Philips Semiconductors Linear Products Product specification High slew rate operational amplifier NE/SE531 DESCRIPTION PIN CONFIGURATIONS The 531 is a fast slewing high performance operational amplifier which retains DC performance equal to the best general purpose types while providing far superior large-signal AC performance. A unique input stage design allows the amplifier to have a large-signal response nearly identical to its small-signal response. The amplifier is compensated for truly negligible overshoot with a single capacitor. In applications where fast settling and superior large-signal bandwidths are required, the amplifier out-performs conventional designs which have much better small-signal response. Also, because the small-signal response is not extended, no special precautions need be taken with circuit board layout to achieve stability. The high gain, simple compensation, and excellent stability of this amplifier allow its use in a wide variety of instrumentation applications. N, FE Packages OFFSET NULL 1 INVERTING INPUT 2 NON–INVERTING INPUT 3 V– 4 8 – + FREQ. COMP. 7 V+ 6 OUTPUT 5 OFFSET • Same low drift offset null circuitry as µA741 • Small-signal bandwidth 1MHz • Large-signal bandwidth 500kHz • True op amp DC characteristics make the 531 the ideal answer to FEATURES • 35V/µs slew rate at unity gain • Pin-for-pin replacement for µA709, µA748, or LM101 • Compensated with a single capacitor all slew rate limited operational amplifier applications ORDERING INFORMATION DESCRIPTION 8-Pin Plastic Dual In-Line Package (DIP) TEMPERATURE RANGE ORDER CODE DWG # 0 to +70°C NE531N 0404B 8-Pin Ceramic Dual In-Line Package (CERDIP) -55°C to +125°C SE531FE 0580A 8-Pin Ceramic Dual In-Line Package (CERDIP) 0°C to +70°C NE531FE 0580A ABSOLUTE MAXIMUM RATINGS SYMBOL PARAMETER RATING UNIT ±22 V FE package 780 mW N package 1160 mW Differential input voltage ±15 V Common-mode input voltage2 ±15 V Voltage between offset null and V- ±0.5 V NE531 0 to +70 °C SE531 -55 to +125 °C -65 to +150 °C 300 °C VS Supply voltage PD MAX Maximum power dissipation TA=25°C (still-air)1 VCM TA Operating ambient temperature range TSTG Storage temperature range TSOLD Lead soldering temperature (10sec max) Output short-circuit duration3 indefinite NOTES: 1. The following derating factors should be applied above 25°C: FE package at 6.2mW/°C N package at 9.3mW/°C 2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage. 3. Short-circuit may be to ground or either supply. Rating applies to +125°C case temperature or to +75°C ambient temperature. August 31, 1994 70 853-0809 13721 Philips Semiconductors Linear Products Product specification High slew rate operational amplifier NE/SE531 EQUIVALENT SCHEMATIC INPUT + 3 INPUT Q1 Q6 Q19 R20 .33 2 Q2 Q5 R1 Q20 R4 R14 10 R15 100 Q23 Q3 Q28 Q6 Q25 R2 .2 R3 2.2 R5 .2 R8 2.2 R24 .04 Q27 Q38 OUTPUT Q7 q8 R16 10 Q22 Q21 Q11 Q29 Q12 R18 .33 Q13 Q14 R17 10 Q31 Q32 Q33 Q15 R10 6.5 Q18 R7 6.5 Q23 Q17 Q34 Q24 1 Q19 OFFSET ADJUST 4 R11 1.5 R8 7.8 R12 .17 R9 1.8 R13 1.6 R27 6.5 R10 6.5 V 5 6 OFFSET ADJUST August 31, 1994 71 FREQUENCY COMPENSATION R28 .04 Q30 Q35 Q9 Q10 R22 3.3 Q37 R21 .2 Philips Semiconductors Linear Products Product specification High slew rate operational amplifier NE/SE531 DC ELECTRICAL CHARACTERISTICS VS=±15V, unless otherwise specified. SYMBOL VOS PARAMETER Offset voltage ∆VOS IOS Offset current TEST CONDITIONS SE531 Min Typ Max RS≤10kΩ, TA=25°C RS310kΩ, over temp 2.0 5.0 6.0 Over temp 10 TA=25°C TA=High TA=Low 30 ∆IOS Over temp 0.4 300 IBIAS T=25°C TA=High TA=Low Input bias current ∆IBIAS Over temp VCM Common-mode voltage range CMRR Common-mode rejection ratio TA=25°C TA=25°C, Input resistance VOUT Output voltage swing ICC Supply current PD Power consumption Power supply rejection ratio ROUT Output resistance 6.0 7.5 400 UNIT mV mV µV/°C 200 200 300 0.4 nA nA nA nA/°C 1500 1500 2000 2 nA nA nA nA/°C ±10 V 100 dB 20 MΩ 90 dB 20 ±13 ±10 ±13 V TA=25°C 7.0 10 mA TMAX 7.0 10 mA TA=25°C 210 RS≤10kΩ, TA=25°C PSRR 2.0 500 500 1500 70 ±10 Max 50 2 70 Typ 200 200 500 ±10 TA=25°C RL≥10kΩ, over temp Min 10 RS≤10kΩ Over temp RS≤10kΩ RIN NE531 10 RS≤10kΩ, over temp 10 TA=25°C 75 TA=25°C, RL≥10kΩ, VOUT=±10V RL≥10kΩ, VOUT=±10V, over temp AVOL Large-signal voltage gain VINN Input noise voltage 25°C f=1kHz ISC Short-circuit current 25°C 50 mW 150 µV/V µV/V 150 100 20 25 75 Ω 60 V/mV 15 20 5 300 15 V/mV 20 45 5 Max Min 15 nV/√Hz 45 mA AC ELECTRICAL CHARACTERISTICS TA=25°C VS=+15V, unless otherwise specified.1 SYMBOL PARAMETER TEST CONDITIONS SE531 Min Typ NE531 Typ Max UNIT BW Full power bandwidth 500 500 kHz tS Settling time (1%) (0.1%) AV=+1, VIN=±10V 1.5 2.5 1.5 2.5 µs µs Large-signal overshoot AV=+1, VIN=±10V 2 2 % Small-signal overshoot AV=+1, VIN=400mV 5 5 % tR Small-signal rise time AV=+1, VIN=400mV 300 300 ns SR Slew rate AV=100 35 35 V/µs AV=10 35 35 V/µs AV=1 (non-inverting) 20 30 30 V/µs AV=1 (inverting) 25 35 35 V/µs NOTES: 1. All AC testing is performed in the transient response test circuit. August 31, 1994 72 Philips Semiconductors Linear Products Product specification High slew rate operational amplifier NE/SE531 TEST LOAD CIRCUITS V+ V+ 2 – 3 100pF 7 7 2 + 1 5 8 – 6 EIN 3 51Ω EOUT + 4 30pf 4 10K 2KΩ 50Ω V– V– Offset Null Circuit Transient Response Circuit TYPICAL PERFORMANCE CHARACTERISTICS VS = +15V, TA = +255C, unless otherwise specified. Input Offset Curent as a Function of Ambient Temperature Input Bias Curent as a Function of Ambient Temperature Input Bias Curent as a Function of Supply Voltage 1000 160 120 120 100 80 60 40 INPUT BIAS CURRENT – nA 800 INPUT BIAS CURRENT -nA 600 400 200 100 –20 20 60 100 0 140 –60 –20 TEMPERATURE - C 90 +60 CC = 2pF + 531 – +40 OUT V Rf = 50kΩ Ri +30 +20 +10 AV = 100, Ri = 5000Ω CC = 2pF AV = 10, Ri = 5.50Ω, CC = 10pF 0 –10 AV = 10, Ri = 00,0Ω 10K 100K 1M FREQUENCY – Hz August 31, 1994 10M 5 120 300 15 110 275 100 250 GAIN CC = 100PF 90 45 60 80 75 PHASE 70 90 60 105 50 120 135 40 150 20 165 10 0 10M 180 30 1 10 100 1K 10K 100K 1M FREQUENCY – Hz 73 10 15 20 SUPPLY VOLTAGE – +V 25 Power Consumption as a Function of Supply Voltage 0 30 PHASE IN DEGREES +50 CC 80 140 Open-Loop Phase Response and Voltage Gain as a Function of Ambient Temperature Closed Loop Non-Inverting Voltage Gain as a Function of Frequency AV = 1000, Ri = 50Ω 20 60 100 TEMPERATURE - C CONSUMPTION —mW 0 –60 VOLTAGE DRAIN – dB 110 20 VOLTAGE GAIN — dB INPUT OFFSET CURRENT -nA 140 225 200 175 150 125 100 75 50 5V 10 15 20 SUPPLY VOLTAGE — +V 25 Philips Semiconductors Linear Products Product specification High slew rate operational amplifier NE/SE531 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) VS = +15V, TA = 25°C, unless otherwise specified. Power Consumption as a Function of Ambient Temperature Open-Loop Voltage Gain as a Function of Supply Voltage 150 100 +15 110 +10 OUTPUT SWING — VOLTS VOLTAGE GAIN —dB L 200 115 100 95 90 V 50 0 –60 0 –5 –10 –20 +20 +60 +100 –15 80 +140 5 10 TEMPERATURE — Co 15 5 20 10 Output Voltage Swing as a Function of Frequency +15 15 SUPPLY VOLTAGE — +V SUPPLY VOLTS — +V Input Voltage Range as a Function of Supply Voltage Voltage Follower Large-Signal Response 27 PEAK–TO–PEAK OUTPUT SWING — V COMMON MODE RANGE — V +5 85 +10 +5 0 –5 –10 –15 5 10 +10 21 100pF – 531 + 18 IN 12 OUT 2K 9 6 0 –5 IN –10 100pF – 531 + 2K OUT 30Pf 3 1K 3K SUPPLY VOLTAGE — +V 10K 30K 100K 300K 0 1M 500 1000 1500 2000 2500 3000 3500 TIME — nsec FREQUENCY, Hz Voltage Follower Transient Response Unity Gain Inverting Amplifier Large-Signal Response Function of Frequency 500 +15 400 +10 90% 300 200 IN 100pF – 531 + OUTPUT VOLTAGE — V OUTPUT VOLTAGE —mV +5 0 20 15 24 OUTPUT VOLTAGE — V POWER CONSUMPTION — mW 250 Output Voltage Swing as a Function of Supply Voltage OUT VIN = 400mV 100 +5 10K 0V 50pF – 531 + 10K IN –5 OUT 5K 10% –10 0 –15 0 200 400 600 800 1000 1200 0 1400 August 31, 1994 0.5 1.0 1.5 2.0 TIME — µsec TIME — nsec 74 2.5 3.0 3.5 4.0 Philips Semiconductors Linear Products Product specification High slew rate operational amplifier NE/SE531 TYPICAL APPLICATIONS 2pf Pulse Response High-Speed Inverter 10K 30pf 10K IN 5.1K 531 OUT 0.5V/DIV fo V+ 4.7K 200nsec/DIV V– High-Speed Inverter (10MHz Bandwidth) 2V/DIV Large-Signal Response Voltage-Follower 100pF + 531 OUT – IN 0.5µs/DIV f = 500KHz Fast Settling Voltage-Follower Response of 3-Pole Active Butterworth Maximally Flat Filter 30K 0 100pF 10K f0 – 1KHz .022 10K .056 –5 60dB/DECADE 531 ATTENUATION — dB 10K .0032 –10 –15 –20 –25 Three-Pole Active Low-Pass Filter Butterworth Maximally Flat Response1 100 300 1K FREQUENCY — Hz August 31, 1994 75 3K 10K Philips Semiconductors Linear Products Product specification High slew rate operational amplifier NE/SE531 TYPICAL APPLICATIONS (Continued) Precision Rectifiers 10K 1% 10K 10K IN 100pF OUT – 531 + 10K 100pF IN + 5.1K 531 1% 10K – 100PF a. Half-Wave – 531 + 5.1K OUT b. Full-Wave Sample-and-Hold +15 AC Millivoltmeter 18K 100pF IN 100K + 531 – 100K 330pF M DIODES IN914 SIGNAL IN 470 – 531 + OUTPUT 1µF .0047 IN457 33K IN/51A 100K CDE# 30K CD19 FD4725 IN457 RE LOGIC IN Q2 3N128 Q1 ZN3819 – 531 + 300K 10K 15MSEC –15 August 31, 1994 76 –15 Philips Semiconductors Linear Products Product specification High slew rate operational amplifier NE/SE531 swing of op amp A-1, and R1/R2 sets the triangle amplitude. The frequency of oscillation in either case is: CYCLIC A-TO-D CONVERTER One interesting, but much ignored, A/D converter is the cyclic converter. This consists of a chain of identical stages, each of which senses the polarity of the input. The stage then subtracts VREF from the input and doubles the remainder if the polarity was correct. In Figure 1, the signal is full-wave rectified and the remainder of VIN-VREF is doubled. A chain of these stages gives the gray code equivalent of the input voltage in digitized form related to the magnitude of VREF. Possessing high potential accuracy, the circuit using NE531 devices settles in 5µs. f 1 R2 4RC R1 (1) The square wave will maintain 50% duty cycle even if the amplitude of the oscillation is not symmetrical. The use of the NE531 in this circuit will allow good square waves to be generated to quite high frequencies. Since the amplifier A1 runs open-loop, there is no need for compensation. The triangle-generating amplifier must be compensated. The NE5535 device can be used as well, except for the lower frequency response. TRIANGLE AND SQUARE WAVE GENERATOR The circuit in Figure 2 will generate precision triangle and square waves. The output amplitude of the square wave is set by the output +vcc VREF 10K LOGIC OUT VOUT VREF 0 –VIN + VIN + NE531 – NE531 2K VREF – 20K LOGOUT 10K VIN 20K VREF a. b. Figure 1. Cyclic A-to-D Converter August 31, 1994 77