INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: • The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC • The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC HEF4015B MSI Dual 4-bit static shift register Product specification File under Integrated Circuits, IC04 January 1995 Philips Semiconductors Product specification HEF4015B MSI Dual 4-bit static shift register present on D is shifted to the first register position, and all the data in the register is shifted one position to the right on the LOW-to-HIGH transition of CP. A HIGH on MR clears the register and forces O0 to O3 to LOW, independent of CP and D. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times. DESCRIPTION The HEF4015B is a dual edge-triggered 4-bit static shift register (serial-to-parallel converter). Each shift register has a serial data input (D), a clock input (CP), four fully buffered parallel outputs (O0 to O3) and an overriding asynchronous master reset input (MR). Information Fig.2 Pinning diagram. HEF4015BP(N): 16-lead DIL; plastic HEF4015BD(F): 16-lead DIL; ceramic (cerdip) (SOT38-1) (SOT74) HEF4015BT(D): 16-lead SO; plastic (SOT109-1) Fig.1 Functional diagram. ( ): Package Designator North America FAMILY DATA, IDD LIMITS category MSI PINNING DA, DB serial data input MRA, MRB master reset input (active HIGH) CPA, CPB clock input (LOW-to-HIGH edge-triggered) O0A, O1A, O2A, O3A parallel outputs O0B, O1B, O2B, O3B parallel outputs See Family Specifications APPLICATION INFORMATION Some examples of applications for the HEF4015B are: • Serial-to-parallel converter • Buffer stores • General purpose register January 1995 2 Philips Semiconductors Product specification HEF4015B MSI Dual 4-bit static shift register LOGIC DIAGRAM (one register) Fig.3 Logic diagram. Note FUNCTION TABLE INPUTS n CP 1. H = HIGH state (the more positive voltage) OUTPUTS D MR O0 O1 O2 O3 1 D1 L D1 X X X 2 D2 L D2 D1 X X 3 D3 L D3 D2 D1 X D4 L D4 D3 D2 D1 X L X H 4 X January 1995 2. L = LOW state (the less positive voltage) 3. X = state is immaterial L L = positive-going transition 5. = negative-going transition 6. Dn = either HIGH or LOW 7. n no change L 4. L 3 = number of clock pulse transitions Philips Semiconductors Product specification HEF4015B MSI Dual 4-bit static shift register AC CHARACTERISTICS VSS = 0 V; Tamb = 25 °C; CL = 50 pF; input transition times ≤ 20 ns VDD V SYMBOL MIN. TYPICAL EXTRAPOLATION FORMULA TYP. MAX. 130 260 ns 103 ns + (0,55 ns/pF) CL 55 110 ns 44 ns + (0,23 ns/pF) CL 40 80 ns 32 ns + (0,16 ns/pF) CL 120 240 ns 93 ns + (0,55 ns/pF) CL 55 110 ns 44 ns + (0,23 ns/pF) CL 40 80 ns 32 ns + (0,16 ns/pF) CL 105 210 ns 78 ns + (0,55 ns/pF) CL 45 90 ns 34 ns + (0,23 ns/pF) CL 35 70 ns 27 ns + (0,16 ns/pF) CL 10 ns + (1,0 ns/pF) CL Propagation delays CP → On HIGH to LOW 5 10 tPHL 15 5 LOW to HIGH 10 tPLH 15 MR → On HIGH to LOW 5 10 tPHL 15 Output transition times HIGH to LOW 5 10 tTHL 15 5 LOW to HIGH 10 tTLH 15 Set-up time 5 D → CP 10 Hold time D → CP Minimum clock pulse width; LOW Minimum MR pulse width; HIGH Recovery time for MR Maximum clock pulse frequency 120 ns 60 ns 9 ns + (0,42 ns/pF) CL 20 40 ns 6 ns + (0,28 ns/pF) CL 60 120 ns 10 ns + (1,0 ns/pF) CL 30 60 ns 9 ns + (0,42 ns/pF) CL 20 40 ns 6 ns + (0,28 ns/pF) CL 25 −15 ns 25 −10 ns 15 20 −5 ns 5 40 20 ns 10 tsu thold 20 10 ns 15 15 8 ns 5 60 30 ns 10 tWCPL 30 15 ns 15 20 10 ns 5 80 40 ns 10 tWMRH 30 15 ns 15 24 12 ns 5 50 20 ns 10 tRMR 30 10 ns 15 20 5 ns 5 7 15 MHz 15 30 MHz 22 44 MHz 10 15 January 1995 60 30 fmax 4 see waveforms Figs 4 and 5 Philips Semiconductors Product specification HEF4015B MSI Dual 4-bit static shift register Dynamic power VDD V TYPICAL FORMULA FOR P (µW) 5 1 500 fi + ∑ (foCL) × VDD2 where fi = input freq. (MHz) dissipation per 10 6 300 fi + ∑ (foCL) × package (P) 15 17 000 fi + ∑ (foCL) × VDD2 VDD2 fo = output freq. (MHz) CL = load capacitance (pF) ∑ (foCL) = sum of outputs VDD = supply voltage (V) Fig.4 Waveforms showing set-up times, hold times and minimum clock pulse width. Set-up and hold times are shown as positive values but may be specified as negative values. Fig.5 Waveforms showing recovery time for MR and minimum MR pulse width. January 1995 5