PD - 96924 AUTOMOTIVE MOSFET Features IRFR48Z IRFU48Z HEXFET® Power MOSFET Advanced Process Technology lUltra Low On-Resistance l175°C Operating Temperature lFast Switching lRepetitive Avalanche Allowed up to Tjmax l D VDSS = 55V RDS(on) = 11mΩ G Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. ID = 42A S D-Pak IRFR48Z I-Pak IRFU48Z Absolute Maximum Ratings Parameter I D @ T C = 25°C Max. Continuous Drain Current, V GS @ 10V (Silicon Limited) I D @ T C = 100°C Continuous Drain Current, V GS @ 10V I D @ T C = 25°C Continuous Drain Current, V GS @ 10V (Package Limited) Pulsed Drain Current I DM 44 c V GS d E AS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value E AS (Tested ) c I AR Avalanche Current E AR TJ Repetitive Avalanche Energy T STG Storage Temperature Range 250 h Parameter Junction-to-Ambient (PCB mount) Junction-to-Ambient j A °C 300 (1.6mm from case ) y ij y 10 lbf in (1.1N m) Thermal Resistance R θJA mJ -55 to + 175 Mounting Torque, 6-32 or M3 screw R θJA 74 mJ Soldering Temperature, for 10 seconds j W W/°C V 110 Operating Junction and Junction-to-Case 91 0.61 ± 20 See Fig.12a, 12b, 15, 16 g R θJC A 42 P D @T C = 25°C Power Dissipation Linear Derating Factor Gate-to-Source Voltage Units 62 Typ. Max. ––– 1.64 ––– 40 ––– 110 Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 11/2/04 IRFR/U48Z Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Drain-to-Source Breakdown Voltage 55 ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.054 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 8.86 11 mΩ VGS = 10V, ID = 37A VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 50µA gfs Forward Transconductance 120 ––– ––– S VDS = 25V, ID = 37A IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 55V, VGS = 0V ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 40 60 Qgs Gate-to-Source Charge ––– 11 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 15 ––– VGS = 10V td(on) Turn-On Delay Time ––– 15 ––– VDD = 28V tr Rise Time ––– 61 ––– ID = 37A td(off) Turn-Off Delay Time ––– 40 ––– tf Fall Time ––– 35 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– IGSS V Conditions V(BR)DSS VGS = 0V, ID = 250µA e VDS = 55V, VGS = 0V, TJ = 125°C VGS = -20V ID = 37A nC ns nH VDS = 44V RG = 12 Ω e e D 6mm (0.25in.) G from package and center of die contact S Ciss Input Capacitance ––– 1720 ––– VGS = 0V Coss Output Capacitance ––– 290 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 160 ––– Coss Output Capacitance ––– 1000 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 230 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 360 ––– VGS = 0V, VDS = 0V to 44V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 37 ISM (Body Diode) Pulsed Source Current ––– ––– 250 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 37A, VGS = 0V trr Reverse Recovery Time ––– 20 40 ns TJ = 25°C, IF = 37A, VDD = 28V Qrr Reverse Recovery Charge ––– 14 28 nC di/dt = 100A/µs ton Forward Turn-On Time 2 c MOSFET symbol A showing the integral reverse e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U48Z 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 10 4.5V BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C 1 0.1 1 Tj = 175°C 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 1000 60 100 T J = 175°C 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 2 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 12 Gfs , Forward Transconductance (S) ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) 50 TJ = 25°C 40 TJ = 175°C 30 20 10 VDS = 10V 380µs PULSE WIDTH 0 0 20 40 60 80 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRFR/U48Z 10000 20 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C, Capacitance(pF) C oss = C ds + C gd Ciss 1000 Coss Crss ID= 37A VDS = 44V VDS= 28V VDS= 11V 16 12 8 4 0 100 1 10 0 100 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.00 100.00 TJ = 175°C 10.00 TJ = 25°C VGS = 0V 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 VSD , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 30 40 50 60 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 0.10 20 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 1.00 10 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100µsec 10 1msec 1 10msec Tc = 25°C Tj = 175°C Single Pulse DC 0.1 1 10 100 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U48Z 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 70 LIMITED BY PACKAGE ID , Drain Current (A) 60 50 40 30 20 10 0 25 50 75 100 125 150 ID = 37A VGS = 10V 2.0 1.5 1.0 0.5 175 -60 -40 -20 TC , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 Ci= τi/Ri Ci τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ3 τC τ τ3 Ri (°C/W) 0.7206 τi (sec) 0.000326 0.6009 0.001810 0.3175 0.014886 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U48Z D.U.T RG VGS 20V DRIVER L VDS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 300 15V ID 4.3A 6.3A BOTTOM 37A TOP 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 5.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VCC VGS(th) Gate threshold Voltage (V) 10 V 4.5 4.0 3.5 ID ID ID ID ID 3.0 2.5 2.0 = 1.0A = 50µA = 150µA = 250µA = 1.0mA 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRFR/U48Z 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 80 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 37A 60 40 20 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U48Z D.U.T Driver Gate Drive + * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - D= Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U48Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) 2.38 (.094) 2.19 (.086) 6.73 (.265) 6.35 (.250) 1.14 (.045) 0.89 (.035) -A1.27 (.050) 0.88 (.035) 5.46 (.215) 5.21 (.205) 0.58 (.023) 0.46 (.018) 4 6.45 (.245) 5.68 (.224) 6.22 (.245) 5.97 (.235) 1.02 (.040) 1.64 (.025) 1 2 10.42 (.410) 9.40 (.370) 3 LEAD ASSIGNMENTS 1 - GATE 0.51 (.020) MIN. -B1.52 (.060) 1.15 (.045) 4 - DRAIN 3X 2X 2 - DRAIN 3 - SOURCE 1.14 (.045) 0.76 (.030) 0.89 (.035) 0.64 (.025) 0.25 (.010) 0.58 (.023) 0.46 (.018) M A M B NOTES: 2.28 (.090) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4.57 (.180) 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). D-Pak (TO-252AA) Part Marking Information (;$03/( 7+,6,6$1,5)5 :,7+$66(0%/< /27&2'( $66(0%/('21:: 3$57180%(5 ,17(51$7,21$/ ,5)5 $ 5(&7,),(5 /2*2 ,17+($66(0%/</,1($ 1RWH '$7(&2'( <($5 :((. /,1($ 3LQDVVHPEO\OLQH $66(0%/< SRVLWLRQLQGLFDWHV/HDG)UHH /27&2'( OR ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( www.irf.com 3$57180%(5 ,5)5 3$ '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( 9 IRFR/U48Z I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) 6.73 (.265) 6.35 (.250) 2.38 (.094) 2.19 (.086) -A- 0.58 (.023) 0.46 (.018) 1.27 (.050) 0.88 (.035) 5.46 (.215) 5.21 (.205) LEAD ASSIGNMENTS 4 6.22 (.245) 5.97 (.235) 1.52 (.060) 1.15 (.045) 1 2 1 - GATE 2 - DRAIN 6.45 (.245) 5.68 (.224) 3 - SOURCE 4 - DRAIN 3 -B- NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2.28 (.090) 1.91 (.075) 9.65 (.380) 8.89 (.350) 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). 3X 1.14 (.045) 0.76 (.030) 3X 0.25 (.010) 2.28 (.090) 1.14 (.045) 0.89 (.035) 0.89 (.035) 0.64 (.025) M A M B 0.58 (.023) 0.46 (.018) 2X I-Pak (TO-251AA) Part Marking Information (;$03/( 7+,6,6$1,5)8 :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1($ ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)8 $ $66(0%/< /27&2'( 1RWH3LQDVVHPEO\OLQH SRVLWLRQLQGLFDWHV/HDG)UHH '$7(&2'( <($5 :((. /,1($ OR ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)8 $66(0%/< /27&2'( 10 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com IRFR/U48Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.11mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 37A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Rθ is measured at TJ approximately 90°C Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/04 www.irf.com 11