IRF IRFR2905Z

PD - 95811
IRFR2905Z
IRFU2905Z
AUTOMOTIVE MOSFET
HEXFET® Power MOSFET
Features
●
●
●
●
●
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
D
VDSS = 55V
RDS(on) = 14.5mΩ
G
ID = 42A
S
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche
rating . These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and
a wide variety of other applications.
D-Pak
IRFR2905Z
I-Pak
IRFU2905Z
Absolute Maximum Ratings
Parameter
Max.
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
59
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
IDM
42
240
PD @TC = 25°C Power Dissipation
VGS
EAS (Thermally limited)
EAS (Tested )
Single Pulse Avalanche Energy Tested Value
c
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
d
h
RθJA
Junction-to-Ambient j
A
°C
Parameter
Junction-to-Ambient (PCB mount)
mJ
82
300 (1.6mm from case )
y
ij
y
10 lbf in (1.1N m)
Thermal Resistance
RθJA
55
-55 to + 175
Mounting Torque, 6-32 or M3 screw
j
W
W/°C
V
mJ
Soldering Temperature, for 10 seconds
Junction-to-Case
110
0.72
± 20
See Fig.12a, 12b, 15, 16
g
RθJC
A
42
c
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Units
Typ.
Max.
–––
1.38
–––
40
–––
110
Units
°C/W
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
11/24/03
IRFR/U2905Z
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V(BR)DSS
Drain-to-Source Breakdown Voltage
55
–––
–––
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.053
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
11.1
14.5
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 250µA
gfs
IDSS
Forward Transconductance
20
–––
–––
S
VDS = 25V, ID = 36A
Drain-to-Source Leakage Current
–––
–––
20
µA
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
29
44
Qgs
Gate-to-Source Charge
–––
7.7
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
12
–––
RG
Gate Input Resistance
–––
1.3
–––
td(on)
Turn-On Delay Time
–––
14
–––
tr
Rise Time
–––
66
–––
td(off)
Turn-Off Delay Time
–––
31
–––
tf
Fall Time
–––
35
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
IGSS
V
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 36A
e
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
ID = 36A
nC
VDS = 44V
VGS = 10V
Ω
e
f = 1MHz, open drain
VDD = 28V
ID = 36A
ns
nH
RG = 15 Ω
e
D
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Input Capacitance
–––
1380
–––
and center of die contact
VGS = 0V
Coss
Output Capacitance
–––
240
–––
Crss
Reverse Transfer Capacitance
–––
120
–––
Coss
Output Capacitance
–––
820
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
190
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
300
–––
VGS = 0V, VDS = 0V to 44V
G
S
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
36
ISM
(Body Diode)
Pulsed Source Current
–––
–––
240
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
23
35
ns
Qrr
Reverse Recovery Charge
–––
16
24
nC
ton
Forward Turn-On Time
2
c
Conditions
MOSFET symbol
A
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 36A, VGS = 0V
e
TJ = 25°C, IF = 36A, VDD = 28V
di/dt = 100A/µs
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFR/U2905Z
1000
1000
100
BOTTOM
TOP
10
1
4.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
10
4.5V
≤ 60µs PULSE WIDTH
Tj = 175°C
1
0.1
0.1
1
10
0.1
0
100
11
10
10
100
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
50
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100.0
T J = 175°C
T J = 25°C
10.0
VDS = 25V
≤ 60µs PULSE WIDTH
T J = 175°C
40
30
T J = 25°C
20
10
VDS = 15V
380µs PULSE WIDTH
1.0
4.0
5.0
6.0
7.0
8.0
9.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10.0
0
0
10
20
30
40
50
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRFR/U2905Z
2400
20
2000
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C, Capacitance (pF)
C oss = C ds + C gd
1600
Ciss
1200
800
Coss
400
Crss
VDS= 44V
VDS= 28V
VDS= 11V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
1
ID= 36A
10
0
100
10
20
30
40
50
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.0
T J = 175°C
10.0
T J = 25°C
1.0
10
0.1
0.2
0.6
1.0
1.4
1.8
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
2.2
1msec
1
VGS = 0V
0.1
100µsec
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFR/U2905Z
70
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.0
LIMITED BY PACKAGE
ID , Drain Current (A)
60
50
40
30
20
10
0
25
50
75
100
125
150
ID = 36A
VGS = 10V
1.5
1.0
0.5
175
-60 -40 -20
T C , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.3962 0.00012
0.5693 0.00045
0.4129
0.0015
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFR/U2905Z
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
VGS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
240
15V
ID
36A
8.6A
BOTTOM 4.8A
TOP
200
160
120
80
40
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
4.5
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
QGS
4.0
3.5
ID = 250µA
3.0
2.5
2.0
-75 -50 -25
VGS
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRFR/U2905Z
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
60
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 36A
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I av = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFR/U2905Z
D.U.T
Driver Gate Drive
+
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFR/U2905Z
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
2.38 (.094)
2.19 (.086)
6.73 (.265)
6.35 (.250)
1.14 (.045)
0.89 (.035)
-A1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
0.58 (.023)
0.46 (.018)
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
10.42 (.410)
9.40 (.370)
1.02 (.040)
1.64 (.025)
1
2
LEAD ASSIGNMENTS
3
1 - GATE
0.51 (.020)
MIN.
-B1.52 (.060)
1.15 (.045)
3X
1.14 (.045)
2X
0.76 (.030)
0.89 (.035)
0.64 (.025)
0.25 (.010)
2 - DRAIN
3 - SOURCE
4 - DRAIN
0.58 (.023)
0.46 (.018)
M A M B
NOTES:
2.28 (.090)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
4.57 (.180)
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
D-Pak (TO-252AA) Part Marking Information
Notes : T his part marking information applies to devices produced before 02/26/2001
EXAMPLE: T HIS IS AN IRFR120
WIT H AS S EMBLY
LOT CODE 9U1P
INT ERNATIONAL
RECTIFIER
LOGO
IRFU120
016
9U
1P
DAT E CODE
YEAR = 0
WEEK = 16
ASS EMBLY
LOT CODE
Notes : T his part marking information applies to devices produced after 02/26/2001
EXAMPLE: T HIS IS AN IRFR120
WIT H AS S EMBLY
LOT CODE 1234
AS SEMBLED ON WW 16, 1999
IN T HE AS SEMBLY LINE "A"
INT ERNATIONAL
RECTIFIER
LOGO
IRFU120
12
ASS EMBLY
LOT CODE
www.irf.com
PART NUMBER
916A
34
DATE CODE
YEAR 9 = 1999
WEEK 16
LINE A
9
IRFR/U2905Z
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
6.73 (.265)
6.35 (.250)
2.38 (.094)
2.19 (.086)
-A-
0.58 (.023)
0.46 (.018)
1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
LEAD ASSIGNMENTS
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
1.52 (.060)
1.15 (.045)
1
2
2.28 (.090)
1.91 (.075)
1.14 (.045)
0.76 (.030)
2.28 (.090)
3 - SOURCE
4 - DRAIN
3
-B-
3X
1 - GATE
2 - DRAIN
3X
9.65 (.380)
8.89 (.350)
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
0.89 (.035)
0.64 (.025)
1.14 (.045)
0.89 (.035)
0.25 (.010)
M A M B
2X
0.58 (.023)
0.46 (.018)
I-Pak (TO-251AA) Part Marking Information
Notes : T his part marking information applies to devices produced before 02/26/2001
EXAMPLE: T HIS IS AN IRFR120
WIT H AS SEMBLY
LOT CODE 9U1P
INT ERNAT IONAL
RECT IFIER
LOGO
IRFU120
016
9U
1P
DAT E CODE
YEAR = 0
WEEK = 16
AS S EMBLY
LOT CODE
Notes : T his part marking information applies to devices produced after 02/26/2001
EXAMPLE: T HIS IS AN IRFR120
WIT H AS SEMBLY
LOT CODE 5678
AS SEMBLED ON WW 19, 1999
IN T HE ASS EMBLY LINE "A"
INTERNATIONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
10
PART NUMBER
IRFU120
919A
56
78
DAT E CODE
YEAR 9 = 1999
WEEK 19
LINE A
www.irf.com
IRFR/U2905Z
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
„ Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 0.08mH … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
RG = 25Ω, IAS = 36A, VGS =10V. Part not
avalanche performance.
recommended for use above this value.
† This value determined from sample failure population. 100%
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
tested to this value in production.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
application note #AN-994
ˆ Rθ is measured at TJ approximately 90°C
 Repetitive rating; pulse width limited by
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/03
www.irf.com
11