IRFR3710ZPbF IRFU3710ZPbF IRFU3710Z-701PbF Features l l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Multiple Package Options Lead-Free HEXFET® Power MOSFET D VDSS = 100V RDS(on) = 18mΩ G Description ID = 42A S HEXFET® This Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. D-Pak I-Pak IRFR3710ZPbF IRFU3710ZPbF I-Pak Leadform 701 IRFU3710Z-701PbF Refer to page 11 for package outline Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS (Thermally limited) EAS (Tested ) IAR EAR TJ TSTG Parameter Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds 56 39 42 220 140 0.95 ± 20 150 200 See Fig.12a, 12b, 15, 16 c d c h g Units A W W/°C V mJ A mJ -55 to + 175 °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient www.kersemi.com i Typ. Max. Units ––– ––– ––– 1.05 50 110 °C/W 1 IRFR/U3710ZPbF & IRFU3710Z-701PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ RDS(on) Min. Typ. Max. Units ––– ––– Breakdown Voltage Temp. Coefficient ––– 0.088 ––– Static Drain-to-Source On-Resistance ––– 15 18 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA gfs IDSS Forward Transconductance 39 ––– ––– S VDS = 25V, ID = 33A ––– ––– 20 µA ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 69 100 Qgs Gate-to-Source Charge ––– 15 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 25 ––– td(on) Turn-On Delay Time ––– 14 ––– VDD = 50V tr Rise Time ––– 43 ––– ID = 33A td(off) Turn-Off Delay Time ––– 53 ––– tf Fall Time ––– 42 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package and center of die contact VGS = 0V IGSS Drain-to-Source Leakage Current V Conditions 100 VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 33A e VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V ID = 33A nC VDS = 80V VGS = 10V ns nH RG = 6.8 Ω e e D G S Ciss Input Capacitance ––– 2930 ––– Coss Output Capacitance ––– 290 ––– Crss Reverse Transfer Capacitance ––– 180 ––– Coss Output Capacitance ––– 1200 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 180 ––– VGS = 0V, VDS = 80V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 430 ––– VGS = 0V, VDS = 0V to 80V VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 56 ISM (Body Diode) Pulsed Source Current ––– ––– 220 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 33A, VGS = 0V trr Reverse Recovery Time ––– 35 53 ns Qrr Reverse Recovery Charge ––– 41 62 nC ton Forward Turn-On Time c www.kersemi.com 2 MOSFET symbol A D G TJ = 25°C, IF = 33A, VDD = 50V di/dt = 100A/µs S e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) IRFR/U3710ZPbF & IRFU3710Z-701PbF 1000 1000 100 BOTTOM VGS 15V 10V 6.0V 5.0V 4.8V 4.5V 4.3V 4.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 10 4.0V 60µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 BOTTOM 4.0V 10 1 60µs PULSE WIDTH Tj = 175°C 0.1 100 0.1 V DS, Drain-to-Source Voltage (V) 100 100 T J = 175°C 100 TJ = 25°C VDS = 25V 60µs PULSE WIDTH 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.kersemi.com Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) 10 Fig 2. Typical Output Characteristics 1000 1.0 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 10 VGS 15V 10V 6.0V 5.0V 4.8V 4.5V 4.3V 4.0V T J = 25°C 80 60 T J = 175°C 40 20 V DS = 10V 0 0 10 20 30 40 50 60 70 80 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRFR/U3710ZPbF & IRFU3710Z-701PbF 100000 VGS, Gate-to-Source Voltage (V) ID= 33A C oss = C ds + C gd 10000 C, Capacitance(pF) 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd Ciss 1000 Coss Crss 100 10.0 VDS= 80V VDS= 50V VDS= 20V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 0 VDS, Drain-to-Source Voltage (V) 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10.00 T J = 25°C VGS = 0V 0.10 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 40 50 60 70 80 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C 0.2 30 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000.00 1.00 20 QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 100.00 10 1.8 100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 10msec 0.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.kersemi.com IRFR/U3710ZPbF & IRFU3710Z-701PbF 60 Limited By Package 50 ID, Drain Current (A) RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 40 30 20 10 0 ID = 56A VGS = 10V 2.5 2.0 1.5 1.0 0.5 25 50 75 100 125 150 -60 -40 -20 0 175 T C , Case Temperature (°C) 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.1 0.01 τJ τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.576 0.000540 0.249 0.001424 0.224 0.007998 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFR/U3710ZPbF & IRFU3710Z-701PbF DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) 700 15V ID 3.4A 4.8A BOTTOM 33A TOP 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VCC VGS(th) Gate threshold Voltage (V) 10 V 3.0 ID = 250µA 2.0 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage vs. Temperature 6 www.kersemi.com IRFR/U3710ZPbF & IRFU3710Z-701PbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 200 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 33A 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 www.kersemi.com IRFR/U3710ZPbF & IRFU3710Z-701PbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.kersemi.com IRFR/U3710ZPbF & IRFU3710Z-701PbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information E XAMP LE : T H IS IS AN IRF R 120 WIT H AS S E MB L Y L OT CODE 1234 AS S E MB L E D ON WW 16, 2001 IN T H E AS S E MB L Y LINE "A" P ART NUMB E R INT E R NAT IONAL R E CT IF IE R L OGO Note: "P" in as s embly line pos ition indicates "L ead-F ree" IR F R 120 12 116A 34 AS S E MB L Y L OT CODE DAT E CODE YE AR 1 = 2001 WE E K 16 L INE A "P " in as s embly line pos ition indicates "L ead-F ree" qualification to the cons umer-level OR INT E R NAT IONAL R E CT IF IE R L OGO P ART NU MB E R IR F R 120 12 AS S E MB L Y L OT CODE www.kersemi.com 34 DAT E CODE P = DE S IGNAT E S L E AD-F RE E PR ODU CT (OPT IONAL ) P = DE S IGNAT E S L E AD-F RE E PR ODU CT QU ALIF IE D T O T H E CONS U ME R LE VE L (OPT IONAL ) YE AR 1 = 2001 WE E K 16 9 IRFR/U3710ZPbF & IRFU3710Z-701PbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) www.kersemi.com IRFR/U3710ZPbF & IRFU3710Z-701PbF I-Pak Leadform Option 701 Package Outline Dimensions are shown in millimeters (inches) www.kersemi.com 11 IRFR/U3710ZPbF & IRFU3710Z-701PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.28mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 33A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994. Repetitive rating; pulse width limited by www.kersemi.com 12