INFINEON HYM361120S-60

1M × 36-Bit Dynamic RAM Module
(2M × 18-Bit Dynamic RAM Module)
HYM 361120/40S/GS-60/-70
Advanced Information
•
1 048 576 words by 36-bit organization
(alternative 2 097 152 words by 18-bit)
•
12 decoupling capacitors mounted on
substrate
•
Fast access and cycle time
60 ns access time
110 ns cycle time (-60 version)
70 ns access time
130 ns cycle time (-70 version)
•
All inputs, outputs and clock fully TTL
compatible
•
72 pin Single in-Line Memory Module
•
Utilizes four 1M × 1-DRAMs and eight
1M × 4-DRAMs in 300 mil SOJ packages
Fast page mode capability with
40 ns cycle time (-60 version)
45 ns cycle time (-70 version)
•
1024 refresh cycles/16 ms
•
Tin-Lead contact pads (S - version)
•
Gold contact pads (GS - version)
•
HYM 321140S: single sided module with
31.75 mm (1250 mil) height
•
HYM 321120S: double sided module with
25.40 mm (1000 mil) height
•
•
Single + 5 V (± 10 %) supply
•
Low power dissipation
max. 6820 mW active (-60 version)
max. 6160 mW active (-70 version)
CMOS – 66 mW standby
TTL
– 132 mW standby
•
CAS-before-RAS refresh, RAS-only-refresh,
Hidden refresh
Ordering Information
Type
Ordering Code
Package
Descriptions
HYM 361140S-60
Q67100-Q959
L-SIM-72-8
DRAM module (access time 60 ns)
HYM 361140S-70
Q67100-Q958
L-SIM-72-8
DRAM module (access time 70 ns)
HYM 361120S-60
Q67100-Q942
L-SIM-72-3
DRAM module (access time 60 ns)
HYM 361120S-70
Q67100-Q741
L-SIM-72-3
DRAM module (access time 70 ns)
HYM 361140GS-60
Q67100-Q1019
L-SIM-72-8
DRAM module (access time 60 ns)
HYM 361140GS-70
Q67100-Q651
L-SIM-72-8
DRAM module (access time 70 ns)
HYM 361120GS-60
Q67100-Q961
L-SIM-72-3
DRAM module (access time 60 ns)
HYM 361120GS-70
Q67100-Q960
L-SIM-72-3
DRAM module (access time 70 ns)
Semiconductor Group
591
06.94
HYM 361120/40S/GS-60/-70
1M × 36-Bit
The HYM 361120/40S/GS-60/-70 is a 4 MByte DRAM module organized as 1 048 576 words by
36-bit in a 72-pin single-in-line package comprising four HYB 511000BJ 1M × 1 DRAMs and eight
HYB 514400BJ 1M × 4 DRAMs in 300 mil wide SOJ-packages mounted together with twelve
0.2 µF ceramic decoupling capacitors on a PC board.
The HYM 361120/40S/GS-60/-70 can also be used as a 2 097 152 words by 18-bits dynamic RAM
module by means of connecting DQ0 and DQ18, DQ1 and DQ19, DQ2 and DQ20, …, DQ17 and
DQ35, respectively.
Each HYB 511000BJ and HYB 514400BJ is described in the data sheet and is fully electrically
tested and processed according to Siemens standard quality procedure prior to module assembly.
After assembly onto the board, a further set of electrical tests is performed.
The speed of the module can be detected by the use of four presence detect pins.
The common I/O feature on the HYM 361120/40S/GS-60/-70 dictates the use of early write cycles.
Pin Definitions and Functions
Pin No.
Function
A0-A9
Address Inputs
DQ0-DQ35
Data Input/Output
CAS0 - CAS3
Column Address Strobe
RAS0, RAS2
Row Address Strobe
WE
Read/Write Input
VCC
Power (+ 5 V)
VSS
Ground
PD
Presence Detect Pin
N.C.
No Connection
Presence Detect Pins
-60
-70
PD0
VSS
VSS
PD1
VSS
VSS
PD2
N.C.
VSS
PD3
N.C.
N.C.
Semiconductor Group
592
HYM 361120/40S/GS-60/-70
1M × 36-Bit
Pin Configuration
(top view)
Semiconductor Group
593
HYM 361120/40S/GS-60/-70
1M × 36-Bit
Block Diagram
Semiconductor Group
594
HYM 361120/40S/GS-60/-70
1M × 36-Bit
Absolute Maximum Ratings
Operating temperature range ......................................................................................... 0 to + 70 ˚C
Storage temperature range...................................................................................... – 55 to + 125 ˚C
Soldering temperature ............................................................................................................ 260 ˚C
Soldering time ............................................................................................................................. 10 s
Input/output voltage ........................................................................................................ – 1 to + 7 V
Power supply voltage...................................................................................................... – 1 to + 7 V
Power dissipation................................................................................................................... 8.68 W
Data out current (short circuit) ................................................................................................ 50 mA
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent
damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect device reliability.
DC Characteristics 1)
TA = 0 to 70 ˚C; VCC = 5 V ± 10 %
Parameter
Symbol
Limit Values
min.
max.
Unit
Test
Condition
Input high voltage
VIH
2.4
5.5
V
–
Input low voltage
VIL
– 1.0
0.8
V
–
Output high voltage (IOUT = – 5 mA)
VOH
2.4
–
V
–
Output low voltage (IOUT = 4.2 mA)
VOL
–
0.4
V
–
Input leakage current
(0 V < VIN < 6.5 V, all other pins = 0 V)
II(L)
– 20
20
µA
–
Output leakage current
(DO is disabled, 0 V < VOUT < 5.5 V)
IO(L)
– 10
10
µA
–
Average VCC supply current:
ICC1
–
–
1240
1120
mA
mA
2), 3)
–
24
mA
–
-60 version
-70 version
(RAS, CAS, address cycling, tRC = tRC min.)
Standby VCC supply current
(RAS = CAS = VIH)
ICC2
Average VCC supply current during RAS
ICC3
only refresh cycles:
-60 version
-70 version
(RAS cycling, CAS = VIH , tRC = tRC min.)
Semiconductor Group
595
2)
–
–
1240
1120
mA
mA
HYM 361120/40S/GS-60/-70
1M × 36-Bit
DC Characteristics (cont’d) 1)
Parameter
Symbol
Limit Values
min.
Average VCC supply current during fast
ICC4
page mode:
-60 version
-70 version
Unit
max.
Test
Condition
2), 3)
–
–
840
720
mA
mA
–
12
mA
(RAS = VIL, CAS, address cycling
tPC = tPC min.)
Standby VCC supply current
(RAS = CAS = VCC – 0.2 V)
ICC5
Average VCC supply current during
ICC6
CAS-before-RAS refresh mode:
-60 version
-70 version
–
1)
–
–
1240
1120
mA
mA
(RAS, CAS cycling, tRC = tRC min.)
Capacitance
TA = 0 to 70 ˚C; VCC = 5 V ± 10 %; f = 1 MHz
Parameter
Symbol
Limit Values
min.
max.
Unit
Input capacitance (A0 to A9)
CI1
–
80
pF
Input capacitance (RAS0, RAS2)
CI2
–
42
pF
Input capacitance (CAS0-CAS3)
CI3
–
35
pF
Input capacitance (WE)
CI4
–
80
pF
I/O capacitance (DQ0-DQ7, DQ9-DQ16,
DQ18-DQ25, DQ27-DQ34)
CIO1
–
15
pF
I/O capacitance (DQ8, DQ17, DQ26, DQ35)
CIO2
–
20
pF
Semiconductor Group
596
HYM 361120/40S/GS-60/-70
1M × 36-Bit
AC Characteristics 4) 5)
TA = 0 to 70 ˚C; VCC = 5 V ± 10 %; tT = 5 ns
Parameter
Symbol
Limit Values
HYM
361120/40S/GS-60
Unit
HYM
361120/40S/GS-70
min.
max.
min.
max.
Random read or write cycle time
tRC
110
–
130
–
ns
Fast page mode cycle time
tPC
40
–
45
–
ns
Access time from RAS
6) 11) 12)
tRAC
–
60
–
70
ns
Access time from CAS
6) 11)
tCAC
–
15
–
20
ns
tAA
–
30
–
35
ns
tCPA
–
35
–
40
ns
Access time from column
address
6) 12)
Access time from CAS
prech arge
6)
CAS to output in low-Z
6)
tCLZ
0
–
0
–
ns
Output buffer turn-off delay
7)
tOFF
0
20
0
20
ns
Transition time (rise and fall)
5)
tT
3
50
3
50
ns
RAS precharge time
tRP
40
–
50
–
ns
RAS pulse width
tRAS
60
10000
70
10000
ns
RAS pulse width
tRASP
60
200000
70
200000
ns
CAS precharge to RAS delay
tRHCP
35
–
40
–
ns
RAS hold time
tRSH
15
–
20
–
ns
CAS hold time
tCSH
60
–
70
–
ns
tCAS
15
10000
20
10000
ns
tRCD
20
45
20
50
ns
tRAD
15
30
15
35
ns
CAS to RAS precharge time
tCRP
5
–
5
–
ns
CAS precharge time
(fast page mode)
tCP
10
–
10
–
ns
Row address setup time
tASR
0
–
0
–
ns
Row address hold time
tRAH
10
–
10
–
ns
Column address setup time
tASC
0
–
0
–
ns
Column address hold time
tCAH
15
–
15
–
ns
(fast page mode)
CAS pulse width
RAS to CAS delay time
RAS to column address
delay time
11)
12)
.
Semiconductor Group
597
HYM 361120/40S/GS-60/-70
1M × 36-Bit
AC Characteristics (cont’d) 4) 5)
TA = 0 to 70 ˚C; VCC = 5 V ± 10 %; tT = 5 ns
Parameter
Symbol
Limit Values
HYM
361120/40S/GS-60
Unit
HYM
361120/40S/GS-70
min.
max.
min.
max.
30
–
35
–
ns
tRCS
0
–
0
–
ns
tRCH
0
–
0
–
ns
tRRH
0
–
0
–
ns
Write command hold time
tWCH
10
–
15
–
ns
Write command pulse width
tWP
10
–
15
–
ns
Write command to RAS lead time tRWL
15
–
20
–
ns
Write command to CAS lead time tCWL
15
–
20
–
ns
Column address to RAS lead time tRAL
Read command setup time
Read command hold time
Read command hold time
ref. to RAS
8)
8)
Data setup time
9)
tDS
0
–
0
–
ns
Data hold time
9)
tDH
15
–
15
–
ns
tREF
–
16
–
16
ms
Write command setup time
10)
tWCS
0
–
0
–
ns
CAS setup time
13)
tCSR
5
–
5
–
ns
CAS hold time
13)
tCHR
15
–
15
–
ns
Refresh period
tRPC
0
–
0
–
ns
CAS precharge time
13)
tCP
10
–
10
–
ns
Write to RAS precharge time
13)
tWRP
10
–
10
–
ns
Write to time ref. to RAS
13)
tWRH
10
–
10
–
ns
RAS to CAS precharge time
.
Semiconductor Group
598
HYM 361120/40S/GS-60/-70
1M × 36-Bit
Notes
1) All voltages are referenced to VSS .
2) ICC1, ICC3, ICC4 and ICC6 depend on cycle rate.
3) ICC1 and ICC4 depend on output loading. Specified values are measured with the output open.
4) An initial pause of 200 µs is required after power-up followed by 8 RAS cycles out of which at least one cycle
has to be a refresh cycle before proper device operation is achieved. In case of using internal refresh counter,
a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
5) VIH (min.) and VIL (max.) are reference levels for measuring timing of input signals. Transition times are also
measured between VIH and VIL .
6) Measured with a load equivalant of 2 TTL loads and 100 pF.
7) tOFF (max.) defines the time at which the output achieves the open-circuit condition and is not referenced to
output voltage levels.
8) Either tRCH or tRRH must be satisfied for a read cycle.
9) These parameters are referenced to the CAS leading edge.
10) tWCS is not a restrictive operating parameter. This is included in the data sheet as electrical characteristic only.
If tWCS > tWCS (min.), the cycle is an early write cycle and data out pin will remain open circuit (high impedance).
11) Operation within the tRCD (max.) limit insures that tRAC (max.) can be met. tRCD (max.) is specified as a reference
point only. If tRCD is greater than the specified tRCD (max.) limit, then access time is controlled by tCAC.
12) Operation within the tRAD (max.) limit insures that tRAC (max.) can be met. tRAD (max.) is specified as a reference
point only. If tRAD is greater than the specified tRAD (max.) limit, then access time is controlled by tAA.
13) For CAS-before-RAS cycles only.
Semiconductor Group
599