Data Sheet No. PD60043-N IR2101(S) IR2102(S) HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • Product Summary Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 3.3V, 5V, and 15V logic input compatible Matched propagation delay for both channels Outputs in phase with inputs (IR2101) or out of phase with inputs (IR2102) VOFFSET 600V max. IO+/- 130 mA / 270 mA VOUT 10 - 20V ton/off (typ.) 160 & 150 ns Delay Matching 50 ns Packages Description The IR2101(S)/IR2102(S) are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic con8 Lead SOIC struction. The logic input is compatible with stan8 Lead PDIP dard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD IR2101 up to 600V VCC (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD IR2102 1 IR2101/IR2102 (S) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High side floating supply voltage VS Min. Max. -0.3 625 Units High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VIN Logic input voltage (HIN & LIN) -0.3 VCC + 0.3 — 50 dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient (8 lead PDIP) — 1.0 (8 lead SOIC) — 0.625 (8 lead PDIP) — 125 (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage (HIN & LIN) (IR2101) & (HIN & LIN) (IR2102) 0 VCC TA Ambient temperature -40 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2101/IR2102 (S) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 160 220 VS = 0V toff Turn-off propagation delay — 150 220 VS = 600V tr Turn-on rise time — 100 170 tf Turn-off fall time — 50 90 Delay matching, HS & LS turn-on/off — — 50 MT ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH Definition Logic “1” input voltage (IR2101) Logic “0” input voltage (IR2102) VIL Logic “0” input voltage (IR2101) Min. Typ. Max. Units Test Conditions 3 — VCC = 10V to 20V — V — — VCC = 10V to 20V 0.8 Logic “1”input voltage (IR2102) VOH High level output voltage, VBIAS - VO VOL Low level output voltage, VO ILK Offset supply leakage current IQBS Quiescent VBS supply current IQCC Quiescent VCC supply current IIN+ Logic “1” input bias current IIN- Logic “0” input bias current — — 100 — — 100 — — 50 VB = VS = 600V — 30 55 VIN = 0V or 5V — 150 270 — 3 10 mV IO = 0A IO = 0A VIN = 0V or 5V µA VIN = 5V (IR2101) VIN = 0V (IR2102) — — 1 VCCUV+ VCC supply undervoltage positive going threshold 8 8.9 9.8 VCCUV- VCC supply undervoltage negative going threshold 7.4 8.2 9 Output high short circuit pulsed current 130 210 — IO+ VIN = 0V (IR2101) VIN = 5V (IR2102) V VO = 0V mA IO- Output low short circuit pulsed current 270 360 — VIN = Logic “1” PW ≤ 10 µs VO = 15V VIN = Logic “0” PW ≤ 10 µs www.irf.com 3 IR2101/IR2102 (S) Functional Block Diagram VB HV LEVEL SHIFT HIN Q PULSE FILTER R HO S PULSE GEN VS UV DETECT VCC LIN LO COM IR2101 VB HV LEVEL SHIFT Vcc HIN PULSE GEN Vcc UV DETECT Q PULSE FILTER R HO S VS VCC LIN LO COM IR2102 4 www.irf.com IR2101/IR2102 (S) Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase (IR2101) HIN Logic input for high side gate driver output (HO), out of phase (IR2102) LIN Logic input for low side gate driver output (LO), in phase (IR2101) LIN Logic input for low side gate driver output (LO), out of phase (IR2102) VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return Lead Assignments www.irf.com 8 Lead PDIP 8 Lead SOIC IR2101 IR2101S 8 Lead PDIP 8 Lead SOIC IR2102 IR2102S 5 IR2101/IR2102 (S) HIN LIN 50% 50% 50% 50% HIN LIN HIN LIN HIN LIN ton toff tr 90% HO LO HO LO Figure 1. Input/Output Timing Diagram HIN LIN HIN LIN 10% tf 90% 10% Figure 2. Switching Time Waveform Definitions 50% 50% 50% 50% LO HO 10% MT MT 90% LO HO Figure 3. Delay Matching Waveform Definitions 6 www.irf.com IR2101/IR2102 (S) 500 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 500 400 300 200 100 Max. Typ. 0 -50 400 Max. 300 200 Typ. 100 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 6A. Turn-On Time vs Temperature 18 20 5 00 Turn-Off Delay Time (ns) 400 300 200 100 4 00 3 00 M ax . 2 00 1 00 T yp . 0 0 2 4 6 8 0 10 12 14 16 18 20 -50 -25 0 25 50 75 Temperature (°C) Input Voltage (V) 1 00 1 25 Figure 7A. Turn-Off Time vs Temperature Figure 6C. Turn-On Time vs Input Voltage 500 Turn-Off Delay Time (ns 500 Turn-Off Delay Time (ns) 16 Figure 6B. Turn-On Time vs Supply Voltage 500 Turn-On Delay Time (ns 14 VBIAS Supply Voltage (V) 400 Max. 300 200 Typ. 100 400 300 Max. 200 100 Typ. 0 0 10 12 14 16 VBIAS Supply Voltage (V) 18 20 Figure 7B. Turn-Off Time vs Supply Voltage www.irf.com 0 2 4 6 8 10 12 14 16 18 20 Input Voltage (V) Figure 7C. Turn-Off Time vs Input Voltage 7 IR2101/IR2102 (S) 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 200 M ax. 100 400 300 M ax. 200 100 Typ. Typ. 0 0 -5 0 -2 5 0 25 50 75 100 125 10 12 Temperature (°C) Figure 9A. Turn-On Rise Time vs Temperature 16 18 20 Figure 9B. Turn-On Rise Time vs Voltage 20 0 200 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 14 VBIAS Supply Voltage (V) 15 0 10 0 M ax. 50 150 M a x. 100 50 Typ. Ty p. 0 0 -50 -25 0 25 50 75 10 0 12 5 10 12 Figure 10A. Turn-Off Fall Time vs Temperature 8 7 7 In pu t V olta g e (V ) Inp ut V oltage (V ) 6 5 M in . 3 2 1 18 20 6 5 4 M in. 3 2 1 0 0 -50 -25 0 25 50 75 10 0 12 5 Temperature (°C) Figure 12A. Logic "1" Input Voltage (IR2101) Logic "0" Input Voltage (IR2102) vs Temperature 8 16 Figure 10B. Turn-Off Fall Time vs Voltage 8 4 14 VBIAS Supply Voltage (V) Temperature (°C) 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 12B. Logic "1" Input Voltage (IR2101) Logic "0" Input Voltage (IR2102) vs Voltage www.irf.com 4 4 3 .2 3.2 Input V o ltag e (V ) In p u t V o lta g e (V ) IR2101/IR2102 (S) 2 .4 1 .6 M ax. 0 .8 2.4 1.6 M ax . 0.8 0 0 -5 0 -2 5 0 25 50 75 100 10 125 12 Temperature (°C) High Level Output Voltage (V) High Level Output Voltage (V) 18 20 1 1 0 .8 0 .6 0 .4 M ax. 0 .2 0 .8 0 .6 0 .4 M ax. 0 .2 0 0 -5 0 -2 5 0 25 50 75 100 10 125 12 14 16 18 20 Vcc Supply Voltage (V) Temperature (°C) Figure 14B. High Level Output vs Voltage Figure 14A. High Level Output vs Temperature 1 Low Level Output Voltage (V) 1 Low Level Output Voltage (V) 16 Figure 13B. Logic "0" Input Voltage (IR2101) Logic "1" Input Voltage (IR2102) vs Voltage Figure 13A. Logic "0" Input Voltage (IR2101) Logic "1" Input Voltage (IR2102) vs Temperature 0 .8 0 .6 0 .4 0 .2 14 Vcc Supply Voltage (V) M ax. 0 0 .8 0 .6 0 .4 0 .2 M ax. 0 -5 0 -2 5 0 25 50 75 100 Temperature (°C) Figure 15A. Low Level Output vs Temperature www.irf.com 125 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 15B. Low level Output vs Voltage 9 500 500 400 300 200 100 M ax. 0 -5 0 -2 5 0 25 50 75 100 125 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) IR2101/IR2102 (S) 400 300 200 100 Max. 0 0 100 1 20 90 60 M ax . 30 T yp . 0 500 600 120 90 60 Max . 30 Ty p. 0 -50 -25 0 25 50 75 1 00 1 25 10 12 Temperature (°C) 14 16 18 20 VBS Floating Supply Voltage (V) Figure 17B. VBS Supply Current vs Voltage Figure 17A. VBS Supply Current vs Temperature 700 700 Vcc Supply Current (µA) Vcc Supply Current (µA) 400 150 VBS Supply Current (µA) VBS Supply Current (µA) 1 50 600 500 400 M ax. 200 100 300 Figure 16B. Offset Supply Current vs Voltage Figure 16A. Offset Supply Current vs Temperature 300 200 VB Boost Voltage (V) Temperature (°C) Typ. 600 500 400 300 M ax. 200 100 Typ. 0 0 -5 0 -2 5 0 25 50 75 100 Temperature (°C) Figure 18A. Vcc Supply Current vs Temperature 10 125 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 18B. Vcc Supply Current vs Voltage www.irf.com IR2101/IR2102 (S) 30 Logic 1” Input Current (µA) Logic 1” Input Current (µA) 30 25 20 15 10 M ax. 5 Typ. 25 20 15 10 M ax. 5 Typ. 0 0 -5 0 -2 5 0 25 50 75 100 125 10 12 Figure 19A. Logic"1" Input Current vs Temperature Logic "0" Input Current (uA) Logic “0” Input Current (µA) 18 20 5 4 3 2 Max. 1 4 3 2 Max. 1 0 0 -50 -25 0 25 50 75 Temperature (°C) 100 10 125 Figure 20A. Logic "0" Input Current vs Temperature 12 14 16 VCC Supply Voltage (V) 18 20 Figure 20B. Logic "0" Input Current vs Voltage 11 11 M ax. VCC UVLO Threshold - (V) VCC UVLO Threshold +(V) 16 Figure 19B. Logic"1" Input Current vs Voltage 5 10 9 14 Vcc Supply Voltage (V) Temperature (°C) Typ. M in. 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature www.irf.com 10 Max. 9 Typ. 8 7 Min. 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21B. Vcc Undervoltage Threshold(-) vs Temperature 11 IR2101/IR2102 (S) 500 Output Source Current (mA) Output Source Current (mA) 500 400 300 Typ. 200 100 Min. 0 -50 400 300 200 Typ. 100 Min. 0 -25 0 25 50 75 Temperature (°C) 100 125 10 Figure 22A. Output Source Current vs Temperature 20 70 0 6 00 Output Sink Current (mA) Output Sink Current (mA) 14 16 18 VBIAS Supply Voltage (V) Figure 22B. Output Source Current vs Voltage 7 00 T yp . 5 00 4 00 3 00 M in . 2 00 1 00 0 60 0 50 0 40 0 Ty p. 30 0 20 0 M in. 10 0 0 -50 -25 0 25 50 75 1 00 Temperature (°C) Figure 23A. Output Sink Current vs Temperature 12 12 1 25 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 23B. Output Sink Current vs Voltage www.irf.com IR2101/IR2102 (S) Case outlines 01-6014 01-3003 01 (MS-001AB) 8 Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 A e 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.15 [.006]. 2. CONTROLLING DIMENSION: MILLIMETER 6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.25 [.010]. 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8 Lead SOIC 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 4/18/2003 www.irf.com 13