IRF IRS2308S

Data Sheet No.PD60266
IRS2308(S)PbF
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
• Fully operational to +600 V
• Tolerant to negative transient voltage, dV/dt
Packages
immune
• Gate drive supply range from 10 V to 20 V
• Undervoltage lockout for both channels
• 3.3 V, 5 V, and 15 V input logic compatible
• Cross-conduction prevention logic
8-Lead SOIC
IRS2308S
• Matched propagation delay for both channels
• Outputs in phase with inputs
• Logic and power ground +/- 5 V offset.
• Internal 540 ns deadtime
• Lower di/dt gate driver for better
Feature Comparison
noise immunity
Cross• RoHS compliant
Deadtime
Input
conduction
Part
logic
Description
prevention
logic
(ns)
8-Lead PDIP
IRS2308
Ground Pins
ton/toff
(ns)
2106
COM
220/200
HIN/LIN
no
none
The IRS2308/IRS23084 are high volt21064
VSS/COM
age, high speed power MOSFET and
2108
Internal 540
COM
220/200
HIN/LIN
yes
Programmable 540 - 5000
VSS/COM
21084
IGBT drivers with dependent high-side
2109
Internal 540
COM
750/200
IN/SD
yes
and low-side referenced output channels.
Programmable 540 - 5000
VSS/COM
21094
Proprietary HVIC and latch immune
yes
160/140
HIN/LIN
Internal 100
COM
2304
CMOS technologies enable ruggedized
2308
HIN/LIN
yes
Internal 540
COM
220/200
monolithic construction. The logic input
is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high
pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used
to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.
Typical Connection
up to 600 V
VCC
VCC
VB
HIN
HIN
HO
LIN
LIN
VS
COM
LO
TO
LOAD
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only.
Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IRS2308(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
VB
High-side floating absolute voltage
-0.3
625
VS
High-side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High-side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low-side and logic fixed supply voltage
-0.3
25
VLO
Low-side output voltage
-0.3
VCC + 0.3
VSS - 0.3
VCC + 0.3
VIN
dVS/dt
PD
RthJA
Logic input voltage (HIN & LIN )
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25 °C
Thermal resistance, junction to ambient
—
50
(8 lead PDIP)
—
1.0
(8 lead SOIC)
—
0.625
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
Units
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential.
Symbol
Definition
VB
High-side floating supply absolute voltage
VS
High-side floating supply offset voltage
Min.
Max.
V S + 10
VS + 20
Note 1
600
VHO
High-side floating output voltage
VS
VB
VCC
Low-side and logic fixed supply voltage
10
20
VLO
Low-side output voltage
VIN
Logic input voltage
TA
Ambient temperature
0
VCC
COM
VCC
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
www.irf.com
2
IRS2308(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, VSS = COM, CL = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
Turn-on propagation delay
—
220
300
toff
Turn-off propagation delay
—
200
280
MT
Delay matching | ton - toff |
—
0
46
tr
Turn-on rise time
—
100
220
tf
Turn-off fall time
—
35
80
400
540
680
—
0
60
DT
MDT
Deadtime: LO turn-off to HO turn-on(DTLO-HO) &
HO turn-off to LO turn-on (DTHO-LO)
Deadtime matching = | DTLO-HO - DTHO-LO |
VS = 0 V
VS = 0 V or 600 V
ns
VS = 0 V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15 V, V SS = COM, DT= VSS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO, and Ron
parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage for HIN & LIN
2.5
—
—
VIL
Logic “0” input voltage for HIN & LIN
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
0.05
0.2
VOL
Low level output voltage, VO
—
0.02
0.1
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
60
150
IQCC
Quiescent VCC supply current
0.4
1.0
1.6
IIN+
Logic “1” input bias current
—
5
20
IIN-
Logic “0” input bias current
—
1
5
8.0
8.9
9.8
7.4
8.2
9.0
Hysteresis
0.3
0.7
—
IO+
Output high short circuit pulsed current
97
290
—
IO-
Output low short circuit pulsed current
250
600
—
VCCUV+
VCC and VBS supply undervoltage positive going
VBSUV+
threshold
VCCUV-
VCC and VBS supply undervoltage negative going
VBSUV-
threshold
VCCUVH
VBSUVH
VCC = 10 V to 20 V
V
IO = 2 mA
VB = VS = 600 V
µA
mA
µA
HIN = 5 V, LIN = 5 V
HIN = 0 V, LIN = 0 V
V
mA
www.irf.com
VIN = 0 V or 5 V
VO = 0 V,
PW ≤ 10 µs
VO = 15 V,
PW ≤ 10 µs
3
IRS2308(S)PbF
Functional Block Diagram
VB
UV
DETECT
IR2308
HO
R
HV
LEVEL
SHIFTER
VSS/COM
LEVEL
SHIFT
HIN
DT
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
VCC
DEADTIME &
SHOOT-THROUGH
PREVENTION
UV
DETECT
VSS/COM
LEVEL
SHIFT
LIN
Q
DELAY
LO
COM
VSS
www.irf.com
4
IRS2308(S)PbF
Lead Definitions
Symbol Description
HIN
Logic input for high-side gate driver output (HO), in phase
LIN
Logic input for low-side gate driver output (LO), in phase
VB
High-side floating supply
HO
High-side gate driver output
VS
High-side floating supply return
VCC
Low-side and logic fixed supply
LO
Low-side gate driver output
COM
Low-side return
Lead Assignments
VCC
VB
2
HIN
HO
7
3
LIN
VS
6
4
COM
LO
5
1
www.irf.com
8
VCC
VB
8
2
HIN
HO
7
3
LIN
VS
6
4
COM
LO
5
1
8 Lead PDIP
8 Lead SOIC
IRS2308PbF
IRS2308SPbF
5
IRS2308(S)PbF
LIN
50%
50%
HIN
LIN
HIN
ton
toff
tr
90%
tf
90%
HO
HO
LO
LO
Figure 1. Input/Output Timing Diagram
10%
10%
Figure 2. Switching Time Waveform Definitions
LIN
HIN
50
%
50
%
90%
HO
LO
DTLO-HO
10%
90%
DTHO-LO
10%
MDT= DT
LO-HO
- DT
HO-LO
Figure 3. Deadtime Waveform Definitions
www.irf.com
6
IRS2308(S)PbF
500
Turn-On
(ns)(ns
Turn-onDelay
DelayTime
Time
Turn-On
Delay
Time
(ns) (ns
Turn-on
Delay
Time
500
400
300
Max.
200
Typ.
100
0
-50
400
Max.
300
Typ.
200
100
0
-25
0
25
50
75
100
125
10
12
oC)
Temperature(
Temperature
(oC)
16
18
20
V
VBIAS
BIAS Supply Voltage (V)
Figure
Figure 4A.
4A. Turn-On
Turn-On Time
Time
vs.
Temperature
vs. Temperature
Figure4B.
4B.Turn-On
Turn-OnTime
Time
Figure
vs.Supply
SupplyVoltage
Voltage
vs.
500
Turn-OffffTime
Turn-O
Time(ns)
(ns)
500
Turn-Off
(ns)
Turn-O ffTime
Time
(ns )
14
400
300
Max.
200
Typ.
100
0
-50
400
Max.
300
Typ.
200
100
0
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature
(oC)oC)
Temperature(
SupplyVoltage
Voltage(V)
(V)
VV
BIASSupply
BIAS
Figure
5A.
Propagation
Delay
Figure
5A.Turn-Off
Turn-Off
Propagation
Delay
vs.
vs.Temperature
Temperature
Figure
Figure5B.
5B.Turn-Off
Turn-OffPropagation
PropagationDelay
Delayvs.
vs.Supply
SupplyVoltage
Voltage
www.irf.com
7
IRS2308(S)PbF
50 0
Turn-On
Rise
(ns)
T urn-O
n R ise
T imTime
e (ns)
Turn-On Rise Time (ns)
500
400
300
200
Max.
100
40 0
30 0
Max.
20 0
Typ.
10 0
Typ.
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature(oC)
16
18
20
VBIAS Supply Voltage (V)
Fig u re 6B.
6B . TTurn-On
u rn -O n RRise
is e TTime
im e
Figure
vs .Supply
S u p p ly VVoltage
o ltag e
vs.
Fig
u re 6A
. T Turn-On
u rn -O n R Rise
is e T im
e
Figure
6A.
Time
vs
.T
e
m
p
e
ratu
re
vs. Temperature
200
Turn-Off
T urn-O
ff F aFall
llT imTime
e (ns)
Turn-Off Fall Time (ns)
14
150
100
Max.
50
20 0
15 0
Max.
10 0
50
Typ.
Typ.
0
0
-50
-25
0Temperature
25
50(oC) 75
100
Temperature(oC)
Fig u re 7A.
7A .Turn-Off
T u rn -O ffFall
FallTime
T im e
Figure
vs.
vs .Temperature
T e m p e ratu re
www.irf.com
125
10
12
14
16
VBIAS Supply Voltage (V)
18
20
Input Voltage (V)
Fig u re 7B.
7B .Turn-Off
T u rn -O ff Fall
Fall TTime
im e
Figure
vsSupply
. In p u t vo
ltag e
vs.
Voltage
8
IRS2308(S)PbF
800
800
Deadtime (ns)
Deaduime
( ns)
1000
Deadtime
(ns) (ns)
Deadtime
1000
Max.
600
Typ.
400
Max.
Typ.
600
Min.
400
Min.
200
-50
200
-25
0
25
50
75
100
125
10
12
Temperature
Temperature(oC)
(oC)
18
20
Figure 8A. Deadtime vs. Supply Voltage
Figure 8B. Deadtime vs Supply Voltage
5
5
4
4
InputVoltage
Voltage (V)
Input
(V)
Input
Voltage(V)
(V)
Input
Voltage
16
Supply Voltage
Voltage (V)
(V)
V BIAS
BIAS Supply
Figure
Deadtime vs.
vs. Temperature
Temperature
Figure 8A.
8A. Deadtime
3
Min.
2
1
-50
14
3
Min.
2
1
-25
0
25
50
75
100
Temperature (oC)
Temperature (oC)
Figure
Figure9A.
9A.Logic
Logic"1"
“1”Input
InputVoltage
Voltage
vs.Temperature
Temperature
vs.
www.irf.com
125
10
12
14
16
18
20
SupplyVoltage
Voltage(V)
(V)
VVBIAS
BIASSupply
Figure
“1”Input
InputVoltage
Voltage
Figure 9B.
9B. Logic "1"
vs.
Voltage
vs. Supply
Supply Voltage
9
4
4
3
3
Input Voltage
Voltage (V)
Input
(V)
Input
Voltage
(V) (V)
Input
Voltage
IRS2308(S)PbF
2
1
2
1
Max.
Max.
0
0
-50
-25
0
25
50
75
100
10
125
12
Temperature
Temperatre ((ooC)
High
LevelOOutput
Voltage (V)
High
Level
utput Voltage
(V)
High
Level
Voltage (V)
High
Level
OOutput
utput Voltage
(V)
0.4
0.3
Max.
Typ.
0.0
-50
-25
0
25
50
75
100
Temperature
Temperature (ooC)
C)
Figure
Figure11A.
11A. High
HighLevel
Level Output
OutputVoltage
Voltage
vs. Temperature
Temperature
vs.
www.irf.com
18
20
Figure
10A.Logic
Logic"0"
“0”Input
InputVoltage
Voltage
Figure 10B.
vs. Supply
SupplyVoltage
Voltage
vs.
0.5
0.1
16
VBIAS Supply
Supply Voltage
Voltage (V)
(V)
Figure10A.
10A.Logic
Logic"0"
“0”Input
Input
Voltage
Figure
Voltage
vs.Temperature
Temperature
vs.
0.2
14
125
0.5
0.4
0.3
Max.
0.2
0.1
Typ.
0.0
10
12
14
16
18
20
Voltage (V)
(V)
VBIAS
BAIS Supply Voltage
Figure 11B.
11A. High
Level Output
Output Voltage
Voltage
Figure
High Lovel
vs.
Voltage
vs. Supply
Supply Voltage
10
0.5
LowLevel
Level O
Output
Low
utput Voltage
Voltage(V)
(V)
LowLevel
Level O
Output
Low
utput Voltage
Voltage(V)
(V)
IRS2308(S)PbF
0.4
0.3
0.2
0.1
Max.
Typ.
0.0
-50
-25
0
25
50
75
100
0.5
0.4
0.3
0.2
Max.
0.1
Typ.
0
10
125
12
o
Temperature
Temperature ((oC)
C)
180
120
60
Max.
25
50
75
100
125
Temperature ((ooC)
C)
Temperature
Figure
13A.
Offset
Supply
Leakage
Figure
13A.
Offset
Supply
Leakage
Current
Current
vs.
Temperature
vs. Temperature
www.irf.com
Offset
Supply
Leakage
O ffset
Supply
Leak
age cCurrent(µA)
urrentt(
(µ
Offset
Supply
Leakage
Current (µA)
Offset
SupplyLeak
Leakage
Current (µA)
O ffset
Supply
age Current
µ( A)
240
0
18
20
Figure 12B.
12B. Low
Low Level
Level Output
Output Voltage
Figure
vs.
vs.Supply
Supply Voltage
Voltage
300
-25
16
V
Voltage (V)
(V)
VBIAS
BIAS Supply Voltage
Figure
Figure12A.
12A.Low
LowLevel
LevelOutput
OutputVoltage
Voltage
vs.
Temperature
vs.Temperature
0
-50
14
300
240
180
120
60
Max.
0
0
100
200
300
400
500
600
V B Boost Voltage (V)
Figure13A.
13B.Offset
Offset
SupplyLeakage
LeakageCurrent
Figure
Supply
Current
vs.
Supply
Voltage
vs. Supply Voltage
11
IRS2308(S)PbF
300
(µA)
BS Supply
VVBS
SupplyCurrent
Current
(µ Α)
VBS
Supply
Current
(µA) (µΑ)
V BS
Supply
Current
300
240
180
120
Max.
60
Typ.
Min.
0
-50
240
180
120
Max.
Typ.
60
Min.
0
-25
0
25
50
Temperature
Temperature
75
100
125
10
18
20
3
VVCC
(mΑ )
CCSupply
Supply Current
Current (mA)
VVCCC
Current(mA)
(mΑ )
Supply Current
C Supply
16
Figure 14B. VBS Supply Current
Figure vs.
14B.Supply
V BS Supply
Current
Voltage
vs. Supply Voltage
3.0
2.4
Max.
1.2
Typ.
0.6
Min.
0.0
-50
14
VBS Supply Voltage (V)
V
BS Supply Voltage (V)
Figure
Supply Current
Figure 14A.
14A. V BS Supply
Current
vs. Temperature
1.8
12
(ooC)
C)
2.4
1.8
1.2
Max.
0.6
Typ.
Min.
0
-25
0
25
50
75
100
Temperature (ooC)
C)
Temperature
Figure
SupplyCurrent
Current
Figure 15A.
15A. VVCC
CCSupply
vs.
Temperature
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
Supply Voltage
Voltage (V)
(V)
VCC Supply
Figure
Figure 15B.
14B.VVCC
SupplyCurrent
Current
CCSupply
vs. Supply
SupplyVoltage
Voltage
vs.
12
IRS2308(S)PbF
50
Logic “1”
(µA)
Logic
"1" Input
InputCurrent
Current
µ( Α )
Logic “1” Input Current (µA)
Logic "1" Input Current µ( A)
50
40
30
20
Max.
10
Typ.
0
-50
40
30
Max.
20
10
Typ.
0
-25
0
25
50
75
100
125
10
12
Temperature ((ooC)
C)
Temperature
Logic"0"
“0”Input
InputBias
Current
(µA) (µA)
Logic
Current
Logic “0” Input Current (µA)
Logic "0" Input Bias Current (µA)
Max
4
Max.
2
Typ.
1
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 17A. Logic “0” Input Bias Current
vs. Temperature
www.irf.com
18
20
Figure
Input
Current
Figure16B.
16B.Logic
Logic"1"
“1”
Input
Current
vs.
vs.Supply
SupplyVoltage
Voltage
6
3
16
SupplyVoltage
Voltage(V)
(V)
VVCC
CCSupply
Figure
Logic
"1"“1”
Input
Current
Figure16A.
16A.
Logic
Input
Current
vs.
Temperature
vs.
Temperature
5
14
6
5
Max
4
3
Max.
2
Typ.
1
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 17B. Logic “0” Input Bias Current
vs. Supply Voltage
13
12
(-) (-)
(V)(v )
VVcc
UVLOThreshold
Threshold
C C UVLO
UVLO Threshold (+) (V)
VVcc
C C UVLO Thres hold (+) (V)
IRS2308(S)PbF
11
10
Max.
9
Typ.
8
Min.
7
-50
-25
0
25
50
75
100
11
10
9
Max.
8
Typ.
7
Min.
6
-50
125
-25
0
V
(-) (-)
(V) (V)
VBS
UVLOThreshold
Thres hold
BS UVLO
BSUVLO
UVLO Thres
Threshold
VVBS
hold(+)
(+)(V)
(v)
12
11
10
Max.
9
Typ.
8
Min.
0
25
50
75
100
Temperature
Temperature ((ooC)
Figure20.
20.VV
Undervoltage Threshold (+)
Figure
(+)
BS
BSUndervoltage
vs.
vs.Temperature
Temperature
www.irf.com
75
100
125
Figure 19.
19.VVCC
UndervoltageThreshold
Threshold
Figure
(-)(-)
ccUndervoltage
vs.Temperature
Temperature
vs.
Figure 18.
18. V
Figure
VCC
UndervoltageThreshold
Threshold(+)
(+)
ccUndervoltage
vs. Temperature
Temperature
vs.
-25
50
C)
Temperature (ooC)
Temperature
Temperature ((oC)
C)
7
-50
25
125
11
10
9
8
Max.
Typ.
7
Min.
6
-50
-25
0
25
50
75
100
125
C)
Temperature (ooC)
Figure 21.
Threshold
(-)(-)
Figure
21. VVBS
Undervoltage
Threshold
BSUndervoltage
vs.
Temperature
vs. Temperature
14
IRS2308(S)PbF
500
Source Current
OOutput
utput Source
Current(mA)
(mΑ )
Source Current
OOutput
utput Source
Current(mA)
(mΑ )
500
400
Typ.
300
200
100
Max.
0
-50
400
300
200
Typ.
100
Max.
0
-25
0
25
50
75
100
125
10
12
Temperature ((ooC)
C)
Temperature
16
18
20
V
SupplyVoltage
Voltage(V)
(V)
VBIAS
Supply
BIAS
Figure
Figure 22A.
22A.Output
OutputSource
SourceCurrent
Current
vs.
Temperature
vs. Temperature
Figure 22B.
22B. Output
Figure
Output Source
SourceCurrent
Current
vs. Supply Voltage
1000
1000
Sink Current
OOutput
utput Sink
Current(mA)
(m
Α)
(mA)
OOutput
utput Sink
SinkCurrent
Current
(m
Α)
14
800
Typ.
600
400
200
Max.
0
-50
600
400
Typ.
200
Max.
0
-25
0
25
50
75
100
o
(oC)
Temperature
Temperature ( C)
Figure 23A.
Figure
23A. Output
OutputSink
SinkCurrent
Current
vs.Temperature
vs.
Temperature
www.irf.com
800
125
10
12
14
16
18
20
V BIAS
SupplyVoltage
Voltage(V)
(V)
BIASSupply
Figure23B.
23B. Output
Output Sink
Sink Current
Figure
vs.
vs.Supply
Supply Voltage
Voltage
15
VV
OffsetSupply
SupplyVoltage
Voltage(V)
(V)
S SOffset
IRS2308(S)PbF
0
-2
Typ.
-4
-6
-8
-10
10
12
14
16
18
20
FloatingSupply
Supply
Voltage
Voltage
(V) (V)
VBS
BS Flouting
Figure 24.
VS Negative
OffsetOffset
Figure
24.Maximum
Maximum
VS Negative
vs.
Voltage
vs.Supply
Supply
Voltage
www.irf.com
16
140
140
120
120
100
80
140 V
70 V
60
0V
40
Temperature ( oC)
Temperature ( o C)
IRS2308(S)PbF
100
140 V
80
70 V
0V
60
40
20
20
1
10
100
1000
1
Frequency (kHz)
10
100
1000
Frequency (kHz)
Figure 25. IRS2308 vs. Frequency (IRFBC20),
Rgate=33Ω, VCC=15 V
Figure 26. IRS2308 vs. Frequency (IRFBC30),
Rgate=22 Ω, VCC=15 V
140 V
70 V
120
120
0V
100
140 V
80
70 V
60
0V
40
20
Temperature ( oC)
140
Temperature ( oC)
140
100
80
60
40
20
1
10
100
1000
Frequency (kHz)
Figure 27. IRS2308 vs. Frequency (IRFBC40),
Rgate=15Ω, VCC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 28. IRS2308 vs. Frequency (IRFPE50),
Rgate=10Ω, VCC=15 V
17
140
140
120
120
100
80
140 V
70 V
60
0V
40
Temperature ( o C)
Temperature (o C)
IRS2308(S)PbF
20
140 V
100
70 V
80
0V
60
40
20
1
10
100
1000
1
Frequency (kHz)
1000
Figure 30. IRS2308S vs. Frequency (IRFBC30),
Rgate=22Ω, VCC=15 V
140 V 70 V
140 V 70 V 0 V
140
120
0V
100
80
60
Tempreture ( o C)
120
Temperature (o C)
100
Frequency (kHz)
Figure 29. IRS2308S vs. Frequency (IRFBC20),
Rgate=33Ω, VCC=15 V
140
10
100
80
60
40
40
20
20
1
10
100
1000
Frequency (kHz)
Figure 31. IRS2308S vs. Frequency (IRFBC40),
Rgate=15Ω, VCC=15 V
www.irf.com
1
10
100
1000
Frequency (kHz)
Figure 32. IRS2308S vs. Frequency (IRFPE50),
Rgate=10Ω, VCC=15 V
18
IRS2308(S)PbF
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
7
6
5
6
H
E
0.25 [.010]
1
2
3
A
4
6.46 [.255]
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BASIC
1.27 BASIC
3X 1.27 [.050]
8X 1.78 [.070]
MAX
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
e1
6X e
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
K x 45°
e1
A
C
y
0.10 [.004]
8X b
0.25 [.010]
A1
8X L
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
www.irf.com
8X c
7
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
19
IRS2308(S)PbF
Tape & Reel
8-Lead SOIC
LOAD ED TA PE FEED DIRECTION
A
B
H
D
F
C
N OT E : CO NTROLLING
D IMENSION IN MM
E
G
C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N
M e tr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
7 .9 0
8 .1 0
0. 3 1 1
0 .3 18
B
3 .9 0
4 .1 0
0. 1 5 3
0 .1 61
C
1 1 .7 0
1 2. 30
0 .4 6
0 .4 84
D
5 .4 5
5 .5 5
0. 2 1 4
0 .2 18
E
6 .3 0
6 .5 0
0. 2 4 8
0 .2 55
F
5 .1 0
5 .3 0
0. 2 0 0
0 .2 08
G
1 .5 0
n/ a
0. 0 5 9
n/ a
H
1 .5 0
1 .6 0
0. 0 5 9
0 .0 62
F
D
C
B
A
E
G
H
R E E L D IM E N S I O N S F O R 8 S O IC N
M e tr ic
Im p er i al
Co d e
M in
M ax
M in
M ax
A
32 9. 60
3 3 0 .2 5
1 2 .9 7 6
13 .0 0 1
B
2 0 .9 5
2 1. 45
0. 8 2 4
0 .8 44
C
1 2 .8 0
1 3. 20
0. 5 0 3
0 .5 19
D
1 .9 5
2 .4 5
0. 7 6 7
0 .0 96
E
9 8 .0 0
1 0 2 .0 0
3. 8 5 8
4 .0 15
F
n /a
1 8. 40
n /a
0 .7 24
G
1 4 .5 0
1 7. 10
0. 5 7 0
0 .6 73
H
1 2 .4 0
1 4. 40
0. 4 8 8
0 .5 66
www.irf.com
20
IRS2308(S)PbF
LEADFREE PART MARKING INFORMATION
IRxxxxxx
S
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
8-Lead PDIP IRS2308PbF
8-Lead SOIC IRS2308SPbF
8-Lead SOIC Tape & Reel IRS2308STRPbF
The SOIC-8 is MSL2 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 11/27/2006
www.irf.com
21