

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN84810 PSoC 3 and PSoC 5LP Advanced DMA Topics.pdf

		
				 AN84810
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Author: Ranjith M
Associated Project: Yes
®
Associated Part Family: All PSoC 3 and PSoC 5LP parts
Software Version: PSoC Creator™ 3.0 SP2
Related Application Notes: AN52705, AN61102
®
AN84810 discusses several advanced PSoC 3 and PSoC 5LP direct memory access (DMA) topics and design
challenges. This application note builds upon the fundamental concepts introduced in AN52705 – Getting Started
with DMA. Topics covered include indexed transfers, timing and bandwidth considerations, data alignment, and DMA
debugging tips.
Contents
Introduction
Introduction ...1
DMA Considerations ...2
DMA Terms and Definitions..2
DMA Timing..3
DMA Channel Priority Handling7
Terminating a TD Chain ...8
Multi-Byte Data Alignment ...9
Writing to Standard Registers and Components 15
Modifying a TD Dynamically .. 24
Indexed DMA .. 24
Nested DMA ... 25
Debugging DMA .. 26
Common Issues ... 26
Debugging Methods ... 28
Projects ... 29
Parallel to Serial Converter Project 29
Nested DMA Project ... 29
Summary ... 30
Appendix A: Memory Maps ... 31
Appendix B: Termination Request Signal 33
Appendix C: DMA Channel Arbitration Flow Diagram 36
Appendix D: Misaligned Data Transfers 37
Worldwide Sales and Design Support 41
Direct memory access (DMA) controllers transfer data
between peripherals and memory without CPU
®
intervention. The DMA controller (DMAC) in PSoC 3 and
PSoC 5LP features 24 channels and 128 transaction
descriptors (TDs), making it very versatile for a wide
variety of applications. PSoC Creator™, the development
environment for PSoC, has tools including a DMA wizard
and component APIs that make it easy to design complex
DMA functions.
www.cypress.com
This application note teaches you advanced methods to
get maximum performance from the PSoC DMAC. The
topics covered include DMA timing, DMA channel priority
handling, multi-byte data alignment, and methods to
modify a TD dynamically.
This application note assumes that you are already
familiar with the topics discussed in the basic DMA
application note, AN52705 – Getting Started with DMA. It
also assumes that you are familiar with developing
applications using PSoC Creator for PSoC 3 or
PSoC 5LP. If you are new to these products, you can find
introductions in AN54181 – Getting Started with PSoC 3
and AN77759 – Getting Started with PSoC 5LP. If you are
new to PSoC Creator, see the PSoC Creator home page.
Document No. 001-84810 Rev. *A
1
PSoC® 3 and PSoC 5LP Advanced DMA Topics
DMA Considerations
The DMAC is one of the most useful components in PSoC 3 and PSoC 5LP. However, it also exposes a whole new set of
design considerations with which you may not be familiar. Here are some points to consider when designing a system with
DMA.
DMA Terms and Definitions
Following is a list of terms and definitions that are used in this application note. These terms are described in detail in
AN52705 – Getting Started with DMA but are included here for clarity.
Peripheral HUB (PHUB): The PHUB is the central hub that has data buses connected between the CPU, DMAC, and on-chip
peripherals and memory.
Spoke: Spokes are data buses that branch out from the PHUB to peripherals. Spoke widths can be 16 or 32 bits; see the
device datasheet and Technical Reference Manual (TRM) for details. Figure 1 shows the PHUB and spoke connections.
Channel: DMA channels use the PHUB to transfer data. A channel fetches transaction descriptors, accesses the PHUB
spokes for the source and the destination, and transfers data.
Transaction descriptor: A TD stores all information required for a data transfer, including the source and destination
addresses and the number of bytes to transfer. Multiple chained TDs can be allocated to a single DMA channel.
www.cypress.com
Document No. 001-84810 Rev. *A
2
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Figure 1. Peripheral HUB
USB
Spoke
Arbitration
EEPROM
Fixed Function
Timers
Universal
Digital Blocks
(UDB Bank 0)
Spoke 4
Spoke 6
32 bit
Fixed Function
I2C
32 bit
16 bit
16 bit
16 bit
32 bit
Spoke 7
16 bit
Spoke 5
Spoke 1
PHUB
Spoke 3
CPU
Spoke 0
SRAM
System
Resources
Spoke 2
CAN
16 bit
DMAC
IO Interface
ADCs
External Memory
Interface (EMIF)
DACs
Digital Filter
Block (DFB)
Universal
Digital Blocks
(UDB Bank 1)
Other Analog
Peripherals
DMA Timing
This section describes how to calculate the best-case timing for a DMA channel. Many factors can cause the DMA to deviate
from this best-case timing; those factors are also discussed here.
The PSoC DMAC operates at the same frequency as the CPU, which is the bus clock frequency. Most PSoC family members
run at a bus clock frequency as high as 67 MHz. DMA data transfers are either intra-spoke (within the same PHUB spoke) or
inter-spoke (between different PHUB spokes).
For each data transfer, the DMA implements a set of phases, as Figure 2, Figure 3, and Figure 4 show:

DMA request (DRQ) latch phase: It takes one clock cycle for the DMA request to be latched into the DMAC.

Fetch phase: This phase is used fetch the TD and configuration information for the channel. One clock cycle is required.
Arbitration phase: This phase is used to arbitrate between simultaneous requests from multiple DMA channels. One clock
cycle is required for this phase. If a channel loses arbitration, it reenters the queue and waits for the next arbitration cycle.
Source engine phase: This phase is used to select the spoke to which the source memory or peripheral is connected. If
the spoke is being used by another bus master, that is, the CPU, data transfer from the source is delayed until the spoke
is available. The source engine phase initially consists of a bus control cycle followed by a data cycle. Then the control
and data cycles are pipelined in parallel.
www.cypress.com
Document No. 001-84810 Rev. *A
3
PSoC® 3 and PSoC 5LP Advanced DMA Topics

Destination engine phase: This phase selects the spoke to which the destination peripheral is connected. The data
collected in the source engine phase is transferred to the destination peripheral as soon as the spoke is available. The
destination engine phase initially consists of a bus control cycle followed by a data cycle. Then the control and data cycles
are pipelined in parallel.
1.
Write back phase: In this phase, the TD and DMA channel configurations are updated after the data transfer. This phase
requires one clock cycle.
Figure 2 shows a simple state diagram for a DMA transfer. Figure 3 and Figure 4 on page 5 show the actual timing for an interspoke and an intra-spoke data transfer.
Figure 2. DMA Data Transfer State Diagram
DMA idle
DMA channel
request
Write back
phase
Burst
Complete
Destination
Engine phase
Arbitration
phase
Burst not
Complete
Source Engine
phase
Fetch phase
The number of clock cycles required for the source engine and destination engine phases is the same for an inter-spoke and
an intra-spoke data transfer. However, the two phases can happen in parallel for an inter-spoke transfer, which usually
requires fewer clock cycles.
www.cypress.com
Document No. 001-84810 Rev. *A
4
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Figure 3. Timing Diagram for DMA Inter-Spoke Data Transfer
Bus Clock
DMA request
latch phase
Arbitration Phase
Fetch Phase
Source Engine
Phase
Destination Engine
Phase
Control Cycles
Control 1
Data Cycles
Control Cycles
Control 2
Control 3
Control 4
Control N
Data 1
Data 2
Data 3
Data N-1
Data N
Control 1
Control 2
Control N-2
Control N-1
Control N
Data 1
Data N-3
Data N-2
Data N-1
Data Cycles
Data N
Write Back
Phase
Figure 4. Timing Diagram for DMA Intra-Spoke Data Transfer
Bus Clock
DMA request
latch phase
Arbitration Phase
Fetch Phase
Source Engine
Phase
Destination Engine
Phase
Control Cycles
Data Cycles
Control 1
Control 2
Control 3
Control N
Data 1
Data 2
Data N-1
Data N
Control Cycles
Control 1
Data Cycles
Control 2
Control 3
Control N-1
Control N
Data 1
Data 2
Data N-2
Data N-1
Data N
Write Back
Phase
When calculating DMA timing, start with the ideal conditions, as follows:

Only one DMA channel is active, and there is no arbitration between multiple DMA channels.

The source and the destination spokes are available when the transfer is to be done.
There is no arbitration between the DMAC and the CPU. Note that the CPU and the DMAC can access different spokes
simultaneously.
The source and destination spoke widths are the same.
The data length is an even multiple of the spoke width, in bytes.
The source and destination start addresses are on a spoke width boundary.
The number of bursts required for a DMA transfer N is defined as follows:
www.cypress.com
Document No. 001-84810 Rev. *A
5
PSoC® 3 and PSoC 5LP Advanced DMA Topics
(1)
where transfer count and spoke width are in bytes. See AN52705 for details on DMA burst transfers.
If the ideal conditions are met, the number of clock cycles required for an inter-spoke data transfer is calculated as follows:
C = 1 clock cycle to latch the drq signal +
1 clock cycle for arbitration phase +
1 clock cycle for fetch phase +
(N + 3) clock cycles for source and destination engine phases +
1 clock cycle for write back phase
(2)
The number of clock cycles required for an intra-spoke data transfer is calculated as follows:
C = 1 clock cycle to assert the drq signal +
1 clock cycle for arbitration phase +
1 clock cycle for fetch phase +
(N + 1) clock cycles for source engine phase +
(N + 1) clock cycles for destination engine phase +
1 clock cycle for write back phase
(3)
The exact number of clock cycles required for a DMA transaction under non-ideal conditions varies depending on the
conditions. Use the following tips to calculate the clock cycles required for a non-ideal DMA transaction:
1.
The clock cycle to assert the drq signal is not required for continuous DMA transfers. For example, if the transfer length is
set to 100 and the request per burst is set to 0 (complete transfer in a single request), the latching of the request is
required only for the first DMA transfer.
2.
The arbitration between multiple DMA channels takes only one clock cycle. If the DMAC is already performing a data
transfer, arbitration is performed in parallel with the data transfer, and this clock cycle is hidden.
3.
If the CPU is competing with the DMAC for a spoke, the DMAC must wait until the CPU releases the spoke if the CPU is
assigned a higher priority than the DMAC. The priority of the CPU over the DMAC is controlled using the spk_cpu_pri[6:0]
bits in the PHUB_CFG register. See the “PHUB” section in the PSoC Registers TRM for details.
4.
If the source or destination start address is not on a spoke width boundary, the number of clock cycles required for the
DMA transfer varies depending upon the spoke width and the addresses. The formulas in Equations (1) and (2) for interspoke and intra-spoke transfers can also be used in this case, with a change in the value of N as calculated by
Equation (3).
If the source and destination widths are 32 bits, N is unchanged if the source and destination addresses are 32-bit
DWORD aligned. N is multiplied by 2 if the source and destination are WORD aligned, and N is multiplied by 3 if the
source and destination are BYTE aligned. See the section Multi-Byte Data Alignment for details.
5.
If endian swapping is enabled for an inter-spoke DMA transaction, the destination transfer cannot occur until the last
source byte has been put into the DMAC FIFO. The DMAC must write the last source byte to the first location of the
destination to do the endian swap. The effective value of N in this case is calculated as (N calculated with Source spoke
width) + (N calculated with Destination spoke width) – 1.
6.
If the source and destination peripherals have unequal spoke widths, the number of clock cycles required for a transfer is
governed by the narrower spoke width. In this case, N = (Transfer Count) / (Narrower Spoke Width).
www.cypress.com
Document No. 001-84810 Rev. *A
6
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Table 1 shows the number of clock cycles required for a DMA transfer in different scenarios to transfer N bursts of data.
Table 1. Number of Clock Cycles for DMA Transfer between PSoC Resources
Use Case
Number of Clock Cycles
Flash to SRAM
N+7
SRAM to SRAM
2N + 6
SRAM to peripherals
N+7
Peripherals to SRAM
N+7
Peripherals to peripherals
2N + 6
Appendix C: DMA Channel Arbitration Flow Diagram provides a flow diagram for DMA channel arbitration.
DMA Channel Priority Handling
Each of the 24 DMA channels is assigned a priority value ranging from 0 to 7, with 0 being the highest priority and 7 being the
lowest. Since there are only 8 different priorities and 24 DMA channels, multiple channels may have the same priority.
For channels having the same priority, two methods are used to decide which channel gets priority:
1.
Simple priority: The lowest channel number has a higher priority. This is enabled by default.
2.
Round robin: Round robin priority ensures that all channels get an equal opportunity to access the PHUB. This is disabled
by default and is set using the API function CyDmaChRoundRobinEnable().
For channels with different priorities, two rules are applied to determine which channel gets priority:
1.
Simple priority: The channel with the lowest priority number gets priority.
2.
Grant allocation fairness algorithm: The grant allocation
fairness algorithm is designed such that even the lowest
priority channels get access once in a while. With this
method, channels with priorities 0 and 1 always have 100
percent access and are not interrupted, with the exception
that 0 is higher priority than 1. The channels with priorities 2
to 7 are given access according to Table 2.
Table 2. Channel Priority Distribution
The grant allocation fairness algorithm is enabled by default.
You can disable it by setting the simple priority bit (bit 23) in
the PHUB_CFG register. See the “PHUB” section of the
PSoC 3 Registers TRM and PSoC 5LP Registers TRM for
details.
www.cypress.com
Document No. 001-84810 Rev. *A
Channel Priority
Bandwidth (%)
2
50
3
25
4
12.5
5
6.25
6
3
7
1.5
7
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Note that Table 2 applies only if DMA channels with
all the priorities are requesting simultaneously.
Otherwise, the DMA channel with a higher priority is
given more access than Table 2 shows.
Figure 5 shows a channel priority wheel that
describes how the next 63 requests are handled if all
channels with priorities 2 to 7 are requesting
simultaneously.
Figure 5. DMA Channel Priority Wheel
2 5
2
2 3
2
4
2 3 2
6
2
3
3
2
4
2
4
3
2
2
3
5
2
Channel Request
2
2
3
3
2
DMA Channel
priority wheel
2
4
2
4
2
3
2
3
2
7
2
5
3
2
2
3
2
4
4
2
2
3
2
2
6
2 3 2 4
2
3
3
2 5
The bandwidth utilization of the DMA channel can be defined as the number of clock cycles utilized by the DMA channel for
the data transfer as a percentage of the total number of available clock cycles across sustained DMA requests of burst length
N.
For inter-spoke data transfers:
(4)
For intra-spoke data transfers:
(5)
If a channel with priority 2 to 7 is not requesting, the slots of the missing channel priority are used by the channel with the
highest priority. In that case, channels with a higher priority get more access than Figure 5 shows.
Terminating a TD Chain
In some cases, a TD must be terminated before data transfer is completed. This is called non-count termination. There are
three methods to terminate a TD and abort a DMA transaction:

API function call to terminate the current TD [CyDmaChSetRequest(channel, CPU_TERM_TD)]
API function call to terminate the current TD chain [CyDmaChSetRequest(channel, CPU_TERM_CHAIN)]
Hardware trq signal
Use the API function CyDmaChSetRequest() to terminate either the current TD or the entire TD chain. This API function
disables the DMA channel and terminates the chain of TDs if the second parameter is set to CPU_TERM_CHAIN. This API
terminates the current TD but does not disable the DMA channel if the second parameter is set to CPU_TERM_TD.
When one of these methods is used, the DMA channel is reconfigured as if the current transaction has completed normally. If
enabled, the nrq signal is activated; see the DMA Component datasheet for details.
Note The DMA channel completes any ongoing transaction before terminating, so termination may require some cycles for the
final transaction to be complete. The DMAC may transfer more data bytes before terminating the TD. You should be extremely
careful while accessing these memory locations after a terminate TD API request as the function is not blocking and may
return before the data transfer has been actually terminated.
Using the Hardware trq Signal
You can also use the hardware signal trq, or termination request. This signal, when asserted during the source engine phase
of a transaction, stops the DMA transaction.
www.cypress.com
Document No. 001-84810 Rev. *A
8
PSoC® 3 and PSoC 5LP Advanced DMA Topics
This is an effective way to terminate a TD using a hardware signal when the transfer count is set to zero. If the transfer count
parameter of a TD is set to zero, the TD runs indefinitely unless it is terminated by a non-count termination. See Appendix B:
Termination Request Signal for an example of how to use the trq signal.
Note The trq signal is used only when the DMA is trying to transfer data. A positive edge on this line is ignored at all other
times.
Multi-Byte Data Alignment
One feature of the DMAC is that it can transfer more than one byte in a single bus cycle. This allows more efficient and faster
data transfers.
The section DMA Timing introduced
the concept of N:
(6)
Here are some examples:
For Transfer Count = 2; Spoke Width = 2:
N=1
For Transfer Count = 4; Spoke Width = 2:
N=2
For Transfer Count = 3; Spoke Width = 2:
N = 2 (always round up to the next integer)
For Transfer Count = 4; Spoke Width = 4:
N=1
All of these calculations assume that the source and destination addresses are aligned. There are three possible ways for
addresses to be aligned: BYTE, WORD, and DWORD, as Figure 6 shows:

BYTE = All addresses
WORD = Even or 16-bit addresses: 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, and so on
DWORD = 32-bit addresses: 0x00, 0x04, 0x08, 0x0C, and so on
Figure 6. Notation to Represent Possible Data Alignments in the Memory
0x00
0x01
0x02
0x03
0x04
0x05
DWORD
WORD
BYTE
BYTE
0x06
0x07
0x08
0x09
DWORD
WORD
BYTE
BYTE
WORD
BYTE
BYTE
0x0A
0x0B
0x0C
0x0D
DWORD
WORD
BYTE
BYTE
WORD
BYTE
BYTE
0x0E
0x0F
DWORD
WORD
BYTE
BYTE
WORD
BYTE
BYTE
WORD
BYTE
BYTE
To reduce the number of clock cycles needed for a data transfer, align the source and destination addresses with the spoke
width boundaries. An address is aligned with a 32-bit spoke width boundary if the address is DWORD aligned. An address is
aligned with a 16-bit wide spoke if the address is WORD aligned. BYTE-aligned addresses are never aligned with any spoke
width boundary.
Note In some cases, if the addresses are not aligned with the spoke width boundaries, the DMAC may fetch incorrect data
from the source or write incorrect data to the destination address. Appendix D: Misaligned Data Transfers details the results of
misaligned data transfers.
You can avoid incorrect data transfers by using one of the following methods:
1.
Enable the increment source address or increment destination address option in the TD configuration.
2.
Force the source and destination addresses to the spoke width boundaries.
Figure 7 and Figure 8 show WORD-aligned and BYTE-aligned arrangements for 16-bit data, respectively.
www.cypress.com
Document No. 001-84810 Rev. *A
9
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Figure 7. WORD-Aligned Arrangement of 16-Bit Data
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
DATA VALUE
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
Figure 8. BYTE-Aligned Arrangement of 16-Bit Data
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
DATA VALUE
BYTE
BYTE
BYTE
BYTE
BYTE
A data transfer from address location “n” is carried out in a single clock cycle if the data at the source is aligned with the spoke
boundary, as Figure 9 shows. When the data is BYTE aligned, data transfer takes two clock cycles, as Figure 10 shows.
Figure 9. Data Transfer of WORD-Aligned 16-Bit Data
16-bit
spoke
Peripheral A
(16-bit data)
Bus Clock
Data Read Cycles
for Burst = 2
(WORD Aligned
Data)
16-bit
spoke
Peripheral B
(16-bit data)
16-bit
spoke
Peripheral B
(16-bit data)
WORD
from address
0x04
Figure 10. Data Transfer of BYTE-Aligned 16-Bit Data
Bus Clock
Data Read Cycles
for Burst = 2
(BYTE aligned
Data)
16-bit
spoke
Peripheral A
(16-bit data)
BYTE
from address
0x03
BYTE
from address
0x04
Figure 11, Figure 12, and Figure 13 show the DWORD-aligned, WORD-aligned, and BYTE-aligned arrangements for a 32-bit
data transfer, respectively.
Figure 11. DWORD-Aligned Arrangement of 32-Bit Data
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
DATA VALUE
DWORD
DWORD
DWORD
DWORD
Figure 12. WORD-Aligned Arrangement of 32-Bit Data
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
DATA VALUE
WORD
www.cypress.com
WORD
WORD
WORD
WORD
Document No. 001-84810 Rev. *A
WORD
WORD
WORD
10
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Figure 13. BYTE-Aligned Arrangement of 32-Bit Data
0x00
0x01
0x02
0x03
BYTE
BYTE
BYTE
BYTE
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
DATA VALUE
WORD
The data transfer from address location “n” is carried out in a single clock cycle if the data at the source is aligned with the
spoke boundary, as Figure 14 shows. When the data is WORD aligned, the data transfer takes two clock cycles, and when the
data is BYTE aligned, data transfer takes three clock cycles, as Figure 15 and Figure 16 show.
Figure 14. Data Transfer of DWORD-Aligned 32-Bit Data
Peripheral A
(32-bit data)
32-bit
spoke
Bus Clock
Data Read Cycles
for Burst = 4
(DWORD Aligned
Data)
32-bit
spoke
Peripheral B
(32-bit data)
32-bit
spoke
Peripheral B
(32-bit data)
32-bit
spoke
Peripheral B
(32-bit data)
DWORD
from address
0x04
Figure 15. Data Transfer of WORD-Aligned 32-Bit Data
Bus Clock
Peripheral A (32bit data)
32-bit
spoke
Data Read Cycles
for Burst = 4
(WORD aligned
Data)
WORD
from address
0x02
WORD
from address
0x04
Figure 16. Data Transfer of BYTE-Aligned 32-Bit Data
Bus Clock
Peripheral A (32bit data)
32-bit
spoke
BYTE
from address
0x03
Data Read Cycles
for Burst = 4
(BYTE aligned
Data)
WORD
from address
0x04
BYTE
from address
0x06
Note If the transfer count is odd, the number of cycles is different. For example a 3-byte burst on a 32-bit spoke takes two
clock cycles, even if the addresses are DWORD aligned: one cycle to transfer two bytes, and another to transfer the third byte.
Also, if increment source and destination address are not enabled in the TD configuration, only the first two bytes are
transferred.
For the Keil compiler, use the keyword _at_ to force variables into absolute address locations in SRAM. This ensures that
variables are aligned with even address boundaries, for example:
uint8 myVariable _at_ 0x1000;
Note Variables forced to absolute memory locations cannot be initialized.
For the GCC compiler, use the keyword __attribute__ to force variables to 16-bit or 32-bit address boundaries. For
example:
uint32 var __attribute__ ((aligned(32)));
You can replace the number 32 in the previous format with 16 to align the variables with 16-bit address boundaries. You must
use the appropriate keywords to align the data with the spoke width boundaries, depending upon your compiler.
www.cypress.com
Document No. 001-84810 Rev. *A
11
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Aligning UDBs
You can do DMA transfers to and from the registers in UDB-based PSoC Creator Components, though enabling the increment
source or destination address is not always a viable option. To work around this, you may need to force the Component to be
aligned with an address boundary. You can use PSoC Creator directives to force a UDB-based Component to start at a
specific address.
There are as many as 24 UDBs in a PSoC device, and each set of UDB registers has a particular base address. The base
addresses for the UDBs are provided in the PSoC 3 Registers TRM and PSoC 5LP Registers TRM. The UDBs are distributed
in the form of two banks and are numbered in a specific fashion, as Figure 17 shows. The dashed line represents how UDBs
are chained.
Figure 17. Organization of PSoC UDBs
0
1
2
3
4
5
0
10
9
9
10
13
14
1
11
8
8
11
12
15
2
4
7
7
4
3
0
3
5
6
6
5
2
1
Bank 1
Bank 0
The numbers in blue on the top and left of the diagram are the indices that PSoC Creator uses to address each of the UDBs.
The numbers inside the squares indicate the UDB number. For example, UDB0 is addressed as U(2,5). To find out where
PSoC Creator places a Component in the UDB array, follow these steps:
1.
Place a 16-bit UDB-based Counter Component in the TopDesign, as Figure 18 shows, and build the project.
Figure 18. Counter Component
www.cypress.com
Document No. 001-84810 Rev. *A
12
PSoC® 3 and PSoC 5LP Advanced DMA Topics
2.
Examine the .rpt file to find the location where PSoC Creator has placed the Component, as Figure 19 shows.
Figure 19. Finding the UDB Location of the Component
Figure 19 shows that PSoC Creator has placed the Component in UDBs U(2,4) and U(3,4) or UDB3 and UDB2. The LSB data
path of the Component is located in UDB2. In the Registers TRM, the FIFO 0 (F0) address for UDB2 is 0x6442, which is a
WORD-aligned address. Note that the UDB register space is on a 16-bit spoke, and the DMAC can transfer two bytes, or one
word, in one clock cycle on this spoke.
www.cypress.com
Document No. 001-84810 Rev. *A
13
PSoC® 3 and PSoC 5LP Advanced DMA Topics
If the Component placement was unaligned for some reason, follow these steps to align the counter FIFO 0 addresses with a
word address boundary:
1.
Open the .rpt file and locate the line “Design Equations,” as Figure 20 shows. Expand the list by clicking on the [+] symbol
left of the line. Locate the line “Datapath listing” to find the fully elaborated name of the Component.
Figure 20. Locating the Fully Elaborated Name of the Component
2.
Open the .cydwr file, go to the Directives tab, and add a directive using the Add Directive button, as Figure 21 shows. In
the column “Component (Signal) Name,” type the fully elaborated Component name obtained from the .rpt file. Select
“ForceComponentUDB” as the directive type. Enter the required UDB location as mentioned previously. To force the
Counter to UDB0, where the FIFO 0 address is 0x6440, which is WORD aligned, enter U(2,5).
Figure 21. Adding the Directive
3.
Rebuild the project, and then check the .rpt file again to confirm that the counter was placed in UDB(2,5).
www.cypress.com
Document No. 001-84810 Rev. *A
14
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Writing to Standard Registers and Components
The DMAC can transfer data to and from almost any memory or register location in PSoC. This includes the memory, UDBs,
and registers of any PSoC Creator Component. However, the DMA Wizard provided with PSoC Creator supports data transfer
between only a few Components.
To use DMA to transfer data between Components that are not supported by the DMA Wizard, you must find the addresses of
the Components' registers. To do so, use the PSoC register maps in the PSoC 3 Registers TRM and PSoC 5LP Registers
TRM.
For example, the following steps show how to transfer a byte of data from a GPIO port to an SRAM location.
1.
Place a Pins Component in the TopDesign and change the number of pins to 8, as Figure 22 shows. Deselect the option
hardware connection (HW Connection).
2.
Enable the port interrupt control unit (PICU) interrupt, as Figure 23 shows. The PICU interrupt is used to trigger the DMA
channel to initiate a data transfer.
Figure 22. Configuring GPIO Pins (Type Tab)
Figure 23. Configuring GPIO Pins (Input Tab)
www.cypress.com
Document No. 001-84810 Rev. *A
15
PSoC® 3 and PSoC 5LP Advanced DMA Topics
3.
Place two DMA Components and a Character LCD Component in the TopDesign. Wire the Components as Figure 24
shows.
Figure 24. Completed TopDesign
4.
Assign a suitable port for the GPIO using the .cydwr file. Then, if you selected port 5, for example, locate the address of
port 5 in the register map, as Figure 25 shows.
Figure 25. Locate the Address From the Register Map
5.
You can use either the absolute address (0x5151) or the alias (Input_Signal_PS) in your code to address the port pin
state register.
You can find out the alias names for the Component registers from the “.h” generated file of the Component. These files
are automatically generated by PSoC Creator when you build the project. In this case, the alias name Input_Signal_PS is
defined in the file Input_Signal.h.
www.cypress.com
Document No. 001-84810 Rev. *A
16
PSoC® 3 and PSoC 5LP Advanced DMA Topics
6.
The PICU interrupt must be cleared each time it is triggered. All interrupts from the port are masked until the interrupt is
cleared. The PICU interrupt is cleared by reading the interrupt status register of the port.
7.
This example uses two DMA channels: one to transfer the GPIO input value to SRAM and the other to clear the PICU
interrupt.
8.
Open the DMA Wizard from the PSoC Creator menu via Tools > DMA Wizard, as Figure 26 shows.
Figure 26. Configure DMA_1
www.cypress.com
Document No. 001-84810 Rev. *A
17
PSoC® 3 and PSoC 5LP Advanced DMA Topics
9.
Configure the options as Figure 27 shows, and click Next.
Leave the source and destination at the default values (SRAM) for now. The DMA Wizard supports only a specific set of
Components by default. You must edit the source value in the code later to suit your requirement. The SRAM location
should be updated each time the value on the GPIO pins changes. This requires only a single TD that runs when a DMA
request is received.
Figure 27. DMA Channel Global Settings
www.cypress.com
Document No. 001-84810 Rev. *A
18
PSoC® 3 and PSoC 5LP Advanced DMA Topics
10. Enable the nrq signal. The nrq signal of DMA_1 is used to trigger DMA_2. Set the source address value as described in
step 5. The destination is the address of the SRAM location to which the data from the GPIO pins is stored. Figure 28
shows the TD configuration window after setting these values.
Figure 28. Configure the TDs
11. Copy the generated code, as Figure 29 shows, into the clipboard, and paste it into the main.c file.
Figure 29. Generated Code After Configurations
www.cypress.com
Document No. 001-84810 Rev. *A
19
PSoC® 3 and PSoC 5LP Advanced DMA Topics
12. Configure the second DMA channel similarly, as Figure 30 through Figure 33 show.
Figure 30. Configure DMA_2
Figure 31. DMA Channel Global Settings
www.cypress.com
Document No. 001-84810 Rev. *A
20
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Figure 32. Configure the TD
Figure 33. Generated Code After Configurations
www.cypress.com
Document No. 001-84810 Rev. *A
21
PSoC® 3 and PSoC 5LP Advanced DMA Topics
13. Edit main.c. In the #define statements, change DMA_1_SRC_BASE and DMA_2_SRC_BASE to
CYDEV_PERIPH_BASE, since the GPIO is a peripheral. Add code to start the Character LCD Component. The resulting
code is similar to Code 1.
14. You can verify the functionality of the project by changing the data input to the GPIO pins. The character LCD displays the
decimal value of the data input applied to the GPIO pins.
This procedure is similar for any other standard Component, or for PSoC registers. Be sure to edit the generated code
appropriately so that the base address for the source and the destination is correct. The base addresses for different sources
and destinations are available in the PSoC Creator generated file cydevice_trm.h after building a project. Table 3 shows a list
of commonly used base addresses.
Table 3. Commonly Used Base Addresses
Source/Destination
www.cypress.com
PSoC 3
PSoC 5LP
Flash
CYDEV_FLS_BASE
CYDEV_FLASH_BASE
SRAM
CYDEV_SRAM_BASE
CYDEV_SRAM_DATA_MBASE
Peripherals
CYDEV_PERIPH_BASE
CYDEV_PERIPH_BASE
Document No. 001-84810 Rev. *A
22
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Code 1. Completed Code for Transferring Data Bytes from GPIO Pins to SRAM
#include <device.h>
/* DMA Configuration for DMA_1 */
#define DMA_1_BYTES_PER_BURST 1
#define DMA_1_REQUEST_PER_BURST 1
#define DMA_1_SRC_BASE (CYDEV_PERIPH_BASE)
#define DMA_1_DST_BASE (CYDEV_SRAM_BASE)
/* DMA Configuration for DMA_2 */
#define DMA_2_BYTES_PER_BURST 1
#define DMA_2_REQUEST_PER_BURST 1
#define DMA_2_SRC_BASE (CYDEV_PERIPH_BASE)
#define DMA_2_DST_BASE (CYDEV_SRAM_BASE)
uint8 Port_Value;
uint8 Interrupt_Status;
void main()
{
uint8 DMA_1_Chan;
uint8 DMA_1_TD[1];
uint8 DMA_2_Chan;
uint8 DMA_2_TD[1];
DMA_1_Chan = DMA_1_DmaInitialize(DMA_1_BYTES_PER_BURST, DMA_1_REQUEST_PER_BURST,
HI16(DMA_1_SRC_BASE), HI16(DMA_1_DST_BASE));
DMA_1_TD[0] = CyDmaTdAllocate();
CyDmaTdSetConfiguration(DMA_1_TD[0], 1, DMA_1_TD[0], DMA_1__TD_TERMOUT_EN);
CyDmaTdSetAddress(DMA_1_TD[0], LO16((uint32)&Input_Signal_PS), LO16((uint32)&Value));
CyDmaChSetInitialTd(DMA_1_Chan, DMA_1_TD[0]);
CyDmaChEnable(DMA_1_Chan, 1);
DMA_2_Chan = DMA_2_DmaInitialize(DMA_2_BYTES_PER_BURST, DMA_2_REQUEST_PER_BURST,
HI16(DMA_2_SRC_BASE), HI16(DMA_2_DST_BASE));
DMA_2_TD[0] = CyDmaTdAllocate();
CyDmaTdSetConfiguration(DMA_2_TD[0], 1, DMA_2_TD[0], 0);
CyDmaTdSetAddress(DMA_2_TD[0], LO16((uint32)&Input_Signal_INTSTAT),
LO16((uint32)&Interrupt_Status)); /* Read the interrupt status register
* to clear the PICU interrupt */
CyDmaChSetInitialTd(DMA_2_Chan, DMA_2_TD[0]);
CyDmaChEnable(DMA_2_Chan, 1);
CyGlobalIntEnable;
lcd_Start();
for(;;)
{
lcd_Position(0,0);
lcd_PrintNumber(Port_Value);
CyDelay(20);
lcd_ClearDisplay();
}
}
www.cypress.com
Document No. 001-84810 Rev. *A
23
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Modifying a TD Dynamically
The PSoC DMAC can access its own registers. This allows a TD to dynamically alter the properties of another TD. Two
examples of DMA transfers that use this technique are indexed DMA and nested DMA.
Indexed DMA
With indexed DMA, you can access PSoC memory and register addresses, for example, from an external device using a
communication port. You use two TDs to do so. The first TD acts as an address fetch—it writes the destination address of the
second TD. Then the second TD is called to carry out the actual data transfer. The external device can then access the PSoC
memory locations as if those locations were shared memory. For example, if the actual memory space of the external device is
only 256 bytes (0x00 to 0xFF), it can be extended to 512 bytes by using the PSoC memory locations with indexed DMA.
You can configure a DMA channel in the PSoC device for this purpose, as Figure 34 shows. If the external device wants to
write to the PSoC memory, it should pass the address of the location followed by the data to be written to the PSoC memory.
An interrupt associated with the peripheral through which the external master is connected to the PSoC device can be used to
generate a DMA channel request.
Figure 35 shows the timing diagram for an indexed data transfer in this case.
Figure 34. Block Diagram for Indexed DMA Transfer
DMA Channel
External Device
DMA Request Signal
Read
Write
DRQ
NRQ
PSoC Memory
DMA done signal –
Typically tied to interrupt
TD Pointer
TD 0
Address of
external device
(Source Address)
Destination
Address of TD 1
(Destination
Address)
1
(Transfer Count)
TD 1
TD 1
(Next TD)
Address of
external device
(Source Address)
To be filled
by TD 0
(Destination
Address)
1
(Transfer Count)
TD 0
(Next TD)
Figure 35. Timing Diagram for an Indexed DMA Transfer
Data from
external device
Address
Data
Triggers TD 0
Triggers TD 1
DMA
Request
www.cypress.com
Document No. 001-84810 Rev. *A
24
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Nested DMA
Nested DMA is similar to indexed DMA, except that it involves multiple TDs to configure any parameters of the TD that does
the actual data transfer. These parameters include source address, destination address, and transfer count.
Figure 36 shows the block diagram for a nested DMA data transfer.
Figure 36. Block Diagram for a Nested DMA Transfer
DMA Channel
External Device
DMA Request Signal
Read
Write
DRQ
NRQ
PSoC Memory/
registers/
peripherals
DMA done signal –
Typically tied to interrupt
TD Pointer
TD 0
Address of
external device
(Source Address)
Source Address
of TD 3
(Destination
Address)
Address of
external device
(Source Address)
Transfer Count
Register of TD 3
(Destination
Address)
TD 1
2
(Transfer Count)
TD 1
(Next TD)
Address of
external device
(Source Address)
Destination
Address of TD 3
(Destination
Address)
TD 3
(Next TD)
To be filled
by TD 0
(Source Address)
To be filled
by TD 1
(Destination
Address)
TD 2
(Next TD)
TD 3
TD 2
2
(Transfer Count)
2
(Transfer Count)
To be filled
by TD 2
(Transfer Count)
TD 0
(Next TD)
Note If the upper 16 bits of source or destination address are different for TD 3, different DMA channels should be used for
updating the TD configuration and actual data transfer.
An example project provided with this application note demonstrates the nested DMA feature.
www.cypress.com
Document No. 001-84810 Rev. *A
25
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Debugging DMA
This section explains some common issues that you may encounter while working with DMA, and some debugging
techniques.
Common Issues
B a s e Ad d r e s s D i f f e r e n c e s
The 8-bit PSoC 3, the 32-bit PSoC 5LP, and the DMAC that exists in both families all have different addressing schemes. It is
important to be aware of these differences, especially when porting DMA designs between the PSoC families.
To start, note that the DMAC uses 32-bit addresses (source and destination), stored in separate 16-bit registers. The upper
halves of the addresses are specified in a DMA channel:
DMA_DmaInitialize(..., upperSrcAddr, upperDestAddr)
And the lower halves of the addresses are specified in the TDs allocated to a DMA channel:
CyDmaTdSetAddress(..., lowerSrcAddr, lowerDestAddr)
For PSoC 5LP, you can easily obtain the upper and lower halves of an address from a (4-byte) pointer variable, by using the
HI16 or LO16 macros, defined in the cytypes.h file:
upperSrcAddr
lowerSrcAddr
= HI16(srcArray);
= LO16(srcArray);
For PSoC 3, the contents of a pointer variable cannot be used because the Keil 8051 compiler uses a 3-byte pointer. It
contains a 16-bit absolute address and a third byte for the memory space used (see Appendix A). Instead, use one of the
following code snippets to obtain the upper half of the address:
Source or destination in SRAM or peripheral register:
upperSrcAddr = 0;
Source in flash:
upperSrcAddr = (CYDEV_FLS_BASE) >> 16
A list of commonly used base addresses is provided in Table 3 on page 22.
Conditional compilation can be used:
#if (defined(__C51__))
upperSrcAddr = 0;
lowerSrcAddr = srcArray;
#else /* PSoC 5 */
upperSrcAddr = HI16(srcArray);
lowerSrcAddr = LO16(srcArray);
#endif
www.cypress.com
Document No. 001-84810 Rev. *A
26
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Endian Formats
Endian format refers to how multi-byte variables are stored in a byte-wide memory. In big endian format, the most significant
byte is stored in the first byte (lowest address). In little endian format, the least significant byte is stored in the lowest address.
For PSoC 3, the Keil 8051 compiler uses big endian format. The PSoC 5LP Cortex-M3 and all its compilers use little endian
format. Both PSoC 3 and PSoC 5LP multi-byte peripheral registers use little endian format.
DMA TDs can be programmed to have bytes swapped while transferring data. The swap size is set to 2 bytes for 16-bit
transfers or 4 bytes for 32-bit transfers. The following examples handle 2- and 4-byte swaps:
CyDmaTdSetConfiguration(myTd, 2, myTd, (TD_TERMOUT0_EN | TD_SWAP_EN));
CyDmaTdSetConfiguration(myTd, 4, myTd, (TD_TERMOUT0_EN | TD_SWAP_EN | TD_SWAP_SIZE4));
DMA byte swapping is required only in PSoC 3, when transferring multi-byte parameters between peripherals and variables in
memory. It must be disabled for all other uses, including all PSoC 5LP uses.
Note If the transfer count is not an integer multiple of the swap size, incorrect data is transferred to the destination.
Preserving TD Configuration
You can set the preserve the TD configuration using the API function CyDmaChEnable(). If the TDs are preserved, the TD
whose number is the same as the channel number becomes RESERVED and is used as the working register for the channel.
For example, if you are using DMA channel 6 and the TD is preserved, you are not allowed to use TD 6. This TD is now used
by the DMA engine for its private use.
If a TD is preserved, the TD is copied into the working register of the channel each time it is executed. The TD updates the
source address, destination address, and transfer count only in the working register during the data transfer. If the channel is
triggered again, the TD reloads its values to the working register from the original configuration registers.
If the TD is not preserved, the original TD settings are changed during the transfer. The transfer count value is decremented
and finally reaches zero when the TD has been completed. An infinite data transfer begins if the TD is triggered again, since
the transfer count is set to zero. If the source or destination address for the TD is configured for incrementing during the
transfer, it results in erroneous data transfers.
Note Take extra precautions when using the hardware request (drq) option when not preserving TD, as you may be
requesting the wrong data.
A d d r e s s Al i g n m e n t
If some data bytes are not transferred, a likely reason may be misaligned source and data addresses. Make sure that the
source and destination addresses are aligned with spoke width boundaries. Doing so also increases transfer efficiency. A
detailed discussion of the methods to align source and destination addresses with even address boundaries appears in the
section Multi-Byte Data Alignment.
www.cypress.com
Document No. 001-84810 Rev. *A
27
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Debugging Methods
Some methods to debug a DMA transfer are the following:
1.
Observe the drq and nrq signals on a scope: If you are using a hardware signal to trigger the DMA Component, observe
the drq terminal to make sure that the DMA Component is being triggered correctly. If the termout signal is enabled for the
DMA Component, at the completion of a data transfer the DMA Component produces a pulse at the nrq terminal that is
two bus clocks wide.
2.
View critical DMA registers: The source address, destination address, and DMA configuration registers can be used to
debug DMA transfers. Enter debug mode, navigate to the corresponding register location, and make sure that all registers
have the expected values. The DMA registers inform the current status of DMA transfer, such as the number of bytes
transferred, the TD that is being executed currently, and the status of DMA. The details of these registers are available in
the PSoC 3 and PSoC 5LP Registers TRMs.
3.
Use the correct method to trigger the DMA: Make sure that the correct trigger option is set for the drq terminal, that is,
level or edge. Setting an incorrect trigger method can result in situations in which DMA requests are missed or are
generated unnecessarily.
The choice of trigger method depends on the source that generates the trigger signal. The trigger option is generally set to
level when the DMA is used to transfer data from a FIFO. For example, the level option is used if you are transferring data
from a UART Component to SRAM. This ensures that the DMA begins a transfer as soon as the UART buffer is not
empty. The trigger option is set to edge if the data transfer follows the occurrence of an event such as ADC conversion
complete.
4.
Check the allocation and deallocation of TDs. The TDs of a DMA channel define the behavior of the DMA channel. A TD
specifies the source address, destination address, number of bytes to be transferred (transfer count), and the next TD to
be executed. Multiple TDs can be allocated to a channel. See the DMA Component datasheet for details.
Always disable a DMA channel before allocating or deallocating a TD for that channel. Otherwise the channel may behave
indeterminately and write to random memory or peripheral addresses, which can be very difficult to debug. The following
paragraphs explain the reason that this happens.
Two parameters are used to keep track of the allocation and deallocation of the TDs. One is CyDmaTdFreeIndex, which
points to the next unallocated TD. The other one is CyDmaTdCurrentNumber, which stores the number of free TDs
currently available. Byte 0 of the register (PHUB_TDMEM[xxx]_ORIG_TD0), pointed by CyDmaTdFreeIndex has the next
free TD number available after the current free TD is allocated. This acts like a linked list to keep track of the available
TDs.
If a TD is being used, PHUB_TDMEM[xxx]_ORIG_TD0 holds the eight lower bits of the transfer count (XFRCNT). This is
normally loaded during TD configuration with the total number of bytes to be transferred by that TD. It is updated by the
TD after every burst transfer with a new transfer count value (remaining bytes to be transferred). When a new TD is
allocated using the API CyDmaTdAllocate(), CyDmaTdFreeIndex is updated with the value in
PHUB_TDMEM[CyDmaTdFreeIndex]_ORIG_TD0.
Now consider that the TDs are allocated using the API CyDmaTdAllocate() and freed using CyDmaTdFree(). When TDs
are released with CyDmaTdFree(), the general DMA configuration itself is not changed, but instead CyDmaTdFreeIndex is
updated with the value of the released TD number. If the TD number released using CyDmaTdFree() is
Freed_TD_Number, the PUHB_TDMEM[Freed_TD_Number]_ORIG_TD0 configuration register is updated with the
previous value of CyDmaTdFreeIndex.
If a DMA channel request occurs after the TD is freed but with the DMA channel enabled, the TDMEM.TD0 value that
points to the next free TD is corrupted since that value is taken as the transfer count. Now if another TD is allocated, the
newly allocated TD may be a TD that is already in use. This TD could now transfer data incorrectly, causing system-wide
issues.
Note The DMAC latches a channel request even if the channel is disabled. This latched request is executed as soon as the
channel is enabled again. This may cause the DMA Component to transfer incorrect data when the device wakes from sleep
or the channel is re-enabled if a channel request occurs when the channel is inactive.
www.cypress.com
Document No. 001-84810 Rev. *A
28
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Projects
Two projects are provided with this application note to help you understand the concepts introduced in this application note.
Parallel to Serial Converter Project
This project uses a DMA channel to convert a parallel stream of 8-bit data from a GPIO port to serial data. The data is shifted
out at a constant rate through another GPIO pin.
This project shows you how to use DMA to transfer data between standard components that are not supported by the DMA
Wizard. This project also demonstrates the method to force UDB Components to required locations.
Figure 37 shows the test setup for the parallel to serial converter project.
Figure 37. Project Setup for Parallel to Serial Converter Project
VDD
PIN 4_0
PIN 4_1
PIN 4_2
PIN 5_1
PIN 4_3
PSoC
PIN 4_4
PIN 4_5
PIN 4_6
PIN 4_7
VSS
Nested DMA Project
This project demonstrates the method to dynamically modify a TD using another TD.
The project allows an external master with UART transmit capability to transfer variable amounts of data to different locations
in the PSoC SRAM. The number of data bytes and the address to which these data bytes are to be written can be changed
dynamically.
The first byte of the data stream received by the PSoC device specifies the SRAM address, and the second byte specifies the
number of bytes to follow. The remaining bytes in the data stream are written to the SRAM.
Figure 38 shows the test setup for the nested DMA project.
Figure 38. Project Setup for Nested DMA Project
VDD
Hyperterminal
RX
PSoC
GND
Computer
www.cypress.com
Serial
Port of
computer
UART
port of
DVK
Document No. 001-84810 Rev. *A
VSS
29
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Summary
About the Author
The PSoC 3 and PSoC 5LP DMA controller allows you to
significantly offload the CPU and to transfer data between
memory and peripherals. The DMA is powerful enough to
modify itself dynamically, which makes this Component
unique.
Name:
Ranjith M
Title:
Applications Engineer
Background:
Ranjith graduated from Government
Engineering College, Thrissur with a
Bachelor's Degree in Electronics and
Communications Engineering.
Contact:

This application note explained some advanced concepts
regarding the PSoC DMA and offered projects as
examples.
www.cypress.com
Document No. 001-84810 Rev. *A
30
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Appendix A: Memory Maps
The PSoC 3 and PSoC 5LP memory maps are different due to the architecture of their respective CPUs.
The PSoC 3 8051 memory map consists of three distinct memory spaces, as Figure 39 shows.

Program memory: This space is 64 KB and is occupied solely by flash memory. The 8051 executes instructions from this
space.

External data memory: This space is “external” to the 8051 core but is “internal” to the PSoC 3 device. All SRAM, registers
and EMIF addresses are mapped into this space. Flash memory is also mapped into this space, mainly for DMA data
access. This space is 16 MB and requires a 24-bit address to access it.

8051 internal data memory: This space is part of the 8051 core. It contains 256 bytes of RAM and several special function
registers (SFRs). The 8051 uses fast register and bit instructions to access portions of this space. The 8051 hardware
stack also occupies this space; the stack size can be at most 256 bytes.
Note This address space is not included in the PSoC 3 memory map and is not available for DMA access.
For more details, see any PSoC 3 datasheet or the application note AN60630 – PSoC 3 8051 Code and Memory Optimization.
Figure 39. PSoC 3 8051 Memory Map
0xFFFFFF
0xFF
0x80
0x7F
SRAM,
registers,
external
memory
(EMIF)
0xFFFF
0x30
RAM
(Indirect
Addressing)
SFRs
(Direct
Addressing)
RAM
(Direct and Indirect Addressing)
0x2F
Bit Addressable Area
0x20
FLASH
0x1F
4 Banks, R0-R7 Each
0x000000
0x0000
Program
Memory
www.cypress.com
0x00
External Data
Memory
Document No. 001-84810 Rev. *A
Internal Data Memory
31
PSoC® 3 and PSoC 5LP Advanced DMA Topics
The PSoC 5LP ARM Cortex-M3 architecture is simpler. It
uses a single 32-bit linear memory map, as Figure 40
shows. The SRAM in the PSoC 5LP occupies the
addresses 0x1FFF8000 to 0x20007FFF, centered on the
boundary between the Cortex-M3 code and SRAM
spaces. The remainder of the code space is occupied
solely by flash, starting at address 0. The PSoC 5LP
registers occupy the Cortex-M3 peripheral space.
Figure 40. PSoC 5LP Cortex-M3 Memory Map
0xFFFFFFFF
Vendor-specific
0xE0100000
0xE00FFFFF
Private peripheral bus - External
0xE0040000
0xE003FFFF
Private peripheral bus - Internal
0xE0000000
0xDFFFFFFF
External device
1.0GB
0xA0000000
0x9FFFFFFF
External RAM
1.0GB
0x60000000
0x5FFFFFFF
Peripheral
0.5GB
0x40000000
0x30000000
SRAM
0.5GB
0x20000000
0x1FFFFFFF
Code
0.5GB
0x00000000
www.cypress.com
Document No. 001-84810 Rev. *A
32
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Appendix B: Termination Request Signal
To see how the trq input of the DMA operates, set the transfer count to zero to start an infinite data transfer and then trigger
the DMA channel. A positive edge on the trq terminal stops the data transfer by a non-count termination.
The following steps explain a scenario where the trq terminal is used for a non-count termination:
1.
A DMA channel is used to transfer an 8-bit data output from the ADC to a VDAC. Figure 41 shows the TopDesign
schematic.
Figure 41. Completed TopDesign for the trq Demonstration Example
2.
Connect a variable voltage source to the Adc_Input and an oscilloscope or an LED to the Vdac_Output. Connect two
switches to the pins Start_Transfer and Terminate_Transfer.
3.
Open the PSoC Creator DMA Wizard from the menu Tools > DMA Wizard, as Figure 42 shows. Select the DMA
Component from your design and click Next.
Figure 42. Selecting the DMA Channel
www.cypress.com
Document No. 001-84810 Rev. *A
33
PSoC® 3 and PSoC 5LP Advanced DMA Topics
4.
In the next window, set the configurations as Figure 43 shows, and click Next.
Figure 43. Configure General DMA Channel Settings
5.
In the next window, select the option “Term In” and set the “Length” field (the transfer length) to zero, as Figure 44 shows.
This initiates an infinite transfer. Click Next.
Figure 44. Configure the TDs
www.cypress.com
Document No. 001-84810 Rev. *A
34
PSoC® 3 and PSoC 5LP Advanced DMA Topics
6.
In the final window, click Copy to Clipboard to copy the resultant code. Paste this code into your project main.c file.
7.
Add code to main.c to start the ADC and VDAC Components, and start ADC conversion, as Code 2 shows.
Program the PSoC device and run the code. Press the Start_Transfer switch to transfer ADC output to the VDAC. Similarly,
press the Terminate_Transfer switch to terminate data transfer to the VDAC.
Code 2. Code in the File main.c
#include <device.h>
/* DMA Configuration for DMA_1 */
#define DMA_1_BYTES_PER_BURST 1
#define DMA_1_REQUEST_PER_BURST 0
#define DMA_1_SRC_BASE (CYDEV_PERIPH_BASE)
#define DMA_1_DST_BASE (CYDEV_PERIPH_BASE)
void main()
{
uint8 DMA_1_Chan;
uint8 DMA_1_TD[1];
DMA_1_Chan = DMA_1_DmaInitialize(
DMA_1_BYTES_PER_BURST,
DMA_1_REQUEST_PER_BURST,
HI16(DMA_1_SRC_BASE),
HI16(DMA_1_DST_BASE));
DMA_1_TD[0] = CyDmaTdAllocate();
CyDmaTdSetConfiguration(DMA_1_TD[0], 0,
DMA_INVALID_TD, TD_TERMIN_EN);
CyDmaTdSetAddress(DMA_1_TD[0],
LO16((uint32)Adc_DEC_SAMP_PTR),
LO16((uint32)Vdac_Data_PTR));
CyDmaChSetInitialTd(DMA_1_Chan,
DMA_1_TD[0]);
CyDmaChEnable(DMA_1_Chan, 1);
Adc_Start();
Adc_StartConvert();
Vdac_Start();
for(;;)
{
}
}
www.cypress.com
Document No. 001-84810 Rev. *A
35
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Appendix C: DMA Channel Arbitration Flow Diagram
Yes
No
Is CPU using
the spoke?
Channel B using spoke
Is it a CPU
priority spoke?
Latency depends on
CPU processing time
Latency depends on
burst length of the
other DMA channel
No
Has CPU released
the spoke?
No
Is burst
completed for
Channel B?
Current burst for
Channel B is
completed
Channel B is
interrupted
Yes
Yes
DMA channel
accesses the spoke
Yes
Yes
Channel burst for
CPU is completed
CPU process is
interrupted
No
Does Channel B
have higher priority?
DMA channel
accesses the spoke
The channel A
accesses the spoke
Channel A accesses
the spoke
Channel A completes
transfer
DMA channel
completes transfer
Spoke released for
the DMA
www.cypress.com
Document No. 001-84810 Rev. *A
36
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Appendix D: Misaligned Data Transfers
The DMAC performs incorrect data transfers if the source or destination addresses are misaligned and the increment source
address and increment destination address are not enabled. Figure 45 shows a valid DMA transfer when the source and
destination addresses are aligned. Figure 46 through Figure 51 illustrate different scenarios where misaligned data results in
incorrect DMA transactions for 16-bit data.
Figure 45. Aligned Source and Destination Addresses – Valid DMA Transfer
Source
0x00
0x01
WORD
0x02
0x03
WORD
0x04
0x05
0x22
0x33
WORD
0x06
0x07
WORD
Destination
0x00
0x01
WORD
0x02
0x03
WORD
0x04
0x05
0x22
0x33
WORD
0x06
0x07
WORD
Figure 46. Misaligned Destination Address – Destination Data Overwrite
Source
0x00
0x01
WORD
0x02
0x03
WORD
0x04
0x05
0x22
0x33
WORD
0x06
0x07
WORD
Destination
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x0F
BYTE
BYTE
BYTE
BYTE
0x22
0x33
BYTE
BYTE
BYTE
BYTE
Figure 47. Misaligned Destination Address – Destination Data Overwrite
Source
0x00
0x01
WORD
0x02
0x03
WORD
0x04
0x05
0x22
0x33
WORD
0x06
0x07
WORD
Destination
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x0F
BYTE
BYTE
0x22
0x33
BYTE
www.cypress.com
BYTE
BYTE
BYTE
BYTE
BYTE
Document No. 001-84810 Rev. *A
37
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Figure 48. Misaligned Source Address – Destination Data Duplicate
Source
0x00
BYTE
0x01
BYTE
0x02
0x03
0x04
0x05
0x06
0x22
0x33
0x0F
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
0x02
0x03
0x04
0x05
0x06
0x07
0x22
0x22
Destination
0x00
0x01
WORD
WORD
WORD
WORD
Figure 49. Misaligned Source Address – Destination Data Duplicate
Source
0x00
BYTE
0x01
BYTE
0x02
0x03
0x04
0x05
0x06
0x0F
0x22
0x33
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
0x02
0x03
0x04
0x05
0x06
0x07
0x22
0x22
Destination
0x00
0x01
WORD
WORD
WORD
WORD
Figure 50. Misaligned Source Address and Destination Address – Single-Byte Transfer
Source
0x00
BYTE
0x01
BYTE
0x02
0x03
0x04
0x05
0x06
0x0F
0x22
0x33
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
0x02
0x03
0x04
0x05
0x06
0x0F
BYTE
BYTE
BYTE
BYTE
Destination
0x00
0x01
0x22
BYTE
www.cypress.com
BYTE
BYTE
BYTE
Document No. 001-84810 Rev. *A
38
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Figure 51. Misaligned Source Address and Destination Address – Single-Byte Transfer
Source
0x00
BYTE
0x01
BYTE
0x02
0x03
0x04
0x05
0x06
0x22
0x33
0x0F
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
0x02
0x03
0x04
0x05
0x06
0x0F
BYTE
BYTE
Destination
0x00
0x01
0x22
0x22
BYTE
www.cypress.com
BYTE
BYTE
BYTE
BYTE
BYTE
Document No. 001-84810 Rev. *A
39
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Document History
®
Document Title: PSoC 3 and PSoC 5LP Advanced DMA Topics – AN84810
Document Number: 001-84810
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
4015646
RNJT
05/30/2013
New Application Note.
*A
4602407
RNJT
12/19/2014
Added Table 1 with the number of clock cycles required for DMA transfer between
PSoC resources.
Updated the section Debugging DMA.
www.cypress.com
Document No. 001-84810 Rev. *A
40
PSoC® 3 and PSoC 5LP Advanced DMA Topics
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
Memory
cypress.com/go/memory
Optical Navigation Sensors
cypress.com/go/ons
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
PSoC is registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2013-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-84810 Rev. *A
41

				

 Open as PDF

 	Similar pages
	

										AN77835 PSoC 3 to PSoC 5LP Migration Guide.pdf

	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA.pdf

	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA (Japanese).pdf

	

										AN82156 PSoC 3, PSoC 4, and PSoC 5LP - Designing PSoC Creator™ Components with UDB Datapaths.pdf

	

										AN89056 PSoC 4 IEC 60730 Class B and IEC 61508 SIL Safety Software Library.pdf

	

										Component - I2S V2.0

	

										CY8CKIT-001_PSoC_Development_Kit_Guide.pdf

	

										http://ecologylab.net/courses/sensoryInterfaces/resources/PSoCTRM.pdf

	

										DOC2310

	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA (Chinese).pdf

	

										AN61102 PSoC 3 and PSoC 5LP ADC Data Buffering Using DMA.pdf

	

										AN52701 - PSoC 3 and PSoC 5LP - Getting Started with Controller Area Network.pdf

	

										AN54181 Getting Started with PSoC® 3 (Chinese).pdf

	

										FUJITSU MB89PV670A

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

