GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Datasheet * Power amplifier for DECT and PCS application * Fully integrated 3 stage amplifier * Operating voltage range: 2.7 to 6 V * Overall power added efficiency 35 % * Input matched to 50 Ω, simple output match ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (taped) Package 1) CGY 180 CGY 180 Q68000-A8882 MW 12 Maximum ratings Characteristics Symbol max. Value Unit Positive supply voltage VD 8 V Negative supply voltage 2) VG -8 V Supply current ID 1.2 A 10 dBm Channel temperature Pin,max TCh 150 °C Storage temperature Tstg -55...+150 °C Total power dissipation (Ts < 81 °C) Ptot 2.3 W PPulse 9.5 W RthChS ≤30 K/W Maximum input power Ts: Temperature at soldering point Pulse peak power Thermal Resistance Channel-soldering point 1) Plastic body identical to SOT 223, dimensions see chapter Package Outlines 2) VG = -8V only in combination with VTR = 0V; VG = -6V while VTR ≠ 0V Siemens Aktiengesellschaft pg. 1/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Functional Block Diagram: VG VTR (1) (2) VD1 (8) VD2 (9) VD3 (11) Control circuit Pin (7) Pout GND1 (6) Pin # GND2 (3,4,5,10) Configuration 1 VTR Control voltage for transmit (0V) / receive (open) mode 2 VG Negative voltage at control circuit (-4V...-8V) 3 GND2 RF and DC ground of the 2nd and 3rd stage 4 GND2 RF and DC ground of the 2nd and 3rd stage 5 GND2 RF and DC ground of the 2nd and 3rd stage 6 GND1 RF and DC ground of the 1st stage 7 RFin RF input power 8 VD1 Pos. drain voltage of the 1st stage 9 VD2 Pos. drain voltage of the 2nd stage 10 GND2 11 12 (11) RF and DC ground of the 2nd and 3rd stage VD3, Pout Pos. drain voltage of the 3rd stage, RF output power n.c. Siemens Aktiengesellschaft pg. 2/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Control circuit: VG supply: Negative voltage (stabilization is not necessary) in the range of -4V...-8V. VTR supply: During transmit operation: 0V., negative supply current 1mA...2.5mA. During receive operation: not connected (shut off mode) The operation current ID of CGY 180 is adjusted by the internal control circuit. DC characteristics Characteristics Drain current Symbol Conditions min typ max Unit 150 220 320 mA stage 2 IDSS2 150 220 320 mA stage 3 IDSS3 675 1000 1440 mA stage 1 IDSS1 Drain current with VD=3V, VG=0V, VTR n.c. ID VD=3V, VG=-4V, VTR=0V 290 450 650 mA gfs1 VD=3V, ID=90mA 80 100 140 mS gfs2 VD=3V, ID=90mA 80 100 140 mS gfs3 VD=3V, ID=400mA VD=3V, ID<170µA (all stages) 360 500 630 mS -3.8 -2.8 -1.8 V active current control Transconductance (stage 1 - 3) Pinch off voltage Siemens Aktiengesellschaft Vp pg. 3/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Electrical characteristics (TA = 25°C , f=1.89 GHz, ZS=ZL=50 Ohm, VD=3.0V, VG=-4V, VTR pin connected to ground, unless otherwise specified) Characteristics Supply current Pin = 0 dBm Negative supply current (transmit operation) Shut-off current VTR n.c. Negative supply current (shut off mode, VTR pin n.c.) Gain Symbol min typ max Unit IDD - 450 - mA IG - 1 2.5 mA ID - 50 180 µA IG - 10 50 µA G 28 30 - dB Po 25.5 27 - dBm Po - 30 - dBm η 30 35 - % - - 2:1 -28 -25 -25 -22 2.5 : 1 dBc IP3 - 33.5 - dBm IP3 - 38.5 - dBm Pin = -20dBm Output Power Pin = 0 dBm Output Power VD=5V; Pin = 0 dBm Overall Power added Efficiency Pin = 0 dBm Harmonics (Pin =0dBm) VD=3V; (Pout =27dBm) Harmonics (Pin =0dBm) VD=5V; (Pout =30dBm) Input VSWR VD=3V; 2f0 3f0 2f0 3f0 dBc - Third order intercept point VD=3V; pulsed with a duty cycle of 10%; f1=1.8900GHz; f2=1.891728GHz; Third order intercept point VD=4.8V; pulsed with a duty cycle of 10%; f1=1.8900GHz; f2=1.891728GHz; Load mismatch Pin=0dBm, VD≤6V, ZS=50 Ohm, Load VSWR = 20:1 for all phase, VTR=0V, VG=-4V Stability - No module damage for 10 sec. - - All spurious output more than 60 dB below desired signal level - Pin=0dBm, VD=2-7V, ZS=50 Ohm, Load VSWR = 3:1 for all phase, VTR=0V, VG=-4V Siemens Aktiengesellschaft pg. 4/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ DC - characteristics Input characteristics - typical measured values of stage 1 and 2 , VD1 or VD2=3V 0,26 low current 0,24 medium current 0,22 high current 0,2 0,18 0,14 0,12 ID[A] 0,16 0,1 0,08 0,06 0,04 0,02 0 -4 -3,8 -3,6 -3,4 -3,2 -3 -2,8 -2,6 -2,4 -2,2 -2 -1,8 -1,6 -1,4 -1,2 -1 -0,8 -0,6 -0,4 -0,2 0 VG[V] Output characteristics - typical measured values of stage 1 and 2 0,22 0V 0,2 -0.2V 0,18 -0.3V 0,16 -0.5V -0.7V 0,14 ID[A] -0.8V 0,12 -1.0V -1.2V 0,1 -1.3V 0,08 -1.5V 0,06 -1.7V -1.9V 0,04 -2.1V 0,02 -2.3V -2.5V 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 5,6 5,8 6 VD[V] Siemens Aktiengesellschaft pg. 5/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Input characteristics - typical measured values of stage 3, VD3 = 3V 1,3 low current 1,2 medium current 1,1 high current 1 0,9 0,7 0,6 ID[A] 0,8 0,5 0,4 0,3 0,2 0,1 0 -4 -3,8 -3,6 -3,4 -3,2 -3 -2,8 -2,6 -2,4 -2,2 -2 -1,8 -1,6 -1,4 -1,2 -1 -0,8 -0,6 -0,4 -0,2 0 VG[V] Output characteristics - typical measured values of stage 3 1,1 0V -0.1V 1 -0.2V 0,9 -0.3V -0.4V 0,8 -0.6V 0,7 -0.7V -0.9V ID[A] 0,6 -1.1V 0,5 -1.3V 0,4 -1.5V 0,3 -1.7V -1.9V 0,2 -2.1V 0,1 -2.3V -2.5V 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5 5,2 5,4 5,6 5,8 6 VD[V] Siemens Aktiengesellschaft pg. 6/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Output power and power added efficiency pulsed mode: ton=1ms, duty cycle 10% Pout and PAE vs. Pin f = 1.89 GHz , VD = 3 V, VG=-4V, VTR=0V 30 36 29 34 28 32 Pout [dBm] 27 30 PAE [%] 28 25 26 24 24 23 22 22 20 21 18 20 16 19 14 18 12 17 10 16 8 15 6 14 4 13 2 12 PAE [%] Pout[dBm] 26 0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 Pin [dBm] Pout and PAE vs. Pin f = 1.89 GHz , VD = 5 V, VG=-4V, VTR=0V 45 40 35 Pout [dBm] PAE [%] 30 25 20 15 Pout [dBm] 10 PAE [%] 5 0 -20 -15 -10 -5 0 5 10 Pin [dBm] Siemens Aktiengesellschaft pg. 7/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Gain vs. frequency VG=-4V, VTR=0V 3V Pin=0dBm 5V Pin=0dBm 3V Pin=-20dBm 5V Pin=-20dBm GAIN vs. DRAIN VOLTAGE f=1.89 GHz, VD=3V, VG=-4V, VTR=0V 33 32 Gain [dB] 31 30 29 28 Gain [dB] Pin= 0dBm 27 Gain [dB] Pin =-20dBm 26 25 2 3 4 5 6 VD [V] Siemens Aktiengesellschaft pg. 8/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ 35 700 30 600 25 500 20 400 15 300 Id [mA] Pout [dBm] Output power control vs. VTR Pout (Vd=4.5V) [dBm] Pout (Vd=3V) [dBm] ID (Vd=4.5V) [mA] 10 200 5 100 0 ID (Vd=3V) [mA] 0 0 0,5 1 1,5 2 -VTR [V] Total Power Dissipation Ptot=f(TS) Siemens Aktiengesellschaft pg. 9/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Permissible pulse load Ptot_max/Ptot_DC = f(t_p) Siemens Aktiengesellschaft pg. 10/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Test circuit board: The following impedances of the bias circuit should be seen from the CGY180 ports: Γ8= 0.97 / 96° Γ9= 0.96 / 142° Γ11= 0.94 / -134° CGY 180 8 9 11 Γ8 Γ9 Γ11 (values measured at f=1.89 GHz) Size: 20 x 25 mm; In, Out: 50 Ohm Principal circuit: Vg 68pF +Vd 1nF 1nF 4.7uF 6.8pF 1.5pF 1nF VG (2) VTR In VTR (1) VD1 (8) 1nF VD2 (9) VD3 (11) Control circuit Out Pin (7) Pout (11) CGY180 GND1 (6) Siemens Aktiengesellschaft GND2 (3,4,5,10) pg. 11/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Output power at different temperatures* 30 28 Pout [dBm] 26 24 22 Pout(-20°C) [dBm] 20 Pout(+20°C) [dBm] Pout(+70°C) [dBm] 18 16 -12 -10 -8 -6 -4 -2 0 2 4 Pin [dBm] Power added efficiency at different temperatures* 40 35 30 PAE [%] 25 20 15 PAE(-20°C) [%] 10 PAE(+20°C) [%] PAE(+70°C) [%] 5 0 -12 -10 -8 -6 -4 -2 0 2 4 Pin [dBm] *)measured with a CGY180 test circuit board (see page 11) VD=3V, VG=-4V, VTR=0V Siemens Aktiengesellschaft pg. 12/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ Emissions due to modulation:* Spectrum of amplified DECT signal Measurement was done with the following equipment: Trigger Pulsed Power Supply negative supply voltage -4V VD=3V pulsed with a duty cycle of 10% ton=1ms gate delay 3µs gate length 1ms VG VD DECT Signal Generator ROHDE&SCHWARZ SME03 Pin=0dBm IN CGY180 OUT VTR Spectrum Analyzer HP 8561E *)measured with a CGY180 test circuit board (see page 11) VD=3V, VG=-4V, VTR=0V Siemens Aktiengesellschaft pg. 13/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ APPLICATION - HINTS 1. CW - capability of the CGY180 1.1 VD = 3 V Proving the possibility of CW - operations there must be known the total power dissipation of the device. This value can be found as a function of the temperature in the datasheet (page 8/14). The CGY180 has a maximum total power dissipation of Ptot = 2.3 W. As an example we take the operating point with a drain voltage VD = 3 V. The possible ratings of the drain current adjusted by the internal current control of the CGY180 ( VG = -4 V, VTR = 0 V ) are shown in the following table. ID / mA Min. Typ. Max. 325 450 650 At worst case you see a current of ID = 650 mA. So the maximum DC - power can be calculated to PDC = VD ⋅ I D = 1.95W This value is smaller than 2.3W and CW - operation is possible. 1.2 VD = 4 V If you want to use the whole capability of the CGY180, you must consider the power added efficiency PAE. You want to take an operation point of VD = 4 V. Now there will be a higher current than at VD = 3 V. We assume a current of ID = 650 mA and a PAE = 35 %. With these values the DC - power is PDC = 2.6 W. That exeeds the PtotDC of 2.3 W. Decoupling RF-Power from the CGY180 results in less power dissipation of the device. This is directly correlated with the achieved PAE. To calculate total power dissipation use the formula: PtotDC = PDC (1 − PAE ) . Ptot for the used operating point shown above will be Ptot = 2. 6W (1 − 0.35) = 1. 69W . It is possible to use the CGY180 for CW - operations up to a drain voltage of VD = 4 V, if at the same time a PAE of 35% is achieved. The calculation can be done for any operating point to prove the capability of CW - operation. Siemens Aktiengesellschaft pg. 14/15 21.02.96 HL EH PD 21 GaAs MMIC CGY 180 _________________________________________________________________________________________________________ 2. Not using the internal current control If you don' t want to use the internal current control, it is recommended to connect the negative supply voltage at pin 1 ( VTR ) instead of pin 2 ( VG ). 3. Biasing and use considerations In all cases, RF input power should not be applied until the bias voltages have been applied, and RF input power should be turned off prior to removing the bias voltages. Bias application should be timed such that gate voltage ( VGG ) is always applied before the drain voltages ( VDD ), and when returning to the standby mode, gate voltage should only be removed once the drain voltages have been removed. Siemens Aktiengesellschaft pg. 15/15 21.02.96 HL EH PD 21