IRF IRFR48Z

PD - 96924
AUTOMOTIVE MOSFET
Features
IRFR48Z
IRFU48Z
HEXFET® Power MOSFET
Advanced Process Technology
lUltra Low On-Resistance
l175°C Operating Temperature
lFast Switching
lRepetitive Avalanche Allowed up to Tjmax
l
D
VDSS = 55V
RDS(on) = 11mΩ
G
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make this design an extremely efficient and
reliable device for use in Automotive applications
and a wide variety of other applications.
ID = 42A
S
D-Pak
IRFR48Z
I-Pak
IRFU48Z
Absolute Maximum Ratings
Parameter
I D @ T C = 25°C
Max.
Continuous Drain Current, V GS @ 10V (Silicon Limited)
I D @ T C = 100°C Continuous Drain Current, V GS @ 10V
I D @ T C = 25°C Continuous Drain Current, V GS @ 10V (Package Limited)
Pulsed Drain Current
I DM
44
c
V GS
d
E AS (Thermally limited) Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
E AS (Tested )
c
I AR
Avalanche Current
E AR
TJ
Repetitive Avalanche Energy
T STG
Storage Temperature Range
250
h
Parameter
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
j
A
°C
300 (1.6mm from case )
y
ij
y
10 lbf in (1.1N m)
Thermal Resistance
R θJA
mJ
-55 to + 175
Mounting Torque, 6-32 or M3 screw
R θJA
74
mJ
Soldering Temperature, for 10 seconds
j
W
W/°C
V
110
Operating Junction and
Junction-to-Case
91
0.61
± 20
See Fig.12a, 12b, 15, 16
g
R θJC
A
42
P D @T C = 25°C Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Units
62
Typ.
Max.
–––
1.64
–––
40
–––
110
Units
°C/W
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
11/2/04
IRFR/U48Z
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Drain-to-Source Breakdown Voltage
55
–––
–––
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.054
–––
V/°C Reference to 25°C, ID = 1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
8.86
11
mΩ
VGS = 10V, ID = 37A
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 50µA
gfs
Forward Transconductance
120
–––
–––
S
VDS = 25V, ID = 37A
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 55V, VGS = 0V
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
40
60
Qgs
Gate-to-Source Charge
–––
11
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
15
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
15
–––
VDD = 28V
tr
Rise Time
–––
61
–––
ID = 37A
td(off)
Turn-Off Delay Time
–––
40
–––
tf
Fall Time
–––
35
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
IGSS
V
Conditions
V(BR)DSS
VGS = 0V, ID = 250µA
e
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = -20V
ID = 37A
nC
ns
nH
VDS = 44V
RG = 12 Ω
e
e
D
6mm (0.25in.)
G
from package
and center of die contact
S
Ciss
Input Capacitance
–––
1720
–––
VGS = 0V
Coss
Output Capacitance
–––
290
–––
VDS = 25V
Crss
Reverse Transfer Capacitance
–––
160
–––
Coss
Output Capacitance
–––
1000
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
230
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
360
–––
VGS = 0V, VDS = 0V to 44V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
37
ISM
(Body Diode)
Pulsed Source Current
–––
–––
250
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 37A, VGS = 0V
trr
Reverse Recovery Time
–––
20
40
ns
TJ = 25°C, IF = 37A, VDD = 28V
Qrr
Reverse Recovery Charge
–––
14
28
nC
di/dt = 100A/µs
ton
Forward Turn-On Time
2
c
MOSFET symbol
A
showing the
integral reverse
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFR/U48Z
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
10
4.5V
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
1
0.1
1
Tj = 175°C
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
60
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
2
4
6
8
10
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
12
Gfs , Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
50
TJ = 25°C
40
TJ = 175°C
30
20
10
VDS = 10V
380µs PULSE WIDTH
0
0
20
40
60
80
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRFR/U48Z
10000
20
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C, Capacitance(pF)
C oss = C ds + C gd
Ciss
1000
Coss
Crss
ID= 37A
VDS = 44V
VDS= 28V
VDS= 11V
16
12
8
4
0
100
1
10
0
100
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.00
100.00
TJ = 175°C
10.00
TJ = 25°C
VGS = 0V
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
30
40
50
60
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
0.10
20
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
1.00
10
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
100µsec
10
1msec
1
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
0.1
1
10
100
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFR/U48Z
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
70
LIMITED BY PACKAGE
ID , Drain Current (A)
60
50
40
30
20
10
0
25
50
75
100
125
150
ID = 37A
VGS = 10V
2.0
1.5
1.0
0.5
175
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
Ci= τi/Ri
Ci τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
τ3
τC
τ
τ3
Ri (°C/W)
0.7206
τi (sec)
0.000326
0.6009
0.001810
0.3175
0.014886
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFR/U48Z
D.U.T
RG
VGS
20V
DRIVER
L
VDS
+
V
- DD
IAS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
300
15V
ID
4.3A
6.3A
BOTTOM 37A
TOP
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
5.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VCC
VGS(th) Gate threshold Voltage (V)
10 V
4.5
4.0
3.5
ID
ID
ID
ID
ID
3.0
2.5
2.0
= 1.0A
= 50µA
= 150µA
= 250µA
= 1.0mA
1.5
1.0
-75
-50
-25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRFR/U48Z
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
80
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 37A
60
40
20
0
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFR/U48Z
D.U.T
Driver Gate Drive
ƒ
+
‚
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
D=
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
VDS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFR/U48Z
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
2.38 (.094)
2.19 (.086)
6.73 (.265)
6.35 (.250)
1.14 (.045)
0.89 (.035)
-A1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
0.58 (.023)
0.46 (.018)
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
1.02 (.040)
1.64 (.025)
1
2
10.42 (.410)
9.40 (.370)
3
LEAD ASSIGNMENTS
1 - GATE
0.51 (.020)
MIN.
-B1.52 (.060)
1.15 (.045)
4 - DRAIN
3X
2X
2 - DRAIN
3 - SOURCE
1.14 (.045)
0.76 (.030)
0.89 (.035)
0.64 (.025)
0.25 (.010)
0.58 (.023)
0.46 (.018)
M A M B
NOTES:
2.28 (.090)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4.57 (.180)
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
D-Pak (TO-252AA) Part Marking Information
(;$03/(
7+,6,6$1,5)5
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
3$57180%(5
,17(51$7,21$/
,5)5
$
5(&7,),(5
/2*2
,17+($66(0%/</,1($
1RWH
'$7(&2'(
<($5
:((.
/,1($
3LQDVVHPEO\OLQH
$66(0%/<
SRVLWLRQLQGLFDWHV/HDG)UHH
/27&2'(
OR
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
www.irf.com
3$57180%(5
,5)5
3$
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
9
IRFR/U48Z
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
6.73 (.265)
6.35 (.250)
2.38 (.094)
2.19 (.086)
-A-
0.58 (.023)
0.46 (.018)
1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
LEAD ASSIGNMENTS
4
6.22 (.245)
5.97 (.235)
1.52 (.060)
1.15 (.045)
1
2
1 - GATE
2 - DRAIN
6.45 (.245)
5.68 (.224)
3 - SOURCE
4 - DRAIN
3
-B-
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2.28 (.090)
1.91 (.075)
9.65 (.380)
8.89 (.350)
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
3X
1.14 (.045)
0.76 (.030)
3X
0.25 (.010)
2.28 (.090)
1.14 (.045)
0.89 (.035)
0.89 (.035)
0.64 (.025)
M A M B
0.58 (.023)
0.46 (.018)
2X
I-Pak (TO-251AA) Part Marking Information
(;$03/( 7+,6,6$1,5)8
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1($
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$
$66(0%/<
/27&2'(
1RWH3LQDVVHPEO\OLQH
SRVLWLRQLQGLFDWHV/HDG)UHH
'$7(&2'(
<($5 :((.
/,1($
OR
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$66(0%/<
/27&2'(
10
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
www.irf.com
IRFR/U48Z
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
„ Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 0.11mH … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
RG = 25Ω, IAS = 37A, VGS =10V. Part not
avalanche performance.
recommended for use above this value.
† This value determined from sample failure population. 100%
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
tested to this value in production.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
application note #AN-994
ˆ Rθ is measured at TJ approximately 90°C
 Repetitive rating; pulse width limited by
Data and specifications subject to change without notice.
This product has been designed for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/04
www.irf.com
11