PD - 95179 IRF7307PbF Generation V Technology l Ultra Low On-Resistance l Dual N and P Channel Mosfet l Surface Mount l Available in Tape & Reel l Dynamic dv/dt Rating l Fast Switching l Lead-Free Description HEXFET® Power MOSFET l S1 N-CHANNEL MOSFET 1 8 D1 G1 2 7 D1 S2 3 6 D2 G2 4 5 D2 N-Ch P-Ch 20V -20V VDSS P-CHANNEL MOSFET RDS(on) 0.050Ω 0.090Ω Top View Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application. SO-8 Absolute Maximum Ratings Parameter ID @ TA = 25°C ID @ TA = 25°C I D @ TA = 70°C I DM P D @TA = 25°C VGS dv/dt TJ, TSTG 10 Sec. Pulse Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Junction and Storage Temperature Range Max. N-Channel P-Channel 5.7 5.2 4.1 21 -4.7 -4.3 -3.4 -17 2.0 0.016 ± 12 5.0 -5.0 -55 to + 150 Units A W W/°C V V/ns °C Thermal Resistance Ratings Parameter RθJA Maximum Junction-to-Ambient Typ. Max. Units 62.5 °C/W 10/7/04 IRF7307PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V (BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(ON) Static Drain-to-Source On-Resistance V GS(th) Gate Threshold Voltage g fs Forward Transconductance I DSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Qg Total Gate Charge Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time tf Fall Time LD LS Internal Drain Inductace Internal Source Inductance Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P N-P N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch Min. Typ. Max. 20 -20 0.044 -0.012 0.050 0.070 0.090 0.140 0.70 -0.70 8.30 4.00 1.0 -1.0 25 -25 ±100 20 22 2.2 3.3 8.0 9.0 9.0 8.4 42 26 32 51 51 33 4.0 6.0 660 610 280 310 140 170 Units V V/°C Ω V S µA nC ns nH pF Conditions VGS = 0V, ID = 250µA VGS = 0V, ID = -250µA Reference to 25°C, ID = 1mA Reference to 25°C, ID = -1mA VGS = 4.5V, ID = 2.6A VGS = 2.7V, ID = 2.2A VGS = -4.5V, ID = -2.2A VGS = -2.7V, ID = -1.8A VDS = VGS, I D = 250µA VDS = VGS, I D = -250µA VDS = 15V, I D = 2.6A VDS = -15V, I D = -2.2A VDS = 16V, VGS = 0V VDS = -16V, V GS = 0V, VDS = 16V, VGS = 0V, TJ = 125°C VDS = -16V, V GS = 0V, TJ = 125°C VGS = ± 12V N-Channel I D = 2.6A, VDS = 16V, VGS = 4.5V P-Channel I D = -2.2A, VDS = -16V, VGS = -4.5V N-Channel VDD = 10V, ID = 2.6A, RG = 6.0Ω, RD = 3.8Ω P-Channel VDD = -10V, ID = -2.2A, RG = 6.0Ω, RD = 4.5Ω Between lead tip and center of die contact N-Channel VGS = 0V, VDS = 15V, = 1.0MHz P-Channel VGS = 0V, VDS = -15V, = 1.0MHz Source-Drain Ratings and Characteristics Parameter IS Continuous Source Current (Body Diode) I SM Pulsed Source Current (Body Diode) VSD Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge ton Forward Turn-On Time N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch N-P Min. Typ. Max. Units Conditions 2.5 -2.5 A 21 -17 1.0 TJ = 25°C, IS = 1.8A, VGS = 0V V -1.0 TJ = 25°C, IS = -1.8A, VGS = 0V 29 44 N-Channel ns 56 84 TJ = 25°C, IF = 2.6A, di/dt = 100A/µs 22 33 P-Channel nC TJ = 25°C, IF = -2.2A, di/dt = 100A/µs 71 110 Intrinsic turn-on time is neglegible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by Pulse width ≤ 300µs; duty cycle ≤ 2%. N-Channel ISD ≤ 2.6A, di/dt ≤ 100A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Surface mounted on FR-4 board, t ≤ 10sec. max. junction temperature. ( See fig. 23 ) P-Channel ISD ≤ -2.2A, di/dt ≤ 50A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C IRF7307PbF N-Channel 1000 1000 VGS 7.5V 5.0V 4.0V 3.5V 3.0V 2.5V 2.0V BOTTOM 1.5V I , Drain-to-Source Current (A) D I , Drain-to-Source Current (A) D VGS 7.5V 5.0V 4.0V 3.5V 3.0V 2.5V 2.0V BOTTOM 1.5V TOP TOP 100 10 10 1.5V 20µs PULSE WIDTH TJ = 25°C A 1.5V 1 0.1 100 1 10 100 Fig 1. Typical Output Characteristics 2.0 R DS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) TJ = 25°C TJ = 150°C 10 VDS = 15V 20µs PULSE WIDTH 2.0 2.5 3.0 3.5 4.0 4.5 1.5 1.0 0.5 0.0 -60 -40 -20 A 5.0 V GS , Gate-to-Source Voltage (V) C, Capacitance (pF) Ciss Coss Crss 300 0 1 10 V DS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 20 40 60 A 80 100 120 140 160 Fig 4. Normalized On-Resistance Vs. Temperature 10 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd 600 VGS = 4.5V 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics 900 100 ID = 4.3A VGS , Gate-to-Source Voltage (V) 1200 10 Fig 2. Typical Output Characteristics 100 1.5 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 1 20µs PULSE WIDTH TJ = 150°C A 1 0.1 100 A I D = 2.6A VDS = 16V 8 6 4 2 FOR TEST CIRCUIT SEE FIGURE 11 0 0 5 10 15 20 Q G , Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 25 A IRF7307PbF N-Channel 100 OPERATION IN THIS AREA LIMITED BY RDS(on) ID , Drain Current (A) ISD , Reverse Drain Current (A) 100 10 TJ = 150°C TJ = 25°C 1 0.0 0.5 1.0 1.5 2.0 10 1ms TA = 25 °C TJ = 150 °C Single Pulse VGS = 0V 0.1 100us 1 0.1 A 2.5 1 RD VDS VGS 5.0 I D , Drain Current (A) 100 Fig 8. Maximum Safe Operating Area 6.0 D.U.T. RG 4.0 3.0 + V - DD 4.5V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2.0 1.0 0.0 10 VDS , Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 10ms Fig 10a. Switching Time Test Circuit 25 50 75 100 TC , Case Temperature 125 150 ( °C) VDS 90% Fig 9. Maximum Drain Current Vs. Ambient Temperature Current Regulator Same Type as D.U.T. 10% VGS td(on) 50KΩ 12V tr t d(off) tf Fig 10b. Switching Time Waveforms .2µF .3µF D.U.T. + V - DS QG 4.5V VGS QGS 3mA QGD VG IG ID Current Sampling Resistors Fig 11a. Gate Charge Test Circuit Charge Fig 11b. Basic Gate Charge Waveform IRF7307PbF P-Channel 100 100 VGS - 7.5V - 5.0V - 4.0V - 3.5V - 3.0V - 2.5V - 2.0V BOTTOM - 1.5V VGS - 7.5V - 5.0V - 4.0V - 3.5V - 3.0V - 2.5V - 2.0V BOTTOM - 1.5V TOP -ID , Drain-to-Source Current (A) -ID , Drain-to-Source Current (A) TOP 10 1 -1.5V 20µs PULSE WIDTH TJ = 25°C A 0.1 0.01 0.1 1 10 10 1 -1.5V 20µs PULSE WIDTH TJ = 150°C 0.1 0.01 100 0.1 Fig 12. Typical Output Characteristics R DS(on) , Drain-to-Source On Resistance (Normalized) -ID , Drain-to-Source Current (A) TJ = 150°C 1 VDS = -15V 20µs PULSE WIDTH 0.1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 A I D = -3.6A 1.5 1.0 0.5 0.0 -60 -VGS , Gate-to-Source Voltage (V) -VGS , Gate-to-Source Voltage (V) C, Capacitance (pF) Ciss 1000 C oss Crss 500 0 10 -20 0 20 40 60 80 A 100 120 140 160 Fig 15. Normalized On-Resistance Vs. Temperature 10 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = C ds + C gd 1 VGS = -4.5V -40 TJ , Junction Temperature (°C) Fig 14. Typical Transfer Characteristics 1500 A 100 Fig 13. Typical Output Characteristics 2.0 100 TJ = 25°C 10 -VDS , Drain-to-Source Voltage (V) -VDS , Drain-to-Source Voltage (V) 10 1 100 A -VDS , Drain-to-Source Voltage (V) Fig 16. Typical Capacitance Vs. Drain-to-Source Voltage I D = -2.2A VDS = -16V 8 6 4 2 FOR TEST CIRCUIT SEE FIGURE 22 0 0 5 10 15 20 25 A Q G , Total Gate Charge (nC) Fig 17. Typical Gate Charge Vs. Gate-to-Source Voltage IRF7307PbF P-Channel 100 OPERATION IN THIS AREA LIMITED BY RDS(on) 10 -IID , Drain Current (A) -ISD , Reverse Drain Current (A) 100 TJ = 150°C TJ = 25°C 1 VGS = 0V 0.1 0.3 0.6 0.9 1.2 10 1ms 1 A 1.5 TA = 25 °C TJ = 150 °C Single Pulse 1 10 100 -VDS , Drain-to-Source Voltage (V) -VSD , Source-to-Drain Voltage (V) Fig 18. Typical Source-Drain Diode Forward Voltage Fig 19. Maximum Safe Operating Area RD VDS 5.0 VGS 4.0 -ID , Drain Current (A) 10ms D.U.T. RG - + 3.0 VDD -4.5V 2.0 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 1.0 0.0 Fig 21a. Switching Time Test Circuit 25 50 75 100 TC , Case Temperature 125 150 ( °C) VDS 90% Fig 20. Maximum Drain Current Vs. Ambient Temperature Current Regulator Same Type as D.U.T. 10% VGS td(on) 50KΩ 12V tr t d(off) tf Fig 21b. Switching Time Waveforms .2µF .3µF D.U.T. +VDS QG -4.5V VGS QGS -3mA QGD VG IG ID Current Sampling Resistors Fig 22a. Gate Charge Test Circuit Charge Fig 22b. Basic Gate Charge Waveform IRF7307PbF N & P-Channel Thermal Response (Z thJA ) 100 D = 0.50 0.20 10 0.10 0.05 0.02 1 0.1 0.0001 PDM 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.001 0.01 0.1 1 10 t1, Rectangular Pulse Duration (sec) Fig 23. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 100 IRF7307PbF Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + ** RG • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test VGS* + - * VDD * Reverse Polarity for P-Channel ** Use P-Channel Driver for P-Channel Measurements Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple ≤ 5% *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 24. For N and P Channel HEXFETS [ISD ] IRF7307PbF SO-8 Package Outline Dimensions are shown in milimeters (inches) D DIM B 5 A 8 6 7 6 H E 1 6X 2 3 0.25 [.010] 4 8X b 0.25 [.010] MIN .0532 .0688 1.35 1.75 A MAX A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BASIC e1 .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° A e e1 MILLIMET ERS MAX A 5 INCHES MIN K x 45° C y 0.10 [.004] A1 8X L 8X c 7 C A B FOOT PRINT NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O A SUBS T RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking Information (Lead-Free) EXAMPLE: T HIS IS AN IRF7101 (MOSFET ) INT ERNAT IONAL RECT IFIER LOGO XXXX F 7101 DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) Y = LAST DIGIT OF T HE YEAR WW = WEEK A = AS SEMBLY S IT E CODE LOT CODE PART NUMBER IRF7307PbF SO-8 Tape and Reel Dimensions are shown in milimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04