IRF IRFP4410ZPBF

PD - 97309A
IRFP4410ZPbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
V DSS
R DS(on) typ.
m ax.
I D (Silicon Lim ited)
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
100V
7.2m :
9.0m :
97A
D
D
D
G
S
G
TO-247AC
S
G
D
S
Gate
Drain
Source
Absolute Maxim um Ratings
Symbol
Parameter
Max.
Units
ID @ T C = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
97
ID @ T C = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
69
IDM
Pulsed Drain Current
390
PD @T C = 25°C
Maximum Power Dissipation
230
W
W/°C
c
A
Linear Derating Factor
1.5
VGS
Gate-to-Source Voltage
± 20
V
dv/dt
TJ
Peak Diode Recovery
16
Operating Junction and
V/ns
°C
TSTG
Storage Temperature Range
e
-55 to + 175
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
x
Avalanche Characteristics
EAS (T hermally limited)
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
c
d
f
x
10lb in (1.1N m)
Mounting torque, 6-32 or M3 screw
242
mJ
See Fig. 14, 15, 22a, 22b,
A
mJ
Thermal Resistance
Symbol
Parameter
j
Typ.
Max.
RπJC
Junction-to-Case
–––
0.65
RπCS
Case-to-Sink, Flat Greased Surface
0.24
–––
RπJA
Junction-to-Ambient
–––
40
www.irf.com
j
Units
°C/W
1
03/07/08
IRFP4410ZPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Min. Typ. Max. Units
100
–––
–––
2.0
–––
–––
–––
–––
–––
–––
0.12
7.2
–––
–––
–––
–––
–––
0.70
–––
–––
9.0
4.0
20
250
100
-100
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mAc
mΩ VGS = 10V, ID = 58A f
V VDS = VGS, ID = 150µA
µA VDS = 100V, VGS = 0V
VDS = 80V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
140
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related) h–––
–––
Effective Output Capacitance (Time Related)g
–––
83
19
27
56
16
52
43
57
4820
340
170
420
690
–––
120
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 10V, ID = 58A
ID = 58A
VDS =50V
VGS = 10V f
ID = 58A, VDS =0V, VGS = 10V f
VDD = 65V
ID = 58A
RG =2.7Ω
VGS = 10V f
VGS = 0V
VDS = 50V
ƒ = 1.0MHz, See Fig.5
VGS = 0V, VDS = 0V to 80V h, See Fig.11
VGS = 0V, VDS = 0V to 80V g
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)c
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
Notes:
 Repetitive rating; pulse width limited by max. junction
temperature.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.143mH
RG = 25Ω, IAS = 58A, VGS =10V. Part not recommended for use
above this value.
ƒ ISD ≤ 58A, di/dt ≤ 610A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units
–––
–––
–––
–––
Conditions
97
A
MOSFET symbol
390
A
showing the
integral reverse
D
G
S
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 58A, VGS = 0V f
VR = 85V,
–––
38
57
ns TJ = 25°C
T
=
125°C
IF = 58A
–––
46
69
J
di/dt = 100A/µs f
–––
53
80
nC TJ = 25°C
TJ = 125°C
–––
82
120
–––
2.5
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
… Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
† Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
ˆ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFP4410ZPbF
1000
1000
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
BOTTOM
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
4.5V
10
BOTTOM
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
1
1
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
2.5
VDS = 50V
≤60µs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
100
T J = 25°C
10
T J = 175°C
1
0.1
ID = 58A
VGS = 10V
2.0
1.5
1.0
0.5
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
12.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 58A
Coss = Cds + Cgd
C, Capacitance (pF)
4.5V
10000
Ciss
Coss
1000
Crss
VDS= 80V
VDS= 40V
10.0
VDS= 20V
8.0
6.0
4.0
2.0
0.0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFP4410ZPbF
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
1msec
100
10
T J = 25°C
1
10msec
DC
10
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
1
0.0
0.5
1.0
1.5
2.0
2.5
0
VSD, Source-to-Drain Voltage (V)
ID, Drain Current (A)
80
60
40
20
0
75
100
125
150
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
100
50
Id = 5mA
120
115
110
105
100
95
90
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs.
Case Temperature
2.0
Fig 10. Drain-to-Source Breakdown Voltage
EAS , Single Pulse Avalanche Energy (mJ)
1000
1.8
1.6
1.4
1.2
Energy (µJ)
100
125
T C , Case Temperature (°C)
1.0
0.8
0.6
0.4
0.2
0.0
ID
TOP
6.4A
9.4A
BOTTOM 58A
900
800
700
600
500
400
300
200
100
0
-10 0
10 20 30 40 50 60 70 80 90 100
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
1
VDS, Drain-to-Source Voltage (V)
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFP4410ZPbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τC
τ
Ri (°C/W) τi (sec)
0.237
0.000178
0.413
τ2
0.003772
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆ Tj = 150°C and
Tstart =25°C (Single Pulse)
Duty Cycle = Single Pulse
Avalanche Current (A)
0.01
0.05
10
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
150
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 58A
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFP4410ZPbF
20
IF = 39A
VR = 85V
4.0
TJ = 25°C _____
15
3.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.5
3.0
2.5
2.0
ID = 150µA
1.5
ID = 1.0mA
ID = 1.0A
TJ = 125°C ----------
10
5
ID = 250µA
0
1.0
-75 -50 -25 0
100
25 50 75 100 125 150 175 200
200
300
500
600
700
dif/dt (A/µs)
T J , Temperature ( °C )
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
400
20
15
400
I = 58A
F
V = 85V
R
T = 25°C _____
J
T = 125°C ---------J
350
IF = 39A
VR = 85V
TJ = 25°C _____
300
TJ = 125°C ----------
Qrr (nC)
IRRM (A)
250
10
200
150
100
5
50
0
0
100
200
300
400
500
600
100
700
200
300
400
500
600
700
dif/dt (A/µs)
dif/dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
450
400
350
Qrr (nC)
300
I = 58A
F
V = 85V
R
T = 25°C _____
J
T = 125°C
J
----------
250
200
150
100
50
0
100
200
300
400
500
600
700
dif/dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFP4410ZPbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
tp
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
Fig 22b. Unclamped Inductive Waveforms
LD
VDS
VGS
90%
+
VDD D.U.T
10%
VGS
VDS
Second Pulse Width < 1µs
Duty Factor < 0.1%
td(off)
Fig 23a. Switching Time Test Circuit
tf
td(on)
tr
Fig 23b. Switching Time Waveforms
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgs2 Qgs1
Fig 24b. Gate Charge Waveform
7
IRFP4410ZPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 03/08
8
www.irf.com