IRF IRFB3077PBF

PD - 97047
IRFB3077PbF
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
Benefits
l Worldwide Best RDS(on) in TO-220
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
HEXFET® Power MOSFET
D
G
S
VDSS
RDS(on) typ.
max.
ID
75V
2.8m:
3.3m:
210A
D
G
D
S
TO-220AB
IRFB3077PbF
G
D
S
G a te
D r a in
S o u rc e
Absolute Maximum Ratings
Max.
Units
ID @ TC = 25°C
Symbol
Continuous Drain Current, VGS @ 10V
Parameter
210c
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
150 c
IDM
Pulsed Drain Current d
850
PD @TC = 25°C
Maximum Power Dissipation
370
W
Linear Derating Factor
2.5
VGS
Gate-to-Source Voltage
± 20
W/°C
V
dV/dt
TJ
Peak Diode Recovery f
2.5
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
V/ns
°C
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
10lbxin (1.1Nxm)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy e
IAR
Avalanche Currentc
EAR
Repetitive Avalanche Energy g
240
mJ
See Fig. 14, 15, 22a, 22b,
A
mJ
Thermal Resistance
Typ.
Max.
RθJC
Symbol
Junction-to-Case k
–––
0.402
RθCS
Case-to-Sink, Flat Greased Surface
0.50
–––
RθJA
Junction-to-Ambient jk
–––
62
www.irf.com
Parameter
Units
°C/W
1
10/24/05
IRFB3077PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
Min. Typ. Max. Units
V
Conditions
75
–––
–––
–––
0.091
–––
V/°C Reference to 25°C, ID = 5mAd
VGS = 0V, ID = 250µA
–––
2.8
3.3
mΩ VGS = 10V, ID = 75A g
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 250µA
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 75V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Gate Input Resistance
–––
1.2
–––
RG
VDS = 75V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
Ω
f = 1MHz, open drain
VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
Conditions
gfs
Qg
Forward Transconductance
160
–––
–––
S
Total Gate Charge
–––
160
220
nC
Qgs
Gate-to-Source Charge
–––
37
–––
VDS = 38V
Qgd
Gate-to-Drain ("Miller") Charge
–––
42
–––
VGS = 10V g
td(on)
Turn-On Delay Time
–––
25
–––
tr
Rise Time
–––
87
–––
td(off)
Turn-Off Delay Time
–––
69
–––
RG = 2.1Ω
tf
Fall Time
–––
95
–––
VGS = 10V g
Ciss
Input Capacitance
–––
9400
–––
Coss
Output Capacitance
–––
820
–––
VDS = 50V
Crss
Reverse Transfer Capacitance
–––
350
–––
ƒ = 1.0MHz
Coss eff. (ER) Effective Output Capacitance (Energy Related)i –––
Coss eff. (TR) Effective Output Capacitance (Time Related)h
–––
1090
–––
VGS = 0V, VDS = 0V to 60V j, See Fig.11
1260
–––
VGS = 0V, VDS = 0V to 60V h, See Fig. 5
ns
VDS = 50V, ID = 75A
ID = 75A
VDD = 38V
ID = 75A
pF
VGS = 0V
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
––– 210c
ISM
(Body Diode)
Pulsed Source Current
–––
–––
VSD
(Body Diode)di
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
42
63
ns
–––
50
75
Qrr
Reverse Recovery Charge
–––
59
89
–––
86
130
IRRM
Reverse Recovery Current
–––
2.5
–––
ton
Forward Turn-On Time
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.08mH
RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 75A, di/dt ≤ 400A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
A
Conditions
MOSFET symbol
showing the
integral reverse
850
D
G
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V g
VR = 64V,
TJ = 25°C
TJ = 125°C
nC
TJ = 25°C
A
TJ = 25°C
S
IF = 75A
di/dt = 100A/µs g
TJ = 125°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C
www.irf.com
IRFB3077PbF
1000
1000
BOTTOM
100
4.5V
BOTTOM
4.5V
100
≤ 60µs PULSE WIDTH
Tj = 175°C
≤ 60µs PULSE WIDTH
Tj = 25°C
10
10
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
2.5
100
TJ = 25°C
VDS = 25V
≤ 60µs PULSE WIDTH
1
2.0
3.0
4.0
5.0
VGS = 10V
2.0
(Normalized)
TJ = 175°C
10
ID = 75A
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
6.0
7.0
1.5
1.0
0.5
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
16000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss
8000
4000
Coss
Crss
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
ID= 75A
VDS = 60V
16
VDS= 38V
VDS= 17V
12
8
4
0
0
1
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
12000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
0
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB3077PbF
10000
ID, Drain-to-Source Current (A)
1000.0
ISD , Reverse Drain Current (A)
TJ = 175°C
100.0
10.0
TJ = 25°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
100µsec
10msec
100
LIMITED BY PACKAGE
10
1
0.1
0.1
0.0
0.4
0.8
1.2
1.6
0.1
2.0
LIMITED BY PACKAGE
ID , Drain Current (A)
200
160
120
80
40
0
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage
240
50
100.0
100
90
80
70
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
3.0
EAS, Single Pulse Avalanche Energy (mJ)
1000
2.5
2.0
Energy (µJ)
10.0
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
1.0
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
1.5
1.0
0.5
0.0
ID
20A
35A
BOTTOM 75A
TOP
800
600
400
200
0
0
20
40
60
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1msec
80
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFB3077PbF
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
τJ
τJ
τ1
R2
R2
τ2
τ1
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
Ri (°C/W) τi (sec)
0.0766 0.000083
0.1743
0.000995
0.1513
0.007038
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
100
0.01
0.05
0.10
10
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
200
100
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB3077PbF
24
ID = 1.0A
ID = 1.0mA
ID = 250µA
20
3.0
16
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
4.0
2.0
12
8
IF = 30A
VR = 64V
4
1.0
-75
-50 -25
0
25
50
75
TJ = 125°C
TJ = 25°C
0
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / µs)
Fig 16. Threshold Voltage Vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
24
400
20
300
QRR - (nC)
IRRM - (A)
16
12
8
4
IF = 45A
VR = 64V
200
IF = 30A
VR = 64V
100
TJ = 125°C
TJ = 25°C
TJ = 125°C
TJ = 25°C
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
400
QRR - (nC)
300
200
100
0
IF = 45A
VR = 64V
TJ = 125°C
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB3077PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD
Fig 22b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 23a. Switching Time Test Circuit
tr
td(off)
tf
Fig 23b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFB3077PbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
AS S E MB L Y
L OT CODE
TO-220AB packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
8
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/05
www.irf.com