Data Sheet No. PD60294 IRS21853SPBF DUAL HIGH SIDE DRIVER IC Features • • • • • • Product Summary Gate drive supply range from 10 V to 20 V Under voltage lockout for VCC & VBS1,2 5 V input logic compatible Tolerant to negative transient voltage Matched propagation delays for all channels RoHS compliant VOFFSET 600 V max VOUT 10 V to 20 V ton/toff (typ) 170 ns/170 ns 2 A/2 A Io+/- Descriptions Delay Matching The IRS21853 is a high voltage, high speed power MOSFET and IGBT dual high-side driver with propagation delay matched output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The floating logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic and can be operated up to 600 V above the ground. The output driver features a high pulse current buffer stage designed for minimum driver crossconduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration, which operates up to 600 V. 40 ns Package 16-Lead SOIC (narrow body) Typical Connection Diagram 1 V B1 16 2 HO1 15 V S1 14 3 VCC 4 COM 5 H IN 1 6 H IN 2 IR S21853 S O N 16 +V D C 1 13 12 V S2 11 7 HO2 10 8 V B2 9 +VD C 2 IRS21853SPBF Typical Connection Diagram for ER Circuit in PDP 1 VB1 16 2 HO1 15 VS1 14 3 VCC 4 COM 5 HIN1 6 HIN2 IRS21853 SON16 L ER C Cp 13 12 VS2 11 7 HO2 10 8 VB2 9 C ERC 2 IRS21853SPBF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. parameters are absolute voltages referenced to COM. Symbol VCC VIN VB1,2 VS1,2 VHO1,2 dVS/dt PD RθJA TJ TS TL Note1: Definition Low side supply voltage Logic input voltage (HIN1,2) High side floating well supply voltage High side floating well supply return voltage Floating gate drive output voltage Allowable VS1,2 offset supply transient relative to COM Package power dissipation @ TA ≤+25 ºC Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) All voltage Min Max -0.3 COM-0.3 -0.3 VB1,2-20 VS1,2-0.3 - 20 (Note1) VCC +0.3 620 (Note1) VBn+0.3 VBn+0.3 50 1.25 100 -55 150 - 300 Units V V/ns W ºC/W ºC All supplies are fully tested at 25 V. An internal 20 V clamp exists for each supply. Recommended Operating Conditions For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM. The offset rating are tested with supplies of (VCC-COM)=(VB1,2-VS1,2)=15 V. Symbol VCC VIN VB1,2 VS1,2 VHO1,2 TA Note 2: Note 3: Definition Low side supply voltage HIN1, 2 input voltage High side floating well supply voltage High side floating well supply offset voltage Floating gate drive output voltage Ambient temperature Min Max 10 COM VS1,2+10 Note 2 VS1,2 -40 20 VCC VS1,2+20 600 VB1,2 125 Units V ºC VS1,2 and VB1,2 voltages will be tolerant to short negative transient spikes. These will be defined and specified in the future. Logic operation for VS of –5 V to 600 V. Logic state held for VS of –5 V to –VBS1,2. (Please refer to Design Tip DT97-3 for more details). 3 IRS21853SPBF Static Electrical Characteristics (VCC-COM)=(VB1,2-VS1,2)=15 V. TA = 25 oC unless otherwise specified. The VIN, VIN,TH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced to respective VS1,2 and are applicable to the respective output leads HO1,2. The VCCUV parameters are referenced to COM. The VBSUV1,2 parameters are referenced to VS1,2. Symbol Definition Min Typ Max Units VCCUV+ VCC supply undervoltage positive going threshold 8.0 8.9 9.8 VCCUV- VCC supply undervoltage negative going threshold 7.4 8.2 9.0 8.0 8.9 9.8 7.4 8.2 9.0 --- --- 50 V ILK1,2 VBS1,2 supply undervoltage positive going threshold VBS1,2 supply undervoltage negative going threshold High-side floating well offset supply leakage current IQBS Quiescent VBS supply current --- 75 150 IQCC Quiescent VCC supply current --- 110 220 VIH Logic “1” input voltage 3.5 --- --- VIL Logic “0” input voltage --- --- 0.6 VOH HO1,2 high level output voltage, VBIAS-VO --- --- 1.4 VOL HO1,2 low level output voltage, VO --- --- 0.0 6 IIN+ Logic “1” input bias current --- 5 20 VBSUV+ VBSUV- Test Conditions VB1,2 = VS1,2 = 600 V µA HIN1,2 = 0 V or 5 V V Io= 0 A Io=20 mA VHIN1,2=5 V µA IIN- Logic “0” input bias current --- --- 5 VHIN1,2=0 V Io+ Output high short circuit pulsed current HO1,2 --- 2 --- VO=0 V,VIN=0 V, PW<=10 µs Io- Output low short circuit pulsed current HO1,2 --- A 2 --- VO=15 V,VIN=5 V, PW<=10 µs 4 IRS21853SPBF Dynamic Electrical Characteristics (All values are target data) (VCC-COM)= (VB1,2-VS1,2)=15 V. TA = 25 oC unless otherwise specified. CL = 1000 pF unless otherwise specified. All parameters are reference to COM. Symbol Definition Min Typ Max ton Turn-on propagation delay (HO1,2) --- 170 --- (Vs1,2-COM)=0 V toff Turn-off propagation delay (HO1,2) --- 170 --- (Vs1,2-COM)=600 V tr Turn-on rise time --- 15 50 tf Turn-off fall time --- 15 50 Delay matching (Note 1) --- --- 40 MT Units Test Conditions ns Note 4:Max(ton,HO1, ton,HO2)- Min(ton,HO1, ton,HO2); Max(toff,HO1, toff,HO2)- Min(toff,HO1, toff,HO2) 5 IRS21853SPBF Functional Block Diagram VCC COM 5V VREG VCCUV DETECT HIGHSIDE CHANNLE1 VB1 HIN1 PULSE GEN LEVEL SHIFT UP FILTER, LATCH UV DETECT DRIVER HO1 VS1 HIGHSIDE CHANNEL2 VB2 HIN2 PULSE GEN LEVEL SHIFT UP FILTER, LATCH UV DETECT DRIVER HO2 VS2 6 IRS21853SPBF Lead Definitions Symbol Description VCC Low side supply voltage COM Ground VB1,2 High side gate drive floating supply HO1,2 High side driver outputs VS1,2 High voltage floating supply return HIN1,2 Logic inputs for high side gate driver outputs (in phase) Lead Assignments 1 16 VB1 2 15 HO1 VCC 3 14 VS1 COM 4 HIN1 5 HIN2 6 11 VS2 7 10 HO2 8 9 VB2 IRS21853 SONIC16 13 12 7 IRS21853SPBF 50% 50% IN t on t off tr 90% OUT tf 90% 10% 10% Figure 1: Switching Time Waveforms HIN1,2 HO1,2 Figure 2: Input/Output Timing Diagram 8 IRS21853SPBF 500 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 500 400 300 200 100 Typ. 0 -50 400 300 Typ. 200 100 0 -25 0 25 50 75 100 125 10 12 500 500 400 400 Turn-Off Time (ns) Turn-Off Time (ns) 18 20 18 20 Figure 3B. Turn-On Tim e vs. Supply Voltage Figure 3A. Turn-On Tim e vs. Tem perature 300 200 Typ. 100 300 Typ. 200 100 0 -25 0 25 50 75 100 10 125 12 14 16 VBIAS Supply Voltage (V) Temperature (oC) Figure 4A. Turn-Off Tim e vs. Tem perature Figure 4B. Turn-Off Tim e vs. Supply Voltage 60 Turn-On Rise Time (ns) 60 Turn-On Rise Time (ns) 16 VBIAS Supply Voltage (V) Temperature (oC) 0 -50 14 40 20 40 20 Typ. Typ. 0 -50 0 -25 0 25 50 75 100 Temperature ( C) o Figure 5A. Turn-On Rise Tim e vs.Tem perature 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 5B. Turn-On Rise Tim e vs. Supply Voltage 9 IRS21853SPBF 60 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 60 40 20 Typ. 0 -50 -25 0 25 50 75 100 40 20 Typ. 0 125 10 12 Temperature (oC) 6 6 5 5 4 Mi n. 20 3 Min. 1 1 -50 -25 0 25 50 75 100 10 125 12 16 18 20 Figure 7B. Logic "1" Input Voltage vs. Supply Voltage Figure 7A. Logic "1" Input Voltage vs. Tem perature 4 3 3 Input Voltage (V) 4 2 Max. 0 -50 14 Vcc Supply Voltage (V) Temperature (oC) Input Voltage (V) 18 4 2 2 1 16 Figure 6B. Turn-Off Fall Tim e vs. Supply Voltage Input Voltage (V) Input Voltage (V) Figure 6A. Turn-Off Fall Tim e vs. Tem perature 3 14 VBIAS Supply Voltage (V) 2 1 Max 0 -25 0 25 50 75 100 Temperature ( C) o Figure 8A. Logic "0" Input Voltage vs. Tem perature 125 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 8B. Logic "0" Input Voltage vs. Supply Voltage 10 IRS21853SPBF 2.0 High Level Output Voltage (V) High Level Output Voltage (V) 2.0 1.5 Max. 1.0 0.5 0.0 -50 1.5 Max. 1.0 0.5 0.0 -25 0 25 50 75 100 125 10 12 Temperature (oC) 18 20 Figure 9B. High Level Output vs. Supply Voltage 0.20 Low Level Output Voltage (V) 0.20 Low Level Output Voltage (V) 16 Vcc Supply Voltage (V) Figure 9A. High Level Output vs. Tem perature 0.15 0.10 Max. 0.05 0.00 -50 -25 0 25 50 75 100 0.15 0.10 Max. 0.05 0.00 125 10 12 Temperature (oC) Offset Supply Leakage Current (uA) 400 300 200 100 M ax. -25 0 25 50 16 18 20 Figure 10B. Low Level Output vs. Supply Voltage 500 0 -50 14 Vcc Supply Voltage (V) Figure 10A. Low Level Output vs.Tem perature Offset Supply Leakage Current (uA) 14 75 100 125 Temperature (oC) Figure 11A. Offset Supply Leakage Current vs. Tem perature 500 400 300 200 100 Max. 0 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 11B. Offset Supply Leakage Current vs. Supply Voltage 11 IRS21853SPBF 400 VBS Supply Current (uA) VBS Supply Current (uA) 400 300 200 100 Max. 300 200 Max. 100 Typ. Typ. 0 -50 0 -25 0 25 50 75 100 10 125 12 Temperature (oC) 20 600 Vcc Supply Current (uA) Vcc Supply Current (uA) 18 Figure 12B. V BS Supply Current vs. Supply Voltage 600 400 Max. 200 Typ. 400 200 Max. Typ. 0 -50 -25 0 25 50 75 100 125 0 10 Temperature ( C) o 12 14 16 18 20 Vcc Supply Voltage (V) Figure 13A. V cc Supply Current vs. Tem perature Figure 13B. V cc Supply Current vs. Supply Voltage 60 60 Logic "1" Input Current (uA) Logic "1" Input Current (uA) 16 VBS Supply Voltage (V) Figure 12A. V BS Supply Current vs. Tem perature 50 40 30 20 Max. 10 Typ. 0 -50 14 -25 50 40 30 20 Max. 10 Typ. 0 0 25 50 75 100 Temperature ( oC) Figure 14A. Logic "1" Input Current vs. Tem perature 125 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 14B. Logic "1" Input Current vs. Supply Voltage 12 IRS21853SPBF 10 Logic "0" Input Current (uA) Logic "0" Input Current (uA) 10 8 6 Max. 4 2 0 -50 -25 0 25 50 75 100 8 6 Max. 4 2 0 125 10 12 14 Temperature ( C) Figure 15A. Logic "0" Input Current vs. Tem perature 20 12 Vcc UVLO Threshold (-) (V) Vcc UVLO Threshold (+) (V) 18 Figure 15B. Logic "0" Input Current vs. Supply Voltage 12 11 Max. 10 9 Typ. 8 Min. 7 6 -50 -25 0 25 50 75 100 11 10 Max 9 Typ. 8 Min. 7 6 -50 125 -25 0 Temperature (oC) 25 50 75 100 125 Temperature (oC) Figure 17. V cc Undervoltage Threshold (-) vs. Tem perature Figure 16. V cc Undervoltage Threshold (+) vs. Tem perature 12 VBS UVLO Threshold (-) (V) 12 VBS UVLO Threshold (+) (V) 16 Vcc Supply Voltage (V) o 11 Max. 10 9 Typ. 8 Min. 7 6 -50 -25 0 25 50 75 100 Temperature (oC) Figure 18. V BS Undervoltage Threshold (+) vs. Tem perature 125 11 10 Max 9 Typ. 8 Min. 7 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 19. V BS Undervoltage Threshold (-) vs. Tem perature 13 IRS21853SPBF 8 Output Source Current (A) Output Source Current (A) 8 6 4 Typ. 2 0 -50 6 4 2 Typ. 0 -25 0 25 50 75 100 125 10 12 16 18 20 VBIAS Supply Voltage (V) Temperature (oC) Figure 20B. Output Source Current vs. Supply Voltage Figure 20A. Output Source Current vs. Tem perature 8 8 Output Sink Current (A) Output Sink Current (A) 14 6 Typ. 4 2 0 -50 6 4 Typ. 2 0 -25 0 25 50 75 100 125 Temperature (oC) 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 21A. Output Sink Current vs.Tem perature Figure 21B. Output Sink Current vs. Supply Voltage Vs Offset Supply Voltage (V) 0 -2 Typ. -4 -6 -8 -10 -12 10 12 14 16 18 20 VBS Floting Supply Voltage (V) Figure 22. Maxim um V S Negative Offset vs. Supply Voltage 14 IRS21853SPBF NOTES: 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5W-1982 2. CONTROLLING DIMENSION. MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETER [INCHES] 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AC 5. DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE 6. DIMENSION DOES NOT INCLUDE MOLD PROTUSIONS. MOLD PROTUSIONS SHALL NOT EXCEED 0.15 [.006] 16-Lead SOIC (narrow body) 15 IRS21853SPBF LOADED TAPE FEED DIRECTION A B H D F C NOTE : CONTROLLING DIM ENSION IN M M E G CARRIER TAPE DIMENSION FOR Metric Code Min Max A 7.90 8.10 B 3.90 4.10 C 15.70 16.30 D 7.40 7.60 E 6.40 6.60 F 10.20 10.40 G 1.50 n/a H 1.50 1.60 16SOICN Imperial Min Max 0.311 0.318 0.153 0.161 0.618 0.641 0.291 0.299 0.252 0.260 0.402 0.409 0.059 n/a 0.059 0.062 F D C B A E G H REEL DIMENSIONS FOR 16SOICN Metric Imperial Code Min Max Min Max A 329.60 330.25 12.976 13.001 B 20.95 21.45 0.824 0.844 C 12.80 13.20 0.503 0.519 D 1.95 2.45 0.767 0.096 E 98.00 102.00 3.858 4.015 F n/a 22.40 n/a 0.881 G 18.50 21.10 0.728 0.830 H 16.40 18.40 0.645 0.724 16 IRS21853SPBF ORDER INFORMATION 16-Lead SOIC IRS21853SPBF 16-Lead SOIC Tape & Reel IRS21853STRPBF SO-16N package is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at IR’s Web Site http://www.irf.com/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice 06/28/2007 17