Data Sheet No.PD60266 IRS2308(S)PbF HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt Packages immune • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels • 3.3 V, 5 V, and 15 V input logic compatible • Cross-conduction prevention logic 8-Lead SOIC IRS2308S • Matched propagation delay for both channels • Outputs in phase with inputs • Logic and power ground +/- 5 V offset. • Internal 540 ns deadtime • Lower di/dt gate driver for better Feature Comparison noise immunity Cross• RoHS compliant Deadtime Input conduction Part logic Description prevention logic (ns) 8-Lead PDIP IRS2308 Ground Pins ton/toff (ns) 2106 COM 220/200 HIN/LIN no none The IRS2308/IRS23084 are high volt21064 VSS/COM age, high speed power MOSFET and 2108 Internal 540 COM 220/200 HIN/LIN yes Programmable 540 - 5000 VSS/COM 21084 IGBT drivers with dependent high-side 2109 Internal 540 COM 750/200 IN/SD yes and low-side referenced output channels. Programmable 540 - 5000 VSS/COM 21094 Proprietary HVIC and latch immune yes 160/140 HIN/LIN Internal 100 COM 2304 CMOS technologies enable ruggedized 2308 HIN/LIN yes Internal 540 COM 220/200 monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V. Typical Connection up to 600 V VCC VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD (Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IRS2308(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. VB High-side floating absolute voltage -0.3 625 VS High-side floating supply offset voltage VB - 25 VB + 0.3 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Low-side and logic fixed supply voltage -0.3 25 VLO Low-side output voltage -0.3 VCC + 0.3 VSS - 0.3 VCC + 0.3 VIN dVS/dt PD RthJA Logic input voltage (HIN & LIN ) Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient — 50 (8 lead PDIP) — 1.0 (8 lead SOIC) — 0.625 (8 lead PDIP) — 125 (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 Units V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential. Symbol Definition VB High-side floating supply absolute voltage VS High-side floating supply offset voltage Min. Max. V S + 10 VS + 20 Note 1 600 VHO High-side floating output voltage VS VB VCC Low-side and logic fixed supply voltage 10 20 VLO Low-side output voltage VIN Logic input voltage TA Ambient temperature 0 VCC COM VCC -40 125 Units V °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS2308(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 220 300 toff Turn-off propagation delay — 200 280 MT Delay matching | ton - toff | — 0 46 tr Turn-on rise time — 100 220 tf Turn-off fall time — 35 80 400 540 680 — 0 60 DT MDT Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = | DTLO-HO - DTHO-LO | VS = 0 V VS = 0 V or 600 V ns VS = 0 V Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V, V SS = COM, DT= VSS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage for HIN & LIN 2.5 — — VIL Logic “0” input voltage for HIN & LIN — — 0.8 VOH High level output voltage, VBIAS - VO — 0.05 0.2 VOL Low level output voltage, VO — 0.02 0.1 ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 60 150 IQCC Quiescent VCC supply current 0.4 1.0 1.6 IIN+ Logic “1” input bias current — 5 20 IIN- Logic “0” input bias current — 1 5 8.0 8.9 9.8 7.4 8.2 9.0 Hysteresis 0.3 0.7 — IO+ Output high short circuit pulsed current 97 290 — IO- Output low short circuit pulsed current 250 600 — VCCUV+ VCC and VBS supply undervoltage positive going VBSUV+ threshold VCCUV- VCC and VBS supply undervoltage negative going VBSUV- threshold VCCUVH VBSUVH VCC = 10 V to 20 V V IO = 2 mA VB = VS = 600 V µA mA µA HIN = 5 V, LIN = 5 V HIN = 0 V, LIN = 0 V V mA www.irf.com VIN = 0 V or 5 V VO = 0 V, PW ≤ 10 µs VO = 15 V, PW ≤ 10 µs 3 IRS2308(S)PbF Functional Block Diagram VB UV DETECT IR2308 HO R HV LEVEL SHIFTER VSS/COM LEVEL SHIFT HIN DT R PULSE FILTER S VS PULSE GENERATOR VCC DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT VSS/COM LEVEL SHIFT LIN Q DELAY LO COM VSS www.irf.com 4 IRS2308(S)PbF Lead Definitions Symbol Description HIN Logic input for high-side gate driver output (HO), in phase LIN Logic input for low-side gate driver output (LO), in phase VB High-side floating supply HO High-side gate driver output VS High-side floating supply return VCC Low-side and logic fixed supply LO Low-side gate driver output COM Low-side return Lead Assignments VCC VB 2 HIN HO 7 3 LIN VS 6 4 COM LO 5 1 www.irf.com 8 VCC VB 8 2 HIN HO 7 3 LIN VS 6 4 COM LO 5 1 8 Lead PDIP 8 Lead SOIC IRS2308PbF IRS2308SPbF 5 IRS2308(S)PbF LIN 50% 50% HIN LIN HIN ton toff tr 90% tf 90% HO HO LO LO Figure 1. Input/Output Timing Diagram 10% 10% Figure 2. Switching Time Waveform Definitions LIN HIN 50 % 50 % 90% HO LO DTLO-HO 10% 90% DTHO-LO 10% MDT= DT LO-HO - DT HO-LO Figure 3. Deadtime Waveform Definitions www.irf.com 6 IRS2308(S)PbF 500 Turn-On (ns)(ns Turn-onDelay DelayTime Time Turn-On Delay Time (ns) (ns Turn-on Delay Time 500 400 300 Max. 200 Typ. 100 0 -50 400 Max. 300 Typ. 200 100 0 -25 0 25 50 75 100 125 10 12 oC) Temperature( Temperature (oC) 16 18 20 V VBIAS BIAS Supply Voltage (V) Figure Figure 4A. 4A. Turn-On Turn-On Time Time vs. Temperature vs. Temperature Figure4B. 4B.Turn-On Turn-OnTime Time Figure vs.Supply SupplyVoltage Voltage vs. 500 Turn-OffffTime Turn-O Time(ns) (ns) 500 Turn-Off (ns) Turn-O ffTime Time (ns ) 14 400 300 Max. 200 Typ. 100 0 -50 400 Max. 300 Typ. 200 100 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC)oC) Temperature( SupplyVoltage Voltage(V) (V) VV BIASSupply BIAS Figure 5A. Propagation Delay Figure 5A.Turn-Off Turn-Off Propagation Delay vs. vs.Temperature Temperature Figure Figure5B. 5B.Turn-Off Turn-OffPropagation PropagationDelay Delayvs. vs.Supply SupplyVoltage Voltage www.irf.com 7 IRS2308(S)PbF 50 0 Turn-On Rise (ns) T urn-O n R ise T imTime e (ns) Turn-On Rise Time (ns) 500 400 300 200 Max. 100 40 0 30 0 Max. 20 0 Typ. 10 0 Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature(oC) 16 18 20 VBIAS Supply Voltage (V) Fig u re 6B. 6B . TTurn-On u rn -O n RRise is e TTime im e Figure vs .Supply S u p p ly VVoltage o ltag e vs. Fig u re 6A . T Turn-On u rn -O n R Rise is e T im e Figure 6A. Time vs .T e m p e ratu re vs. Temperature 200 Turn-Off T urn-O ff F aFall llT imTime e (ns) Turn-Off Fall Time (ns) 14 150 100 Max. 50 20 0 15 0 Max. 10 0 50 Typ. Typ. 0 0 -50 -25 0Temperature 25 50(oC) 75 100 Temperature(oC) Fig u re 7A. 7A .Turn-Off T u rn -O ffFall FallTime T im e Figure vs. vs .Temperature T e m p e ratu re www.irf.com 125 10 12 14 16 VBIAS Supply Voltage (V) 18 20 Input Voltage (V) Fig u re 7B. 7B .Turn-Off T u rn -O ff Fall Fall TTime im e Figure vsSupply . In p u t vo ltag e vs. Voltage 8 IRS2308(S)PbF 800 800 Deadtime (ns) Deaduime ( ns) 1000 Deadtime (ns) (ns) Deadtime 1000 Max. 600 Typ. 400 Max. Typ. 600 Min. 400 Min. 200 -50 200 -25 0 25 50 75 100 125 10 12 Temperature Temperature(oC) (oC) 18 20 Figure 8A. Deadtime vs. Supply Voltage Figure 8B. Deadtime vs Supply Voltage 5 5 4 4 InputVoltage Voltage (V) Input (V) Input Voltage(V) (V) Input Voltage 16 Supply Voltage Voltage (V) (V) V BIAS BIAS Supply Figure Deadtime vs. vs. Temperature Temperature Figure 8A. 8A. Deadtime 3 Min. 2 1 -50 14 3 Min. 2 1 -25 0 25 50 75 100 Temperature (oC) Temperature (oC) Figure Figure9A. 9A.Logic Logic"1" “1”Input InputVoltage Voltage vs.Temperature Temperature vs. www.irf.com 125 10 12 14 16 18 20 SupplyVoltage Voltage(V) (V) VVBIAS BIASSupply Figure “1”Input InputVoltage Voltage Figure 9B. 9B. Logic "1" vs. Voltage vs. Supply Supply Voltage 9 4 4 3 3 Input Voltage Voltage (V) Input (V) Input Voltage (V) (V) Input Voltage IRS2308(S)PbF 2 1 2 1 Max. Max. 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature Temperatre ((ooC) High LevelOOutput Voltage (V) High Level utput Voltage (V) High Level Voltage (V) High Level OOutput utput Voltage (V) 0.4 0.3 Max. Typ. 0.0 -50 -25 0 25 50 75 100 Temperature Temperature (ooC) C) Figure Figure11A. 11A. High HighLevel Level Output OutputVoltage Voltage vs. Temperature Temperature vs. www.irf.com 18 20 Figure 10A.Logic Logic"0" “0”Input InputVoltage Voltage Figure 10B. vs. Supply SupplyVoltage Voltage vs. 0.5 0.1 16 VBIAS Supply Supply Voltage Voltage (V) (V) Figure10A. 10A.Logic Logic"0" “0”Input Input Voltage Figure Voltage vs.Temperature Temperature vs. 0.2 14 125 0.5 0.4 0.3 Max. 0.2 0.1 Typ. 0.0 10 12 14 16 18 20 Voltage (V) (V) VBIAS BAIS Supply Voltage Figure 11B. 11A. High Level Output Output Voltage Voltage Figure High Lovel vs. Voltage vs. Supply Supply Voltage 10 0.5 LowLevel Level O Output Low utput Voltage Voltage(V) (V) LowLevel Level O Output Low utput Voltage Voltage(V) (V) IRS2308(S)PbF 0.4 0.3 0.2 0.1 Max. Typ. 0.0 -50 -25 0 25 50 75 100 0.5 0.4 0.3 0.2 Max. 0.1 Typ. 0 10 125 12 o Temperature Temperature ((oC) C) 180 120 60 Max. 25 50 75 100 125 Temperature ((ooC) C) Temperature Figure 13A. Offset Supply Leakage Figure 13A. Offset Supply Leakage Current Current vs. Temperature vs. Temperature www.irf.com Offset Supply Leakage O ffset Supply Leak age cCurrent(µA) urrentt( (µ Offset Supply Leakage Current (µA) Offset SupplyLeak Leakage Current (µA) O ffset Supply age Current µ( A) 240 0 18 20 Figure 12B. 12B. Low Low Level Level Output Output Voltage Figure vs. vs.Supply Supply Voltage Voltage 300 -25 16 V Voltage (V) (V) VBIAS BIAS Supply Voltage Figure Figure12A. 12A.Low LowLevel LevelOutput OutputVoltage Voltage vs. Temperature vs.Temperature 0 -50 14 300 240 180 120 60 Max. 0 0 100 200 300 400 500 600 V B Boost Voltage (V) Figure13A. 13B.Offset Offset SupplyLeakage LeakageCurrent Figure Supply Current vs. Supply Voltage vs. Supply Voltage 11 IRS2308(S)PbF 300 (µA) BS Supply VVBS SupplyCurrent Current (µ Α) VBS Supply Current (µA) (µΑ) V BS Supply Current 300 240 180 120 Max. 60 Typ. Min. 0 -50 240 180 120 Max. Typ. 60 Min. 0 -25 0 25 50 Temperature Temperature 75 100 125 10 18 20 3 VVCC (mΑ ) CCSupply Supply Current Current (mA) VVCCC Current(mA) (mΑ ) Supply Current C Supply 16 Figure 14B. VBS Supply Current Figure vs. 14B.Supply V BS Supply Current Voltage vs. Supply Voltage 3.0 2.4 Max. 1.2 Typ. 0.6 Min. 0.0 -50 14 VBS Supply Voltage (V) V BS Supply Voltage (V) Figure Supply Current Figure 14A. 14A. V BS Supply Current vs. Temperature 1.8 12 (ooC) C) 2.4 1.8 1.2 Max. 0.6 Typ. Min. 0 -25 0 25 50 75 100 Temperature (ooC) C) Temperature Figure SupplyCurrent Current Figure 15A. 15A. VVCC CCSupply vs. Temperature vs. Temperature www.irf.com 125 10 12 14 16 18 20 Supply Voltage Voltage (V) (V) VCC Supply Figure Figure 15B. 14B.VVCC SupplyCurrent Current CCSupply vs. Supply SupplyVoltage Voltage vs. 12 IRS2308(S)PbF 50 Logic “1” (µA) Logic "1" Input InputCurrent Current µ( Α ) Logic “1” Input Current (µA) Logic "1" Input Current µ( A) 50 40 30 20 Max. 10 Typ. 0 -50 40 30 Max. 20 10 Typ. 0 -25 0 25 50 75 100 125 10 12 Temperature ((ooC) C) Temperature Logic"0" “0”Input InputBias Current (µA) (µA) Logic Current Logic “0” Input Current (µA) Logic "0" Input Bias Current (µA) Max 4 Max. 2 Typ. 1 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. Logic “0” Input Bias Current vs. Temperature www.irf.com 18 20 Figure Input Current Figure16B. 16B.Logic Logic"1" “1” Input Current vs. vs.Supply SupplyVoltage Voltage 6 3 16 SupplyVoltage Voltage(V) (V) VVCC CCSupply Figure Logic "1"“1” Input Current Figure16A. 16A. Logic Input Current vs. Temperature vs. Temperature 5 14 6 5 Max 4 3 Max. 2 Typ. 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 17B. Logic “0” Input Bias Current vs. Supply Voltage 13 12 (-) (-) (V)(v ) VVcc UVLOThreshold Threshold C C UVLO UVLO Threshold (+) (V) VVcc C C UVLO Thres hold (+) (V) IRS2308(S)PbF 11 10 Max. 9 Typ. 8 Min. 7 -50 -25 0 25 50 75 100 11 10 9 Max. 8 Typ. 7 Min. 6 -50 125 -25 0 V (-) (-) (V) (V) VBS UVLOThreshold Thres hold BS UVLO BSUVLO UVLO Thres Threshold VVBS hold(+) (+)(V) (v) 12 11 10 Max. 9 Typ. 8 Min. 0 25 50 75 100 Temperature Temperature ((ooC) Figure20. 20.VV Undervoltage Threshold (+) Figure (+) BS BSUndervoltage vs. vs.Temperature Temperature www.irf.com 75 100 125 Figure 19. 19.VVCC UndervoltageThreshold Threshold Figure (-)(-) ccUndervoltage vs.Temperature Temperature vs. Figure 18. 18. V Figure VCC UndervoltageThreshold Threshold(+) (+) ccUndervoltage vs. Temperature Temperature vs. -25 50 C) Temperature (ooC) Temperature Temperature ((oC) C) 7 -50 25 125 11 10 9 8 Max. Typ. 7 Min. 6 -50 -25 0 25 50 75 100 125 C) Temperature (ooC) Figure 21. Threshold (-)(-) Figure 21. VVBS Undervoltage Threshold BSUndervoltage vs. Temperature vs. Temperature 14 IRS2308(S)PbF 500 Source Current OOutput utput Source Current(mA) (mΑ ) Source Current OOutput utput Source Current(mA) (mΑ ) 500 400 Typ. 300 200 100 Max. 0 -50 400 300 200 Typ. 100 Max. 0 -25 0 25 50 75 100 125 10 12 Temperature ((ooC) C) Temperature 16 18 20 V SupplyVoltage Voltage(V) (V) VBIAS Supply BIAS Figure Figure 22A. 22A.Output OutputSource SourceCurrent Current vs. Temperature vs. Temperature Figure 22B. 22B. Output Figure Output Source SourceCurrent Current vs. Supply Voltage 1000 1000 Sink Current OOutput utput Sink Current(mA) (m Α) (mA) OOutput utput Sink SinkCurrent Current (m Α) 14 800 Typ. 600 400 200 Max. 0 -50 600 400 Typ. 200 Max. 0 -25 0 25 50 75 100 o (oC) Temperature Temperature ( C) Figure 23A. Figure 23A. Output OutputSink SinkCurrent Current vs.Temperature vs. Temperature www.irf.com 800 125 10 12 14 16 18 20 V BIAS SupplyVoltage Voltage(V) (V) BIASSupply Figure23B. 23B. Output Output Sink Sink Current Figure vs. vs.Supply Supply Voltage Voltage 15 VV OffsetSupply SupplyVoltage Voltage(V) (V) S SOffset IRS2308(S)PbF 0 -2 Typ. -4 -6 -8 -10 10 12 14 16 18 20 FloatingSupply Supply Voltage Voltage (V) (V) VBS BS Flouting Figure 24. VS Negative OffsetOffset Figure 24.Maximum Maximum VS Negative vs. Voltage vs.Supply Supply Voltage www.irf.com 16 140 140 120 120 100 80 140 V 70 V 60 0V 40 Temperature ( oC) Temperature ( o C) IRS2308(S)PbF 100 140 V 80 70 V 0V 60 40 20 20 1 10 100 1000 1 Frequency (kHz) 10 100 1000 Frequency (kHz) Figure 25. IRS2308 vs. Frequency (IRFBC20), Rgate=33Ω, VCC=15 V Figure 26. IRS2308 vs. Frequency (IRFBC30), Rgate=22 Ω, VCC=15 V 140 V 70 V 120 120 0V 100 140 V 80 70 V 60 0V 40 20 Temperature ( oC) 140 Temperature ( oC) 140 100 80 60 40 20 1 10 100 1000 Frequency (kHz) Figure 27. IRS2308 vs. Frequency (IRFBC40), Rgate=15Ω, VCC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 28. IRS2308 vs. Frequency (IRFPE50), Rgate=10Ω, VCC=15 V 17 140 140 120 120 100 80 140 V 70 V 60 0V 40 Temperature ( o C) Temperature (o C) IRS2308(S)PbF 20 140 V 100 70 V 80 0V 60 40 20 1 10 100 1000 1 Frequency (kHz) 1000 Figure 30. IRS2308S vs. Frequency (IRFBC30), Rgate=22Ω, VCC=15 V 140 V 70 V 140 V 70 V 0 V 140 120 0V 100 80 60 Tempreture ( o C) 120 Temperature (o C) 100 Frequency (kHz) Figure 29. IRS2308S vs. Frequency (IRFBC20), Rgate=33Ω, VCC=15 V 140 10 100 80 60 40 40 20 20 1 10 100 1000 Frequency (kHz) Figure 31. IRS2308S vs. Frequency (IRFBC40), Rgate=15Ω, VCC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 32. IRS2308S vs. Frequency (IRFPE50), Rgate=10Ω, VCC=15 V 18 IRS2308(S)PbF Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 7 6 5 6 H E 0.25 [.010] 1 2 3 A 4 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BASIC 3X 1.27 [.050] 8X 1.78 [.070] MAX .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° e1 6X e MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN K x 45° e1 A C y 0.10 [.004] 8X b 0.25 [.010] A1 8X L C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC www.irf.com 8X c 7 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 19 IRS2308(S)PbF Tape & Reel 8-Lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IMENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M e tr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8 .1 0 0. 3 1 1 0 .3 18 B 3 .9 0 4 .1 0 0. 1 5 3 0 .1 61 C 1 1 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5 .5 5 0. 2 1 4 0 .2 18 E 6 .3 0 6 .5 0 0. 2 4 8 0 .2 55 F 5 .1 0 5 .3 0 0. 2 0 0 0 .2 08 G 1 .5 0 n/ a 0. 0 5 9 n/ a H 1 .5 0 1 .6 0 0. 0 5 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M e tr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 3 0 .2 5 1 2 .9 7 6 13 .0 0 1 B 2 0 .9 5 2 1. 45 0. 8 2 4 0 .8 44 C 1 2 .8 0 1 3. 20 0. 5 0 3 0 .5 19 D 1 .9 5 2 .4 5 0. 7 6 7 0 .0 96 E 9 8 .0 0 1 0 2 .0 0 3. 8 5 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 1 4 .5 0 1 7. 10 0. 5 7 0 0 .6 73 H 1 2 .4 0 1 4. 40 0. 4 8 8 0 .5 66 www.irf.com 20 IRS2308(S)PbF LEADFREE PART MARKING INFORMATION IRxxxxxx S Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2308PbF 8-Lead SOIC IRS2308SPbF 8-Lead SOIC Tape & Reel IRS2308STRPbF The SOIC-8 is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 11/27/2006 www.irf.com 21