IRF IR2103S

Data Sheet No. PD60045-N
IR2103(S)
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout
3.3V, 5V and 15V logic compatible
Cross-conduction prevention logic
Matched propagation delay for both channels
Internal set deadtime
High side output in phase with HIN input
Low side output out of phase with LIN input
Product Summary
VOFFSET
600V max.
IO+/-
130 mA / 270 mA
VOUT
10 - 20V
ton/off (typ.)
680 & 150 ns
Deadtime (typ.)
520 ns
Packages
Description
The IR2103(S) are high voltage, high speed power
MOSFET and IGBT drivers with dependent high and
low side referenced output channels. Proprietary HVIC
8-Lead SOIC
IR2103S
and latch immune CMOS technologies enable rug8-Lead PDIP
gedized monolithic construction. The logic input is
IR2103
compatible with standard CMOS or LSTTL output,
down to 3.3V logic. The output drivers feature a high
pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to
drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
Typical Connection
up to 600V
VCC
VCC
VB
HIN
HIN
HO
LIN
LIN
VS
COM
LO
TO
LOAD
(Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only.
Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2103(S)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
Units
VB
High side floating absolute voltage
-0.3
625
VS
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage (HIN & LIN )
-0.3
VCC + 0.3
—
50
dVs/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
(8 Lead PDIP)
—
1.0
(8 Lead SOIC)
—
0.625
(8 Lead PDIP)
—
125
(8 Lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
Definition
VB
High side floating supply absolute voltage
VS
High side floating supply offset voltage
Min.
Max.
VS + 10
VS + 20
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage (HIN & LIN )
0
VCC
TA
Ambient temperature
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
2
www.irf.com
IR2103(S)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, C L = 1000 pF and TA = 25°C unless otherwise specified.
Symbol
ton
toff
tr
tf
Definition
Min. Typ. Max. Units Test Conditions
Turn-on propagation delay
—
680
820
VS = 0V
Turn-off propagation delay
—
150
220
VS = 600V
Turn-on rise time
—
100
170
—
50
90
DT
Turn-off fall time
Deadtime, LS turn-off to HS turn-on &
HS turn-on to LS turn-off
400
520
650
MT
Delay matching, HS & LS turn-on/off
—
—
60
ns
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The V IN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” (HIN) & Logic “0” ( LIN ) input voltage
3
—
—
VIL
Logic “0” (HIN) & Logic “1” ( LIN ) input voltage
—
—
0.8
VOH
—
—
100
VOL
High level output voltage, VBIAS - VO
Low level output voltage, VO
—
—
100
ILK
Offset supply leakage current
—
—
50
VB = VS = 600V
IQBS
Quiescent VBS supply current
—
30
55
VIN = 0V or 5V
IQCC
Quiescent VCC supply current
—
150
270
IIN+
Logic “1” input bias current
—
3
10
HIN = 5V, LIN = 0V
IIN-
HIN = 0V, LIN = 5V
Logic “0” input bias current
—
—
1
VCCUV+
VCC supply undervoltage positive going
threshold
8
8.9
9.8
VCCUV-
VCC supply undervoltage negative going
threshold
7.4
8.2
9
IO+
Output high short circuit pulsed current
130
210
—
IO-
Output low short circuit pulsed current
270
360
—
V
mV
µA
VCC = 10V to 20V
IO = 0A
IO = 0A
VIN = 0V or 5V
V
mA
www.irf.com
VCC = 10V to 20V
VO = 0V, VIN = VIH
PW ≤ 10 µs
VO = 15V, VIN = VIL
PW ≤ 10 µs
3
IR2103(S)
Functional Block Diagram
VB
HV
LEVEL
SHIFT
DEAD
TIME
HIN
Q
R
S
PULSE
FILTER
HO
PULSE
GEN
VS
UV
DETECT
Vcc
VCC
LIN
LO
DEAD
TIME
COM
Lead Definitions
Symbol Description
HIN
Logic input for high side gate driver output (HO), in phase
LIN
VB
Logic input for low side gate driver output (LO), out of phase
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
High side floating supply
Lead Assignments
1
VB
8
1
VCC
VB
8
2
HIN
HO
7
2
HIN
HO
7
3
LIN
VS
6
3
LIN
VS
6
COM
LO
COM
LO
5
4
4
VCC
5
4
8 Lead PDIP
8 Lead SOIC
IR2103
IR2103S
www.irf.com
IR2103(S)
LIN
HIN
50%
50%
LIN
ton
toff
tr
90%
tf
90%
HO
10%
LO
LO
10%
Figure 1. Input/Output Timing Diagram
50%
50%
HIN
ton
toff
tr
90%
HO
10%
tf
90%
10%
Figure 2. Switching Time Waveform Definitions
HIN
LIN
50%
50%
90%
HO
10%
DT
LO
DT
90%
10%
Figure 4. Deadtime Waveform Definitions
www.irf.com
5
1400
1400
1200
1200
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
IR2103(S)
1000
Max.
800
600
Typ.
400
200
800
Typ.
600
400
200
0
0
-50
-25
0
25
50
75
Temperature (oC)
100
10
125
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 6A. Turn-On Time vs Temperature
Figure 6B. Turn-On Time vs Supply Voltage
1000
500
Turn-Off Delay Time (ns)
Max.
Turn-On Delay Time (ns
Max.
1000
800
600
Typ.
400
200
400
300
Max .
200
100
Ty p.
0
0
0
2
4
6
8
10
12
14
16
18
-50
20
-25
0
25
50
75
100
125
Temperature (oC)
Input Voltage (V)
500
1000
Turn-Off Delay Time (ns
Figure 7A. Turn-Off Time vs Temperature
Turn-Off Delay Time (ns)
Figure 6C. Turn-On Time vs Input Voltage
400
300
Max .
200
Ty p.
100
800
600
Max.
400
200
T yp
0
0
10
12
14
16
18
20
0
2
4
6
8
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Input V oltage (V )
Figure 7B. Turn-Off Time vs Supply Voltage
6
Figure 7C. Turn-Off Time vs Input Voltage
www.irf.com
IR2103(S)
500
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
500
400
300
200
Max.
100
400
300
Max.
200
100
Typ.
Typ.
0
0
-50
-25
0
25
50
75
Temperature (oC)
100
125
10
12
Figure 9A. Turn-On Rise Time
vs Temperature
18
20
200
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
16
Figure 9B. Turn-On Rise Time
vs Voltage
200
150
100
Max.
Typ.
50
150
Max.
100
Typ.
50
0
0
-50
-25
0
25
50
75
Temperature (oC)
100
10
125
Figure 10A. Turn Off Fall Time
vs Temperature
140 0
140 0
120 0
120 0
100 0
100 0
800
Max .
600
Ty p.
400
200
12
14
16
VBIAS Supply Voltage (V)
18
20
Figure 10B. Turn Off Fall Time vs Voltage
Deadtime (ns)
Deadtime (ns)
14
VBIAS Supply Voltage (V)
Max .
800
600
Ty p .
400
Min.
Min.
200
0
0
-5 0
-2 5
0
25
50
75
100
Temperature ( oC)
Figure 11A. Deadtime vs Temperature
www.irf.com
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 11B. Deadtime vs Voltage
7
8
8
7
7
6
6
Input Voltage (V)
Input Voltage (V)
IR2103(S)
5
4
Min.
3
2
1
5
4
Min.
Min.
3
2
1
Temperature (oC)
0
-50
-25
0
25
50
0
75
100
125
10
12
Temperature (oC)
4
4
3.2
3.2
2.4
1.6
Max .
0.8
20
2.4
1.6
Max.
0
- 50
- 25
0
25
50
75
10 0
12 5
10
12
Temperature (oC)
14
16
Vcc Supply Voltage (V)
18
20
Figure 13B. Logic "0"(HIN) & Logic "1"(LIN)
Input Voltage vs Voltage
Figure 13A. Logic "0"(HIN) & Logic "1"(LIN)
Input Voltage vs Temperature
1
High Level Output Voltage (V)
1
High Level Output Voltage (V)
18
0.8
0
0.8
0.6
0.4
Max .
0
0.8
0.6
0.4
0.2
Max.
0
-50
-25
0
25
50
Temperature (oC)
75
Figure 14A. High Level Output
vs Temperature
8
16
Figure 12B. Logic "1" (HIN) & Logic "0" (LIN)
Input Voltage vs Voltage
Input Voltage (V)
Input Voltage (V)
Figure12A. Logic "1" (HIN) & Logic "0" (LIN)
Input Voltage vs Temperature
0.2
14
VBIAS Supply Voltage (V)
100
125
10
12
14
16
Vcc Supply Voltage (V)
18
20
Figure 14B. High Level Output vs Voltage
www.irf.com
IR2103(S)
1
Low Level Output Voltage (V)
Low Level Output Voltage (V)
1
0.8
0.6
0.4
0.2
Max .
0.8
0.6
0.4
0.2
0
Max.
0
- 50
- 25
0
25
50
75
100
10
125
12
Temperature (oC)
50 0
40 0
30 0
20 0
Max .
0
- 50
- 25
0
25
50
18
20
75
10 0
12 5
500
400
300
200
Max.
100
0
0
200
Temperature (oC)
400
600
800
VB Boost Voltage (V)
Figure 16A. Offset Supply Current
vs Temperature
Figure 16B. Offset Supply Current vs Voltage
15 0
150
VBS Supply Current (µA)
VBS Supply Current (µA)
16
Figure 15B. Low Level Output vs Voltage
Offset Supply Leakge Current (µA)
Offset Supply Leakge Current (µA)
Figure 15A. Low Level Output
vs Temperature
10 0
14
Vcc Supply Voltage (V)
12 0
90
60
Max .
30
120
90
60
Max.
30
Ty p.
Typ.
0
0
- 50
- 25
0
25
50
75
10 0
Temperature ( oC)
Figure 17A. VBS Supply Current
vs Temperature
www.irf.com
12 5
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 17B. VBS Supply Current vs Voltage
9
IR2103(S)
700
VCC Supply Current (µA)
VCC Supply Current (µA)
700
600
500
400
Max.
300
200
100
Typ.
0
600
500
400
300
Max.
200
100
Typ.
0
-50
-25
0
25
50
75
100
10
125
12
Temperature (oC)
Figure 18A. Vcc Supply Current
vs Temperature
Logic “1” Input Current (µA)
Logic “1” Input Current (µA)
20
30
25
20
15
Ma x .
10
Max
5
Ty p .
25
20
15
Ma x .
10
5
Ty p .
0
0
-50
-25
0
25
50
75
10 0
10
12 5
12
Temperature ( oC)
14
16
18
20
Vcc Supply Voltage (V)
Figure 19A. Logic "1" Input Current
vs Temperature
Figure 19B. Logic "1" Input Current
vs Voltage
5
5
Logic “0” Input Current (µA)
Logic “0” Input Current (µA)
18
Figure 18B. Vcc Supply Current vs Voltage
30
4
3
2
Max.
1
0
-50
4
3
2
Max.
1
0
-25
0
25
50
75
100
Temperature ( oC)
Figure 20A. Logic "0" Input Current
vs Temperature
10
14
16
Vcc Supply Voltage (V)
125
10
12
14
16
Vcc Supply Voltage (V)
18
20
Figure 20B. Logic "0" Input Current
vs Voltage
www.irf.com
IR2103(S)
11
Max .
VCC UVLO Threshold -(V)
VCC UVLO Threshold +(V)
11
10
Ty p.
Typ.
9
Min .
8
7
-25
0
25
50
75
10 0
Max.
9
Typ.
Typ.
8
7 Min.
6
-50
6
-50
10
12 5
-25
0
Temperature (oC)
Figure 21A. Vcc Undervoltage Threshold(+)
vs Temperature
75
100
125
500
Output Source Current (mA)
Output Source Current (mA)
50
Figure 21B. Vcc UndervoltageThreshold (-)
vs Temperature
50 0
40 0
Ty p.
30 0
20 0
10 0
Min.
0
400
300
200
Typ.
100
Min.
0
-50
-25
0
25
50
75
10 0
10
12 5
12
Temperature ( oC)
Figure 22A. Output Source Current vs
Temperature
Output Sink Current (mA)
Ty p .
400
300
18
20
700
600
500
14
16
VBIAS Supply Voltage (V)
Figure 22B. Output Source Current
vs Voltage
700
Output Sink Current (mA)
25
Temperature (oC)
Min.
200
100
600
500
400
Typ.
300
200
Min.
100
0
0
- 50
- 25
0
25
50
75
100
Temperature (oC)
Figure 23A. Output Sink Current
vs Temperature
www.irf.com
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 23B. Output Sink Current
vs Voltage
11
IR2103(S)
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
F OOT PRINT
6
8
6
7
5
H
E
0.25 [.010]
1
2
3
A
4
6.46 [.255]
MIN
.0532
.0688
1.35
1.75
A1 .0040
3X 1.27 [.050]
8X 1.78 [.070]
MAX
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BAS IC
1.27 BAS IC
.025 BAS IC
0.635 BAS IC
e1
6X e
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
e1
A
C
y
0.10 [.004]
8X b
0.25 [.010]
A1
8X L
8X c
7
C A B
NOT ES:
1. DIMENS IONING & T OLERANCING PE R ASME Y14.5M-1994.
5 DIMENSION DOES NOT INCLUDE MOLD PROT RUS IONS.
MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006].
2. CONT ROLLING DIMENSION: MILLIMET ER
6 DIMENSION DOES NOT INCLUDE MOLD PROT RUS IONS.
MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010].
3. DIMENS IONS ARE SHOWN IN MILLIME TE RS [INCHES].
4. OUT LINE CONF ORMS T O JEDEC OUTLINE MS-012AA.
8-Lead SOIC
7 DIMENSION IS T HE LE NGTH OF LEAD FOR SOLDE RING TO
A SUBS TRAT E.
01-6027
01-0021 11 (MS-012AA)
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 5/23/2001
12
www.irf.com