PHILIPS SSL2129AT

SSL2129AT
Dimmable LED controller IC
Rev. 2 — 23 October 2012
Product data sheet
1. General description
The SSL2129AT is a high-voltage Integrated Circuit (IC) for driving LED lamps in general
lighting applications.
The main benefits of this IC include:
•
•
•
•
•
•
•
•
Small Printed-Circuit Board (PCB) footprint and compact solution
High efficiency (up to 95 %) for non-dimmable high power factor solutions
High power factor (>0.9)
Ease of integration and many protection features
Low electronic Bill Of Material (BOM)
Mains phase-cut dimmable using external components
Highly flexible IC for use in buck, buck/boost and flyback modes
Single inductor used for non-isolated configurations because of internal
demagnetization detection and dV/dt supply
The IC range has been designed to start up directly from the HV supply using an internal
high-voltage current source. An internal clamp limits the supply voltage.
2. Features and benefits
 LED controller IC for driving strings of LEDs or high-voltage LED modules from a
rectified mains supply
 Controller provides power-efficient boundary conduction mode of operation with:
 No reverse recovery losses in freewheel diode
 Zero-Current Switching (ZCS) for switch turn-on
 Zero-voltage or valley switching for switch turn-off
 Minimal required inductance value and size
 Fast transient response through cycle-by-cycle current control:
 No over or undershoots in the LED current
 Simple high input power factor solution (>0.9)
 Internal Protection features:
 UnderVoltage LockOut (UVLO)
 Leading-Edge Blanking (LEB)
 OverCurrent Protection (OCP)
 Internal OverTemperature Protection (OTP)
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
 Brownout protection
 Mains phase cut dimmable LED driver solution:
 Supports both leading and trailing-edge dimmers
 Easy external temperature protection with a single NTC
 Open output protection using external components
 Compatible with wall switches with built-in indication light during standby
 IC lifetime easily matches or surpasses LED lamp lifetime
 Input current distributed evenly over the phase, reducing required output capacitor
size and bleeder dissipation
3. Applications
The SSL2129AT is intended for mains dimmable compact LED lamps for single mains
input voltages. Mains input voltages include 100 V, 120 V and 230 V (AC). The external
components determine the power range.
4. Quick reference data
Table 1.
Quick reference data
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VCC
supply voltage
operating range
8
-
14
V
ICC(INT)
internal supply current
normal operation
-
1.3
-
mA
VHV
voltage on pin HV
-
-
600
V
VDRAIN
voltage on pin DRAIN
0.4
-
600
V
fconv
conversion frequency
-
100
-
kHz
9
10.5
12
V
Vo(DRIVER)max maximum output voltage
on pin DRIVER
VCC > VCC(startup)
5. Ordering information
Table 2.
Ordering information
Type number
SSL2129AT
SSL2129AT
Product data sheet
Package
Name
Description
Version
SO8
plastic small package outline body; 8 leads; body width
3.9 mm
SOT96-1
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
2 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
6. Block diagram
HV
1
JFET
6
VCC
2
TONMOD
SUPPLY:
INTERNAL
REGULATOR
AND
BANDGAP
8
VALLEY
DETECTION
DRAIN
LOGIC
TOFFMAX
NTC
3
NTC
FUNCTION
THERMAL
SHUTDOWN
TONMOD
LOGIC
CONTROL
AND
PROTECTION
5
DRIVER
BLANK
POR
4
SOURCE
OCP
GND
7
0.5 V < > 0.25 V
aaa-004040
Fig 1.
SSL2129AT
Product data sheet
SSL2129AT block diagram
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
3 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
7. Pinning information
7.1 Pinning
DDD
Fig 2.
SSL2129AT pin configuration
7.2 Pin description
Table 3.
SSL2129AT
Product data sheet
Pin description
Symbol
Pin
Description
HV
1
high-voltage supply pin
VCC
2
supply voltage
NTC
3
temperature protection input
SOURCE
4
low-side external switch
DRIVER
5
driver output
TONMOD
6
on time modulation input
GND
7
ground
DRAIN
8
high-side external switch
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
4 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
8. Functional description
8.1 Introduction
The SSL2129AT is a controller IC solution for small form factor mains phase-cut
dimmable LED lamps in isolated and non-isolated applications.
8.2 Converter operation
The converter in the SSL2129AT is a Boundary Conduction Mode (BCM), peak current
controlled system. See Figure 3 for the basic application diagram. See Figure 4 for the
waveforms.
This converter type operates at the boundary between continuous and discontinuous
mode. Energy is stored in inductor L each period that the switch is on. The inductor
current IL is zero when the MOSFET is switched on. The amplitude of the current build-up
in L is proportional to the voltage drop over the inductor and the time that the MOSFET
switch is on. When the MOSFET is switched off, the energy in the inductor is released
towards the output. The current then falls at a rate proportional to the value of VOUT. The
LED current ILED depends on the peak current through the inductor (SSL2129AT
controlled) and on the dimmer angle while it is optimized for a high-power factor. A new
cycle is started once the inductor current IL is zero. This quasi-resonant operation results
in higher efficiency.
VOUT
LEDs
L
VIN
HV
VCC
NTC
GND
6
1
8
2
IC
3
5
7
4
TONMOD
DRAIN
VCC
DRIVER
SOURCE
NTC
Rsense
aaa-004042
Fig 3.
SSL2129AT basic application diagram
8.3 Driver pin
The SSL2129AT is equipped with a driver output for controlling an external switch. The
voltage on the driver output pin is increased towards Vo(DRIVER)max to open the switch
during the first cycle (t0 to t1). The voltage on the driver output pin is pulled down towards
a low level from the start of the secondary stroke until the next cycle starts (t0 to t00).
During transition from low to high and back, there is a controlled switching slope
steepness. This controlled condition limits the high frequency radiation from the circuit to
the surrounding area. The switching slope can be controlled further using an external
resistor between IC and gate.
At the lowest VCC voltage (VCC(stop)), the voltage of the driver is VO(DRIVER)min.
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
5 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
8.4 Valley detection
A new cycle is started when the primary switch is switched on (see Figure 4). In the
following sections, “on” represents the conductive state and off the non-conductive state.
Following time t1, when the peak current is detected on the SOURCE pin, the switch is
turned off and the secondary stroke starts at t2. When the secondary stroke is completed
with the coil current at t3 equaling zero, the drain voltage starts to oscillate at
approximately the VIN  VOUT level. The peak to peak amplitude equals 2  VOUT. In
tapped buck topology, this amplitude is multiplied by the ratio of the windings.
A special feature, called valley detection is an integrated part of the SSL2129AT circuitry.
Dedicated built-in circuitry connected to the DRAIN pin, senses when the voltage on the
drain of the switch has reached its lowest value. The next cycle is then started at t00 and
as a result the capacitive switching losses are reduced. A valley is detected and accepted
When both the frequency of the oscillations and the voltage swing are within the range
specified (fring and ∆Vvrec(min)) for detection. ∆Vvrec(min) is the voltage differential between
the HV (pin) in and the DRAIN pin. If a valid valley is not detected, the secondary stroke is
continued until the maximum off-time (toff(high)) is reached, then the next cycle is started.
A series resistance can be included at the drain sensing pin for flyback mode to remove
the high-frequency ringing caused by the transformer leakage inductance.
VGATE
VOUT
VDRAIN
VIN
valley
0
demagnetization
magnetization
IL
0
2
1
t0
t1
3
t2
4
t3
t00
T
aaa-001744
Fig 4.
SSL2129AT
Product data sheet
Waveforms and valley detection
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
6 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
8.5 Protective features
The IC has the following protective features:
•
•
•
•
•
•
•
UnderVoltage LockOut (UVLO)
Leading-Edge Blanking (LEB)
OverCurrent Protection (OCP)
Internal OverTemperature Protection (OTP)
Brownout protection
LED overtemperature control and protection
An optional output OverVoltage Protection circuit is implemented using external
components and the NTC pin.
The internal OTP and LED over temperature protections are safe-restart protections. The
IC halts, causing VCC to fall lower than VCC(stop), and instigates start-up. When VCC drops
lower than VCC(rst), the IC resets the latch protection mode. Switching starts only when no
fault condition exists.
8.5.1 UnderVoltage LockOut (UVLO)
When the voltage on the VCC pin < VCC(stop), the IC stops switching. An attempt is then
made to restart by supplying VCC from the HV pin voltage.
8.5.2 Leading-Edge Blanking (LEB)
To prevent false detection of the short-winding or overcurrent, a blanking time following
switch-on is implemented. When the MOSFET switch turns on there can be a short
current spike due to capacitive discharge of voltage over the drain and source. During the
LEB time (tleb), the spike is disregarded.
8.5.3 OverCurrent Protection (OCP)
The SSL2129AT contains a highly accurate peak current detector. It triggers when the
voltage on the SOURCE pin reaches the peak level Vth(ocp)SOURCE. The current through
the switch is sensed using a resistor connected to the SOURCE pin. The sense circuit is
activated following LEB time tleb. As the LED current is half the peak current (by design), it
automatically provides protection for maximum LED current during operation. There is a
propagation delay td(ocp-swoff) between overcurrent detection and the actual closure of the
switch. Due to the delay, the actual peak current is slightly higher than the OCP level set
by the resistor in series to the SOURCE pin.
8.5.4 OverTemperature Protection (OTP)
When the internal OTP function is triggered at a certain IC temperature (Tth(act)otp), the
converter stops operating. The OTP safe-restart protection and the IC restarts again with
switching resuming when the IC temperature drops below Tth(rel)otp.
8.5.5 Brownout protection
Brownout protection is designed to limit the lamp power when the input voltage drops
close to the output voltage level. Since the input power has to remain constant, the input
current would otherwise increase to a level that is too large for the input circuitry. In the
SSL2129AT, there is a maximum limit on the on-time of switch ton(high).
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
7 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
In buck mode, the rate of current rise in the coil during the on-phase is proportional to the
difference between input voltage and output voltage. Therefore, the peak current cannot
be reached before ton(high) and as a result the average output current to the LEDs is
reduced.
8.6 ton control
The ton(high) can be lowered by connecting a capacitor to the TONMOD pin. The external
capacitor is charged during the primary stroke with ITONMOD. If the VTONMOD level is
reached before the ton(high) time, the switch is turned off and the secondary stroke starts.
When a capacitor is not connected to the pin, VTONMOD is reached quickly. Shorter than
the minimum limit of 1 s. In this case or when the TONMOD pin is grounded, the internal
time constant, ton(high) determines the maximum on-time. This function is used to control
the converter operation over the mains cycle which enables the design of a mains
dimmable driver.
8.7 VCC supply
The SSL2129AT can be supplied using three methods:
• Under normal operation, the voltage swing on the DRAIN pin is rectified using
external components providing current towards the VCC pin
• At start-up, there is an internal current source connected to the HV pin. The current
source provides internal power until an external current on the VCC pin provides the
supply.
• Using an auxiliary winding, the voltage can be rectified and connected to the VCC pin.
The IC starts up when the voltage at the VCC pin is higher than VCC(startup). The IC locks
out (stops switching) when the voltage at the VCC pin is lower than VCC(stop). The
hysteresis between the start and stop levels allows the IC to be supplied by a buffer
capacitor until the external supply is settled. The SSL2129AT has an internal VCC clamp,
which is an internal active Zener (or shunt regulator). This internal active Zener limits the
voltage on the supply VCC pin to the maximum value of VCC. If the maximum current of
the supply minus the current consumption of the IC (determined by the load on the gate
drivers), is lower than the maximum value of IDD no external Zener diode is needed in the
supply circuit.
8.7.1 VCC regulator
During supply dips, the input voltage can drop too low to supply the required IC current.
Under these conditions, if the VCC voltage drops lower than VCC(swon)reg level, a second
regulator is started. Its function is to fill in the required supply current which the external
supply does not deliver. It prevents the IC going into UVLO. When the VCC voltage is
higher than VCC(swon)reg level, the regulator is turned off.
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
8 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
8.8 NTC functionality
The NTC pin can be used as a control method for LED thermal protection.
Peak current
Fig 5.
1
2
3
4
Vth(high)NTC
Vth(ocp)SOURCE = 250 mV
Vth(low)NTC
Ipk / 2
Vact(tmr)NTC
Vth(ocp)SOURCE = 500 mV
Vdeact(tmr)NTC
Ipk
5
VNTC
001aan700
NTC control curve
When the voltage on the NTC pin is higher than Vth(high)NTC, see Figure 5 (4), the
converter delivers nominal output current. When the voltage is lower than this level, the
peak current is gradually reduced until Vth(low)NTC is reached, see Figure 5 (3). The peak
current is now half the peak current of nominal operation. When Vact(tmr)NTC is passed, see
Figure 5 (2), a timer starts to run to distinguish between the following situations:
• If the low-level Vdeact(tmr)NTC is not reached within time tto(deact)NTC Figure 5 (1), LED
overtemperature is detected. The IC stops switching and attempts to restart from the
HV pin voltage. Restart takes place when the voltage on NTC pin is higher than
Vth(high)NTC, see Figure 5 (4). It is assumed that the reduction in peak current did not
result in a lower NTC temperature and LED OTP is activated.
• If the low-level Vdeact(tmr)NTC is reached within the time tto(deact)NTC Figure 5 (1), it is
assumed that the pin is pulled down externally. The restart function is not triggered.
Instead, the output current is reduced to zero. The output current rises again when the
voltage is higher than Vdeact(tmr)NTC.
8.8.1 Soft-start function
The NTC pin can be used to make a soft start function. During switch-on, the level on the
NTC pin is low. By connecting a capacitor (in parallel with the NTC resistor), a time
constant can be defined. The time constant causes the level on the NTC pin to increase
slowly. When passing level Vth(low)NTC Figure 5 (3), the convertor starts with half of the
maximum current. The output current slowly increases to maximum when Vth(high)NTC
Figure 5 (4) is reached.
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
9 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
8.9 Mains dimmer compatibility
The SSL2129AT provides mains dimmer compatibility using dynamic ton control. This
control is used to shape an input current waveform to provide the most effective current to
load the dimmer over most of the mains cycle. In the dimmed position, the output current
is controlled both by the conductive phase of the dimmer and the slope current control of
the TONMOD function. An additional advantage of this method is a high-power factor.
The additional dimming range is achieved by modulating the charge current of the
capacitor connected to the TONMOD pin.
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
10 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
9. Limiting values
Table 4.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
SR
slew rate
on pin DRAIN
5
+5
V/ns
Ptot
total power dissipation
SO8 package
-
0.6
W
Tamb
ambient temperature
40
+125
C
Tj
junction temperature
40
+150
C
Tstg
storage temperature
55
+150
C
0.4
+14
V
0.4
+600
V
General
Voltages
continuous [1]
VCC
supply voltage
VDRAIN
voltage on pin DRAIN
VHV
voltage on pin HV
current limited
0.4
+600
V
VSOURCE
voltage on pin SOURCE
current limited
0.4
+5.2
V
VNTC
voltage on pin NTC
current limited
0.4
+5.2
V
IDD
supply current
on pin VCC
VESD
electrostatic discharge
voltage
human body
model; (for all pins
except DRAIN and
HV)
Currents
[2]
human body
model for DRAIN
and HV
charged device
[3]
-
20
mA
2
+2
kV
1
+1
kV
500
+500
V
[1]
An internal clamp sets the supply voltage and current limits.
[2]
Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
[3]
Charged device model: equivalent to charging the IC up to 1 kV and the subsequent discharging of each
pin down to 0 V over a 1 resistor.
10. Thermal characteristics
Table 5.
Thermal characteristics
Symbol Parameter
Rth(j-a)
j-top
SSL2129AT
Product data sheet
thermal resistance from
junction to ambient
thermal resistance from
junction to top
Conditions
Typ
Unit
in free air; PCB: 2 cm 3 cm; 2-layer;
35 m Cu per layer
159
K/W
in free air; PCB: JEDEC 2s2p
89
K/W
top package temperature measured
at the warmest point on top of the
case
0.49
K/W
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
11 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
11. Characteristics
Table 6.
Characteristics
Symbol
Parameter
fconv
conversion frequency
Conditions
Min
Typ
Max
Unit
-
100
-
kHz
High-voltage
Ileak(DRAIN)
leakage current on pin DRAIN
VDRAIN = 600 V
-
-
10
A
Ileak(HV)
leakage current on pin HV
VHV = 600 V
-
-
30
A
VCC
supply voltage
operating range
8
-
14
V
VCC(startup)
start-up supply voltage
11
12
13
V
VCC(stop)
stop supply voltage
8
9
10
V
VCC(hys)
hysteresis of supply voltage
2
-
4.5
V
VCC(rst)
reset supply voltage
4.5
5
5.5
V
VCC(swon)reg
regulator switch-on supply voltage
8.75
9.25
9.75
V
VCC(swoff)reg
regulator switch-off supply voltage
9.5
10
10.5
V
VCC(reg)hys
regulator supply voltage hysteresis VCC(swoff)reg VCC(swon)reg
0.3
-
-
V
VCC(swon)reg VCC(stop)
0.3
-
-
V
Supply
[1]
between VCC(startup) and VCC(stop)
VCC(regswon-stop) supply voltage difference between
regulator switch-on and stop
Consumption
Istb(HV)
standby current on pin HV
during start-up or in protection;
VHV = 100 V
300
350
400
A
ICC(INT)
internal supply current
normal operation
-
1.3
-
mA
high supply current on pin HV
Standby: VHV = 40 V;
VCC < VCC(stop)
1
1.3
1.6
mA
Regulator on: VHV = 40 V;
VCC < VCC(swon)reg after start-up
2
2.3
2.6
mA
V/t = 0.1 V/s
480
500
520
mV
Capability
Isup(high)HV
Current
Vth(ocp)SOURCE
overcurrent protection threshold
voltage on pin SOURCE
V/t = 0.1 V/s; VNTC = 0.325 V
230
250
270
mV
td(ocp-swoff)
delay time from overcurrent
protection to switch-off
V/t = 0.1 V/s
-
75
100
ns
tleb
leading edge blanking time
overcurrent protection
260
300
340
ns
(V/t)vrec
valley recognition voltage change
with time
on pin DRAIN
30
20
10
V/s
fring
ringing frequency
200
550
1000
kHz
Vvrec(min)
minimum valley recognition
voltage difference
15
20
25
V
td(vrec-swon)
valley recognition to switch on
delay time
-
100
-
ns
Valley detection
SSL2129AT
Product data sheet
[2]
voltage drop on pin DRAIN
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
12 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
Table 6.
Characteristics …continued
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Brownout detection
Vth(TONMOD)
threshold voltage on pin TONMOD
3.75
4
4.25
V
Ioffset(TONMOD)
offset current on pin TONMOD
37
43
48
A
ton(high)
high on-time
12.5
15
17.5
s
Driver (pin DRIVER)
Isource(DRIVER)
source current on pin DRIVER
1.5 ms maximum; VDRIVER = 2 V
-
0.195 -
A
Isink(DRIVER)
sink current on pin DRIVER
20 s maximum; VDRIVER = 2 V
-
0.28
A
20 s maximum; VDRIVER = 10 V
-
0.46
-
A
Vo(DRIVER)max
maximum output voltage on pin
DRIVER
VCC > VCC(startup)
9
10.5
12
V
Vo(DRIVER)min
minimum output voltage on pin
DRIVER
VCC = VCC(stop)
6.5
7.5
8.5
V
V
-
NTC functionality
Vth(high)NTC
high threshold voltage on pin NTC
0.47
0.5
0.53
Vth(low)NTC
low threshold voltage on pin NTC
0.325
0.35
0.375 V
Vact(tmr)NTC
timer activation voltage on pin NTC
0.26
0.3
0.325 V
Vdeact(tmr)NTC
timer deactivation voltage on pin
NTC
0.17
0.2
0.23
V
tto(deact)NTC
deactivation time-out time on pin
NTC
33
46
59
s
Ioffset(NTC)
offset current on pin NTC
-
47
-
A
Temperature protection
Tth(act)otp
overtemperature protection
activation threshold temperature
160
170
180
C
Tth(rel)otp
overtemperature protection
release threshold temperature
90
100
110
C
[1]
The maximum operating voltage at VCC can exceed 14 V.
[2]
This parameter is not tested during production, by design it is guaranteed
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
13 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
12. Application information
An LED driver with the SSL2129AT can be a buck, tapped buck or flyback converter
operating in BCM (see Figure 7). The tapped buck option offers the advantage of larger
duty factor and less peak current through the MOSFET switch, resulting in higher
efficiency and higher converter ratio. The recommended voltage swing on the DRAIN pin
is limited by the Vvrec(min) parameter. With a tapped buck configuration, this limitation is
overcome enabling lower output voltages.
It is recommended for 230 V applications that a TVS is placed after the rectifier bridge to
limit maximum voltage over the bus. In mains dimmable solutions, the bus voltage can
become substantially higher than the nominal mains voltage without clamping because of
line resonance and rectification. This can destroy the electrolytic capacitors, IC or
MOSFET. Open string protection can be added using the auxiliary winding voltage to
pull-down the NTC pin voltage. In addition, the TVS prevents voltage spikes due to for
example lighting surges.
Further information can be found in the SSL2129AT application note.
F1
SQQ 1
U4
120 VAC
MOV1
V150LA1P
BD1
RGND
MBS
R6
9.1 Ω
D1
L1
1 mH
ES1F
C1
0.22 μF
C2
0.22 μF
C3
470 μF
U5
40 V 427 mA
D2
ESF1
R5
U7
200 Ω
L2
470 μH
SRR1210
Q2
D3
BSP89
C7
C5
IN4148W
D4
1N4148W
15 nF
R4
R3
84.5 kΩ
1.5 MΩ
2.2 kΩ
D5
IN4148W
D9
U1
HV
VCC
R7
Q3
220 pF
250 V
C4
1 μF
NTC
SOURCE
8
1
2
7
IC
3
6
4
5
DRAIN
GND
TONMOD
C6
DRIVER 82 pF
Q1
FDD7N25
R8
226 kΩ
D6
2.4 V
R10
220 kΩ
NTC
aaa-005192
GND
Fig 6.
R1
0.43 Ω
A typical mains dimmable buck 120 V (AC) SSL2129AT application
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
14 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
/('
/('
+9
9&&
17&
6285&(
,&
'5$,1
*1'
72102'
'5,9(5
DDD
Fig 7.
A typical mains dimmable tapped buck 230 V (AC) SSL2129AT application
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
15 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
13. Package outline
SO8: plastic small outline package; 8 leads; body width 3.9 mm
SOT96-1
D
E
A
X
c
y
HE
v M A
Z
5
8
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
1
L
4
e
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (2)
e
HE
L
Lp
Q
v
w
y
Z (1)
mm
1.75
0.25
0.10
1.45
1.25
0.25
0.49
0.36
0.25
0.19
5.0
4.8
4.0
3.8
1.27
6.2
5.8
1.05
1.0
0.4
0.7
0.6
0.25
0.25
0.1
0.7
0.3
inches
0.069
0.010 0.057
0.004 0.049
0.01
0.019 0.0100
0.014 0.0075
0.20
0.19
0.16
0.15
0.05
0.01
0.01
0.004
0.028
0.012
0.244
0.039 0.028
0.041
0.228
0.016 0.024
θ
8o
o
0
Notes
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.
Fig 8.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT96-1
076E03
MS-012
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
99-12-27
03-02-18
Package outline SOT96-1 (SOT8)
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
16 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
14. Abbreviations
Table 7.
SSL2129AT
Product data sheet
Abbreviations
Acronym
Description
BCM
Boundary Conduction Mode
LEB
Leading-Edge Blanking
LED
Light Emitting Diode
MOSFET
Metal-Oxide Semiconductor Field-Effect Transistor
OCP
OverCurrent Protection
OTP
OverTemperature Protection
PCB
Printed-Circuit Board
PWM
Pulse-Width Modulation
TVS
Transient Voltage Suppression
UVLO
UnderVoltage LockOut
ZCS
Zero-Current Switching
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
17 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
15. Revision history
Table 8.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
SSL2129AT v.2
20121023
Product data sheet
-
SSL2129AT v.1
SSL2129AT v.1
20120810
Product data sheet
-
-
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
18 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
16. Legal information
16.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
16.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
16.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
SSL2129AT
Product data sheet
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
19 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
16.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
GreenChip — is a trademark of NXP B.V.
17. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
SSL2129AT
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 23 October 2012
© NXP B.V. 2012. All rights reserved.
20 of 21
SSL2129AT
NXP Semiconductors
Dimmable LED controller IC
18. Contents
1
2
3
4
5
6
7
7.1
7.2
8
8.1
8.2
8.3
8.4
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.6
8.7
8.7.1
8.8
8.8.1
8.9
9
10
11
12
13
14
15
16
16.1
16.2
16.3
16.4
17
18
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pinning information . . . . . . . . . . . . . . . . . . . . . . 4
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
Functional description . . . . . . . . . . . . . . . . . . . 5
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Converter operation . . . . . . . . . . . . . . . . . . . . . 5
Driver pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Valley detection. . . . . . . . . . . . . . . . . . . . . . . . . 6
Protective features . . . . . . . . . . . . . . . . . . . . . . 7
UnderVoltage LockOut (UVLO) . . . . . . . . . . . . 7
Leading-Edge Blanking (LEB) . . . . . . . . . . . . . 7
OverCurrent Protection (OCP) . . . . . . . . . . . . . 7
OverTemperature Protection (OTP) . . . . . . . . . 7
Brownout protection . . . . . . . . . . . . . . . . . . . . . 7
ton control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VCC supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VCC regulator . . . . . . . . . . . . . . . . . . . . . . . . . . 8
NTC functionality . . . . . . . . . . . . . . . . . . . . . . . 9
Soft-start function . . . . . . . . . . . . . . . . . . . . . . . 9
Mains dimmer compatibility . . . . . . . . . . . . . . 10
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 11
Thermal characteristics . . . . . . . . . . . . . . . . . 11
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12
Application information. . . . . . . . . . . . . . . . . . 14
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 18
Legal information. . . . . . . . . . . . . . . . . . . . . . . 19
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 19
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Contact information. . . . . . . . . . . . . . . . . . . . . 20
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2012.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 23 October 2012
Document identifier: SSL2129AT