LIN = 5 V
V
A
www.irf.com
IO = 0 A
IO = 20 mA
VO = 0 V,
PW ≤ 10 µs
VO = 15 V,
PW ≤ 10 µs
3
IRS2183/IRS21834(S)PbF
Functional Block Diagrams
VB
UV
DETECT
2183
HO
R
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFT
HIN
DT
Q
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
DEADTIME &
SHOOT-THROUGH
PREVENTION
VCC
UV
DETECT
+5V
VSS/COM
LEVEL
SHIFT
LIN
LO
DELAY
COM
VSS
VB
21834
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
HIN
HV
LEVEL
SHIFTER
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
DEADTIME &
SHOOT-THROUGH
PREVENTION
DT
VCC
UV
DETECT
+5V
LIN
Q
VSS/COM
LEVEL
SHIFT
LO
DELAY
COM
VSS
www.irf.com
4
IRS2183/IRS21834(S)PbF
Lead Definitions
Symbol Description
HIN
Logic input for high side gate driver output (HO), in phase (referenced to COM for IRS2183
and VSS for IRS21834)
Logic input for low side gate driver output (LO), out of phase (referenced to COM for IRS2183
and VSS for IRS21834)
DT
Programmable deadtime lead, referenced to VSS. (IRS21834 only)
VSS
Logic ground (IRS21834 only)
VB
High side floating supply
HO
High side gate driver output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate driver output
COM
Low side return
Lead Assignments
1
HIN
VB
8
1
HIN
VB
8
2
LIN
HO
7
2
LIN
HO
7
3
COM
VS
6
3
COM
VS
6
VCC
5
LO
4
www.irf.com
5
4
LO
8-Lead PDIP
8-Lead SOIC
IRS2183PbF
IRS2183SPbF
1
HIN
2
LIN
3
VSS
4
VCC
DT
14
14
1
HIN
VB
13
2
LIN
VB
13
HO
12
3
VSS
HO
12
VS
11
VS
11
4
DT
5
COM
10
5
COM
10
6
LO
9
6
LO
9
7
VCC
8
7
VCC
8
14-Lead PDIP
14-Lead SOIC
IRS21834PbF
IRS21834SPbF
5
IRS2183/IRS21834(S)PbF
Figure 1. Input/Output Timing Diagram
Figure 2. Switching Time Waveform Definitions
Figure 3. Deadtime Waveform Definitions
www.irf.com
6
500
400
300
M ax.
200
Typ.
100
0
-50
-25
0
25
50
75
100
125
Turn-On Propagation Delay (ns)
Turn-On Propagation Delay (ns)
IRS2183/IRS21834(S)PbF
500
400
M ax.
300
Typ.
200
100
0
10
12
Temperature (oC)
400
Typ.
100
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 5A. Turn-Off Propagation Delay
vs. Temperature
www.irf.com
125
Turn-Off Propagation Delay (ns)
Turn-Off Propagation Delay (ns)
500
200
18
20
Figure 4B. Turn-On Propagation Delay
vs. Supply Voltage
600
M ax.
16
Supply Voltage (V)
Figure 4A. Turn-On Propagation Delay
vs. Temperature
300
14
600
500
400
M ax.
300
Typ.
200
100
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 5B. Turn-Off Propagation Delay
vs. Supply Voltage
7
IRS2183/IRS21834(S)PbF
120
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
120
100
80
60
40
M ax.
Typ.
20
0
-50
100
M ax.
80
60
Typ.
40
20
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
20
80
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
18
Figure 6B. Turn-On Rise Time vs. Supply Voltage
80
60
40
M ax.
0
-50
16
Supply Voltage (V)
Figure 6A. Turn-On Rise Time vs. Temperature
20
14
Typ
60
M ax.
40
Typ.
20
0
-25
0
25
50
75
100
Temperature (oC)
Figure 7A. Turn-Off Fall Time vs. Temperature
www.irf.com
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 7B. Turn-Off Fall Time vs. Supply Voltage
8
1100
1100
900
900
Deadtime (ns)
Deadtime (ns)
IRS2183/IRS21834(S)PbF
700
M ax.
500
Typ.
M in.
300
700
M ax.
500
Typ.
M in.
300
100
-50
100
-25
0
25
50
75
100
125
10
12
14
Temperature (oC)
18
20
Supply Voltage (V)
Figure 8A. Deadtime vs. Temperature
Figure 8B. Deadtime vs. Supply Voltage
7
6
6
M ax.
5
Typ.
4
M in.
3
2
1
Input Voltage (V)
Deadtime (µs)
16
5
4
3
2
Min.
1
0
0
50
100
150
RDT (kΩ )
Figure 8C. Deadtime vs. RDT
www.irf.com
200
0
-50
-25
0
25
50
Temperature
75
100
125
(oC)
Figure 9A. Logic "1" Input Voltage
vs. Temperature
9
6
6
5
5
Logic "0" Input Voltage (V)
Input Voltage (V)
IRS2183/IRS21834(S)PbF
4
3
2
Min.
1
12
14
16
18
3
2
M ax.
1
0
-50
0
10
4
20
-25
0
5
4
High Level Output (V)
Logic "0" Input Voltage (V)
5
4
3
2
M ax.
1
0
16
18
Supply Voltage (V)
Figure 10B. Logic "0" Input Voltage
vs. Supply Voltage
www.irf.com
100
125
Figure 10A. Logic "0" Input Voltage
vs. Temperature
6
14
75
Temperature ( C)
Figure 9B. Logic "1" Input oltage
vs. Supply Voltage
12
50
o
V BAIS Supply Voltage (V)
10
25
20
3
2
M ax.
1
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 11A. High Level Output vs. Temperature
10
IRS2183/IRS21834(S)PbF
0.5
Low Level Output (V)
High Level Output (V)
5
4
3
2
M ax.
1
12
14
16
18
0.3
Max.
0.2
0.1
0.0
-50
0
10
0.4
20
-25
0
Supply Voltage (V)
Figure 11B. High Level Output vs. Supply Voltage
0.3
Max.
0.2
0.1
0.0
14
16
18
20
Supply Voltage (V)
Figure 12B. Low Level Output vs. Supply Voltage
www.irf.com
Offset Supply Leakage Current (µA)
Low Level Output (V)
0.4
12
50
75
100
125
Figure 12A. Low Level Output vs. Tem perature
0.5
10
25
Temperature ( oC)
500
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 13A. Offset Supply Leakage Current
vs. Temperature
11
500
V BS Supply Current (µA)
Offset Supply Leakage Current (µA)
IRS2183/IRS21834(S)PbF
400
300
200
100
M ax.
0
100
200
300
400
500
250
200
M ax.
150
100
Typ.
50
M in.
0
-50
600
-25
0
VB Boost Voltage (V)
50
75
100
125
Temperature (oC)
Figure 13B. Offset Supply Leakage Current
vs. VB Boost Voltage
Figure 14A. VBS Supply Current
vs. Temperature
250
5
V CC Supply Current (mA)
V BS Supply Current (µA)
25
200
150
M ax.
100
Typ.
50
M in.
0
10
12
14
16
18
VBS Floating Supply Voltage (V)
Figure 14B. VBS Supply Current
vs. VBS Floating Supply Voltage
www.irf.com
20
4
3
2
M ax.
Typ.
1
M in.
0
-50
-25
0
25
50
Temperature
75
100
125
( oC)
Figure 15A. V CC Supply Current
vs. Tem perature
12
VCC Supply Current (mA)
5
4
3
2
1
0
10
12
14
16
18
20
Logic "1" Input Bias Current (µA)
IRS2183/IRS21834(S)PbF
120
100
80
60
M ax.
40
Typ.
20
0
-50
-25
0
V CC Supply Voltage (V)
60
M ax.
40
Typ.
20
0
18
Supply Voltage (V)
Figure 16B. Logic "1" Input Bias Current
vs. Supply Voltage
www.irf.com
20
Logic "0" Input Bias Current (µA)
Logic "1" Input Bias Current (µA)
80
16
100
125
Figure 16A. Logic "1" Input Bias Current
vs. Temperature
100
14
75
Temperature ( C)
120
12
50
o
Figure 15B. V CC Supply Current
vs. V CC Supply Voltage
10
25
5
4
3
2
M ax.
1
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 17A. Logic "0" Input Bias Current
vs. Temperature
13
UV Threshold (+) (V)
12
5
11
4
10
3
BS
2
M ax.
1
0
10
12
14
16
18
20
V CC and V
Logic "0" Input Bias Current (µA)
IRS2183/IRS21834(S)PbF
M ax.
Typ.
9
M in.
8
7
6
-50
-25
0
12
11
10
M ax.
9
Typ.
8
M in.
7
0
25
50
75
100
125
o
Temperature ( C)
Figure 19. VCC and VBS Undervoltage Threshold (-)
vs. Temperature
www.irf.com
75
100
125
Figure 18. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
Output Source Current (A)
V CC and V
BS
UVThreshold (-) (V)
Figure 17B. Logic "0" Input Bias Current
vs. Supply Voltage
-25
50
Temperature (oC)
Supply Voltage (V)
6
-50
25
5
4
3
Typ.
2
1
0
-50
M in.
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 20A. Output Source Current
vs. Temperature
14
5
Output Sink Current (A)
Output Source Current (A)
IRS2183/IRS21834(S)PbF
4
3
2
Typ.
1
5.0
4.0
3.0
Typ.
2.0
M in.
M in.
1.0
-50
0
10
12
14
16
18
20
-25
0
25
50
75
100
125
o
Temperature ( C)
Supply Voltage (V)
Figure 21A. Output Sink Current
vs. Temperature
140
5
120
4
Temprature (oC)
Output Sink Current (A)
Figure 20B. Output Source Current
vs. Supply Voltage
3
2
Typ.
1
100
80
140 V
70 V
0 V
60
40
M in.
0
20
10
12
14
16
18
Supply Voltage (V)
Figure 21B. Output Sink Current
vs. Supply Voltage
www.irf.com
20
1
10
100
1000
Frequency (kHz)
Figure 22. IR2S183 vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
15
140
140
120
120
100
140 V
80
70 V
0 V
60
Temperature (oC)
Temperature (oC)
IRS2183/IRS21834(S)PbF
100
140 V
80
70 V
0 V
60
40
40
20
1
20
1
10
100
Figure 23. IRS2183 vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
Temperature (oC)
Temperature (oC)
140
70 V
0 V
100
80
60
120
100
80
60
40
40
20
20
1
10
100
1000
Frequency (kHz)
Figure 25. IRS2183 vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
www.irf.com
1000
Figure 24. IRS2183 vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
140 V
120
100
Frequency (kHz)
Frequency (kHz)
140
10
1000
140 V
70 V
0 V
1
10
100
1000
Frequency (kHz)
Figure 26. IRS21834 vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
16
140
140
120
120
100
80
60
140 V
70 V
0 V
Temperature (oC)
Temperature (oC)
IRS2183/IRS21834(S)PbF
100
140 V
80
60
40
40
20
20
1
10
100
70 V
0 V
1
1000
1000
Figure 28. IRS21834 vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
Figure 27. IRS21834 vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
140 V
120
70 V
100
0 V
80
60
140
Temperature (oC)
Temperature (oC)
100
Frequency (kHz)
Frequency (kHz)
140
10
120
100
80
140 V
60
70 V
0 V
40
40
20
20
1
10
100
1000
Frequency (kHz)
Figure 29. IRS21834 vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 30. IRS2183S vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
17
IRS2183/IRS21834(S)PbF
140 V
100
70 v
0 V
80
60
Temperature (oC)
120
Temperature (oC)
140 V 70 V
140
140
120
0 V
100
80
60
40
40
20
20
1
10
100
1
1000
1000
Figure 32. IRS2183S vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
Figure 31. IRS2183S vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
140 V 70 V 0 V
120
140
Temperature (oC)
Tempreture (oC)
100
Frequency (kHz)
Frequency (kHz)
140
10
100
80
60
40
120
100
80
60
140 V
70 V
0 V
40
20
1
10
100
1000
Frequency (kHz)
20
1
10
100
1000
Frequency (kHz)
Figure 33. IRS2183S vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
www.irf.com
Figure 34. IRS21834S vs. Frequency (IRFBC20),
Rgate=33 Ω , V CC=15 V
18
140
140
120
120
100
80
140 V
60
70 V
0 V
Temperature (oC)
Temperature (oC)
IRS2183/IRS21834(S)PbF
100
140 V
70 V
80
0 V
60
40
40
20
20
1
1
10
100
Frequency (kHz)
Figure 35. IRS21834S vs. Frequency (IRFBC30),
Rgate=22 Ω , V CC=15 V
100
1000
Frequency (kHz)
Figure 36. IRS21834S vs. Frequency (IRFBC40),
Rgate=15 Ω , V CC=15 V
140 V 70 V
0 V
140
Temperature (oC)
10
1000
120
100
80
60
40
20
1
10
100
1000
Frequency (kHz)
Figure 37. IRS21834S vs. Frequency (IRFPE50),
Rgate=10 Ω , V CC=15 V
www.irf.com
19
IRS2183/IRS21834(S)PbF
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
20
IRS2183/IRS21834(S)PbF
14-Lead PDIP
14-Lead SOIC (narrow body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
21
IRS2183/IRS21834(S)PbF
Tape & Reel
8-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8.1 0
0. 31 1
0 .3 18
B
3 .9 0
4.1 0
0. 15 3
0 .1 61
C
11 .7 0
1 2. 30
0 .4 6
0 .4 84
D
5 .4 5
5.5 5
0. 21 4
0 .2 18
E
6 .3 0
6.5 0
0. 24 8
0 .2 55
F
5 .1 0
5.3 0
0. 20 0
0 .2 08
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1.6 0
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 30 .2 5
1 2 .9 76
13 .0 0 1
B
20 .9 5
2 1. 45
0. 82 4
0 .8 44
C
12 .8 0
1 3. 20
0. 50 3
0 .5 19
D
1 .9 5
2.4 5
0. 76 7
0 .0 96
E
98 .0 0
1 02 .0 0
3. 85 8
4 .0 15
F
n /a
1 8. 40
n /a
0 .7 24
G
14 .5 0
1 7. 10
0. 57 0
0 .6 73
H
12 .4 0
1 4. 40
0. 48 8
0 .5 66
www.irf.com
22
IRS2183/IRS21834(S)PbF
Tape & Reel
14-lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IM ENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8.1 0
0. 31 1
0 .3 18
B
3 .9 0
4.1 0
0. 15 3
0 .1 61
C
15 .7 0
1 6. 30
0. 61 8
0 .6 41
D
7 .4 0
7.6 0
0. 29 1
0 .2 99
E
6 .4 0
6.6 0
0. 25 2
0 .2 60
F
9 .4 0
9.6 0
0. 37 0
0 .3 78
G
1 .5 0
n/ a
0. 05 9
n/ a
H
1 .5 0
1.6 0
0. 05 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 1 4 SO IC N
M etr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 30 .2 5
1 2 .9 76
13 .0 0 1
B
20 .9 5
2 1. 45
0. 82 4
0 .8 44
C
12 .8 0
1 3. 20
0. 50 3
0 .5 19
D
1 .9 5
2.4 5
0. 76 7
0 .0 96
E
98 .0 0
1 02 .0 0
3. 85 8
4 .0 15
F
n /a
2 2. 40
n /a
0 .8 81
G
18 .5 0
2 1. 10
0. 72 8
0 .8 30
H
16 .4 0
1 8. 40
0. 64 5
0 .7 24
www.irf.com
23
IRS2183/IRS21834(S)PbF
LEADFREE PART MARKING INFORMATION
S
IRxxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2183PbF
8-Lead SOIC IRS2183SPbF
8-Lead SOIC Tape & Reel IRS2183STRPbF
14-Lead PDIP IRS21834PbF
14-Lead SOIC IRS21834SPbF
14-Lead SOIC Tape & Reel IRS21834STRPbF
The SOIC-8 is MSL2 qualified.
The SOIC-14 is MSL3 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com <http://www.irf.com/>
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 6/19/2006
www.irf.com
24