Data Sheet No. PD60045-N IR2103(S) HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 3.3V, 5V and 15V logic compatible Cross-conduction prevention logic Matched propagation delay for both channels Internal set deadtime High side output in phase with HIN input Low side output out of phase with LIN input Product Summary VOFFSET 600V max. IO+/- 130 mA / 270 mA VOUT 10 - 20V ton/off (typ.) 680 & 150 ns Deadtime (typ.) 520 ns Packages Description The IR2103(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output channels. Proprietary HVIC 8-Lead SOIC IR2103S and latch immune CMOS technologies enable rug8-Lead PDIP gedized monolithic construction. The logic input is IR2103 compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD (Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2103(S) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. Units VB High side floating absolute voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VIN Logic input voltage (HIN & LIN ) -0.3 VCC + 0.3 — 50 dVs/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient (8 Lead PDIP) — 1.0 (8 Lead SOIC) — 0.625 (8 Lead PDIP) — 125 (8 Lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Definition VB High side floating supply absolute voltage VS High side floating supply offset voltage Min. Max. VS + 10 VS + 20 Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage (HIN & LIN ) 0 VCC TA Ambient temperature -40 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2103(S) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, C L = 1000 pF and TA = 25°C unless otherwise specified. Symbol ton toff tr tf Definition Min. Typ. Max. Units Test Conditions Turn-on propagation delay — 680 820 VS = 0V Turn-off propagation delay — 150 220 VS = 600V Turn-on rise time — 100 170 — 50 90 DT Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off 400 520 650 MT Delay matching, HS & LS turn-on/off — — 60 ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The V IN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” (HIN) & Logic “0” ( LIN ) input voltage 3 — — VIL Logic “0” (HIN) & Logic “1” ( LIN ) input voltage — — 0.8 VOH — — 100 VOL High level output voltage, VBIAS - VO Low level output voltage, VO — — 100 ILK Offset supply leakage current — — 50 VB = VS = 600V IQBS Quiescent VBS supply current — 30 55 VIN = 0V or 5V IQCC Quiescent VCC supply current — 150 270 IIN+ Logic “1” input bias current — 3 10 HIN = 5V, LIN = 0V IIN- HIN = 0V, LIN = 5V Logic “0” input bias current — — 1 VCCUV+ VCC supply undervoltage positive going threshold 8 8.9 9.8 VCCUV- VCC supply undervoltage negative going threshold 7.4 8.2 9 IO+ Output high short circuit pulsed current 130 210 — IO- Output low short circuit pulsed current 270 360 — V mV µA VCC = 10V to 20V IO = 0A IO = 0A VIN = 0V or 5V V mA www.irf.com VCC = 10V to 20V VO = 0V, VIN = VIH PW ≤ 10 µs VO = 15V, VIN = VIL PW ≤ 10 µs 3 IR2103(S) Functional Block Diagram VB HV LEVEL SHIFT DEAD TIME HIN Q R S PULSE FILTER HO PULSE GEN VS UV DETECT Vcc VCC LIN LO DEAD TIME COM Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase LIN VB Logic input for low side gate driver output (LO), out of phase HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return High side floating supply Lead Assignments 1 VB 8 1 VCC VB 8 2 HIN HO 7 2 HIN HO 7 3 LIN VS 6 3 LIN VS 6 COM LO COM LO 5 4 4 VCC 5 4 8 Lead PDIP 8 Lead SOIC IR2103 IR2103S www.irf.com IR2103(S) LIN HIN 50% 50% LIN ton toff tr 90% tf 90% HO 10% LO LO 10% Figure 1. Input/Output Timing Diagram 50% 50% HIN ton toff tr 90% HO 10% tf 90% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% 90% HO 10% DT LO DT 90% 10% Figure 4. Deadtime Waveform Definitions www.irf.com 5 1400 1400 1200 1200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) IR2103(S) 1000 Max. 800 600 Typ. 400 200 800 Typ. 600 400 200 0 0 -50 -25 0 25 50 75 Temperature (oC) 100 10 125 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 6A. Turn-On Time vs Temperature Figure 6B. Turn-On Time vs Supply Voltage 1000 500 Turn-Off Delay Time (ns) Max. Turn-On Delay Time (ns Max. 1000 800 600 Typ. 400 200 400 300 Max . 200 100 Ty p. 0 0 0 2 4 6 8 10 12 14 16 18 -50 20 -25 0 25 50 75 100 125 Temperature (oC) Input Voltage (V) 500 1000 Turn-Off Delay Time (ns Figure 7A. Turn-Off Time vs Temperature Turn-Off Delay Time (ns) Figure 6C. Turn-On Time vs Input Voltage 400 300 Max . 200 Ty p. 100 800 600 Max. 400 200 T yp 0 0 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 VBIAS Supply Voltage (V) Input V oltage (V ) Figure 7B. Turn-Off Time vs Supply Voltage 6 Figure 7C. Turn-Off Time vs Input Voltage www.irf.com IR2103(S) 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 200 Max. 100 400 300 Max. 200 100 Typ. Typ. 0 0 -50 -25 0 25 50 75 Temperature (oC) 100 125 10 12 Figure 9A. Turn-On Rise Time vs Temperature 18 20 200 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 16 Figure 9B. Turn-On Rise Time vs Voltage 200 150 100 Max. Typ. 50 150 Max. 100 Typ. 50 0 0 -50 -25 0 25 50 75 Temperature (oC) 100 10 125 Figure 10A. Turn Off Fall Time vs Temperature 140 0 140 0 120 0 120 0 100 0 100 0 800 Max . 600 Ty p. 400 200 12 14 16 VBIAS Supply Voltage (V) 18 20 Figure 10B. Turn Off Fall Time vs Voltage Deadtime (ns) Deadtime (ns) 14 VBIAS Supply Voltage (V) Max . 800 600 Ty p . 400 Min. Min. 200 0 0 -5 0 -2 5 0 25 50 75 100 Temperature ( oC) Figure 11A. Deadtime vs Temperature www.irf.com 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 11B. Deadtime vs Voltage 7 8 8 7 7 6 6 Input Voltage (V) Input Voltage (V) IR2103(S) 5 4 Min. 3 2 1 5 4 Min. Min. 3 2 1 Temperature (oC) 0 -50 -25 0 25 50 0 75 100 125 10 12 Temperature (oC) 4 4 3.2 3.2 2.4 1.6 Max . 0.8 20 2.4 1.6 Max. 0 - 50 - 25 0 25 50 75 10 0 12 5 10 12 Temperature (oC) 14 16 Vcc Supply Voltage (V) 18 20 Figure 13B. Logic "0"(HIN) & Logic "1"(LIN) Input Voltage vs Voltage Figure 13A. Logic "0"(HIN) & Logic "1"(LIN) Input Voltage vs Temperature 1 High Level Output Voltage (V) 1 High Level Output Voltage (V) 18 0.8 0 0.8 0.6 0.4 Max . 0 0.8 0.6 0.4 0.2 Max. 0 -50 -25 0 25 50 Temperature (oC) 75 Figure 14A. High Level Output vs Temperature 8 16 Figure 12B. Logic "1" (HIN) & Logic "0" (LIN) Input Voltage vs Voltage Input Voltage (V) Input Voltage (V) Figure12A. Logic "1" (HIN) & Logic "0" (LIN) Input Voltage vs Temperature 0.2 14 VBIAS Supply Voltage (V) 100 125 10 12 14 16 Vcc Supply Voltage (V) 18 20 Figure 14B. High Level Output vs Voltage www.irf.com IR2103(S) 1 Low Level Output Voltage (V) Low Level Output Voltage (V) 1 0.8 0.6 0.4 0.2 Max . 0.8 0.6 0.4 0.2 0 Max. 0 - 50 - 25 0 25 50 75 100 10 125 12 Temperature (oC) 50 0 40 0 30 0 20 0 Max . 0 - 50 - 25 0 25 50 18 20 75 10 0 12 5 500 400 300 200 Max. 100 0 0 200 Temperature (oC) 400 600 800 VB Boost Voltage (V) Figure 16A. Offset Supply Current vs Temperature Figure 16B. Offset Supply Current vs Voltage 15 0 150 VBS Supply Current (µA) VBS Supply Current (µA) 16 Figure 15B. Low Level Output vs Voltage Offset Supply Leakge Current (µA) Offset Supply Leakge Current (µA) Figure 15A. Low Level Output vs Temperature 10 0 14 Vcc Supply Voltage (V) 12 0 90 60 Max . 30 120 90 60 Max. 30 Ty p. Typ. 0 0 - 50 - 25 0 25 50 75 10 0 Temperature ( oC) Figure 17A. VBS Supply Current vs Temperature www.irf.com 12 5 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 17B. VBS Supply Current vs Voltage 9 IR2103(S) 700 VCC Supply Current (µA) VCC Supply Current (µA) 700 600 500 400 Max. 300 200 100 Typ. 0 600 500 400 300 Max. 200 100 Typ. 0 -50 -25 0 25 50 75 100 10 125 12 Temperature (oC) Figure 18A. Vcc Supply Current vs Temperature Logic “1” Input Current (µA) Logic “1” Input Current (µA) 20 30 25 20 15 Ma x . 10 Max 5 Ty p . 25 20 15 Ma x . 10 5 Ty p . 0 0 -50 -25 0 25 50 75 10 0 10 12 5 12 Temperature ( oC) 14 16 18 20 Vcc Supply Voltage (V) Figure 19A. Logic "1" Input Current vs Temperature Figure 19B. Logic "1" Input Current vs Voltage 5 5 Logic “0” Input Current (µA) Logic “0” Input Current (µA) 18 Figure 18B. Vcc Supply Current vs Voltage 30 4 3 2 Max. 1 0 -50 4 3 2 Max. 1 0 -25 0 25 50 75 100 Temperature ( oC) Figure 20A. Logic "0" Input Current vs Temperature 10 14 16 Vcc Supply Voltage (V) 125 10 12 14 16 Vcc Supply Voltage (V) 18 20 Figure 20B. Logic "0" Input Current vs Voltage www.irf.com IR2103(S) 11 Max . VCC UVLO Threshold -(V) VCC UVLO Threshold +(V) 11 10 Ty p. Typ. 9 Min . 8 7 -25 0 25 50 75 10 0 Max. 9 Typ. Typ. 8 7 Min. 6 -50 6 -50 10 12 5 -25 0 Temperature (oC) Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature 75 100 125 500 Output Source Current (mA) Output Source Current (mA) 50 Figure 21B. Vcc UndervoltageThreshold (-) vs Temperature 50 0 40 0 Ty p. 30 0 20 0 10 0 Min. 0 400 300 200 Typ. 100 Min. 0 -50 -25 0 25 50 75 10 0 10 12 5 12 Temperature ( oC) Figure 22A. Output Source Current vs Temperature Output Sink Current (mA) Ty p . 400 300 18 20 700 600 500 14 16 VBIAS Supply Voltage (V) Figure 22B. Output Source Current vs Voltage 700 Output Sink Current (mA) 25 Temperature (oC) Min. 200 100 600 500 400 Typ. 300 200 Min. 100 0 0 - 50 - 25 0 25 50 75 100 Temperature (oC) Figure 23A. Output Sink Current vs Temperature www.irf.com 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 23B. Output Sink Current vs Voltage 11 IR2103(S) 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A F OOT PRINT 6 8 6 7 5 H E 0.25 [.010] 1 2 3 A 4 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 3X 1.27 [.050] 8X 1.78 [.070] MAX .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BAS IC 1.27 BAS IC .025 BAS IC 0.635 BAS IC e1 6X e MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° e1 A C y 0.10 [.004] 8X b 0.25 [.010] A1 8X L 8X c 7 C A B NOT ES: 1. DIMENS IONING & T OLERANCING PE R ASME Y14.5M-1994. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006]. 2. CONT ROLLING DIMENSION: MILLIMET ER 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010]. 3. DIMENS IONS ARE SHOWN IN MILLIME TE RS [INCHES]. 4. OUT LINE CONF ORMS T O JEDEC OUTLINE MS-012AA. 8-Lead SOIC 7 DIMENSION IS T HE LE NGTH OF LEAD FOR SOLDE RING TO A SUBS TRAT E. 01-6027 01-0021 11 (MS-012AA) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 5/23/2001 12 www.irf.com