Da ta S he et , V 1. 0, O ct . 20 03 T C 1 91 0 3 2 - B i t S i n g le - C h i p M ic r o c o n t r o l l e r M i c ro c o n t ro l l e rs N e v e r s t o p t h i n k i n g . Edition 2003-10 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2003. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Da ta S he et , V 1. 0, O ct . 20 03 T C 1 91 0 3 2 - B i t S i n g le - C h i p M ic r o c o n t r o l l e r M i c ro c o n t ro l l e rs N e v e r s t o p t h i n k i n g . TC1910 PRELIMINARY Revision History: 2003-10 V 1.0 Previous Version: Page Subjects (major changes since last revision) We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] TC1910 PRELIMINARY TC1910 Features The TC1910 offers a 32 bit TriCore based microcontroller/DSP, which is mainly designed for automotive telematics applications. Due to its high integration, this microcontroller/ DSP offers high system performance at minimized cost. Typical telematics functions processed by RISC-, DSP- and speech- (CODEC) modules are now combined in one component. This combination of dedicated speech peripherals (CODEC) and standard peripherals (SSC/SPI, ASC and IIC), makes this microcontroller/DSP the engine tailored for a wide variety of telematics applications such as navigation, emergency call, speech interface or communication interface. • TriCore CPU/DSP with 4-Stage Pipeline: – 66 MHz max. CPU clock frequency, 50 MHz max. FPI Bus clock frequency. – 32-bit super-scalar TriCore main CPU – 4-GByte unified memory space support – Fast context-switching – Dual 16 x 16 Multiply-accumulate (MAC) unit – 64-bit Local Memory Bus (LMB) – 32-bit Flexible Peripheral Interface Bus (FPI) – 32-bit wide External Bus Unit (EBU) • On-chip memories: – 24 KByte Code Scratch-Pad RAM (CSRAM) – 8 KByte Instruction Cache (ICACHE) – 24 KByte Data Scratch-Pad RAM (DSRAM) – 8 KByte Data Cache (DCACHE) – 64 KByte fast LMB SRAM – 16 KByte FPI SRAM (of which 8 KByte Stand-By SRAM) • Product Specific Peripherals: – 14-bit double CODEC with flexible sample rates and FIFO support – 8 External Interrupt Inputs • Standard Peripherals: – 2 x asynchronous serial interface (ASC) with IrDa-support – 1 SPI-compatible synchronous serial interface – IIC module – 3 x 32 bit timer • General Peripherals: – Real time clock (RTC) – Watchdog timer (WDT) • Clock Generation Unit with PLL • Debug Support: OCDS Level 1 with JTAG interface • Dual voltage supply (1.8V core, 3.3V I/O) • Power saving features • -40°C to +85°C temperature range • LBGA-208 package Data Sheet 1 V 1.0, 2003-10 TC1910 PRELIMINARY Block Diagram. LFI Bridge SRA M 6 4 kB E BU C O DE C (IIS) 6 4 -b it L o ca l M e m o ry B u s (L M B ) IIC G P TU PM U 24KB CSRAM 8KB IC A C H E Port C ontrol TriCore (T C 1 .3 ) DM U 24KB D SRAM 8KB DCACHE AS C0 AS C1 CPS O CDS D ebug/ JTA G S SC 3 2-b it F lexible P erip he ra l In te rface (F P I)B u s S RAM 1 6 kB R TC STM S CU TC1910 Figure 1 TC1910 Device Block Diagram Target applications • Bluetooth gateway (host for BT stack e.g. for Handsfree with EC/NR or remote diagnostics) • Stand-alone speech Human Machine Interface • Basic communication gateway • Digital Audio processing (MP3 player, shock proof controller etc.) Data Sheet 2 V 1.0, 2003-10 TC1910 PRELIMINARY Logic Symbol PLL_CTRL TE S T CLKOU T HDRST PORST G P IO /E X Ix, C o d ec B yp ass P o rt 0 8 -b it G P IO P o rt 1 8 -b it IIC, SSC ASC0 P o rt 2 1 6 -b it ASC1 G P TU P o rt 3 1 6 -b it G e n e ra l C o n tro l NMI BYPASS XTAL1 XTAL2 10 XTAL3 XTAL4 VD D O S C 1 VS S O S C 1 VD D O S C 2 VS S O S C 2 VD D P L L C O D E C 0 /1 O scilla to rs PLL 83 E xte rn a l B u s TC1910 VS S P L L VD D VD D P VD D S B O C D S /JT A G C o n tro l D ig ita l C ircu itry P o w er S u pp ly VS S 8 VD D _ C O D 0 VS S _ C O D 0 CODEC A n a lo g P o w e r S u p p ly VD D _ C O D 1 VS S _ C O D 1 V R E F_ C O D VG N D _ C O D Figure 2 Data Sheet TC1910 Device Logic Symbol 3 V 1.0, 2003-10 TC1910 PRELIMINARY Pin Configuration 1 2 3 4 A A D 2 0 A D 26 A D 28 A D 2 9 B A D 1 7 A D 25 A D 27 A D 3 0 C A D 1 3 A D 23 A D 24 A D 3 1 D AD9 E AD8 A D 18 A D 16 A D 1 9 F AD7 A D 15 A D 14 A D 1 2 G AD5 A D 11 A D 10 H AD2 5 11 12 13 14 15 16 V D D_ VSSA_ CLK OU T P 2 .3 P 2 .0 C O D 0 /1 BY PASS NMI C O D 0 /1 A A I1 - A O 1+ A O 0- H R S T E X IN 4 P 2 .5 P 3 .15 B TM_ T M _ V S S_ V A GN D _ A I1+ C T R L1 X T A L 4 C T R L 0 G U A R D C O D A O 0+ CODE PORS SSC_ C _ D IS T M TSR IIC _ SDA E X IN 7 C S S C _ A S C 0 _ A S C 1_ S C LK RX TX D V DD _ 6 7 X T A L 1 X T A L2 R TC V S SA _32K A D 21 A D 22 VDD_ PW R AD4 AD3 V S S_ V DD _ PL L P LL P LL P LL A I0- 10 GU A RD V D D _ P LL C T V A RE F_ A I0 + AO1- CE XT O S C I R L _A 0 CO D AD6 AD0 AD1 K BF CLK0 A22 L A 17 A18 A16 A 13 M A 15 A14 A12 A 11 N A 10 A9 A8 VDD_ P A7 A6 A5 A1 R A4 A3 A0 RD BC1 T A2 CAS BC3 BC2 1 2 3 4 P 2.1 P 2.2 E X IN 6 P 3 .10 G V D D_ GND P W R2 VDD_ VSS_ V SS _ HS5 PW R GND GND G P T U . G P T U . G P T U . A S C 1_ 4 5 7 RX H VSS_ V SS _ HS4 GND GND GPT U . SC AN G PTU . G PTU . MODE 0 6 3 J GPTU . GPTU . 2 1 K V D D S B E X IN 3 S C L K M U T E 0 L E X IN 0 E X IN 1 E X IN 2 M V D D_ HS14 HS13 LR C K M U T E 1 P W R2 P 1.7 BC0 F V SS _ PW R2 RAS E X IN 5 P 2 .4 GND VDD_ A 19 P 2.9 E VSS_ H S 15 A 21 P 2.8 P 3 .11 PW R2 C S 1 C S G LB A D V H S 11 HS7 HS0 V DD _ P 1.4 P 1 .5 P 1 .6 N PWR CS2 BAA CKE H S 10 HS6 BRK OUT TMS P 1.0 P 1 .2 P 1 .3 P CS4 CS0 CS EMU M R /W ALE HS8 HS2 B RK IN TD O TC K P 1 .1 R CS5 CS3 W A IT CS CM O V L D E L A Y H S 12 HS9 HS3 HS1 OCDSE TD I TR ST T 5 6 7 11 12 15 16 R D /W R C S 6 8 9 T O P V IE W Data Sheet PWR VDD_ PW R Figure 3 V DD _ S S C _ A S C 0 _ IIC _ M RST TX SCL EBU CLK A20 9 V D DP _ V SS P _ V D D_ XTAL3 VDDR J A23 8 10 13 14 LBG A 208 TC1910 Pinning 4 V 1.0, 2003-10 TC1910 PRELIMINARY Pin List Table 0-1 Symbol AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 AD21 AD22 AD23 AD24 AD25 AD26 AD27 AD28 AD29 AD30 AD31 Data Sheet Pin Definitions and Functions BGA BALL H4 J2 H1 H3 H2 G1 G4 F1 E1 D1 G3 G2 F4 C1 F3 F2 E3 B1 E2 E4 A1 D2 D3 C2 C3 B2 A2 B3 A3 A4 B4 C4 In/ Out1) I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s Functions External Bus Unit Interface external address/data bus (multiplexed bus mode) or data bus (demultiplexed bus mode) for the EBU: AD0 Address/data bus / Data bus line 0 AD1 Address/data bus / Data bus line 1 AD2 Address/data bus / Data bus line 2 AD3 Address/data bus / Data bus line 3 AD4 Address/data bus / Data bus line 4 AD5 Address/data bus / Data bus line 5 AD6 Address/data bus / Data bus line 6 AD7 Address/data bus / Data bus line 7 AD8 Address/data bus / Data bus line 8 AD9 Address/data bus / Data bus line 9 AD10 Address/data bus / Data bus line 10 AD11 Address/data bus / Data bus line 11 AD12 Address/data bus / Data bus line 12 AD13 Address/data bus / Data bus line 13 AD14 Address/data bus / Data bus line 14 AD15 Address/data bus / Data bus line 15 AD16 Address/data bus / Data bus line 16 AD17 Address/data bus / Data bus line 17 AD18 Address/data bus / Data bus line 18 AD19 Address/data bus / Data bus line 19 AD20 Address/data bus / Data bus line 20 AD21 Address/data bus / Data bus line 21 AD22 Address/data bus / Data bus line 22 AD23 Address/data bus / Data bus line 23 AD24 Address/data bus / Data bus line 24 AD25 Address/data bus / Data bus line 25 AD26 Address/data bus / Data bus line 26 AD27 Address/data bus / Data bus line 27 AD28 Address/data bus / Data bus line 28 AD29 Address/data bus / Data bus line 29 AD30 Address/data bus / Data bus line 30 AD31 Address/data bus / Data bus line 31 5 V 1.0, 2003-10 TC1910 PRELIMINARY Table 0-1 Symbol A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 CS0 CS1 CS2 CS3 CS4 CS5 CS6 CSEMU CSOVL Data Sheet Pin Definitions and Functions BGA BALL R3 P4 T1 R2 R1 P3 P2 P1 N3 N2 N1 M4 M3 L4 M2 M1 L3 L1 L2 K4 K3 J4 K2 J3 R7 N7 P7 T6 R6 T5 P6 R8 T8 In/ Out1) I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s I/O,s O,u O,u O,u O,u O,u O,u O,u O,u O,u Functions External Bus Unit Interface (continued) external address bus for the EBU or chip select output lines. A0 Address bus line 0 A1 Address bus line 1 A2 Address bus line 2 A3 Address bus line 3 A4 Address bus line 4 A5 Address bus line 5 A6 Address bus line 6 A7 Address bus line 7 A8 Address bus line 8 A9 Address bus line 9 A10 Address bus line 10 A11 Address bus line 11 A12 Address bus line 12 A13 Address bus line 13 A14 Address bus line 14 A15 Address bus line 15 A16 Address bus line 16 A17 Address bus line 17 A18 Address bus line 18 A19 Address bus line 19 A20 Address bus line 20 A21 Address bus line 21 A22 Address bus line 22 A23 Address bus line 23 CS0 Chip select output 0 CS1 Chip select output 1 CS2 Chip select output 2 CS3 Chip select output 3 CS4 Chip select output 4 CS5 Chip select output 5 CS6 Chip select output 6 CSEMU Chip select for emulator region CSOVL Chip select for emulator overlay memory 6 V 1.0, 2003-10 TC1910 PRELIMINARY Table 0-1 Symbol RD RD/WR ALE ADV BC0 BC1 BC2 BC3 WAIT BAA EBUCLK BFCLK0 CSGLB CMDELAY MR/W CKE RAS CAS Pin Definitions and Functions BGA BALL R4 P5 R10 N9 N6 R5 T4 T3 T7 P8 J1 K1 N8 T9 R9 P9 N5 T2 In/ Out1) I/O,u I/O,u O,d O,u I/O,u I/O,u I/O,u I/O,u I/O,u O,u O,u O,u O,u I,u O,u O,u O,u O,u P0 Functions External Bus Unit Interface (continued) control bus for the EBU control lines. RD Read control line RD/WR Write control line ALE Address latch enable ADV Address valid output Byte control line 0 BC0 BC1 Byte control line 1 BC2 Byte control line 2 BC3 Byte control line 3 Wait input WAIT BAA Burst address advance output EBUCLK External Bus Clock BFCLK0 Additional clock CSGLB Chip Select Global CMDELAY Command Delay MR/W Motorola-style Read/Write CKE Clock Enable RAS Row Address Strobe CAS Column Address Strobe Port 0 Port 0 is an 8-bit general purpose I/O port, overlaid with codec digital signals and external interrupt inputs (P0.[3:0]). P0.0 P0.1 P0.2 M14 M15 M16 I/O I/O I/O EXI0IN EXI1IN EXI2IN P0.3 P0.4 P0.5 P0.6 P0.7 L14 L15 K13 L16 K14 I/O I/O I/O I/O I/O EXI3IN SCLK LRCK MUTE0 MUTE1 Data Sheet External Interrupt Input 0 External Interrupt Input 1 or DATA_IN External Interrupt Input 2 or DATA_OUT External Interrupt Input 3 or MCLK 7 V 1.0, 2003-10 TC1910 PRELIMINARY Table 0-1 Symbol Pin Definitions and Functions BGA BALL In/ Out1) Port 1 Port 1 is a 8-bit bidirectional General Purpose I/O port P1 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 P14 R16 P15 P16 N14 N15 N16 M13 I/O I/O I/O I/O I/O I/O I/O I/O Data Sheet GPIO only GPIO only GPIO only GPIO only GPIO only GPIO only GPIO only GPIO only Port 2 Port 2 is a 16-bit bidirectional general purpose I/O port and input/output for serial interfaces (IIC, ASC0, SSC) P2 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 P2.8 P2.9 P2.10 P2.11 P2.12 P2.13 P2.14 P2.15 Functions A16 G13 G14 A15 F15 B15 E15 C15 F13 F14 D15 E14 D14 E13 C14 B14 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GPIO only GPIO only GPIO only GPIO only GPIO only GPIO only SCL IIC Serial Port Clock SDA IIC Serial Port Data Open Drain GPIO Open Drain GPIO RXD0 ASC0 receiver input/output TXD0 ASC0 transmitter output SCLK SSC clock line MRST SSC Master Receive / Slave Transmit MTSR SSC Master Transmit / Slave Receive GPIO/EXI4IN/PLL_CLC.LOCK Monitoring of the PLL_CLC.LOCK 8 V 1.0, 2003-10 TC1910 PRELIMINARY Table 0-1 Symbol Pin Definitions and Functions BGA BALL In/ Out1) Port 3 Port 3 is a 16-bit bidirectional general purpose I/O port which is also used as input/output for serial interfaces (ASC1) and timer (GPTU) P3 P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 P3.8 P3.9 P3.10 P3.11 P3.12 P3.13 P3.14 P3.15 J13 K16 K15 J16 H13 H14 J15 H15 H16 D16 G16 E16 F16 G15 C16 B16 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O Data Sheet GPTU.0 GPTU I/O line 0 GPTU.1 GPTU I/O line 1 GPTU.2 GPTU I/O line 2 GPTU.3 GPTU I/O line 3 GPTU.4 GPTU I/O line 4 GPTU.5 GPTU I/O line 5 GPTU.6 GPTU I/O line 6 GPTU.7 GPTU I/O line 7 RXD1 ASC1 receiver input/output TXD1 ASC1 transmitter output GPIO only GPIO only / OSCBYP Latch-In Input Pin EXI5IN/ HWCFG0 Latch-InExternal Interrupt Input 5 EXI6IN/ HWCFG1 Latch-InExternal Interrupt Input 6 EXI7IN/ HWCFG2 Latch-InExternal Interrupt Input 7 GPIO only CODEC CODEC AI0+ AI0AO0+ AO0AI1+ AI1AO1+ AO1CEXT CODEC_DIS Functions D9 B9 C11 B12 C10 B10 B11 D11 D12 C12 I I O O I I O O I I CODEC 0 Non-Inverting Input CODEC 0 Inverting Input CODEC 0 Non-Inverting Output CODEC 0 Inverting Output CODEC 1 Non-Inverting Input CODEC 1 Inverting Input CODEC 1 Non-Inverting Output CODEC 1 Inverting Output Codec External Clock Input Codec Disable (power saving) 9 V 1.0, 2003-10 TC1910 PRELIMINARY Table 0-1 Pin Definitions and Functions Symbol BGA BALL In/ Out1) DEBUG Functions DEBUG (OCDS/JTAG Control) TRST TCK TDI TDO TMS OCDSE BRKIN BRKOUT T16 R15 T15 R14 P13 T14 R13 P12 I,d I,u I,u O I,u I,u I,u O Reset/module enable JTAG clock input Serial data input Serial data output State machine control signal OCDS enable input OCDS break input OCDS break output Test SCAN_MODE PLLCTRL_AO TM_CTRL0 TM_CTRL1 J14 D8 C7 C5 I I I I Test Pins Scan Mode Control current of different analog stages Test Mode Control 0 Test Mode Control 1 HS0 HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 HS9 HS10 HS11 HS12 HS13 HS14 HS15 N12 T13 R12 T12 J10 H10 P11 N11 R11 T11 P10 N10 T10 K9 K8 J7 IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO Reserved Internal Test and Heat Sink Pins. Must be routed as isolated pads on the PCB. Heat Sink 0 Heat Sink 1 Heat Sink 2 Heat Sink 3 Heat Sink 4 Heat Sink 5 Heat Sink 6 Heat Sink 7 Heat Sink 8 Heat Sink 9 Heat Sink 10 Heat Sink 11 Heat Sink 12 Heat Sink 13 Heat Sink 14 Heat Sink 15 BYPASS A12 I,d PLL Bypass Control Input NMI A13 I,u Non-Maskable Interrupt Input HRST B13 I/O,u Bidirectional Hardware Reset Reserved Pins Data Sheet 10 V 1.0, 2003-10 TC1910 PRELIMINARY Table 0-1 Pin Definitions and Functions Symbol BGA BALL In/ Out1) Functions PORST C13 I,u Power-on Reset Input (must be active during power up) CLKOUT A14 O CPU Clock Output XTAL1 XTAL2 A6 A7 I O PLL/Oscillator Input/Output XTAL3 XTAL4 D5 C6 I O Real Time Clock Oscillator input/output (32 KHz) VAREF_COD D10 - Codec 0,1 Reference Voltage VAGND_COD C9 - Codec 0,1 Reference Ground VDD_COD0/1 A10 - Codec Pad and Analog Power Supply (3.3V) VSSA_COD0/1 A11 - Codec Pad and Analog Ground VDD_GUARD B8 - Guard Ring Supply (1.8V) VSS_GUARD C8 - Guard Ring Ground (1.8V) VDD_OSCI D7 - Main Oscilator Power Supply (1.8V) VDD_RTC A5 - RTC Oscilator Core Supply (1.8V) VSSA_32K B5 - RTC and Main Osc. Core Ground (1.8V) VDDP_PLL B6 - RTC and Main Osc. Supply (3.3V) VSSP_PLL B7 - RTC and Main Osc. Ground (3.3V) VDDPLL A9 - PLL Supply (1.8V) VSSPLL A8 - PLL Ground (1.8V) VDDR D6 - SRAM Power Supply (1.8V) VDDSB L13 - SRAM Stand-By Power Supply (1.8V) VDD_PWR D4 D13 H7 N4 N13 - 3.3V Power Supply VDD_PWR2 G7 G10 K7 K10 - 1.8V Power Supply Data Sheet 11 V 1.0, 2003-10 TC1910 PRELIMINARY Table 0-1 Pin Definitions and Functions Symbol BGA BALL In/ Out1) Functions VSS_GND G8 G9 H8 H9 J8 J9 - Digital Power Ground 1) The notification ’,u’ after the input/output type defines an internal pull-up resistor. An internal pull-down resistor is indicated by ’,d’. For the lines AD[31:0] and A[23:0], the type of the pull device can be selected ’s’. Data Sheet 12 V 1.0, 2003-10 TC1910 PRELIMINARY System Architecture and Control 32-Bit TriCore CPU • • • • • • • • • • 32-bit architecture with 4-GByte unified data, program and input/output address space Fast automatic context-switch Dual 16 x 16 Multiply-accumulate (MAC) unit Saturating integer arithmetic Register based design with multiple variable register banks Bit handling Packed data operations Zero overhead loop Precise exceptions Flexible power management Instruction Set with High Efficiency: • 16/32-bit instructions for reduced code size • Little endian byte ordering with support for big and little endian byte ordering at bus interface • Boolean, array of bits, character, signed and unsigned integer, integer with saturation, signed fraction, double word integers and IEEE-754 single precision floating-point data types • Bit, 8-bit byte, 16-bit half word, 32-bit word and 64-bit double word data formats • Powerful instruction set • Flexible and efficient addressing mode for high code density Data Sheet 13 V 1.0, 2003-10 TC1910 PRELIMINARY On-chip Code Memories Local Memory Bus Memory (LMBRAM): Address range of the 64 KByte Local Memory Bus Memory: • C000 0000H - C000 FFFFH (in segment 12 for cached operation) • E800 0000H - E800 FFFFH (in segment 14 for non-cached operation) PMU Scratch-Pad SRAM (CSRAM): The Program Memory Unit (PMU) memory consists of 24-KByte Code Scratchpad RAM (CSRAM) and 8-KByte Instruction Cache (ICACHE). Address range of the CSRAM: • D400 0000H - D400 5FFFH On-chip Data Memories DMU Scratch-Pad SRAM (DSRAM): The Data Memory Unit (DMU) memory consists of 24-KByte Data Scratchpad RAM (DSRAM) and 8-KByte Data Cache (DCACHE). Address range of the DSRAM: • D000 0000H - D000 5FFFH FPI-Bus Data Memory (FPIDRAM): The FPI-Bus Data Memory (FPIDRAM) is a 16-KByte static RAM located on the FPIBus. It contains two parts: FPIDRAM0 and FPIDRAM1. One half of it (FPIDRAM1) can be used for standby power operation. Address range of the FPI Data Memory: • 9FFF 8000H - 9FFF BFFFH (in segment 9 for cached operation) • BFFF 8000H - BFFF BFFFH (in segment 11 for non-cached operation) Data Sheet 14 V 1.0, 2003-10 TC1910 PRELIMINARY System Control Unit (SCU) The System Control Unit of the TC1910 basically handles all system control tasks. All these system functions are tightly coupled and therefore they are handled physically by one unit, the SCU. The system tasks of the SCU are: • • • • • • • Clock Generation and Control Reset control Power Management control and wake-up Watchdog timer Device identification Standby SRAM control External interrupt capability (8 sources) System timer (STM) The System Timer is designed for global system timing applications requiring both high precision and long range. It is used by the CPU for software operating system issues. Features: • • • • • • Free-running 56-bit counter All 56 bits can be read synchronously Different 32-bit portions of the 56-bit counter can be read synchronously Driven by clock, f STM (normally identical with the system clock). Counting begins at power-on reset Continuous operation is not affected by any reset condition except power-on reset External Bus Interface (EBU_LMB) EBU_LMB is connected to the Local Memory Bus (LMB) of the TC1910 and also to the FPI Bus. EBU_LMB is always a slave on the LMB and a master/slave on the FPI bus. Any LMB masters thus can access external memories or devices through EBU_LMB. Currently the maximum length of the bursts are according to the size of program and data cache lines, i.e. 8 x 32-bit words. Single transfers (non-burst) are supported for 8bit, 16-bit and 32-bit wide access. Data Sheet 15 V 1.0, 2003-10 TC1910 PRELIMINARY E B U _L M B XBC External Bus 32-bit L M B B us 64 -bit DME F P I B us 32 -bit XM I SDRAM B uffer S lo w e r D evices 50 M H z E xterna l M aster E xte rn al B us U nit E B U L 30 4 5 _L Figure 4 EBU_LMB block diagram Features supported in EBU_LMB: • • • • • • • • • • • • • • • • • • Local Memory Bus (LMB 64-bit) support. External bus frequency: LMB frequency = 1:1 or 1:2 or 1:4. Highly programmable access parameters. Intel-style and Motorola-style peripheral/device support. SDRAM support (burst access, multibanking, precharge, refresh). 16- and 32-bit SDRAM data bus and support of 64, 128 and 256MBit devices. Burst flash support. Multiplexed access (address & data on the same bus) when DRAM is not present on the External Bus. Data Buffering: Code Prefetch Buffer, Read/Write Buffer. External master arbitration (compatible to C166 and other TriCore devices). 8 programmable address regions (1 dedicated for emulator). Little-Endian and Big-Endian support. CSglb signal, dedicated pin, bit programmable to combine one or more CS lines, for buffer control. RMW signal reflecting a read-modify-write action. Signal for controlling data flow of slow-memory buffer. Slave unit for external (off-chip) master to access devices on the FPI bus. Master unit for FPI master to access external (off-chip) devices. Data Mover Engine. Data Sheet 16 V 1.0, 2003-10 TC1910 PRELIMINARY Interrupt System • Flexible interrupt prioritizing scheme with 256 interrupt priority levels • Fast interrupt response C P U In te rru p t A rb itra tio n B u s M o d u le A M o d u le K e rn e l n S e rvice R e q u e st Nodes M a in In te rru p t C o n tro l CPU In te rru p t C o n tro l U n it (IC U ) M o d u le B M o d u le K e rn e l n S e rvice R e q u e st Nodes 4 S e rvice R e q u e st Nodes CPU C o re 4 M o d u le C M o d u le K e rn e l Figure 5 Data Sheet n S e rvice R e q u e st Nodes Block Diagram Interrupt System 17 V 1.0, 2003-10 TC1910 PRELIMINARY FPI-Bus The Flexible Peripheral Interconnect Bus is designed with the requirements of highperformance Systems-on-Chip in mind. Key Features: • • • • • • • • • • Core independent Multi-master capability Demultiplexed operation Clock synchronous Peak transfer rate of up to 200 MBytes/s (@ 50 MHz bus clock) Address and data bus scalable (32 bit address bus, 32 bit data bus ) 8-/16- and 32 bit data transfers Broad range of transfer types from single to multiple data transfers Burst transfer capability EMI and power consumption minimized LMB-Bus The Local Memory Bus is a synchronous, pipelined, split bus with variable block size transfer support. All signals relate to the positive clock edge. The protocol supports 8,16,32 & 64 bits single beat transactions and variable length 64 bits block transfers. Key Features: The LMB provides the following features: • • • • • • • Optimized for high speed and high performance 32 bit address, 64 bit data busses Central simple per cycle arbitration Slave controlled wait state insertion Address pipelining (max depth - 2) Split transactions Variable block length - 2, 4 or 8 beats of 64 bit data Data Sheet 18 V 1.0, 2003-10 TC1910 PRELIMINARY On-Chip Debug System (OCDS) The TC1910 architecture is supporting OCDS Level 1. This means access to FPI Bus and the whole FPI address space via the JTAG interface pins. On-Chip Peripheral Units The TC1910 offers several on-chip peripheral units such as serial controllers, timer units, and Codec module. Within the TC1910 all these peripheral units are connected to the TriCore CPU/system via the FPI (Flexible Peripheral Interconnect) Bus. Several IO lines on the TC1910 ports are reserved for these peripheral units to communicate with the external world. Peripheral Units of the TC1910: • Three Asynchronous/Synchronous Serial Channels with baudrate generator, parity, framing and overrun error detection, IrDA mode, FIFO buffers. • One High Speed Synchronous Serial Channels with programmable data length and shift direction • IIC module • One multi-functional General Purpose Timer Units with three 32-bit timer/counter • Dual channel Codec interface • GPIO blocks Table 1 Peripheral Modules Module Address Range I/O Lines Interrupt Nodes Asynchronous Serial Channel 0 (ASC0) F000 0A00H F000 0AFFH RDX0, TDX0 ASC0_TSRC ASC0_RSRC ASC0_ESRC ASC0_TBSRC Asynchronous Serial Channel 1 (ASC1) F000 0B00H F000 0BFFH RDX1, TDX1 ASC1_TSRC ASC1_RSRC ASC1_ESRC ASC1_TBSRC Synchronous Serial F000 0800H Channel (SSC) F000 08FFH SCLK, MRST, MTSR SSC_TSRC SSC_RSRC SSC_ESRC Inter-IC Bus (IIC) F000 0500H F000 05FFH SCL, SDA IIC_XP0SRC IIC_XP1SRC IIC_XP2SRC Real Time Clock (RTC) F000 0100H F000 01FFH - RTC_SRC Data Sheet 19 V 1.0, 2003-10 TC1910 PRELIMINARY Table 1 Peripheral Modules (cont’d) Module Address Range I/O Lines Interrupt Nodes System Timer Unit (STM) F000 0300H F000 03FFH - - General Purpose Timer (GPTU) F000 0700H F000 07FFH GPTU GPTU_SRC0..7 Speech Interface (Codec) F000 2400H F000 24FFH 2*2 analog IN, 2*2 analog OUT, CEXT, CODEC_DIS CODEC_SRC0..5 Data Sheet 20 V 1.0, 2003-10 TC1910 PRELIMINARY Asynchronous/Synchronous Serial Interfaces (ASC 0/1) The Asynchronous/Synchronous Serial Interface ASC provides serial communication between the TriCore and other microcontrollers, microprocessors or external peripherals. Features: • Full duplex asynchronous operating modes – 8- or 9-bit data frames, LSB first – Parity bit generation/checking – One or two stop bits – Baudrate from 3.125 MBaud to 0.74 Baud (@ 50 MHz module clock) – Multiprocessor mode for automatic address/data byte detection – Loop-back capability • Half-duplex 8-bit synchronous operating mode – Baudrate from 6.25 MBaud to 637 Baud (@ 50 MHz module clock) • Double buffered transmitter/receiver • Interrupt generation – on a transmitter buffer empty condition – on a transmit last bit of a frame condition – on a receiver buffer full condition – on an error condition (frame, parity, overrun error) • Support for IrDA • Automatic Baudrate Detection • 8 Byte FIFO C lo c k C on tro l f hw _c lk A d d re s s D e c od e r Interru p t C on tro l RXD T IR T B IR R IR E IR A B S TIR A B D E T IR ASC M od u le (K e rn e l) TX D RXD P o rt C o n tro l TX D M C A 05 2 53 Figure 6 Data Sheet General Block Diagram of the ASC Interface 21 V 1.0, 2003-10 TC1910 PRELIMINARY High-Speed Synchronous Serial Interface (SSC) The High Speed Synchronous Serial Interface SSC provides serial communication between microcontrollers, microprocessors or external peripherals. The SSC supports full-duplex and half-duplex synchronous communication up to 25 MBaud (@ 50 MHz module clock). The serial clock signal can be generated by the SSC itself (master mode) or be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices. Transmission and reception of data are double-buffered. A 16-bit baud rate generator provides the SSC with a separate serial clock signal. Features: • Master and slave mode operation – Full-duplex or half-duplex operation • Flexible data format – Programmable number of data bits : 2 to 16 bit – Programmable shift direction : LSB or MSB shift first – Programmable clock polarity : idle low or high state for the shift clock – Programmable clock/data phase : data shift with leading or trailing edge of SCLK • Maximum baudrate: 25 MBaud in Master, 12.5 in Slave mode (@ 50 MHz module clock) Interrupt generation – on a transmitter empty condition – on a receiver full condition – on an error condition (receive, phase, baudrate, transmit error) • Three pin interface f h w _c lk A d d re s s D e c o de r Slave Master C lo c k C on tro l SSC M o d ule (K erne l) Interru p t C on tro l SCLK E IR R IR RXD M TSR TXD RXD TXD P o rt C o n tro l M RST S la v e M a s te r SCLK T IR M C B 04 5 0 5_ m o d Figure 7 Data Sheet General Block Diagram of the SSC Interface 22 V 1.0, 2003-10 TC1910 PRELIMINARY Inter-IC Interface (IIC) IIC supports a certain protocol to allow devices to communicate directly with each other via two wires. One line is responsible for clock transfer and synchronization (SCL), the other is responsible for the data transfer (SDA). The on-chip IIC Bus module connects the platform buses to other external controllers and/or peripherals via the two-line serial IIC interface. The IIC Bus module provides communication at data rates of up to 400 kBit/s and features 7-bit addressing as well as 10-bit addressing. This module is fully compatible to the IIC bus protocol. The module can operate in three different modes: Master mode, where the IIC controls the bus transactions and provides the clock signal. Slave mode, where an external master controls the bus transactions and provides the clock signal. Multimaster mode, where several masters can be connected to the bus, i.e. the IIC can be master or slave. The on-chip IIC bus module allows efficient communication via the common IIC bus. The module unloads the CPU of low level tasks like: • • • • • (De)Serialization of bus data. Generation of start and stop conditions. Monitoring the bus lines in slave mode. Evaluation of the device address in slave mode. Bus access arbitration in multimaster mode. IIC Features: • • • • • Extended buffer allows up to 4 send/receive data bytes to be stored. Selectable baud rate generation. Support of standard 100 kBaud and extended 400 kBaud data rates. Operation in 7-bit addressing mode or 10-bit addressing mode. Flexible control via interrupt service routines or by polling. Data Sheet 23 V 1.0, 2003-10 TC1910 PRELIMINARY Timer Unit (GPTU) Figure 8 shows a global view of all functional blocks of the GPTU module. C lo c k C on tro l fG P T U A d d re s s D e c od e r Interru p t C on tro l SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 G PTU M od u le (K e rn e l) IN 0 IN 1 IN 2 IN 3 IN 4 IN 5 IN 6 IN 7 OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 IO 0 IO 1 IO 2 IO 3 P o rt C o ntro l IO 4 IO 5 IO 6 IO 7 P 0.0 / G P T 0 P 0.1 / G P T 1 P 0.2 / G P T 2 P 0.3 / G P T 3 P 0.4 / G P T 4 P 0.5 / G P T 5 P 0.6 / G P T 6 P 0 .7 / G P T 7 M C B 0 5 0 52 _ m o d ifie d Figure 8 General Block Diagram of the GPTU Interface The GPTU consists of three 32-bit timers designed to solve such application tasks as event timing, event counting, and event recording. The GPTU communicates with the external world via eight inputs and eight outputs. The three timers of the GPTU module T0, T1, and T2, can operate independently from each other, or can be combined: General Features: • • • • All timers are 32-bit precision timers with a maximum input frequency of fGPTU/2. Events generated in T0 or T1 can be used to trigger actions in T2 Timer overflow or underflow in T2 can be used to clock either T0 or T1 T0 and T1 can be concatenated to form one 64-bit timer Features of T0 and T1: • Each timer has a dedicated 32-bit reload register with automatic reload on overflow • Timers can be split into individual 8-, 16-, or 24-bit timers with individual reload registers • Overflow signals can be selected to generate service requests, pin output signals, and T2 trigger events • Two input pins can determine a count option Data Sheet 24 V 1.0, 2003-10 TC1910 PRELIMINARY Features of T2: • Optionally count up or down • Operating modes: – Timer – Counter – Incremental Interface Mode • Options: – External start/stop, one-shot operation, timer clear on external event – Count direction control through software or an external event – Two 32-bit reload/capture registers • Reload modes: – Reload on overflow or underflow – Reload on external event: positive transition, negative transition, or both transitions • Capture modes: – Capture on external event: positive transition, negative transition, or both transitions – Capture and clear timer on external event: positive transition, negative transition, or both transitions • Can be split into two 16-bit counter/timers • Timer count, reload, capture, and trigger functions can be assigned to input pins. T0 and T1 overflow events can also be assigned to these functions. • Overflow and underflow signals can be used to trigger T0 and/or T1 and to toggle output pins • T2 events are freely assignable to the service request nodes. Real Time Clock Unit RTC The Real Time Clock (RTC) module is basically an independent timer chain and counts clock ticks. The base frequency of the RTC can be programmed via a reload counter. The RTC can work fully asynchronous to the system frequency and is optimized on low power consumption. Features: The RTC serves different purposes: • • • • Absolute system clock to determine the current time and date Cyclic time based interrupt Alarm interrupt for wake up on a defined time 48-bit timer for long term measurements Data Sheet 25 V 1.0, 2003-10 TC1910 PRELIMINARY Codec Interface The speech A/D and D/A converters (called codec) is designed for telephone and speech recognition quality. They can be used for microphone / earpiece applications. The TC1910 configuration implements a dual channel speech codec connected to the FPI bus. VDD VSS V DD V SS C O D0 COD0 CO D 1 CO D 1 ch0 n on -inv. inpu t C lock C on trol f pe r ch0 in v. inp ut ch0 n on -inv. outp ut ch0 in v. ou tp ut A d dre ss D e co de r ch1 n on -inv. inpu t ch1 in v. inp ut In terrup t C on trol SR0 SR1 SR2 SR3 SR4 SR5 CO DEC M o dule K e rn el ch1 n on -inv. outp ut ch1 in v. ou tp ut A O 0+ A O 0A I1 + A I1 A O 1+ A O 1C O D E C _ D IS external clock inp ut CEXT m ute ch ann el 1 COD A I0 - clock disab le m ute ch ann el 0 V RE F A I0 + M UTE0 M UTE1 VGND COD Figure 9 5 C od ec b ypass IIS sig na ls General Codec Overview General Purpose I/Os (GPIO) • • • • Push/pull output drivers 3.3 Volt operation for GPIO Programmable pull-up/-down devices at all pins Optional Open Drain Output Mode Data Sheet 26 V 1.0, 2003-10 TC1910 PRELIMINARY ID Register Table Table 2 List of TC1910 ID registers Short Name Description Address Reset Value SCU_ID SCU Identification Register F000 0008H 0019 C002H MANID Manufacturer Identification Register F000 0070H 0000 1820H CHIPID Chip Identification Register F000 0074H 0000 8902H RTID Redesign Tracing Identification Register F000 0078H 0000 0000H RTC_ID RTC Module Identification Register F000 0108H 0000 5A04H BCU_ID BCU Identification Register F000 0208H 0000 6A06H STM_ID System Timer Module Identification Register F000 0308H 0000 C002H JDP_ID JTAG/OCDS Module Identification Register F000 0408H 0000 6305H IIC_ID IIC Module Identification Register F000 0508H 0000 4604H GPTU_ID GPTU Module Identification Register F000 0708H 0001 C002H SSC_ID SSC Module Identification Register F000 0808H 0000 4503H ASC0_ID ASC Module Identification Register F000 0A08H 0000 44E1H ASC1_ID ASC Module Identification Register F000 0B08H 0000 44E1H CODEC_ID Codec Identification Register F000 2408H 001C C002H CPS_ID CPU Module Identification Register F7E0 FF08H 0015 C004H CPU_ID CPU Identification Register F7E1 FE18H 000A C003H EBU_ID EBU_LMB Module Identification Register F800 0008H 0014 C003H DMU_ID DMU Identification Register F87F FC08H 0008 C002H PMU_ID PMU Module Identification Register F87F FD08H 000B C002H LCU_ID LCU Identification Register F87F FE08H 000F C003H LFI_ID LFI Identification Register F87F FF08H 000C C003H Data Sheet 27 V 1.0, 2003-10 TC1910 PRELIMINARY Power Supply Figure 10 shows the TC1910 power supply concept, where certain logic modules are individually supplied with power. In this way, the noise margin is improved in the especially sensitive modules, like the A/D converter and the CODEC. V D DA V D DA V DD A V DD A V D DA V DD A V SSA V SS A V SSA V SSA V SS A V SSA M A IN OSC RTC OSC PLL (ana log) ADC (ana log) CO DEC 0 (a na lo g) CODEC 1 (ana log) V D DP V SS P X V D DP B atte ry B acked S ta nd- B y S RAM A LL D IG IT A L C O R E CO MPO NENTS V SS P Y V D D_SB V D DR V SS Figure 10 Data Sheet V DD VDD V SS V SS TC1910 Power Supply Concept 28 V 1.0, 2003-10 TC1910 PRELIMINARY Power-Up Sequence During Power-Up reset pin PORST has to be held active until both power supply voltages have reached at least their minimum values. During the Power-Up time (rising of the supply voltages from 0 to their regular operating values) it has to be ensured, that the core VDD power supply reaches its operating value first, and then the GPIO VDDP power supply. During the rising time of the core voltage it must be ensured that 0< VDD-VDDP <0.5 V. During power-down, the core and GPIO power supplies VDD and VDDP respectively, have to be switched off until all capacitances are discharged to zero, before the next power-up. Note: The states of the pins are undefined when only the port voltage VDDP is on. Data Sheet 29 V 1.0, 2003-10 TC1910 PRELIMINARY Electrical characteristics Parameter Interpretation The parameters listed in the following partly represent the characteristics of the TC1910 and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column “Symbol”: CC (Controller Characteristics): The logic of the TC1910 will provide signals with the respective characteristics. SR (System Requirement): The external system must provide signals with the respective characteristics to the TC1910. Data Sheet 30 V 1.0, 2003-10 TC1910 PRELIMINARY Absolute Maximum Ratings Parameter Symbol Limit Values min. Unit Notes max. TA TST Storage temperature Junction temperature TJ Voltage on I/O Supply pins with VDDP respect to ground (VSS) Voltage on Core Supply pins VDD with respect to ground (VSS) VDDPLL Voltage on PLL Supply pins with respect to ground (VSS) Voltage between Oscillator VDDOSC Supply Pins and ground (VSS). Voltage on any pin with respect VIN to ground (VSS) -40 85 °C -65 150 °C – 125 °C -0.5 4.2 V -0.3 2.1 V -0.3 2.1 V -0.3 2.1 V -0.5 4.2 V Input current on any pin during IOV overload condition -10 10 mA Ambient temperature Absolute sum of all input currents at overload condition ΣIOV – |100| mA Power dissipation PDISS – 1.0 W under bias under bias PLL Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (VIN>VDD or VIN<VSS) the voltage on VDD pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Data Sheet 31 V 1.0, 2003-10 TC1910 PRELIMINARY Package Parameters (P-LBGA-208) Parameter Symbol Limit Values PDISS RTHA Power dissipation Thermal resistance Unit Notes min. max. – 1.0 W – 30 K/W Chip to ambient – Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation of the TC1910. All parameters specified in the following sections refer to these operating conditions, unless otherwise noted. Parameter Symbol Limit Values min. Supply voltage Ground voltage Input current on any pin during overload condition Unit Notes max. VDDP VDD VDDPLL VDDOSC VSS 3.0 3.61) V I/O supply 1.71 1.892) V Core supply 1.71 1.89 V PLL supply 1.71 1.89 V Oscillator supply IOV -5 5 mA – |50| mA Absolute sum of all input Σ| IOV| currents at overload condition 0 V Ambient temperature under bias TA -40 85 °C CPU clock fCPU CL – 66 MHz – 50 pF External Load Capacitance VOV > VDDP + 0.3V VOV < VSS - 0.3V 1) Voltage overshoot to 4 V is permissible, provided the pulse duration is less than 100 µs and the cumulated summary of the pulses does not exceed 1 h 2) Voltage overshoot to 2 V is permissible, provided the pulse duration is less than 100 µs and the cumulated summary of the pulses does not exceed 1 h Data Sheet 32 V 1.0, 2003-10 TC1910 PRELIMINARY DC Characteristics GPIO pins Parameter Symbol Limit values min. max. Unit Test Conditions Output low voltage (strong driver) VOL - 1 0.4 V IOL = 10 mA IOL = 2.5 mA Output high voltage (strong driver) VOH 2.4 - V IOH = - 2.5 mA Output low voltage (medium driver)1) VOL - 0.4 V IOL = 1 mA Output high voltage (medium driver)1) VOH 2.4 - V IOH = - 1 mA Output low voltage (weak driver)1) VOL - 0.4 V IOL = 100 µA Output high voltage (weak driver)1) VOH 2.4 - V IOH = - 100 µA Input low voltage VIL -0.3 0.8 V LVTTL Input high voltage VIH 2.0 VDDP+0.3 V or 3.7V whatever is lower Input leakage current IOZ1 - ±500 nA 0V< Vin < VDDP Pull-up current 2) |IPUH | - 1 µA VOUT = 2.0V Pull-up current 3) |IPUL| 20 - µA VOUT = 0.8V Pull-down current |IPDL| - 0.8 µA VOUT = 0.8V Pull-down current |IPDH| 20 - µA VOUT = 2.0V CIO - 10 pF f = 1MHz @ TA = 25oC Pin capacitance 1) 1) Not subject to production test, verified by design/characterization. 2) The maximum current that may be drawn while the respective signal line remains inactive. 3) The minimum current that must be drawn in order to drive the respective signal line active. Data Sheet 33 V 1.0, 2003-10 TC1910 PRELIMINARY NMI Pin NMI Pin is an input pin with different Pull-Up characteristics than other pins. The related characteristics are given in the following table Parameter Symbol Limit values Unit Test Conditions min. max. Max. current allowed |IPUH | through the Pull-Up device while pin (input) voltage remains still at the high level - 4 uA VOUT=2.0V Min. current needed |IPUL | through the Pull-Up device so that pin voltage is driven to the low level. 100 - uA VOUT=0.8V Note: NMI Pin does not have a Pull-Down device. Oscillator Pins Parameter Symbol Limit values min. max. Unit Test Conditions Input leakage current (analog input) at XTAL11) IOZ1 CC - ±200 nA 0V< Vin < VDDP Input low voltage XTAL1 VILX SR - 0.3 V - Input high voltage XTAL12) VIHX SR 0.8 VDD-0.3 VDD-0.35 VDD-0.4 VDD-0.43 V fOSC=4MHz fOSC=8MHz fOSC=12MHz fOSC=16MHz XTAL1 input current IIX1 CC - ± 20 µA 0V < VIN < VDD XTAL3 input current2) IIX3 CC - ± 0.5 µA 0V < VIN < VDD 1) Only applicable in deep sleep mode 2) Not subject to production test, verified by design/characterization. Data Sheet 34 V 1.0, 2003-10 TC1910 PRELIMINARY IIC Pins Each IIC Pin is an open drain output pin with different characteristics than other pins. The related characteristics are given in the following table Parameter Symbol Limit values min. max. Unit Test Conditions Output low voltage VOL CC - 0.4 0.6 V 3 mA 6 mA Input high voltage1) VIH SR 0.7VDDP 3.6 V - Input low voltage1) VIL SR -0.3 0.3VDDP V - Input leakage current IOZ2 CC - + - 500 nA Pin capacitance1) CIO CC - 10 pF 1) f=1MHz@ TA=25oC Not subject to production test, verified by design/characterization. Note: No 5 V IIC interface is supported with these pads. Only voltages lower than 3.60 V must be applied to these pads. Note: IIC pins have no Pull-Up and Pull-Down devices. Data Sheet 35 V 1.0, 2003-10 TC1910 PRELIMINARY Codec Electrical Characteristics Parameter Symbol Limit values Unit min. typ. max. Digital supply voltage VDD 1.71 1.8 1.89 V Analog supply voltage VDDA 3.0 3.3 3.6 V Analog supply ground VSSA -0.1 0.0 +0.1 V External reference voltage VAREF1) 1.14 1.2 +1.262) V Analog reference ground VAGND VSSA- VSSA 0.05 Analog input voltage (RMS) VSSA+ 0.05 V VAIN 0.775 Vrms Analog output voltage (RMS) VAOUT 0.775 Vrms Input Resistace of the Analog Inputs4) Rain Internal Reference Voltage Vref (Bandgap Voltage)5) VBGP Test Conditions 3) - 30 - kOhm differential input, gain: -12,-6, 0 dB - 15 - kOhm single-ended input, gain: -12,-6, 0 dB - 60 - kOhm differential input, gain: 6 to 30 dB - 30 - kOhm single-ended input, gain: 6 to 30 dB 1.1 1.2 1.3 V AGCCR. BGPSEL[1,0] =00 1) Reference voltage outside the nominal range causes reduced dynamic range, decreased distortion/clipping margins, increased/decreased gain. 2) VSSA=VAGND=0V 3) Please take the gain settings of the analog preamplifier into account, therefore Vimaxreal=Vimax/gain 4) Simulation value. 5) For external usage, Bandgap reference voltage is strongly dependent on the external load (<500 MOhm). In this case, high impedance buffer must be used. Data Sheet 36 V 1.0, 2003-10 TC1910 PRELIMINARY Codec ADC and DAC path characteristics Parameters Attenuation distortion (ref. freq. 1014 Hz) (ref. level 0dBm0)2) min. 0 -0.25 -0.25 -0.25 0 (ref. level 0dBm0)2) max. Unit dB dB dB dB dB 0.25 0.45 -55 Signal to total distortion Gain tracking (ref. freq. 1014 Hz) typ. -0.3 -0.6 -1.6 Test conditions1) < 0.025 0.025-0.0375 0.0375-0.3 0.3-0.425 > 0.425 -45 dB at 0dBm0 0.3 0.6 1.6 dB dB dB +3 to -40 dBm0 -40 to -50 dBm0 -50 to -55 dBm0 receive &transmit Idle channel noise -80 -75 dBm 0 Cross talk -80 -75 dB Harmonic distortion -60 -50 dB at 0dBm0 -0.8 0 0.8 dB receive &transmit - -60 -40 -35 -35 dB dB Receive (0.0375-0.425)3) Transmit(0.0375-0.425)3) Gain (ref. freq. 1014 Hz) (ref. level 0dBm0)2) Power supply rejection ratio (PSRR) 1) Values given in this table are valid for all sampling frequencies. 2) 0dBm0 is equivalent to -12dBm is equal to 194.7 mVRMS. 3) Supply ripple 70 mV. Note: Numbers without units in the test conditions column are relative frequency values to the chosen sampling frequency. e.g. 0.425 equals 3.4 kHz @ 8 kHz sampling frequency. Data Sheet 37 V 1.0, 2003-10 TC1910 PRELIMINARY Power Supply Current Parameter Symbol Limit values typ. 1) max. Unit Test Conditions Active mode supply current IDD 180 – mA Sum of all IDD. Idle mode supply current IID IDS 90 – mA at 1.8V Core Supply 0.25 – mA at 1.8V Core Supply Deep sleep mode supply current 1) Typical values are measured at 25°C, CPU clock at 66 MHz and nominal supply voltage, i.e. 3.3V for VDDP and 1.8V for VDD, VDDPLL, VDDOSC Note: The Power Supply Current values refer to the total current at 1.8V power supply, at LMB/FPI bus frequency ratio of 2:1, while running an average application. These numbers are estimation based on average device measurements. Data Sheet 38 V 1.0, 2003-10 TC1910 PRELIMINARY AC Characteristics Operating Conditions apply. Output Rise/Fall Times GPIO pins Rise/fall time measurements are made between 10% and 90%. The following table is valid for the GPIO pins pad drivers. Output pad characteristics are controllable via DRVCTRx registers. Pad Modus rise / fall time Strong driver • sharp edge • medium edge1) • soft edge1) 1) Symbol SF SM SS Limit values min. max. Temp Unit Comp - 3 6 12 yes yes yes ns ns ns Test Conditions @50pF @50pF @50pF Not subject to production test, verified by design/characterization. Data Sheet 39 V 1.0, 2003-10 TC1910 PRELIMINARY Timing Characteristics (Operating Conditions apply) Note: Timing parameters are not subject to production test, they are verified by design/ characterization. 2 .4 V 2 .0 V 2 .0 V T e st P oin ts 0 .4 V 0 .8 V 0 .8 V M C T 0 4 88 0 AC inputs during testing are driven at 2.4V for a logic “1” and 0.4V for a logic “0”. Timing measurements are made at VIHmin for a logic “1” and VILmax for a logic “0”. Figure 11 Data Sheet Input/Output Waveforms for AC Tests - for GPIO, Dedicated and EBU pins 40 V 1.0, 2003-10 TC1910 PRELIMINARY External Oscillator at XTAL1 Timing Requirements (Operating Conditions apply) Parameter Symbol Main Oscillator XTAL frequency 1) Frequency of an external oscillator driving at XTAL12) Limits min. max. Unit with/without PLL fOSC SR 4 16 MHz with PLL3) without PLL4) fOSCDD 4 - 25 25 MHz SR t1 t2 t3 t4 Input Clock high time Input Clock low time Input Clock rise time Input Clock fall time SR 16 − ns SR 16 − ns SR − 7 ns SR − 7 ns 1) Oscillator Bypass Pin P3.11 latch-in value high. Internal oscillator provides the input clock signal. 2) Oscillator Bypass Pin P3.11 latch-in value low. Internal oscillator disabled. External oscillator provides the input clock signal. 3) Internal PLL provides the system clock. BYPASS pin latch-in value low. PLL prescaler value P=1. 4) Internal PLL bypassed. BYPASS pin latch-in value high. External oscillator provides the system clock directly. When CODEC modules is active its frequency limitations must be taken into consideration. Otherwise, minimum frequency in this mode can go as low as zero. tO SC In p u t C lo c k at XTAL1 0 .5 V D D O S C t1 t2 t4 t3 V IH X V IL X M C T 04 8 8 2 Figure 12 External Clock at XTAL1 Requirements Note: VDDOSC, VIHX and VIHL are defined in the Oscillator Pins DC Characteristics Chapter. Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier. Data Sheet 41 V 1.0, 2003-10 TC1910 PRELIMINARY CPU Clock Timing (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limits min. tCLKOUT 15 CLKOUT period Unit max. − ns CC t1 t2 t3 t4 CLKOUT high time CLKOUT low time CLKOUT rise time CLKOUT fall time CC 6 − ns CC 6 − ns CC − 3 ns CC − 3 ns t C P U C LK C LK OU T 0 .5 V D D t1 t2 t4 t3 0 .9 V D D 0 .1 V D D M C T 0 4 88 3 Figure 13 Data Sheet CLKOUT Timing 42 V 1.0, 2003-10 TC1910 PRELIMINARY PLL Parameters Parameter Limit Values1) Symbol min. Accumulated jitter VCO frequency range PLL base frequency PLL lock-in time DN fVCO fPLLBASE tL Unit max. see Figure 14 – 100 1502) MHz 150 2003) MHz 200 2504) MHz 250 3005) MHz 2) 20 80 MHz 20 1303) MHz 20 1804) MHz 20 2305) MHz – 200 µs 1) Not subject to production test, verified by design/characterization. 2) @ vcosel = ’00’ 3) @ vcosel = ’01’ 4) @ vcosel = ’10’ 5) @ vcosel = ’11’ Note: When TC1910 starts-up with the PLL not bypassed, first user instructions are executed with the frequency defined by the VCO free-running frequency (fPLLBASE) and by the reset value of the PLL_CLC register (the K-divider and VCOSEL bitfields). It is software responsibility to initialize its own appropriate values in the bitfields in this register, before giving the command for the VCO to lock to the input frequency. For more information, see the Users Manual, System Units, System Control Unit chapter. Data Sheet 43 V 1.0, 2003-10 TC1910 PRELIMINARY TC191x_pll_jitter ±5.0 ns DN ±4.0 ±3.0 fSYS = fSYS = fSYS = fSYS = fSYS = ±2.0 66 MHz (K = 4) 60 MHz (K = 5) 50 MHz (K = 6) 40 MHz (K = 7) 33 MHz (K = 8) ±1.0 ±0.0 0 5 10 15 20 25 P DN = Max. jitter P = Number of consecutive fSYS periods K = K-divider of PLL Figure 14 35 30 Approximated Maximum Accumulated PLL Jitter The following two formulas define the (absolute) approximate maximum value of jitter DN in [ns] dependent on the K-factor, the system clock frequency fSYS in [MHz], and the number P of consecutive fSYS periods. 735 for P < 0.25× fSYS DN [ns] = ± [( + 0.9) × fSYS × K for P > 0.25× fSYS DN [ns] = ± [ 735 + 1.4 ] fSYS × K P fSYS × 0.25 + 0.5 ] [1] [2] With rising number P of clock cycles the maximum jitter increases linearly up to a specific value of P. Beyond this value of P the maximum accumulated jitter remains at a constant value. Data Sheet 44 V 1.0, 2003-10 TC1910 PRELIMINARY Timing for EBU_LMB Clock Outputs (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limits min. t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 EBUCLK period EBUCLK high time EBUCLK low time EBUCLK rise time EBUCLK fall time BFCLK0 period BFCLK0 high time BFCLK0 low time BFCLK0 rise time BFCLK0 fall time Unit max. CC 15 − ns CC 6 − ns CC 6 − ns CC − 2.5 ns CC − 2.5 ns CC 20 − ns CC 9 − ns CC 9 − ns CC − 3.5 ns CC − 2.5 ns t 1 (t 6 ) EBU CLK/ BFC LK 0 0 .9 V D D 0 .1 V D D 0 .5 V D D t 2 (t 7 ) Figure 15 Data Sheet t 3 (t 8 ) t 5 (t 1 0 ) t 4 (t 9 ) M C T 0 4 88 4 EBU_LMB Clock Output Timing 45 V 1.0, 2003-10 TC1910 PRELIMINARY Timing for SDRAM Access Signals (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limits min. Unit max. AD(31:0) input setup to EBUCLK t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 SR 2.0 - ns AD(31:0) input hold from EBUCLK t18 SR 4.0 - ns CKE high from EBUCLK CKE low from EBUCLK A(23:0) output valid from EBUCLK A(23:0) output hold from EBUCLK CS(6:0) low from EBUCLK CS(6:0) high from EBUCLK RAS low from EBUCLK RAS high from EBUCLK CAS low from EBUCLK CAS high from EBUCLK RD/WR low from EBUCLK RD/WR high from EBUCLK BC(3:0) low from EBUCLK BC(3:0) high from EBUCLK AD(31:0) output valid from EBUCLK AD(31:0) output hold from EBUCLK Data Sheet 46 CC - 7.0 ns CC 2.0 - ns CC - 7.0 ns CC 2.0 - ns CC - 7.0 ns CC 2.0 - ns CC - 7.0 ns CC 2.0 - ns CC - 7.0 ns CC 2.0 - ns CC - 7.0 ns CC 2.0 - ns CC - 7.0 ns CC 2.0 - ns CC - 7.7 ns CC 2.0 - ns V 1.0, 2003-10 TC1910 PRELIMINARY Write Access: EBUCLK t1 CKE t3 t4 Row A(23:0) Column t5 t6 CSx t8 RAS t7 t10 CAS t9 t12 RD/WR t11 t14 BC(3:0) t13 Data (0) AD(31:0) Data (n-1) t15 t16 Read Access: EBUCLK t2 CKE A(23:0) t3 Row t4 Column t6 CSx RAS t9 t10 CAS RD/WR t13 t14 BC(3:0) t17 t18 Data (0) AD(31:0) Data (n-1) MCT05319 Figure 16 Data Sheet SDRAM Access Timing 47 V 1.0, 2003-10 TC1910 PRELIMINARY Timing for Burst Flash Access Signals Operating Conditions apply; CL = 50 pF) Parameter Symbol Limits min. t1 t2 t3 t5 t6 t7 t8 t9 t11 t12 A(23:0) output valid from BFCLK0 A(23:0) output hold from BFCLK0 CS(6:0) low from BFCLK0 ADV low from BFCLK0 ADV high from BFCLK0 BAA low from BFCLK0 BAA high from BFCLK0 RD low from BFCLK0 AD(31:0) input setup to BFCLK0 AD(31:0) input hold from BFCLK0 Data Sheet 48 Unit max. CC − 11.0 ns CC 0.0 − ns CC − 9.0 ns CC − 10.0 ns CC 3.0 − ns CC − 10.0 ns CC 3.0 − ns CC − 10.0 ns SR 6.0 − ns SR 3.0 − ns V 1.0, 2003-10 TC1910 PRELIMINARY BFCLK0 t1 t2 A[23:0] Address Valid t5 t6 ADV t3 CSx t9 RD t7 t8 BAA t11 t12 D[31:0] Valid Valid Note: Between the end of the Address Phase (ADV goes high) and the beginning of the Command Phase (RD goes low) several cycles of Command Delay Phase can be inserted. mct04889_mod_la Figure 17 Data Sheet Burst Flash Access Timing (Instruction Read) 49 V 1.0, 2003-10 TC1910 PRELIMINARY Timing for Demultiplexed Access Signals1) (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limits min. t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 ALE low from EBUCLK ALE high from EBUCLK A(23:0) output valid from EBUCLK A(23:0) output hold from EBUCLK CS(6:0) low from EBUCLK CS(6:0) high from EBUCLK MR/W low from EBUCLK MR/W high from EBUCLK RMW low from EBUCLK RMW high from EBUCLK RD low from EBUCLK RD high from EBUCLK RD/WR low from EBUCLK RD/WR high from EBUCLK CMDELAY input setup to EBUCLK CMDELAY hold from EBUCLK WAIT input setup to EBUCLK WAIT hold from EBUCLK BC(3:0) low from EBUCLK BC(3:0) high from EBUCLK AD(31:0) output valid from EBUCLK AD(31:0) output hold from EBUCLK AD(31:0) input setup to EBUCLK AD(31:0) input hold from EBUCLK 1) Unit max. CC − 8.0 ns CC 2.0 − ns CC − 8.0 ns CC 2.0 − ns CC − 8.0 ns CC 2.0 − ns CC − 8.0 ns CC 2.0 − ns CC − 8.0 ns CC 1.0 − ns CC − 8.0 ns CC 0.0 − ns CC − 8.0 ns CC 2.0 ns SR 4.0 − ns SR 3.0 − ns SR 4.0 − ns SR 3.0 − ns CC − 8.0 ns CC 2.0 − ns CC − 8.0 ns CC 0.0 − ns SR 4.0 − ns SR 4.0 − ns It is user responsibility to program an appropriate whole number of clock cycles to generate the correct phase length according to the particular asynchronous memory/peripheral device specification. Data Sheet 50 V 1.0, 2003-10 TC1910 PRELIMINARY EBUCLK t1 ALE t2 t3 t4 Address A(23:0) t5 t6 CSx t7 MR/W t14 RD/WR t16 t15 t13 CMDELAY t18 t17 WAIT t20 t19 t19 t20 t21 t22 BC(3:0) Data Out AD(31:0) MCT05320 Figure 18 Demultiplexed Write Access Data Sheet 51 V 1.0, 2003-10 TC1910 PRELIMINARY EBUCLK t1 ALE t2 t3 t4 Address A(23:0) t6 CSx t5 MR/W t8 t10 t9 t12 RMW RD t16 t15 t11 CMDELAY t18 t17 WAIT t19 t19 t20 BC(3:0) t23 t24 Data AD(31:0) Note: RMW signal is available only during Read-Modify-Write Access. MCT05321 Figure 19 Demultiplexed Read Access Data Sheet 52 V 1.0, 2003-10 TC1910 PRELIMINARY Timing for Multiplexed Access Signals1) (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limits min. t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 ALE high from EBUCLK ALE low from EBUCLK AD(31:0) output valid from EBUCLK AD(31:0) output hold from EBUCLK AD(31:0) input setup to EBUCLK AD(31:0) input hold from EBUCLK CS(6:0) low from EBUCLK CS(6:0) high from EBUCLK MR/W low from EBUCLK MR/W high from EBUCLK RMW low from EBUCLK RMW high from EBUCLK RD/WR low from EBUCLK RD/WR high from EBUCLK RD low from EBUCLK RD high from EBUCLK CMDELAY input setup to EBUCLK CMDELAY hold from EBUCLK WAIT input setup to EBUCLK WAIT hold from EBUCLK BC(3:0) low from EBUCLK BC(3:0) high from EBUCLK 1) Unit max. CC − 8.0 ns CC 2.0 − ns CC − 8.0 ns CC 0.0 − ns SR 4.0 − ns SR 4.0 − ns CC − 8.0 ns CC 1.0 − ns CC − 8.0 ns CC 2.0 − ns CC − 8.0 ns CC 1.0 − ns CC − 8.0 ns CC 2.0 − ns CC − 8.0 ns CC 0.0 − ns SR 4.0 − ns SR 3.0 − ns SR 4.0 − ns SR 3.0 − ns CC − 8.0 ns CC 2.0 − ns It is user responsibility to program an appropriate whole number of clock cycles to generate the correct phase length according to the particular asynchronous memory/peripheral device specification. Data Sheet 53 V 1.0, 2003-10 TC1910 PRELIMINARY EBUCLK t1 ALE t2 t3 t4 Address AD(31:0) t7 Data t4 t8 t3 CSx t9 MR/W t14 RD/WR t18 t17 t13 CMDELAY t20 t19 WAIT t22 t21 t21 t22 BC(3:0) MCT05322 Figure 20 Data Sheet Multiplexed Write Access 54 V 1.0, 2003-10 TC1910 PRELIMINARY EBUCLK t1 ALE t2 t5 t3 t6 Address AD(31:0) Data t4 t8 CSx t7 MR/W t10 t12 t11 t16 RMW RD t18 t17 t15 CMDELAY t20 t19 WAIT t21 t21 t22 BC(3:0) Note: RMW signal is only available during Read-Modify-Write Access. Figure 21 Data Sheet MCT05323 Multiplexed Read Access 55 V 1.0, 2003-10 TC1910 PRELIMINARY Timing for External Bus Arbitration Signals (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limits min. t1 t2 t3 t4 t5 t6 t7 t8 HOLD input setup to EBUCLK HOLD input hold from EBUCLK HLDA low from EBUCLK HLDA high from EBUCLK HLDA input setup to EBUCLK HLDA input hold from EBUCLK BREQ low from EBUCLK BREQ high from EBUCLK Unit max. SR 6.0 − ns SR 8.0 − ns CC − 10.0 ns CC − 9.0 ns SR 8.0 − ns SR 8.0 − ns CC − 10.0 ns CC − 9.0 ns Note: The signals HOLD, HLDA and BREQ are alternate function of the CS5, CS6 and CSOVL Pins. Data Sheet 56 V 1.0, 2003-10 TC1910 PRELIMINARY External M aster M ode EBU C LK t1 t2 H OLD t4 H LDA t3 t8 BREQ t7 External S lave M ode EBU C LK t7 t8 BREQ t5 t6 H LDA t1 t2 H OLD M C T 05324_m od Figure 22 Data Sheet External Bus Arbitration Timing 57 V 1.0, 2003-10 TC1910 PRELIMINARY SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF) Parameter Symbol Limit Values min. Unit max. SCLK period tSCLK CC 40 ns MTSR low/high from SCLK edge t5 CC - 2.0 ns MRST setup to SCLK edge t6 SR 15 - ns MRST hold from SCLK edge t7 SR 15 - ns tSCLK SCLK (CON.PO,CON.PH=00 or 11) 0.9 VDD 0.1 VDD 0.5 VDD t2 SCLK (CON.PO,CON.PH=01 or 10) t2 t4 t3 0.9 VDD 0.1 VDD 0.5 VDD t3 t4 t5 MTSR State n-1 State n t6 MRST State n+1 t7 Data valid Data valid MCT04885 Figure 23 Data Sheet SSC Master Mode Timing 58 V 1.0, 2003-10 TC1910 PRELIMINARY Package Outlines Figure 24 P-LBGA-208 Package You can find all of our packages, sorts of packing and other in our Infineon Internet Page “Products”: http://www.infineon.com/products • Data Sheet 59 V 1.0, 2003-10 TC1910 PRELIMINARY Data Sheet 60 V 1.0, 2003-10 ((49)) http://www.infineon.com Published by Infineon Technologies AG