PD - 96275 IRLB3036GPbF Applications l DC Motor Drive l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) D G S Benefits l Optimized for Logic Level Drive l Very Low RDS(ON) at 4.5V VGS l Superior R*Q at 4.5V VGS l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free 60V 1.9mΩ 2.4mΩ 270A 195A c TO-220AB IRLB3036GPbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS Parameter Max. 270 190 195 1100 380 2.5 ±16 8.0 d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw f dv/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy d A W W/°C V V/ns -55 to + 175 °C 300 x x 10lb in (1.1N m) e g Units c c Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) 290 See Fig. 14, 15, 22a, 22b mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA www.irf.com Parameter j Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.50 ––– 0.40 ––– 62 °C/W 1 10/16/09 IRLB3036GPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 60 ––– ––– ––– 1.0 ––– ––– ––– ––– RG(int) Internal Gate Resistance ––– Conditions ––– ––– V VGS = 0V, ID = 250µA 0.061 ––– V/°C Reference to 25°C, ID = 5mA VGS = 10V, ID = 165A 1.9 2.4 mΩ 2.2 2.8 VGS = 4.5V, ID = 140A ––– 2.5 V VDS = VGS, ID = 250µA VDS = 60V, VGS = 0V ––– 20 µA ––– 250 VDS = 60V, VGS = 0V, TJ = 125°C ––– 100 VGS = 16V nA ––– -100 VGS = -16V d g g 2.0 ––– Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units i h Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) 340 ––– ––– ––– 91 140 ––– 31 ––– ––– 51 ––– ––– 40 ––– ––– 66 ––– ––– 220 ––– ––– 110 ––– ––– 110 ––– ––– 11210 ––– ––– 1020 ––– ––– 500 ––– ––– 1430 ––– ––– 1880 ––– Conditions S VDS = 10V, ID = 165A ID = 165A VDS = 30V nC VGS = 4.5V ID = 165A, VDS =0V, VGS = 4.5V VDD = 39V ID = 165A ns RG = 2.1Ω VGS = 4.5V VGS = 0V VDS = 50V pF ƒ = 1.0MHz VGS = 0V, VDS = 0V to 48V VGS = 0V, VDS = 0V to 48V g g i h Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM e Notes: Calcuted continuous current based on maximum allowable junction temperature Bond wire current limit is 195A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.021mH RG = 25Ω, IAS = 165A, VGS =10V. Part not recommended for use above this value . ISD ≤ 165A, di/dt ≤ 430A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 Min. Typ. Max. Units ––– ––– ––– ––– 270 A 1100 Conditions MOSFET symbol showing the integral reverse D G S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 165A, VGS = 0V VR = 51V, TJ = 25°C ––– 62 ––– ns IF = 165A TJ = 125°C ––– 66 ––– di/dt = 100A/µs TJ = 25°C ––– 310 ––– nC TJ = 125°C ––– 360 ––– ––– 4.4 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g g Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. Rθ is measured at TJ approximately 90°C. www.irf.com IRLB3036GPbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V BOTTOM 100 10 2.7V 1 2.7V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 10 0.1 0.1 1 10 100 0.1 1000 Fig 1. Typical Output Characteristics 10 100 1000 Fig 2. Typical Output Characteristics 1000 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) T J = 175°C 100 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 ID = 165A VGS = 10V 2.0 1.5 1.0 0.5 1 2 3 4 5 6 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 5.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 165A C oss = C ds + C gd C, Capacitance (pF) VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V Ciss 10000 Coss 1000 Crss 4.0 VDS= 48V VDS= 30V 3.0 2.0 1.0 0.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 20 40 60 80 100 120 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRLB3036GPbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 100 T J = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 1msec 100 Limited by package 10msec 10 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1 0.1 0.0 0.5 1.0 1.5 2.0 0 2.5 Limited By Package ID, Drain Current (A) 200 150 100 50 0 50 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 300 25 100 75 Id = 5mA 70 65 60 55 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 3.0 EAS , Single Pulse Avalanche Energy (mJ) 1200 2.5 ID 27A 50A BOTTOM 165A TOP 1000 2.0 Energy (µJ) 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 250 1 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 1.5 1.0 0.5 0.0 800 600 400 200 0 -10 0 10 20 30 40 50 60 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC 70 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRLB3036GPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 τJ 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 1E-005 τi (sec) 0.01115 0.000009 0.08360 0.000080 0.18950 0.001295 0.11519 0.006726 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Ri (°C/W) R4 R4 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 0.01 100 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 165A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRLB3036GPbF 14 2.5 2.0 ID = 250µA ID = 1.0mA 1.5 12 IF = 110A V R = 51V 10 TJ = 25°C TJ = 125°C IRRM (A) VGS(th) , Gate threshold Voltage (V) 3.0 8 6 ID = 1.0A 1.0 4 2 0.5 -75 -50 -25 0 0 25 50 75 100 125 150 175 200 100 300 400 500 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 900 12 IF = 165A V R = 51V 10 IF = 110A V R = 51V 800 TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C 700 600 8 QRR (A) IRRM (A) 200 diF /dt (A/µs) T J , Temperature ( °C ) 6 500 400 300 4 200 100 2 0 100 200 300 400 0 500 100 200 300 400 500 diF /dt (A/µs) diF /dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 600 IF = 165A V R = 51V TJ = 25°C TJ = 125°C QRR (A) 500 400 300 200 0 100 200 300 400 500 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRLB3036GPbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRLB3036GPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5)%*3%) 1RWH*VXIIL[LQSDUWQXPEHU LQGLFDWHV+DORJHQ)UHH 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( < /$67',*,72) &$/(1'$5<($5 :: :25.:((. ; )$&725<&2'( TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2009 8 www.irf.com