INFINEON CGY180

GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Datasheet
* Power amplifier for DECT and PCS application
* Fully integrated 3 stage amplifier
* Operating voltage range: 2.7 to 6 V
* Overall power added efficiency 35 %
* Input matched to 50 Ω, simple output match
ESD:
Electrostatic discharge sensitive device,
observe handling precautions!
Type
Marking
Ordering code
(taped)
Package 1)
CGY 180
CGY 180
Q68000-A8882
MW 12
Maximum ratings
Characteristics
Symbol
max. Value
Unit
Positive supply voltage
VD
8
V
Negative supply voltage 2)
VG
-8
V
Supply current
ID
1.2
A
10
dBm
Channel temperature
Pin,max
TCh
150
°C
Storage temperature
Tstg
-55...+150
°C
Total power dissipation (Ts < 81 °C)
Ptot
2.3
W
PPulse
9.5
W
RthChS
≤30
K/W
Maximum input power
Ts: Temperature at soldering point
Pulse peak power
Thermal Resistance
Channel-soldering point
1) Plastic body identical to SOT 223, dimensions see chapter Package Outlines
2) VG = -8V only in combination with VTR = 0V; VG = -6V while VTR ≠ 0V
Siemens Aktiengesellschaft
pg. 1/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Functional Block Diagram:
VG
VTR (1)
(2)
VD1 (8)
VD2
(9)
VD3 (11)
Control
circuit
Pin (7)
Pout
GND1 (6)
Pin #
GND2 (3,4,5,10)
Configuration
1
VTR
Control voltage for transmit (0V) / receive (open) mode
2
VG
Negative voltage at control circuit (-4V...-8V)
3
GND2
RF and DC ground of the 2nd and 3rd stage
4
GND2
RF and DC ground of the 2nd and 3rd stage
5
GND2
RF and DC ground of the 2nd and 3rd stage
6
GND1
RF and DC ground of the 1st stage
7
RFin
RF input power
8
VD1
Pos. drain voltage of the 1st stage
9
VD2
Pos. drain voltage of the 2nd stage
10
GND2
11
12
(11)
RF and DC ground of the 2nd and 3rd stage
VD3, Pout Pos. drain voltage of the 3rd stage, RF output power
n.c.
Siemens Aktiengesellschaft
pg. 2/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Control circuit:
VG supply: Negative voltage (stabilization is not necessary) in the range of -4V...-8V.
VTR supply: During transmit operation: 0V., negative supply current 1mA...2.5mA.
During receive operation: not connected (shut off mode)
The operation current ID of CGY 180 is adjusted by the internal control circuit.
DC characteristics
Characteristics
Drain current
Symbol Conditions
min
typ
max
Unit
150
220
320
mA
stage 2 IDSS2
150
220
320
mA
stage 3 IDSS3
675
1000
1440
mA
stage 1 IDSS1
Drain current with
VD=3V, VG=0V, VTR n.c.
ID
VD=3V, VG=-4V, VTR=0V
290
450
650
mA
gfs1
VD=3V, ID=90mA
80
100
140
mS
gfs2
VD=3V, ID=90mA
80
100
140
mS
gfs3
VD=3V, ID=400mA
VD=3V, ID<170µA
(all stages)
360
500
630
mS
-3.8
-2.8
-1.8
V
active current control
Transconductance
(stage 1 - 3)
Pinch off voltage
Siemens Aktiengesellschaft
Vp
pg. 3/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Electrical characteristics
(TA = 25°C , f=1.89 GHz, ZS=ZL=50 Ohm, VD=3.0V, VG=-4V, VTR pin connected to
ground, unless otherwise specified)
Characteristics
Supply current
Pin = 0 dBm
Negative supply current
(transmit operation)
Shut-off current
VTR n.c.
Negative supply current
(shut off mode, VTR pin n.c.)
Gain
Symbol
min
typ
max
Unit
IDD
-
450
-
mA
IG
-
1
2.5
mA
ID
-
50
180
µA
IG
-
10
50
µA
G
28
30
-
dB
Po
25.5
27
-
dBm
Po
-
30
-
dBm
η
30
35
-
%
-
-
2:1
-28
-25
-25
-22
2.5 : 1
dBc
IP3
-
33.5
-
dBm
IP3
-
38.5
-
dBm
Pin = -20dBm
Output Power
Pin = 0 dBm
Output Power
VD=5V; Pin = 0 dBm
Overall Power added Efficiency
Pin = 0 dBm
Harmonics (Pin =0dBm)
VD=3V;
(Pout =27dBm)
Harmonics (Pin =0dBm)
VD=5V;
(Pout =30dBm)
Input VSWR VD=3V;
2f0
3f0
2f0
3f0
dBc
-
Third order intercept point
VD=3V; pulsed with a duty cycle of 10%;
f1=1.8900GHz; f2=1.891728GHz;
Third order intercept point
VD=4.8V; pulsed with a duty cycle of 10%;
f1=1.8900GHz; f2=1.891728GHz;
Load mismatch
Pin=0dBm, VD≤6V, ZS=50 Ohm,
Load VSWR = 20:1 for all phase,
VTR=0V, VG=-4V
Stability
-
No module damage
for 10 sec.
-
-
All spurious output
more than 60 dB below
desired signal level
-
Pin=0dBm, VD=2-7V, ZS=50 Ohm,
Load VSWR = 3:1 for all phase,
VTR=0V, VG=-4V
Siemens Aktiengesellschaft
pg. 4/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
DC - characteristics
Input characteristics - typical measured values of stage 1 and 2 , VD1 or VD2=3V
0,26
low current
0,24
medium current
0,22
high current
0,2
0,18
0,14
0,12
ID[A]
0,16
0,1
0,08
0,06
0,04
0,02
0
-4
-3,8
-3,6
-3,4
-3,2
-3
-2,8
-2,6
-2,4
-2,2
-2
-1,8
-1,6
-1,4
-1,2
-1
-0,8
-0,6
-0,4
-0,2
0
VG[V]
Output characteristics - typical measured values of stage 1 and 2
0,22
0V
0,2
-0.2V
0,18
-0.3V
0,16
-0.5V
-0.7V
0,14
ID[A]
-0.8V
0,12
-1.0V
-1.2V
0,1
-1.3V
0,08
-1.5V
0,06
-1.7V
-1.9V
0,04
-2.1V
0,02
-2.3V
-2.5V
0
0 0,2 0,4 0,6 0,8
1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 5,6 5,8 6
VD[V]
Siemens Aktiengesellschaft
pg. 5/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Input characteristics - typical measured values of stage 3, VD3 = 3V
1,3
low current
1,2
medium current
1,1
high current
1
0,9
0,7
0,6
ID[A]
0,8
0,5
0,4
0,3
0,2
0,1
0
-4
-3,8
-3,6
-3,4
-3,2
-3
-2,8
-2,6
-2,4
-2,2
-2
-1,8
-1,6
-1,4
-1,2
-1
-0,8
-0,6
-0,4
-0,2
0
VG[V]
Output characteristics - typical measured values of stage 3
1,1
0V
-0.1V
1
-0.2V
0,9
-0.3V
-0.4V
0,8
-0.6V
0,7
-0.7V
-0.9V
ID[A]
0,6
-1.1V
0,5
-1.3V
0,4
-1.5V
0,3
-1.7V
-1.9V
0,2
-2.1V
0,1
-2.3V
-2.5V
0
0
0,2 0,4 0,6 0,8
1
1,2 1,4 1,6 1,8
2
2,2 2,4 2,6 2,8
3 3,2 3,4 3,6 3,8
4
4,2 4,4 4,6 4,8
5 5,2 5,4 5,6 5,8
6
VD[V]
Siemens Aktiengesellschaft
pg. 6/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Output power and power added efficiency
pulsed mode: ton=1ms, duty cycle 10%
Pout and PAE vs. Pin
f = 1.89 GHz , VD = 3 V, VG=-4V, VTR=0V
30
36
29
34
28
32
Pout [dBm]
27
30
PAE [%]
28
25
26
24
24
23
22
22
20
21
18
20
16
19
14
18
12
17
10
16
8
15
6
14
4
13
2
12
PAE [%]
Pout[dBm]
26
0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
Pin [dBm]
Pout and PAE vs. Pin
f = 1.89 GHz , VD = 5 V, VG=-4V, VTR=0V
45
40
35
Pout [dBm]
PAE [%]
30
25
20
15
Pout [dBm]
10
PAE [%]
5
0
-20
-15
-10
-5
0
5
10
Pin [dBm]
Siemens Aktiengesellschaft
pg. 7/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Gain vs. frequency
VG=-4V, VTR=0V
3V Pin=0dBm
5V Pin=0dBm
3V Pin=-20dBm
5V Pin=-20dBm
GAIN vs. DRAIN VOLTAGE
f=1.89 GHz, VD=3V, VG=-4V, VTR=0V
33
32
Gain [dB]
31
30
29
28
Gain [dB] Pin= 0dBm
27
Gain [dB] Pin =-20dBm
26
25
2
3
4
5
6
VD [V]
Siemens Aktiengesellschaft
pg. 8/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
35
700
30
600
25
500
20
400
15
300
Id [mA]
Pout [dBm]
Output power control vs. VTR
Pout (Vd=4.5V) [dBm]
Pout (Vd=3V) [dBm]
ID (Vd=4.5V) [mA]
10
200
5
100
0
ID (Vd=3V) [mA]
0
0
0,5
1
1,5
2
-VTR [V]
Total Power Dissipation Ptot=f(TS)
Siemens Aktiengesellschaft
pg. 9/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Permissible pulse load Ptot_max/Ptot_DC = f(t_p)
Siemens Aktiengesellschaft
pg. 10/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Test circuit board:
The following impedances of the bias circuit
should be seen from the CGY180 ports:
Γ8= 0.97 / 96°
Γ9= 0.96 / 142°
Γ11= 0.94 / -134°
CGY 180
8 9
11
Γ8 Γ9
Γ11
(values measured at f=1.89 GHz)
Size: 20 x 25 mm; In, Out: 50 Ohm
Principal circuit:
Vg
68pF
+Vd
1nF
1nF
4.7uF
6.8pF
1.5pF
1nF
VG (2)
VTR
In
VTR (1)
VD1 (8)
1nF
VD2
(9)
VD3 (11)
Control
circuit
Out
Pin (7)
Pout (11)
CGY180
GND1 (6)
Siemens Aktiengesellschaft
GND2 (3,4,5,10)
pg. 11/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Output power at different temperatures*
30
28
Pout [dBm]
26
24
22
Pout(-20°C) [dBm]
20
Pout(+20°C) [dBm]
Pout(+70°C) [dBm]
18
16
-12
-10
-8
-6
-4
-2
0
2
4
Pin [dBm]
Power added efficiency at different temperatures*
40
35
30
PAE [%]
25
20
15
PAE(-20°C) [%]
10
PAE(+20°C) [%]
PAE(+70°C) [%]
5
0
-12
-10
-8
-6
-4
-2
0
2
4
Pin [dBm]
*)measured with a CGY180 test circuit board (see page 11) VD=3V, VG=-4V, VTR=0V
Siemens Aktiengesellschaft
pg. 12/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
Emissions due to modulation:*
Spectrum of amplified DECT signal
Measurement was done with the following equipment:
Trigger
Pulsed Power
Supply
negative supply
voltage
-4V
VD=3V
pulsed with a duty cycle of 10%
ton=1ms
gate delay 3µs
gate length 1ms
VG
VD
DECT Signal
Generator
ROHDE&SCHWARZ SME03
Pin=0dBm
IN
CGY180
OUT
VTR
Spectrum
Analyzer
HP 8561E
*)measured with a CGY180 test circuit board (see page 11) VD=3V, VG=-4V, VTR=0V
Siemens Aktiengesellschaft
pg. 13/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
APPLICATION - HINTS
1. CW - capability of the CGY180
1.1 VD = 3 V
Proving the possibility of CW - operations there must be known the total power dissipation of the
device. This value can be found as a function of the temperature in the datasheet (page 8/14). The
CGY180 has a maximum total power dissipation of Ptot = 2.3 W.
As an example we take the operating point with a drain voltage VD = 3 V. The possible ratings of
the drain current adjusted by the internal current control of the CGY180
( VG = -4 V, VTR = 0 V ) are shown in the following table.
ID / mA
Min.
Typ.
Max.
325
450
650
At worst case you see a current of ID = 650 mA. So the maximum DC - power can be calculated to
PDC = VD ⋅ I D = 1.95W
This value is smaller than 2.3W and CW - operation is possible.
1.2 VD = 4 V
If you want to use the whole capability of the CGY180, you must consider the power added
efficiency PAE. You want to take an operation point of VD = 4 V. Now there will be a higher
current than at VD = 3 V. We assume a current of ID = 650 mA and a PAE = 35 %. With these
values the DC - power is PDC = 2.6 W. That exeeds the PtotDC of 2.3 W. Decoupling RF-Power
from the CGY180 results in less power dissipation of the device. This is directly correlated with the
achieved PAE. To calculate total power dissipation use the formula:
PtotDC = PDC (1 − PAE )
.
Ptot for the used operating point shown above will be
Ptot = 2. 6W (1 − 0.35) = 1. 69W
.
It is possible to use the CGY180 for CW - operations up to a drain voltage of VD = 4 V, if at the
same time a PAE of 35% is achieved.
The calculation can be done for any operating point to prove the capability of CW - operation.
Siemens Aktiengesellschaft
pg. 14/15
21.02.96
HL EH PD 21
GaAs MMIC
CGY 180
_________________________________________________________________________________________________________
2. Not using the internal current control
If you don' t want to use the internal current control, it is recommended to connect the negative
supply voltage at pin 1 ( VTR ) instead of pin 2 ( VG ).
3. Biasing and use considerations
In all cases, RF input power should not be applied until the bias voltages have been applied, and RF
input power should be turned off prior to removing the bias voltages. Bias application should be
timed such that gate voltage ( VGG ) is always applied before the drain voltages
( VDD ), and when returning to the standby mode, gate voltage should only be removed once the
drain voltages have been removed.
Siemens Aktiengesellschaft
pg. 15/15
21.02.96
HL EH PD 21