PHILIPS MF0ULX1

MF0ULx1
MIFARE Ultralight EV1 - contactless ticket IC
Rev. 3.0 — 19 February 2013
234530
Product data sheet
COMPANY PUBLIC
1. General description
NXP Semiconductors developed the MIFARE Ultralight EV1 MF0ULx1 for use in a
contactless smart ticket, smart card or token in combination with a Proximity Coupling
Device (PCD). The MF0ULx1 is designed to work in an ISO/IEC 14443 Type A compliant
environment (see Ref. 1). The target applications include single trip or limited use tickets
in public transportation networks, loyalty cards or day passes for events. The MF0ULx1
serves as a replacement for conventional ticketing solutions such as paper tickets,
magnetic stripe tickets or coins. It is also a perfect ticketing counterpart to contactless
card families such as MIFARE DESFire or MIFARE Plus.
The MIFARE Ultralight EV1 is succeeding the MIFARE Ultralight ticketing IC and is fully
functional backwards compatible. Its enhanced feature and command set enable more
efficient implementations and offer more flexibility in system designs.
The mechanical and electrical specifications of MIFARE Ultralight EV1 are tailored to
meet the requirements of inlay and paper ticket manufacturers.
1.1 Contactless energy and data transfer
In a MIFARE system, the MF0ULx1 is connected to a coil with a few turns. The MF0ULx1
fits the TFC.0 (Edmondson) and TFC.1 (ISO) ticket formats as defined in Ref. 8.
The MF0ULx1 chip, which features a 17 pF on-chip resonance capacitor, supports both
TFC.1 and TFC.0 ticket formats.
1.2 Anticollision
An intelligent anticollision function allows more than one card to operate in the field
simultaneously. The anticollision algorithm selects each card individually. It ensures that
the execution of a transaction with a selected card is performed correctly without
interference from another card in the field.
energy
ISO/IEC 14443 A
PCD
data
aaa-006271
Fig 1.
Contactless system
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
1.3 Simple integration and user convenience
The MF0ULx1 is designed for simple integration and user convenience which allows
complete ticketing transactions to be handled in less than 35 ms.
1.4 Security
•
•
•
•
Manufacturer programmed 7-byte UID for each device
32-bit user definable One-Time Programmable (OTP) area
3 independent 24-bit true one-way counters
Field programmable read-only locking function per page (per 2 pages for the
extended memory section)
• ECC based originality signature
• 32-bit password protection to prevent unintended memory operations
1.5 Naming conventions
Table 1.
2345
Product data sheet
COMPANY PUBLIC
Naming conventions
MF0ULx101Dyy
Description
MF
MIFARE family
0
Ultralight product family
UL
Product: MIFARE Ultralight
x
One character identifier defining the memory size
1... 640 bit total memory, 384 bit free user memory
2... 1312 bit total memory, 1024 bit free user memory
Dyy
yy defining the delivery type
UF... bare die, 75 m thickness, Au bumps, e-map file
UD... bare die, 120 m thickness, Au bumps, e-map file
A8... MOA8 contactless module
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
2 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
2. Features and benefits
 Contactless transmission of data and
supply energy
 Operating frequency of 13.56 MHz
 Data integrity of 16-bit CRC, parity, bit
coding, bit counting
 7 byte serial number (cascade level 2
according to ISO/IEC 14443-3)
 Fast counter transaction: < 10 ms
 Operating distance up to 100 mm
depending on antenna geometry and
reader configuration
 Data transfer of 106 kbit/s
 True anticollision
 Typical ticketing transaction: < 35 ms
2.1 EEPROM
 640-bit or 1312-bit, organized in 20 or
41 pages with 4 bytes per page
 Field programmable read-only locking
function per page for the first 512 bits
 32-bit user definable One-Time
Programmable (OTP) area
 3 independent, true one-way 24-bit
counters on top of the user area
 Configurable password protection with
optional limit of unsuccessful attempts
 Data retention time of 10 years
 Write endurance for one-way counters
1.000.000 cycles
 First 512 bits compatible to MF0ICU1
 Field programmable read-only locking
function per double page above the first
512 bits
 384-bit or 1024-bit freely available user
Read/Write area (12 or 32 pages)
 Anti-tearing support for counters, OTP
area and lock bits
 ECC based originality signature
 Write endurance 100.000 cycles
3. Applications
 Public transportation
 Event ticketing
 Loyalty
4. Quick reference data
Table 2.
Quick reference data
Symbol
Parameter
Ci
input capacitance
fi
input frequency
Conditions
[1]
Min
Typ
Max
Unit
-
17.0
-
pF
-
13.56
-
MHz
EEPROM characteristics
tret
retention time
Tamb = 22 C
10
-
-
year
Nendu(W)
write endurance
Tamb = 22 C
100000
-
-
cycle
Nendu(W)
write endurance counters Tamb = 22 C
100000
1000000 -
cycle
[1]
2345
Product data sheet
COMPANY PUBLIC
LCR meter, Tamb = 22 C, fi = 13.56 MHz, 2 V RMS.
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
3 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
5. Ordering information
Table 3.
Ordering information
Type number
Package
Name
Description
Version
MF0UL1101DUF
FFC Bump
8 inch wafer, 75 m thickness, on film frame carrier, electronic fail die
marking according to SECS-II format), Au bumps,
384 bit user memory, 17 pF input capacitance
-
MF0UL1101DUD
FFC Bump
8 inch wafer, 120 m thickness, on film frame carrier, electronic fail die
marking according to SECS-II format), Au bumps,
384 bit user memory, 17 pF input capacitance
-
MF0UL2101DUF
FFC Bump
8 inch wafer, 75 m thickness, on film frame carrier, electronic fail die
marking according to SECS-II format), Au bumps,
1024 bit user memory, 17 pF input capacitance
-
MF0UL2101DUD
FFC Bump
8 inch wafer, 120 m thickness, on film frame carrier, electronic fail die
marking according to SECS-II format), Au bumps,
1024 bit user memory, 17 pF input capacitance
-
MF0UL2101DA8
MOA8
plastic lead less module carrier package; 35 mm wide tape,
1024 bit user memory, 17 pF input capacitance
SOT500-4
6. Block diagram
DIGITAL CONTROL UNIT
antenna
RF-INTERFACE
ANTICOLLISION
EEPROM
EEPROM
INTERFACE
COMMAND
INTERPRETER
aaa-006272
Fig 2.
2345
Product data sheet
COMPANY PUBLIC
Block diagram of MF0ULx1
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
4 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
7. Pinning information
7.1 Pinning
The pinning for the MF0ULx1DAx is shown Figure 3 for a contactless MOA8 module.
LA
top view
LB
aaa-006273
Fig 3.
Table 4.
2345
Product data sheet
COMPANY PUBLIC
Pin configuration for SOT500-4 (MOA8)
Pin allocation table
Pin
Symbol
LA
LA
antenna coil connection LA
LB
LB
antenna coil connection LB
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
5 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8. Functional description
8.1 Block description
The MF0ULx1 chip consists of a 640-bit or a 1312-bit EEPROM, RF interface and Digital
Control Unit (DCU). Energy and data are transferred via an antenna consisting of a coil
with a few turns which is directly connected to the MF0ULx1. No further external
components are necessary. Refer to Ref. 2 for details on antenna design.
• RF interface:
– modulator/demodulator
– rectifier
– clock regenerator
– Power-On Reset (POR)
– voltage regulator
• Anticollision: multiple cards may be selected and managed in sequence
• Command interpreter: processes memory access commands that the MF0ICU1
supports
• EEPROM interface
• EEPROM: 640 bit, organized in 20 pages of 4 byte per page.
– 208 bit reserved for manufacturer and configuration data
– 16 bit used for the read-only locking mechanism
– 32 bit available as OTP area
– 384 bit user programmable read/write memory
• EEPROM: 1312 bit, organized in 41 pages of 4 byte per page.
– 208 bit reserved for manufacturer and configuration data
– 31 bit used for the read-only locking mechanism
– 32 bit available as OTP area
– 1024 bit user programmable read/write memory
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
6 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.2 RF interface
The RF-interface is based on the ISO/IEC 14443 Type A standard for contactless smart
cards.
During operation, the reader generates an RF field. This RF field must always be present
(with short pauses for data communication), as it is used for the power supply of the card.
For both directions of data communication, there is one start bit at the beginning of each
frame. Each byte is transmitted with an odd parity bit at the end. The LSB of the byte with
the lowest address of the selected block is transmitted first. The maximum length of a
PCD to PICC frame is 199 bits (20 data bytes + 2 CRC bytes = 209 + 29 + 1 start bit).
The maximum length for a fixed size PICC to PCD frame is 307 bits (32 data bytes + 2
CRC bytes = 329 + 29 + 1 start bit). The FAST_READ response has a variable frame
length depending on the start and end address parameters. When issuing this command,
take into account the maximum frame length that the PCD supports.
For a multi-byte parameter, the least significant byte is always transmitted first. As an
example, take reading from the memory using the READ command. Byte 0 from the
addressed block is transmitted first after which, byte 1 to byte 3 are transmitted. The same
sequence continues for the next block and all subsequent blocks.
8.3 Data integrity
Following mechanisms are implemented in the contactless communication link between
reader and card to ensure very reliable data transmission:
•
•
•
•
•
2345
Product data sheet
COMPANY PUBLIC
16 bits CRC per block
parity bits for each byte
bit count checking
bit coding to distinguish between “1”, “0” and “no information”
channel monitoring (protocol sequence and bit stream analysis)
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
7 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.4 Communication principle
The reader initiates the commands and the Digital Control Unit of the MF0ULx1 controls
them. The command response is depending on the state of the IC and for memory
operations also on the access conditions valid for the corresponding page.
POR
HALT
IDLE
REQA
WUPA
WUPA
READY 1
READ
from page 0
HLTA
HLTA
identification
and
selection
procedure
ANTICOLLISION
SELECT
cascade level 1
READY 2
ANTICOLLISION
READ
from page 0
SELECT
cascade level 2
VCSL
ACTIVE
PWD_AUTH
AUTHENTICATED
READ (16 Byte)
FAST_READ
WRITE,
COMPATIBILITY_WRITE
(4 Byte)
INCR_CNT
READ_CNT
CHK_TEARING_EVENT
GET_VERSION
READ_SIG
memory
operations
aaa-006274
Remark: In all states, the command interpreter returns to the idle state on receipt of an unexpected
command. If the IC was previously in the HALT state, it returns to that state
Remark: The VCSL command is only allowed in the ACTIVE state
Fig 4.
2345
Product data sheet
COMPANY PUBLIC
State diagram
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
8 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.4.1 IDLE state
After a power-on reset (POR), the MF0ULx1 switches to the IDLE state. It only exits this
state when a REQA or a WUPA command is received from the PCD. Any other data
received while in this state is interpreted as an error and the MF0ULx1 remains in the
IDLE state.
Refer to Ref. 4 for implementation hints for a card polling algorithm that respects relevant
timing specifications from ISO/IEC 14443 Type A.
After a correctly executed HLTA command, for example out of the ACTIVE or
AUTHENTICATED state, the default waiting state changes from IDLE to HALT. This state
can then be exited with a WUPA command only.
8.4.2 READY1 state
In this state, the PCD resolves the first part of the UID (3 bytes) using the
ANTICOLLISION or SELECT commands in cascade level 1. This state is exited correctly
after execution of either of the following commands:
• SELECT command from cascade level 1: the PCD switches the MF0ULx1 into
READY2 state where the second part of the UID is resolved.
• READ command (from address 0): all anticollision mechanisms are bypassed and the
MF0ULx1 switches directly to the ACTIVE state.
Remark: If more than one MF0ULx1 is in the PCD field, a READ command from address
0 selects all MF0ULx1 devices. In this case, a collision occurs due to the different serial
numbers. Any other data received in the READY1 state is interpreted as an error.
Depending on its previous state, the MF0ULx1 returns to either the IDLE state or HALT
state.
8.4.3 READY2 state
In this state, the MF0ULx1 supports the PCD in resolving the second part of its UID
(4 bytes) with the cascade level 2 ANTICOLLISION command. This state is usually exited
using the cascade level 2 SELECT command.
Alternatively, READY2 state can be skipped using a READ command (from address 0) as
described for the READY1 state.
Remark: The response of the MF0ULx1 to the cascade level 2 SELECT command is the
select acknowledge (SAK) byte. In accordance with ISO/IEC 14443, this byte indicates if
the anticollision cascade procedure has finished. It also defines the type of device
selected for the MIFARE architecture platform. The MF0ULx1 is now uniquely selected
and only this device communicates with the PCD even when other contactless devices
are present in the PCD field. If more than one MF0ULx1 is in the PCD field, a READ
command from address 0 selects all MF0ULx1 devices. In this case, a collision occurs
due to the different serial numbers. Any other data received when the device is in this
state is interpreted as an error. Depending on its previous state the MF0ULx1 returns to
either the IDLE state or HALT state.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
9 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.4.4 ACTIVE state
All memory operations and other functions like the originality signature read-out are
operated in the ACTIVE state.
The ACTIVE state is gratefully exited with the HLTA command and upon reception the
MF0ULx1 transits to the HALT state. Any other data received when the device is in this
state is interpreted as an error. Depending on its previous state the MF0ULx1 returns to
either the IDLE state or HALT state.
The MF0ULx1 transits to the AUTHENTICATED state after successful password
verification using the PWD_AUTH command.
8.4.5 AUTHENTICATED state
In this state, all operations on memory pages, which are configured as password
verification protected, can be accessed.
The AUTHENTICATED state is gratefully exited with the HLTA command and upon
reception the MF0ULx1 transits to the HALT state. Any other data received when the
device is in this state is interpreted as an error. Depending on its previous state the
MF0ULx1 returns to either the IDLE state or HALT state.
8.4.6 HALT state
The HALT and IDLE states constitute the two wait states implemented in the MF0ULx1.
An already processed MF0ULx1 can be set into the HALT state using the HLTA command.
In the anticollision phase, this state helps the PCD to distinguish between processed
cards and cards yet to be selected. The MF0ULx1 can only exit this state on execution of
the WUPA command. Any other data received when the device is in this state is
interpreted as an error and the MF0ULx1 state remains unchanged. Refer to Ref. 4 for
correct implementation of an anticollision procedure based on the IDLE and HALT states
and the REQA and WUPA commands.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
10 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.5 Memory organization
The EEPROM memory is organized in pages with 4 bytes per page. The MF0UL11 variant
has 20d pages and the MF0UL21 variant has 41d pages in total. The memory
organization can be seen in Figure 5 and Figure 6, the functionality of the different
memory sections is described in the following sections.
Page Adr
Dec Hex
0
0h
1
1h
2
2h
3
3h
4
4h
5
5h
...
...
14
Eh
15
Fh
16 10h
17 11h
18 12h
19 13h
0
serial number
OTP
Byte number within a page
1
2
3
serial number
serial number
internal
lock bytes
OTP
OTP
OTP
user memory
Manufacturer data and
lock bytes
One Time Programmable
User memory pages
CFG0
CFG1
PWD
PACK
Description
Configuration pages
RFUI
One-Way counters 1)
Counter pages
aaa-006275
(1) counter pages are only accessible with READ_CNT and INCR_CNT commands
Fig 5.
Memory organization MF0UL11
Page Adr
Dec Hex
0
0h
1
1h
2
2h
3
3h
4
4h
5
5h
...
...
34 22h
35 23h
36 24h
37 25h
38 26h
39 27h
40 28h
0
serial number
OTP
Byte number within a page
1
2
3
serial number
serial number
internal
lock bytes
OTP
OTP
OTP
user memory
Manufacturer data and
lock bytes
One Time Programmable
User memory pages
lock bytes
RFUI
CFG0
CFG1
PWD
PACK
Description
Lock bytes
Configuration pages
RFUI
one-way counters 1)
Counter pages
aaa-006276
(1) counter pages are only accessible with READ_CNT and INCR_CNT commands
Fig 6.
2345
Product data sheet
COMPANY PUBLIC
Memory organization MF0UL21
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
11 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.5.1 UID/serial number
The unique 7-byte serial number (UID) and its two check bytes are programmed into the
first 9 bytes of memory covering page addresses 00h, 01h and the first byte of page 02h.
The second byte of page address 02h is reserved for internal data. These bytes are
programmed and write protected in the production test.
MSB
0
0
byte
0
0
1
2
0
0
1
0
LSB
0 manufacturer ID for NXP Semiconductors (04h)
page 0
3
0
serial number
part 1
1
2
page 1
3
0
serial number
part 2
1
2
page 2
3
check byte 1
internal
check byte 0
lock bytes
001aai001
Fig 7.
UID/serial number
In accordance with ISO/IEC 14443-3 check byte 0 (BCC0) is defined as CT  SN0  SN1
 SN2. Check byte 1 (BCC1) is defined as SN3  SN4  SN5  SN6.
SN0 holds the Manufacturer ID for NXP Semiconductors (04h) in accordance with
ISO/IEC 14443-3 and ISO/IEC 7816-6 AMD.1
8.5.2 Lock byte 0 and byte 1
The bits of byte 2 and byte 3 of page 02h represent the field programmable read-only
locking mechanism. Each page from 03h (OTP) to 0Fh can be individually locked by
setting the corresponding locking bit Lx to logic 1 to prevent further write access. After
locking, the corresponding page becomes read-only memory.
The three least significant bits of lock byte 0 are the block-locking bits. Bit 2 deals with
pages 0Ah to 0Fh, bit 1 deals with pages 04h to 09h and bit 0 deals with page 03h (OTP).
Once the block-locking bits are set, the locking configuration for the corresponding
memory area is frozen.
MSB
L
7
L
6
L
5
L
4
L
OTP
BL
15-10
BL
9-4
LSB
MSB
BL
OTP
L
15
LSB
L
14
L
13
L
12
L
11
L
10
L
9
L
8
page 2
0
1
2
3
lock byte 0
lock byte 1
Fig 8.
Lx locks page x to read-only
BLx blocks further locking for the memory area x
aaa-006277
Lock bytes 0 and 1
For example if BL15-10 is set to logic 1, then bits L15 to L10 (lock byte 1, bit[7:2]) can no
longer be changed. A WRITE command or COMPATIBILITY_WRITE command to page
02h, sets the locking and block-locking bits. Byte 2 and byte 3 of the WRITE or
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
12 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
COMPATIBILITY_WRITE command, and the contents of the lock bytes are bit-wise
OR’ed and the result then becomes the new content of the lock bytes. This process is
irreversible. If a bit is set to logic 1, it cannot be changed back to logic 0.
The contents of bytes 0 and 1 of page 02h are unaffected by the corresponding data bytes
of the WRITE or COMPATIBILITY_WRITE command.
The default value of the static lock bytes is 00 00h.
Any write operation to the lock bytes, features anti-tearing support.
8.5.3 Lock byte 2 to byte 4
To lock the pages of the MF0UL21 starting at page address 10h onwards, the lock bytes
2-4 located in page 24h are used. Those three lock bytes cover the memory area of 80
data bytes. The granularity is 2 pages, compared to a single page for the first 512 bits as
shown in Figure 9.
Remark: Set all bits marked with RFUI to 0, when writing to the lock bytes.
page 36 (24h)
0
1
5
4
3
2
MSB
1
3 2- 3 3
6
3 4- 3 5
bit 7
L O CK P A G E
0
L O CK P A G E
R FU I
3
R FU I
2
R FU I
1
R FU I
1 8- 1 9
2 2- 2 3
L O CK P A G E
2
LSB
R FU I
3
lock byte 3
MSB
R FU I
4
L O CK P A G E
2 0- 2 1
2 4- 2 5
L O CK P A G E
2 8- 2 9
2 6- 2 7
5
LSB
L O CK P A G E
1 6- 1 7
6
L O CK P A G E
3 0- 3 1
L O CK P A G E
L O CK P A G E
bit 7
L O CK P A G E
lock byte 2
MSB
0
LSB
R FU I
R FU I
R FU I
B L 3 2 -3 5
B L 2 8 -3 1
B L 2 4 -2 7
B L 2 0 -2 3
B L 1 6 -1 9
lock byte 4
bit 7
6
5
4
3
2
1
0
aaa-006278
Fig 9.
Lock bytes 2-4
The default value of lock bytes 2-4 is 00 00 00h. The value of byte 3 on page 36 (see
Figure 9) is always BDh when read.
Any write operation to the lock bytes, features anti-tearing support.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
13 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.5.4 OTP bytes
Page 03h is the OTP page and it is preset so that all bits are set to logic 0 after production.
These bytes can be bit-wise modified using the WRITE or COMPATIBILITY_WRITE
command.
page 3
byte 12
13
14
15
example
default value
00000000
OTP bytes
00000000
00000000
00000000
OTP bytes
1st write command to page 3
11111111
11111100
00000101
00000111
00000101
00000111
result in page 3
11111111
11111100
2nd write command to page 3
11111111
00000000
00111001
10000000
00111101
10000111
result in page 3
11111111
11111100
001aak571
This memory area can be used as a 32 tick one-time counter.
Fig 10. OTP bytes
The parameter bytes of the WRITE command and the current contents of the OTP bytes
are bit-wise OR’ed. The result is the new OTP byte contents. This process is irreversible
and once a bit is set to logic 1, it cannot be changed back to logic 0.
The default value of the OTP bytes is 00 00 00 00h.
Any write operation to the OTP bytes features anti-tearing support.
8.5.5 Data pages
Pages 04h to 0Fh for the MF0UL11 and 04h to 23h for the MF0UL21 are the user memory
read/write area.
The access to a part of the user memory area can be restricted using a password
verification. See Section 8.6 for further details.
Remark: The default content of the data blocks at delivery is not defined.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
14 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.5.6 Configuration pages
Pages 10h-13h for the MF0UL11 and pages 25h-28h for the MF0UL21 variant, are used
to configure the memory access restriction of the MF0ULx1. They are also used to
configure the response to a VCSL command. The memory content of the configuration
pages is detailed in Table 5, Table 6 and Table 7.
Table 5.
Configuration Pages
Page Address
Byte number
Dec
Hex
0
1
2
3
16/37
10h/25h
RFUI
RFUI
RFUI
AUTH0
17/38
11h/26h
ACCESS
VCTID
RFUI
RFUI
18/39
12h/27h
19/40
13h/28h
RFUI
RFUI
[1]
PWD
PACK
page address for MF0UL11/MF0UL21
Table 6.
ACCESS configuration byte
Bit number
7
6
PROT
CFGLCK
Table 7.
Field
6
4
3
2
RFUI
1
0
AUTHLIM
Configuration parameter descriptions
Bit
Default
Value
Description
AUTH0
8
FFh
AUTH0 defines the page address from which the password verification
is required. Valid address range for byte AUTH0 is 00h to FFh.
If AUTH0 is set to a page address which is higher than the last user
configuration page, the password protection is effectively disabled.
PROT
1
0b
One bit inside the ACCESS byte defining the memory protection
0b ... write access is protected by the password verification
1b ... read and write access is protected by the password verification
CFGLCK
1
0b
Write locking bit for the user configuration
0b ... user configuration open to write access
1b ... user configuration permanently locked against write access
Limitation of negative password verification attempts
AUTHLIM
3
000b
000b... limiting of negative password verification attempts disabled
001b-111b ... maximum number of negative password verification
attempts
2345
Product data sheet
COMPANY PUBLIC
05h
Virtual Card Type Identifier which represents the response to a VCSL
command. To ensure infrastructure compatibility, do not change the
default value of 05h.
VCTID
8
PWD
32
FFFF 32-bit password used for memory access protection
FFFFh
PACK
16
0000h 16-bit password acknowledge used during password verification
RFUI
-
all 0b
Reserved for future use - implemented. Write all bits and bytes
denoted as RFUI as 0b.
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
15 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
Remark: The CFGLCK bit activates the permanent write protection of the first two
configuration pages. The write lock is only activated after a power cycle of the MF0ULx1.
If write protection is enabled, each write attempt leads to a NAK response.
8.6 Password verification protection
The memory write or read/write access to a configurable part of the memory can be
constrained to a positive password verification. The 32-bit secret password (PWD) and
the 16-bit password acknowledge (PACK) are typically programmed into the configuration
pages at ticket issuing or personalization. The use of a chip individual password
acknowledge response raises the trust level on the PCD side into the PICC.
The AUTHLIM parameter specified in Section 8.5.6 can be used to limit the negative
verification attempts.
In the initial state of the MF0ULx1, an AUTH0 value of FFh disables password protection.
PWD and PACK are freely writable in this state. Access to the configuration pages and
any part of the user memory, can be restricted by setting AUTH0 a page address within
the available memory space. The page address is the first one protected.
Remark: Note that the password verification method available in then MF0ULx1 does not
offer a high security protection. It is an easy and convenient way to prevent unauthorized
memory access. If a higher level of protection is required, cryptographic methods on
application layer can be used to increase overall system security.
8.6.1 Programming of PWD and PACK
Program the 32-bit PWD and the 16-bit PACK into the configuration pages, see
Section 8.5.6. The password as well as the password acknowledge, are written LSByte
first. This byte order is the same as the byte order used during the PWD_AUTH command
and its response.
The PWD and PACK bytes can never be read out of the memory. Instead of transmitting
the real value on any valid READ or FAST_READ command, only 00h bytes are replied.
If the password verification does not protect the configuration pages, PWD and PACK can
be written with normal WRITE and COMPATIBILITY_WRITE commands.
If the password verification protects the configuration pages, PWD and PACK can be
written after a successful PWD_AUTH command.
The PWD and PACK are writable even if the CFGLCK bit is set to 1b. Therefore it is
strongly recommended to set AUTH0 to the page where the PWD is located after the
password has been written. This page is 12h for the MF0UL11 and 27h for the MF0UL21.
Remark: To improve the overall system security, it is strongly recommended to diversify
the password and the password acknowledge using a die individual parameter, that is, the
7-byte UID available on the MF0ULx1.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
16 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.6.2 Limiting negative verification attempts
To prevent brute-force attacks on the password, the maximum allowed number of
negative password verification attempts can be set using AUTHLIM. This mechanism is
disabled by setting AUTHLIM to a value of 000b which is also the initial state of the
MF0ULx1.
If AUTHLIM is not equal to 000b, each negative authentication verification is internally
counted. The count operation features anti-tearing support. As soon as this internal
counter reaches the number specified in AUTHLIM, any further negative password
verification leads to a permanent locking of the protected part of the memory for the
specified access modes. Specifically, whether the provided password is correct or not,
each subsequent PWD_AUTH fails.
Any successful password verification, before reaching the limit of negative password
verification attempts, resets the internal counter to zero.
8.6.3 Protection of special memory segments
The configuration pages can be protected by the password authentication as well. The
protection level is defined with the PROT bit.
The protection is enabled by setting the AUTH0 byte to a value that is within the
addressable memory space.
All counters can always be incremented and read without prior password verification.
8.7 Counter functionality
The MF0ULx1 features three independent 24-bit one-way counters. These counters are
located in a separate part of the NVM which is not directly addressable using READ,
FAST_READ, WRITE or COMPATIBILITY_WRITE commands. The actual value can be
retrieved by using the READ_CNT command, the counters can be incremented with the
INCR_CNT command. The INCR_CNT command features anti-tearing support, thus no
undefined values originating from interrupted programing cycles are possible. Either the
value is unchanged or the correct, incremented value is correctly programmed into the
counter. The occurrence of a tearing event can be checked using the
CHECK_TEARING_EVENT command.
In the initial state, the counter values are set to 000000h.
The counters can be incremented by an arbitrary value. The incremented value is valid
immediately and does not require a RF reset or re-activation. Once counter value reaches
FFFFFFh and an increment is performed via a valid INCR_CNT command, the MF0ULx1
replies a NAK. If the sum of the addressed counter value and the increment value in the
INCR_CNT command is higher than FFFFFFh, the MF0ULx1 replies a NAK and does not
update the respective counter.
An increment by zero (000000h) is always possible, but does not have any impact on the
counter value.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
17 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
8.8 Originality function
The MF0ULx1 features a cryptographically supported originality check. With this feature, it
is possible to verify with a certain probability, that the ticket is using an NXP
Semiconductors manufactured silicon. This check can also be performed on personalized
tickets.
Each MF0ULx1 holds a 32-byte cryptographic signature based on elliptic curve
cryptography. This signature can be retrieved using the READ_SIG command and can be
verified using the corresponding ECC public key in the PCD.
8.9 Virtual Card Architecture Support
The MF0ULx1 supports the virtual card architecture by replying to a Virtual Card Select
Last (VCSL) command with a virtual card type identifier. The VCTID that is replied can be
programmed in the configuration pages. It enables infrastructure supporting this feature to
process MIFARE cards across different MIFARE families in a common way.
For example, a contactless system is enabled to select a specific virtual MIFARE card
inside a mobile phone. It can use the same card identification principle to detect that the
MF0ULx1 belongs to the system.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
18 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
9. Command overview
The MIFARE Ultralight card activation follows the ISO/IEC 14443 Type A. After the
MIFARE Ultralight card has been selected, it can either be deactivated using the
ISO/IEC 14443 HLTA command, or the MIFARE Ultralight commands can be performed.
For more details about the card activation, refer to Ref. 1.
9.1 MIFARE Ultralight EV1 command overview
All available commands for the MIFARE Ultralight are shown in Table 8.
Table 8.
2345
Product data sheet
COMPANY PUBLIC
Command overview
Command[1]
ISO/IEC 14443
Command code
(hexadecimal)
Request
REQA
26h (7 bit)
Wake-up
WUPA
52h (7 bit)
Anticollision CL1
Anticollision CL1
93h 20h
Select CL1
Select CL1
93h 70h
Anticollision CL2
Anticollision CL2
95h 20h
Select CL2
Select CL2
95h 70h
Halt
HLTA
50h 00h
GET_VERSION[2]
-
60h
READ
-
30h
FAST_READ[2]
-
3Ah
WRITE
-
A2h
COMP_WRITE
-
A0h
READ_CNT[2]
-
39h
INCR_CNT[2]
-
A5h
PWD_AUTH[2]
-
1Bh
READ_SIG[2]
-
3Ch
CHECK_TEARING_EVENT[2]
-
3Eh
VCSL[2]
-
4Bh
[1]
Unless otherwise specified, all commands use the coding and framing as described in Ref. 1.
[2]
this command is new in MIFARE Ultralight EV1 compared to MIFARE Ultralight
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
19 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
9.2 Timing
The command and response timings shown in this document are not to scale and values
are rounded to 1 s.
All given command and response transmission times refer to the data frames including
start of communication and end of communication. They do not include the encoding
(such as Miller pulses). A PCD data frame, contains the start of communication (1
“start bit”) and the end of communication (one logic 0 + 1 bit length of unmodulated
carrier). A PICC data frame, contains the start of communication (1 “start bit”) and the end
of communication (1 bit length of no subcarrier).
The minimum command response time is specified according to Ref. 1 as an integer n
which specifies the PCD to PICC frame delay time. The frame delay time from PICC to
PCD is at least 87 s. The maximum command response time is specified as a time-out
value. Depending on the command, the TACK value specified for command responses
defines the PCD to PICC frame delay time. It does it for either the 4-bit ACK value
specified in Section 9.3 or for a data frame.
All command timings are according to ISO/IEC 14443-3 frame specification as shown for
the Frame Delay Time in Figure 11. For more details, refer to Ref. 1.
last data bit transmitted by the PCD
first modulation of the PICC
FDT = (n* 128 + 84)/fc
128/fc
logic „1“
256/fc
end of communication (E)
128/fc
start of
communication (S)
FDT = (n* 128 + 20)/fc
128/fc
logic „0“
256/fc
end of communication (E)
128/fc
start of
communication (S)
aaa-006279
Fig 11. Frame Delay Time (from PCD to PICC), TACK and TNAK
Remark: Due to the coding of commands, the measured timings usually excludes (a part
of) the end of communication. Consider this factor when comparing the specified times
with the measured times.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
20 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
9.3 MIFARE Ultralight ACK and NAK
The MIFARE Ultralight uses a 4-bit ACK / NAK as shown in Table 9.
Table 9.
ACK and NAK values
Code (4-bit)
ACK/NAK
Ah
Acknowledge (ACK)
0h
NAK for invalid argument (i.e. invalid page address)
1h
NAK for parity or CRC error
4h
NAK for counter overflow
5h, 7h
NAK for EEPROM write error
6h, 9h
NAK, other error
9.4 ATQA and SAK responses
For details on the type identification procedure, refer to Ref. 3.
The MF0ULx1 replies to a REQA or WUPA command with the ATQA value shown in
Table 10. It replies to a Select CL2 command with the SAK value shown in Table 11. The
2-byte ATQA value is transmitted with the least significant byte first (44h).
Table 10.
ATQA response of the MF0ULx1
Bit number
Sales type
Hex value
16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
MF0ULx1
00 44h
0
0
0
1
0
0
0
1
0
0
Table 11.
0
0
0
0
0
0
SAK response of the MF0ULx1
Bit number
Sales type
Hex value
8
7
6
5
4
3
2
1
MF0ULx1
00h
0
0
0
0
0
0
0
0
Remark: The ATQA coding in bits 7 and 8 indicate the UID size according to
ISO/IEC 14443 independent from the settings of the UID usage.
Remark: The bit numbering in the ISO/IEC 14443 starts with LSB = bit 1 and not with
LSB = bit 0. So 1 byte counts bit 1 to bit 8 instead of bit 0 to 7.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
21 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10. MIFARE Ultralight EV1 commands
10.1 GET_VERSION
The GET_VERSION command is used to retrieve information on the MIFARE family,
product version, storage size and other product data required to identify the MF0ULx1.
This command is available on other MIFARE products to have a common way of
identifying products across platforms and evolution steps.
The GET_VERSION command has no arguments and replies the version information for
the specific MF0ULx1 type. The command structure is shown in Figure 12 and Table 12.
Table 13 shows the required timing.
PCD
Cmd
CRC
Data
PICC ,,ACK''
TACK
283 µs
CRC
868 µs
NAK
PICC ,,NAK''
TNAK
57 µs
TTimeOut
Time out
aaa-006280
Fig 12. GET_VERSION command
Table 12.
GET_VERSION command
Name
Code
Description
Length
Cmd
60h
Get product version
1 byte
CRC
-
CRC according to Ref. 1
2 bytes
Data
-
Product version information
8 bytes
NAK
see Table 9
see Section 9.3
4-bit
Table 13. GET_VERSION timing
These times exclude the end of communication of the PCD.
GET_VERSION
2345
Product data sheet
COMPANY PUBLIC
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
22 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
Table 14.
GET_VERSION response for MF0UL11 and MF0UL21
Byte no.
Description
MF0UL11
MF0UL21
0
fixed header
00h
00h
1
vendor ID
04h
04h
NXP Semiconductors
2
product type
03h
03h
MIFARE Ultralight
3
product subtype
01h
01h
17 pF
4
major product version
01h
01h
EV1
5
minor product version
00h
00h
V0
6
storage size
0Bh
0Eh
see following explanation
7
protocol type
03h
03h
ISO/IEC 14443-3 compliant
Interpretation
The most significant 7 bits of the storage size byte are interpreted as an unsigned integer
value n. As a result, it codes the total available user memory size as 2n. If the least
significant bit is 0b, the user memory size is exactly 2n. If the least significant bit is 1b, the
user memory size is between 2n and 2n+1.
The user memory for the MF0UL11 is 48 bytes. This memory size is between 32d bytes
and 64d bytes. Therefore, the most significant 7 bits of the value 0Bh, are interpreted as
5d and the least significant bit is 1b.
The user memory for the MF0UL21 is 128 bytes. This memory size is exactly 128d.
Therefore, the most significant 7 bits of the value 0Eh, are interpreted as 7d and the least
significant bit is 0b.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
23 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.2 READ
The READ command requires a start page address, and returns the 16 bytes of four
MIFARE Ultralight pages. For example if address (Addr) is 03h then pages 03h, 04h, 05h,
06h are returned. Special conditions apply if the READ command address is near the end
of the accessible memory area. The special conditions also apply if at least part of the
addressed pages is within a password protected area. For details on those cases and the
command structure, refer to Figure 12 and Table 12.
Table 13 shows the required timing.
PCD
Cmd
Addr
CRC
Data
PICC ,,ACK''
CRC
TACK
368 µs
1548 µs
NAK
PICC ,,NAK''
TNAK
57 µs
TTimeOut
Time out
aaa-006284
Fig 13. READ command
Table 15.
READ command
Name
Code
Description
Length
Cmd
30h
read four pages
1 byte
Addr
-
start page address
1 byte
2 bytes
CRC
-
CRC according to Ref. 1
Data
-
Data content of the addressed pages 16 bytes
NAK
see Table 9
see Section 9.3
4-bit
Table 16. READ timing
These times exclude the end of communication of the PCD.
READ
2345
Product data sheet
COMPANY PUBLIC
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
24 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
In the initial state of the MF0ULx1, all memory pages are allowed as Addr parameter to
the READ command.
• page address 00h to 13h for the MF0UL11
• page address 00h to 28h for the MF0UL21
Addressing a memory page beyond the limits above results in a NAK response from the
MF0ULx1.
A roll-over mechanism is implemented to continue reading from page 00h once the end of
the accessible memory is reached. Reading from address 11h on a MF0UL11 results in
pages 11h, 12h, 13h and 00h being returned.
The following conditions apply if part of the memory is password protected for read
access:
• if the MF0ULx1 is in the ACTIVE state
– addressing a page which is equal or higher than AUTH0 results in a NAK response
– addressing a page lower than AUTH0 results in data being returned with the
roll-over mechanism occurring just before the AUTH0 defined page
• if the MF0ULx1 is in the AUTHENTICATED state
– the READ command behaves like on a MF0ULx1 without access protection
Remark: PWD and PACK values can never be read out of the memory. When reading
from the pages holding those two values, all 00h bytes are replied to the PCD instead.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
25 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.3 FAST_READ
The FAST_READ command requires a start page address and an end page address and
returns the all n*4 bytes of the addressed pages. For example if the start address is 03h
and the end address is 07h then pages 03h, 04h, 05h, 06h and 07h are returned. If the
addressed page is outside of accessible area, the MF0ULx1 replies a NAK. For details on
those cases and the command structure, refer to Figure 14 and Table 17.
Table 18 shows the required timing.
PCD
Cmd
StartAddr EndAddr
CRC
Data
PICC ,,ACK''
TACK
453 µs
CRC
depending on nr of read pages
NAK
PICC ,,NAK''
TNAK
57 µs
TTimeOut
Time out
aaa-006285
Fig 14. FAST_READ command
Table 17.
FAST_READ command
Name
Code
Description
Length
Cmd
3Ah
read multiple pages
1 byte
StartAddr
-
start page address
1 byte
EndAddr
-
end page address
1 byte
CRC
-
CRC according to Ref. 1
2 bytes
Data
-
data content of the addressed pages
n*4 bytes
NAK
see Table 9
see Section 9.3
4-bit
Table 18. FAST_READ timing
These times exclude the end of communication of the PCD.
FAST_READ
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
In the initial state of the MF0ULx1, all memory pages are allowed as StartAddr parameter
to the FAST_READ command.
• page address 00h to 13h for the MF0UL11
• page address 00h to 28h for the MF0UL21
Addressing a memory page beyond the limits above results in a NAK response from the
MF0ULx1.
The EndAddr parameter must be equal to or higher than the StartAddr.
The following conditions apply if part of the memory is password protected for read
access:
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
26 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
• if the MF0ULx1 is in the ACTIVE state
– if any requested page address is equal or higher than AUTH0 a NAK is replied
• if the MF0ULx1 is in the AUTHENTICATED state
– the FAST_READ command behaves like on a MF0ULx1 without access protection
Remark: PWD and PACK values can never be read out of the memory. When reading
from the pages holding those two values, all 00h bytes are replied to the PCD instead.
Remark: The FAST_READ command is able to read out the whole memory with one
command. Nevertheless, receive buffer of the PCD must be able to handle the requested
amount of data as there is no chaining possibility.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
27 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.4 WRITE
The WRITE command requires a block address, and writes 4 bytes of data into the
addressed MIFARE Ultralight EV1 page. The WRITE command is shown in Figure 15 and
Table 19.
Table 20 shows the required timing.
PCD
Cmd Addr
Data
CRC
ACK
PICC ,,ACK''
TACK
708 µs
57 µs
NAK
PICC ,,NAK''
TNAK
57 µs
TTimeOut
Time out
aaa-006286
Fig 15. WRITE command
Table 19.
WRITE command
Name
Code
Description
Length
Cmd
A2h
write one page
1 byte
Addr
-
page address
1 byte
CRC
-
CRC according to Ref. 1
2 bytes
Data
-
data
4 bytes
NAK
see Table 9
see Section 9.3
4-bit
Table 20. WRITE timing
These times exclude the end of communication of the PCD.
WRITE
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
In the initial state of the MF0ULx1, the following memory pages are valid Addr parameters
to the WRITE command.
• page address 02h to 13h for the MF0UL11
• page address 02h to 28h for the MF0UL21
Addressing a memory page beyond the limits above results in a NAK response from the
MF0ULx1.
Pages which are locked against writing cannot be reprogrammed using any write
command. The locking mechanisms include lock bits as well as the locking of the
configuration pages.
The following conditions apply if part of the memory is password protected for write
access:
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
28 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
• if the MF0ULx1 is in the ACTIVE state
– writing to a page which address is equal or higher than AUTH0 results in a NAK
response
• if the MF0ULx1 is in the AUTHENTICATED state
– the WRITE command behaves like on a MF0ULx1 without access protection
The MF0ULx1 features tearing protected write operations to specific memory content. The
following pages are protected against tearing events during a WRITE operation:
• page 2 containing lock bits
• page 3 containing OTP bits
• page 36 containing the additional lock bits for the MF0UL21
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
29 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.5 COMPATIBILITY_WRITE
The COMPATIBILITY_WRITE command is implemented to accommodate the established
MIFARE Classic PCD infrastructure. Even though 16 bytes are transferred to the
MF0ULx1, only the least significant 4 bytes (bytes 0 to 3) are written to the specified
address. Set all the remaining bytes, 04h to 0Fh, to logic 00h. The
COMPATIBILITY_WRITE command is shown in Figure 16 and Table 19.
Table 22 shows the required timing.
PCD
Cmd
Addr
CRC
ACK
PICC ,,ACK''
368 μs
TACK
59 μs
NAK
PICC ,,NAK''
TNAK
59 μs
TTimeOut
Time out
001aan015
Fig 16. COMPATIBILITY_WRITE command part 1
PCD
Data
CRC
ACK
PICC ,,ACK''
1558 μs
TACK
59 μs
TNAK
59 μs
NAK
PICC ,,NAK''
TTimeOut
Time out
001aan016
Fig 17. COMPATIBILITY_WRITE command part 2
Table 21.
2345
Product data sheet
COMPANY PUBLIC
COMPATIBILITY_WRITE command
Name
Code
Description
Length
Cmd
A0h
compatibility write
1 byte
Addr
-
page address
1 byte
CRC
-
CRC according to Ref. 1
2 bytes
Data
-
16-byte Data, only least significant 4
bytes are written
16 bytes
NAK
see Table 9
see Section 9.3
4-bit
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
30 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
Table 22. COMPATIBILITY_WRITE timing
These times exclude the end of communication of the PCD.
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
COMPATIBILITY_WRITE part 1
n=9
TTimeOut
n=9
TTimeOut
5 ms
COMPATIBILITY_WRITE part 2
n=9
TTimeOut
n=9
TTimeOut
10 ms
In the initial state of the MF0ULx1, the following memory pages are valid Addr parameters
to the COMPATIBILITY_WRITE command.
• page address 02h to 13h for the MF0UL11
• page address 02h to 28h for the MF0UL21
Addressing a memory page beyond the limits above results in a NAK response from the
MF0ULx1.
Pages which are locked against writing cannot be reprogrammed using any write
command. The locking mechanisms include lock bits as well as the locking of the
configuration pages.
The following conditions apply if part of the memory is password protected for write
access:
• if the MF0ULx1 is in the ACTIVE state
– writing to a page which address is equal or higher than AUTH0 results in a NAK
response
• if the MF0ULx1 is in the AUTHENTICATED state
– the COMPATIBILITY_WRITE command behaves the same as on a MF0ULx1
without access protection
The MF0ULx1 features tearing protected write operations to specific memory content. The
following pages are protected against tearing events during a COMPATIBILITY_WRITE
operation:
• page 2 containing lock bits
• page 3 containing OTP bits
• page 36 containing the additional lock bits for the MF0UL21
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
31 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.6 READ_CNT
The READ_CNT command is used to read out the current value of one of the 3 one-way
counters of the MF0ULx1. The command has a single argument specifying the counter
number and returns the 24-bit counter value of the corresponding counter. The counters
are always readable, independent on the password protection settings. The command
structure is shown in Figure 18 and Table 23.
Table 24 shows the required timing.
PCD
Cmd
Addr
CRC
Data
PICC ,,ACK''
CRC
TACK
368 µs
PICC ,,NAK''
444 µs
NAK
TNAK
57 µs
TTimeOut
Time out
aaa-006287
Fig 18. READ_CNT command
Table 23.
READ_CNT command
Name
Code
Description
Length
Cmd
39h
read counter
1 byte
Addr
-
counter number from 00h to 02h
1 byte
CRC
-
CRC according to Ref. 1
2 bytes
Data
-
counter value
3 bytes
NAK
see Table 9
see Section 9.3
4-bit
Table 24. READ_CNT timing
These times exclude the end of communication of the PCD.
READ_CNT
2345
Product data sheet
COMPANY PUBLIC
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
32 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.7 INCR_CNT
The INCR_CNT command is used to increment one of the 3 one-way counters of the
MF0ULx1. The two arguments are the counter number and the increment value. The
INCR_CNT command is shown in Figure 19 and Table 25.
Table 26 shows the required timing.
PCD
Cmd Addr
IncrValue
CRC
ACK
PICC ,,ACK''
TACK
708 µs
57 µs
NAK
PICC ,,NAK''
TNAK
57 µs
TTimeOut
Time out
aaa-006288
Fig 19. INCR_CNT command
Table 25.
INCR_CNT command
Name
Code
Description
Length
Cmd
A5h
increment counter
1 byte
Addr
-
counter number from 00h to 02h
1 byte
IncrValue
-
increment value, only the 3 least
significant bytes are relevant
4 byte
CRC
-
CRC according to Ref. 1
2 bytes
NAK
see Table 9
see Section 9.3
4-bit
Table 26. INCR_CNT timing
These times exclude the end of communication of the PCD.
INCR_CNT
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
The IncrValue argument is a 4-byte field to support the same command structure as the
WRITE command. As the counter width is only 3 byte, the last transmitted, most
significant byte is ignored.
Any increment value is allowed. Nevertheless, the final counter value is FFFFFFh. No
further increment is possible after the final value is reached. Also, trying to increment the
current value by a number which would exceed the final value leads to a NAK response
and the counter remains unchanged. An increment by 0 is allowed but leaves the counter
unchanged.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
33 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
The order of bytes in the increment argument follows the same order that the bytes are
sent via the communication interface. This means from the LSbyte (IncrValue0) to MSbyte
(IncValue3), where the last valid byte is actually IncrValue2. It is in line with the arguments
consisting of multiple bytes for other commands. As an example, an increment of the
counter 00h by 01h, is formulated as INCR CNT 00 01 00 00 00.
The INCR_CNT command features anti-tearing support.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
34 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.8 PWD_AUTH
A protected memory area can be accessed only after a successful password verification
using the PWD_AUTH command. The AUTH0 configuration byte defines the protected
area. It specifies the first page that the password mechanism protects. The level of
protection can be configured using the PROT bit either for write protection or read/write
protection. The PWD_AUTH command takes the password as parameter and, if
successful, returns the password authentication acknowledge, PACK. By setting the
AUTHLIM configuration bits to a value larger than 000b, the number of unsuccessful
password verifications can be limited. Each unsuccessful authentication is then counted in
a counter featuring anti-tearing support. After reaching the limit of unsuccessful attempts,
the memory access specified in PROT, is no longer possible. The PWD_AUTH command
is shown in Figure 15 and Table 19.
Table 20 shows the required timing.
PCD
Cmd
Pwd
CRC
PACK
PICC ,,ACK''
TACK
623 µs
PICC ,,NAK''
359
NAK
TNAK
57 µs
TTimeOut
Time out
Fig 20. PWD_AUTH command
Table 27.
PWD_AUTH command
Name
Code
Description
Length
Cmd
1Bh
password authentication
1 byte
Pwd
-
password
4 bytes
CRC
-
CRC according to Ref. 1
2 bytes
PACK
-
password authentication acknowledge
2 bytes
NAK
see Table 9
see Section 9.3
4-bit
Table 28. PWD_AUTH timing
These times exclude the end of communication of the PCD.
PWD_AUTH
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
Remark: It is strongly recommended to change the password from its delivery state at
ticket issuing and set the AUTH0 value to the PWD page.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
35 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.9 READ_SIG
The READ_SIG command returns an IC-specific, 32-byte ECC signature, to verify NXP
Semiconductors as the silicon vendor. The signature is programmed at chip production
and cannot be changed afterwards. The command structure is shown in Figure 21 and
Table 29.
Table 30 shows the required timing.
PCD
Cmd
Addr
CRC
Sign
PICC ,,ACK''
TACK
368 µs
PICC ,,NAK''
CRC
2907 µs
NAK
TNAK
57 µs
TTimeOut
Time out
aaa-006290
Fig 21. READ_SIG command
Table 29.
READ_SIG command
Name
Code
Description
Length
Cmd
3Ch
read ECC signature
1 byte
Addr
00h
RFU, is set to 00h
1 byte
CRC
-
CRC according to Ref. 1
2 bytes
Sign
-
ECC signature
32 bytes
NAK
see Table 9
see Section 9.3
4-bit
Table 30. READ_SIG timing
These times exclude the end of communication of the PCD.
READ_SIG
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
Ref. 7 describes the signature verification procedure.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
36 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.10 CHECK_TEARING_EVENT
The CHECK_TEARING_EVENT command enables the application to identify if a tearing
event happened on a specified counter element. It takes the counter number as single
argument and returns a specified valid flag for this counter. If the returned valid flag is not
equal to the predefined value, a tearing event happened. Note, although a tearing event
might have happened on the counter, a valid value corresponding to the last valid counter
status is still available using the READ_CNT command. The command structure is shown
in Figure 12 and Table 12.
Table 13 shows the required timing.
PCD
Cmd
Addr
CRC
Valid
PICC ,,ACK''
TACK
368 µs
PICC ,,NAK''
CRC
274 µs
NAK
TNAK
57 µs
TTimeOut
Time out
aaa-006291
Fig 22. CHECK_TEARING_EVENT command
Table 31.
CHECK_TEARING_EVENT command
Name
Code
Description
Length
Cmd
3Eh
check tearing event
1 byte
Addr
-
counter number from 00h to 02h
1 byte
CRC
-
CRC according to Ref. 1
2 bytes
Valid
-
valid flag
1 byte
NAK
see Table 9
see Section 9.3
4-bit
Table 32. CHECK_TEARING_EVENT timing
These times exclude the end of communication of the PCD.
CHECK_TEARING_EVENT
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
The valid flag for normal operation is BDh. If any other value than BDh is replied on the
CHECK_TEARING_EVENT command, a tearing event has happened on the addressed
counter.
The application can use this information to base business logic decisions on.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
37 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
10.11 VCSL
The VCSL command is used to enable a unique identification and selection process
across different MIFARE cards and card implementations on mobile devices. The
command requires a 16-byte installation identifier IID and a 4-byte PCD capability value
as parameters. The parameters are present to support compatibility to other MIFARE
devices but are not used or checked inside the MF0ULx1. Nevertheless, the number of
bytes is checked for correctness. The answer to the VCSL command is the virtual card
type identifier VCTID. This identifier indicates the type of card or ticket. Using this
information, the reader can decide whether the ticket belongs to the installation or not.
The command structure is shown in Figure 23 and Table 33.
Table 34 shows the required timing.
PCD
Cmd
IID
PCDCAPS
CRC
VCTID
PICC ,,ACK''
TACK
1982 µs
CRC
274 µs
PICC ,,NAK''
NAK
TNAK
57 µs
TTimeOut
Time out
aaa-006292
Fig 23. VCSL command
Table 33.
VCSL command
Name
Code
Description
Length
Cmd
4B
read four pages
1 byte
IID
-
installation identifier
16 bytes
PCDCAPS
-
PCD capabilities
4 bytes
CRC
-
CRC according to Ref. 1
2 bytes
VCTID
-
virtual Card Type Identifier
1 byte
NAK
see Table 9
see Section 9.3
4-bit
Table 34. VCSL timing
These times exclude the end of communication of the PCD.
VCSL
2345
Product data sheet
COMPANY PUBLIC
TACK min
TACK max
TNAK min
TNAK max
TTimeOut
n=9
TTimeOut
n=9
TTimeOut
5 ms
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
38 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
11. Limiting values
Stresses exceeding one or more of the limiting values, can cause permanent damage to
the device. Exposure to limiting values for extended periods can affect device reliability.
Table 35. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Min
Max
Unit
II
input current
-
40
mA
Ptot/pack
total power dissipation per package
-
120
mW
Tstg
storage temperature
55
125
C
Tamb
ambient temperature
25
70
C
2
-
kV
VESD
[1]
electrostatic discharge voltage on LA/LB
[1]
ANSI/ESDA/JEDEC JS-001; Human body model: C = 100 pF, R = 1.5 k
12. Characteristics
Table 36.
Symbol
Characteristics
Parameter
Ci
input capacitance
fi
input frequency
Conditions
[1]
Min
Typ
Max
Unit
-
17.0
-
pF
-
13.56
-
MHz
EEPROM characteristics
tret
retention time
Tamb = 22 C
10
-
-
year
Nendu(W)
write endurance
Tamb = 22 C
100000
-
-
cycle
Nendu(W)
write endurance counters
Tamb = 22 C
100000
1000000 -
cycle
[1]
2345
Product data sheet
COMPANY PUBLIC
LCR meter, Tamb = 22 C, fi = 13.56 MHz, 2 V RMS
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
39 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
13. Wafer specification
Table 37.
Wafer specifications MF0ULx1
Wafer
diameter
200 mm typical (8 inches)
maximum diameter after foil expansion
210 mm
die separation process
laser dicing
thickness
MF0ULx101DUD
120 m  15 m
MF0ULx101DUF
75 m  10 m
flatness
not applicable
Potential Good Dies per Wafer (PGDW)
103682
Wafer backside
material
Si
treatment
ground and stress relieve
roughness
Ra max = 0.5 m
Rt max = 5 m
Chip dimensions
x = 505 m
step size[1]
y = 590 m
typical = 20 m
gap between chips[1]
minimum = 5 m
Passivation
type
sandwich structure
material
PSG / nitride
thickness
500 nm / 600 nm
Au bump (substrate connected to VSS)
material
> 99.9 % pure Au
hardness
35 to 80 HV 0.005
shear strength
> 70 MPa
height
18 m
within a die = 2 m
height uniformity
within a wafer = 3 m
wafer to wafer = 4 m
flatness
minimum = 1.5 m
size
LA, LB, GND, TP[2] = 60 m  60 m
size variation
5 m
under bump metallization
sputtered TiW
[1]
The step size and the gap between chips may vary due to changing foil expansion
[2]
Pads GND and TP are disconnected when wafer is sawn
13.1 Fail die identification
Electronic wafer mapping covers the electrical test results and the results of
mechanical/visual inspection. No ink dots are applied.
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
40 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
14. Package outline
For more details on the contactless MOA8 module, refer to Ref. 5.
PLLMC: plastic leadless module carrier package; 35 mm wide tape
SOT500-4
X
D
A
detail X
0
10
scale
Dimensions
Unit
mm
20 mm
A(1)
D
max 0.26 35.05
nom
35.00
min
34.95
For unspecified dimensions see PLLMC-drawing given in the subpackage code.
Note
1. Total package thickness, exclusive punching burr.
sot500-4_po
References
Outline
version
IEC
JEDEC
JEITA
SOT500-4
---
---
---
European
projection
Issue date
11-02-18
Fig 24. Package outline SOT500-4
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
41 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
14.1 Bare die outline
For more details on the wafer delivery forms, see Ref. 6.
x [µm]
(1)
Chip Step
Bump size
LA, LB, GND, TP
typ. 20,0
min. 5.0
(1)
typ. 20,0
min. 5 ,0
y [µm]
505
590(1)
60
60
(1)
LA
5 08,0
typ. 59 0,0
(1 )
TP
43,0
43 ,0
GND
LB
MF0ULx1
423 ,0
Y
typ. 505 ,0
(1)
X
(1) the air gap and thus the step size may vary due to varying foil expansion
(2) all dimensions in µm, pad locations measured from metal ring edge (see detail)
aaa-006293
Fig 25. Bare die outline MF0ULx1
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
42 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
15. Abbreviations
Table 38.
2345
Product data sheet
COMPANY PUBLIC
Abbreviations and symbols
Acronym
Description
ACK
Acknowledge
ATQA
Answer to request: Type A
CRC
Cyclic Redundancy Check
CT
Cascade Tag (value 88h) as defined in ISO/IEC 14443-3 Type A
ECC
Elliptic Curve Cryptography
EEPROM
Electrically Erasable Programmable Read-Only Memory
FDT
Frame Delay Time
FFC
Film Frame Carrier
IC
Integrated Circuit
IID
Installation Identifier
LCR
L = inductance, Capacitance, Resistance (LCR meter)
LSB
Least Significant Bit
LSByte
Least Significant Byte
MSByte
Most Significant Byte
NAK
Not acknowledge
NV
Non-Volatile memory
OTP
One Time Programmable
PCD
Proximity Coupling Device (contactless reader)
PCDCAPS
PCD Capability bytes
PICC
Proximity Integrated Circuit Card (contactless card)
REQA
Request command: Type A
RF
Radio Frequency
RFUI
Reserver for Future Use - Implemented
RMS
Root Mean Square
SAK
Select acknowledge: Type A
SECS-II
SEMI Equipment Communications Standard part 2
TiW
Titanium Tungsten
UID
Unique identifier
VCTID
Virtual Card Type Identifier
WUPA
Wake-Up Protocol: Type A
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
43 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
16. References
1.
[1]
ISO/IEC 14443 — International Organization for Standardization
[2]
MIFARE (Card) Coil Design Guide — Application note, BU-ID Document
number 0117**1
[3]
MIFARE Type Identification Procedure — Application note, BU-ID Document
number 0184**1
[4]
MIFARE ISO/IEC 14443 PICC Selection — Application note, BU-ID Document
number 1308**1
[5]
Contactless smart card module specification MOA8 — Delivery Type
Description, BU-ID Document number 1636**1
[6]
General specification for 8" wafer on UV-tape; delivery types — Delivery Type
Description, BU-ID Document number 1005**1
[7]
AN073121 MIFARE Ultralight Features and Hints — Application note, BU-ID
Document number 0731**
[8]
ISO/IEC 15457-1 Identification cards — Thin flexible cards
** ... document version number
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
44 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
17. Revision history
Table 39.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
MF0ULx1 v.3.0
20130219
Product data sheet
-
234521
Modifications:
234521
Modifications:
234520
•
•
•
•
•
•
Product data sheet
COMPANY PUBLIC
Security status changed into “COMPANY PUBLIC”
Added default values for configuration elements in Table 7
Corrected response timing in Figure 18
Corrected PCDCAPS length in Table 33
Changed EEPROM reliability parameters for counters
20120928
•
•
Preliminary data sheet
-
234520
-
-
Editorial changes
Changed EEPROM reliability parameters
20120525
•
2345
Editorial changes
Objective data sheet
Initial version
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
45 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
18. Legal information
18.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
18.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
18.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
2345
Product data sheet
COMPANY PUBLIC
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
46 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
18.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
MIFARE Ultralight — is a trademark of NXP B.V.
19. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
47 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
20. Tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Naming conventions . . . . . . . . . . . . . . . . . . . . . .2
Quick reference data . . . . . . . . . . . . . . . . . . . . .3
Ordering information . . . . . . . . . . . . . . . . . . . . .4
Pin allocation table . . . . . . . . . . . . . . . . . . . . . . .5
Configuration Pages . . . . . . . . . . . . . . . . . . . . .15
ACCESS configuration byte . . . . . . . . . . . . . . .15
Configuration parameter descriptions. . . . . . . .15
Command overview . . . . . . . . . . . . . . . . . . . . .19
ACK and NAK values . . . . . . . . . . . . . . . . . . . .21
ATQA response of the MF0ULx1 . . . . . . . . . . .21
SAK response of the MF0ULx1 . . . . . . . . . . . .21
GET_VERSION command . . . . . . . . . . . . . . . .22
GET_VERSION timing . . . . . . . . . . . . . . . . . . .22
GET_VERSION response for MF0UL11 and
MF0UL21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
READ command . . . . . . . . . . . . . . . . . . . . . . . .24
READ timing . . . . . . . . . . . . . . . . . . . . . . . . . . .24
FAST_READ command . . . . . . . . . . . . . . . . . .26
FAST_READ timing . . . . . . . . . . . . . . . . . . . . .26
WRITE command . . . . . . . . . . . . . . . . . . . . . . .28
WRITE timing . . . . . . . . . . . . . . . . . . . . . . . . . .28
COMPATIBILITY_WRITE command . . . . . . . .30
COMPATIBILITY_WRITE timing. . . . . . . . . . . .31
READ_CNT command . . . . . . . . . . . . . . . . . . .32
READ_CNT timing . . . . . . . . . . . . . . . . . . . . . .32
INCR_CNT command. . . . . . . . . . . . . . . . . . . .33
INCR_CNT timing . . . . . . . . . . . . . . . . . . . . . . .33
PWD_AUTH command. . . . . . . . . . . . . . . . . . .35
PWD_AUTH timing . . . . . . . . . . . . . . . . . . . . . .35
READ_SIG command. . . . . . . . . . . . . . . . . . . .36
READ_SIG timing . . . . . . . . . . . . . . . . . . . . . . .36
CHECK_TEARING_EVENT command . . . . . .37
CHECK_TEARING_EVENT timing. . . . . . . . . .37
VCSL command . . . . . . . . . . . . . . . . . . . . . . . .38
VCSL timing . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .39
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .39
Wafer specifications MF0ULx1 . . . . . . . . . . . . .40
Abbreviations and symbols . . . . . . . . . . . . . . .43
Revision history . . . . . . . . . . . . . . . . . . . . . . . .45
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
48 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
21. Figures
Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig 5.
Fig 6.
Fig 7.
Fig 8.
Fig 9.
Fig 10.
Fig 11.
Fig 12.
Fig 13.
Fig 14.
Fig 15.
Fig 16.
Fig 17.
Fig 18.
Fig 19.
Fig 20.
Fig 21.
Fig 22.
Fig 23.
Fig 24.
Fig 25.
Contactless system . . . . . . . . . . . . . . . . . . . . . . . .1
Block diagram of MF0ULx1 . . . . . . . . . . . . . . . . . .4
Pin configuration for SOT500-4 (MOA8) . . . . . . . .5
State diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Memory organization MF0UL11. . . . . . . . . . . . . . 11
Memory organization MF0UL21. . . . . . . . . . . . . . 11
UID/serial number . . . . . . . . . . . . . . . . . . . . . . . .12
Lock bytes 0 and 1. . . . . . . . . . . . . . . . . . . . . . . .12
Lock bytes 2-4 . . . . . . . . . . . . . . . . . . . . . . . . . . .13
OTP bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Frame Delay Time (from PCD to PICC),
TACK and TNAK . . . . . . . . . . . . . . . . . . . . . . . . . . .20
GET_VERSION command. . . . . . . . . . . . . . . . . .22
READ command . . . . . . . . . . . . . . . . . . . . . . . . .24
FAST_READ command . . . . . . . . . . . . . . . . . . . .26
WRITE command . . . . . . . . . . . . . . . . . . . . . . . .28
COMPATIBILITY_WRITE command part 1 . . . . .30
COMPATIBILITY_WRITE command part 2 . . . . .30
READ_CNT command. . . . . . . . . . . . . . . . . . . . .32
INCR_CNT command . . . . . . . . . . . . . . . . . . . . .33
PWD_AUTH command . . . . . . . . . . . . . . . . . . . .35
READ_SIG command . . . . . . . . . . . . . . . . . . . . .36
CHECK_TEARING_EVENT command . . . . . . . .37
VCSL command. . . . . . . . . . . . . . . . . . . . . . . . . .38
Package outline SOT500-4 . . . . . . . . . . . . . . . . .41
Bare die outline MF0ULx1 . . . . . . . . . . . . . . . . . .42
2345
Product data sheet
COMPANY PUBLIC
All information provided in this document is subject to legal disclaimers.
Rev. 3.0 — 19 February 2013
234530
© NXP B.V. 2013. All rights reserved.
49 of 50
MF0ULx1
NXP Semiconductors
MIFARE Ultralight EV1 - contactless ticket IC
22. Contents
1
1.1
1.2
1.3
1.4
1.5
2
2.1
3
4
5
6
7
7.1
8
8.1
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.6
8.6.1
8.6.2
8.6.3
8.7
8.8
8.9
9
9.1
9.2
9.3
9.4
10
10.1
General description . . . . . . . . . . . . . . . . . . . . . . 1
Contactless energy and data transfer. . . . . . . . 1
Anticollision. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Simple integration and user convenience. . . . . 2
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Naming conventions . . . . . . . . . . . . . . . . . . . . . 2
Features and benefits . . . . . . . . . . . . . . . . . . . . 3
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Quick reference data . . . . . . . . . . . . . . . . . . . . . 3
Ordering information . . . . . . . . . . . . . . . . . . . . . 4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pinning information . . . . . . . . . . . . . . . . . . . . . . 5
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Functional description . . . . . . . . . . . . . . . . . . . 6
Block description . . . . . . . . . . . . . . . . . . . . . . . 6
RF interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Data integrity. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Communication principle . . . . . . . . . . . . . . . . . 8
IDLE state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
READY1 state. . . . . . . . . . . . . . . . . . . . . . . . . . 9
READY2 state. . . . . . . . . . . . . . . . . . . . . . . . . . 9
ACTIVE state . . . . . . . . . . . . . . . . . . . . . . . . . 10
AUTHENTICATED state . . . . . . . . . . . . . . . . . 10
HALT state . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Memory organization . . . . . . . . . . . . . . . . . . . 11
UID/serial number. . . . . . . . . . . . . . . . . . . . . . 12
Lock byte 0 and byte 1 . . . . . . . . . . . . . . . . . . 12
Lock byte 2 to byte 4 . . . . . . . . . . . . . . . . . . . 13
OTP bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Data pages . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Configuration pages . . . . . . . . . . . . . . . . . . . . 15
Password verification protection . . . . . . . . . . . 16
Programming of PWD and PACK . . . . . . . . . . 16
Limiting negative verification attempts . . . . . . 17
Protection of special memory segments. . . . . 17
Counter functionality . . . . . . . . . . . . . . . . . . . . 17
Originality function . . . . . . . . . . . . . . . . . . . . . 18
Virtual Card Architecture Support . . . . . . . . . . 18
Command overview . . . . . . . . . . . . . . . . . . . . . 19
MIFARE Ultralight EV1 command overview . . 19
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
MIFARE Ultralight ACK and NAK . . . . . . . . . 21
ATQA and SAK responses . . . . . . . . . . . . . . . 21
MIFARE Ultralight EV1 commands. . . . . . . . . 22
GET_VERSION . . . . . . . . . . . . . . . . . . . . . . . 22
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
11
12
13
13.1
14
14.1
15
16
17
18
18.1
18.2
18.3
18.4
19
20
21
22
READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FAST_READ . . . . . . . . . . . . . . . . . . . . . . . . .
WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
COMPATIBILITY_WRITE. . . . . . . . . . . . . . . .
READ_CNT . . . . . . . . . . . . . . . . . . . . . . . . . .
INCR_CNT. . . . . . . . . . . . . . . . . . . . . . . . . . .
PWD_AUTH. . . . . . . . . . . . . . . . . . . . . . . . . .
READ_SIG. . . . . . . . . . . . . . . . . . . . . . . . . . .
CHECK_TEARING_EVENT . . . . . . . . . . . . .
VCSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Limiting values . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics . . . . . . . . . . . . . . . . . . . . . . . .
Wafer specification . . . . . . . . . . . . . . . . . . . . .
Fail die identification . . . . . . . . . . . . . . . . . . .
Package outline. . . . . . . . . . . . . . . . . . . . . . . .
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . .
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision history . . . . . . . . . . . . . . . . . . . . . . .
Legal information . . . . . . . . . . . . . . . . . . . . . .
Data sheet status . . . . . . . . . . . . . . . . . . . . . .
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . .
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . .
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information . . . . . . . . . . . . . . . . . . . .
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
26
28
30
32
33
35
36
37
38
39
39
40
40
41
42
43
44
45
46
46
46
46
47
47
48
49
50
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2013.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 19 February 2013
234530