ETC SSL2109

SSL2109
数据手册
用于 LED 照明的控制器
版本.1—2012 年 1 月 10 日
1. 概述
SSL2109 是一款高压集成电路,在一般照明应用中,用于驱动 LED 灯。
这款芯片的主要特点包括:
•
小型印制板(PCB)封装,提供非常紧凑的解决方案
•
高效(最高达 95 %)
•
易于集成和多重保护特征
•
电子元器件少
该芯片是 SSSL2108X 系列的扩展,但是没有内置开关器件。该芯片驱动临界导通模式降压变换器。
该芯片可以通过一个内部高压电流源从 HV 管脚直接启动。在启动后,从漏极处通过电容耦合的
dV/dt 供电,或者任何其他辅助电源为芯片供电。这个功能在应用设计中提供了充分的灵活性。
内置钳制电路用来限制供电电压。该芯片提供了高于 5 % LED 电流精度的精确输出电流控制。它
可以实现脉冲宽度调制(PWM)调光,并且有多重保护,包括 LED 过热保护。
2 特点和优点
LED 控制芯片从整流电源驱动 LED 灯串或高压 LED 模块
是高效开关模式降压驱动器产品系列之一
高效节能的临界导通模式运行的控制器:
续流二极管中无反向恢复损耗
零电流开通
零电压或波谷关断
所需电感值和尺寸最小
允许直接 PWM 调光
通过逐周期地电流控制实现快速的瞬态响应:
LED 电流中 AC 电源纹波小,并且总电容值最小
LED 电流中没有过冲
LED 正向电压无需冗余
内部保护:
欠电压闭锁 (UVLO)
前沿消隐(LEB)
过流保护(OCP)
短路保护 (SWP)
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
内部过热保护 (OTP)
低压保护
输出短路保护 (OSP)
LED 驱动方案的元件数少(见图 3):
PWM 调光不需要调光开关和上桥驱动
采用单个 NTC 实现简单的外部温度保护
可选软启动功能
在待机状态时与内置指示灯的墙上开关兼容
芯片的寿命匹配甚至超过 LED 灯的寿命
3 应用
SSL2109 专为在单一市电输入电压下带精确恒流输出的紧凑型 LED 灯设计,而不需要电流隔离。
电源输入电压包括 100V,120V 和 230V(交流)。可以用 PWM 信号调制输出信号。功率范围
由外部其器件决定。
4 快速参考数据
表 1.
快速参考数据
符号
参数
条件
VCC
电源电压
I ccint 
内部供电电流
典型值
最大值
单位
9.5
-
15.5
V
正常工作
压
管脚 DRAIN 上的
VDRAIN
电压
fconv
变换频率
ton ( high )
管脚 DRIVER 上
I DRIVER
电流
 A 
1.3
管脚 HV 上的电
VHV
5.
最小值
600
V
600
V
25
-
200
kHz
12.5
15-
17.5
s
-
1
A
  10%
-0.4
订购信息
表 2.
订购信息表
型号
SSL2109
SSL4101T
初步数据表
封装
名称
描述
版本
SO8
小型塑壳封装;8 脚;本体宽度 3.9mm
SOT96-1
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
2
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
6.
模块框图
7. 管脚信息
7.1
管脚
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
3
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
7.2
管脚描述
表 3.
管脚描述
符号
管脚
描述
HV
1
高压供电管脚
VCC
2
电源电压
NTC
3
温度保护输入
SOURCE
4
下桥外部开关
DRIVER
5
驱动输出
DVDT
6
AC 供电管脚
GND
7
接地
DRAIN
8
上桥外部开关
8. 功能描述
8.1
简介
SSL2109 是一款应于可替换小型 SSL 灯和独立的 LED 驱动器的芯片。
8.2
变换器运行
SSL2109 变换器是工作于临界导通模式且采用峰值电流控制的系统。基本应用电路图如图 3
所示,波形如图 4 所示。这种类型的变换器工作在连续和非连续模式之间的临界状态。每个周期
开关开通期间,能量储存在电感 L 中。当 MOSFET 开通时,电感电流 I L 为 0。此后,电感电流 IL
从 0 开始增长,其幅值与 Vin-Vout 和 MOSFET 的开通时间成比例。当 MOSFET 关断时,电流通过续
流二极管和输出电容续流。然后电感电流以与 VOUT 值成比例下降。LED 电流 I LED 几乎等于开关
电流峰值的一半。只要电感电流 IL 降为零,一个新的周期就将开始。
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
4
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
8.3
变换频率
变换频率必须限制在 200kHZ 以下。因此,在给定电源电压和 LED 电压和元件拓扑的情况下,需
要选择一个适当的电感值保证变换频率在规定范围内。
8.4
Driver 管脚
SSL2109 配有一个外部驱动器,用来控制外部开关。在第一个周期(t0 到 t1)期间,Driver 输出
管脚上的电压逐渐增加到 Vo ( DRIVER )max 而使开关开通。从副边开通直到下一个周期开始( t0 到
t00 ),driver 输出管脚上的电压逐渐下降到 Vo ( DRIVER )min 。在管脚电压从低到高再回到原始值
的转变过程中,开关沿的陡度得到控制。这个控制条件抑制了电路对周围环境的高频辐射。
8.5
波谷检测
当原边开关开通的时候,一个新的周期就开始了(见图 4)。从 t1 时刻开始,当 SOURCE 管脚上
检测到峰值电流时,开关关断,副边在 t2 时刻开通。在 t3 时刻线圈电流等于 0 时,副边工作结
束时,漏极电压开始在大概 VIN
 VOUT 范围内震荡,其峰峰值等于 2 VOUT 。在 SSL2109 电路中
集成了波谷检测这个特有的功能。DRAIN 管脚上接有专用的内置电路,用来检测开关漏极上的电
压的最低值。下一周期在 t00 时刻开始,这样可以减小容性开关损耗。检测波谷时,如果振荡频
率和电压变化都在规定的范围内(
f ring 和Vvrec (min) ),检测结果才会被接受。 Vvrec (min) 是 HV
管脚和 DRAIN 管脚上的电压差。如果没有检测到有效的波谷,副边将会继续导通进行直到达到最
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
5
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
大的关断时间( toff ( high ) ),然后开始一个新的周期。
8.6
保护功能
该芯片有以下保护功能:
•
欠电压闭锁 (UVLO)
•
前沿消隐(LEB)
•
过流保护(OCP)
•
内部过热保护(OTP)
•
低压保护
•
短路保护(SWP)
•
输出短路保护(OSP)
•
NTC 过温控制和保护
SWP 和 OSP 是闭锁保护。这些保护功能使芯片停止工作直至重新复位(能量循环的结果)。当 Vcc
降至低于 Vcc ( rst ) 时,芯片复位闭锁保护模式。内部的 OTP 和 LED 过温保护是安全重启保护。芯片
停止工作,导致 Vcc 降到低于 Vcc ( stop ) ,从而使芯片重新启动。只有当不存在故障时,芯片才能正
常工作。
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
6
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
8.6.1
欠电压闭锁 (UVLO)
当 Vcc 管脚上的电压降低至低于 Vcc ( stop ) 时,芯片停止工作。然后通过从 HV 管脚给 Vcc 供电来尝
试重启芯片。
8.6.2
前沿消隐 (LEB)
为了防止短路保护或过流保护的误触发,在开关开通后引入了一个消隐时间。当内部 MOSFET 开
关开通时,由于漏极和源极之间的电容放电会引起一个短路电流尖峰。在 LEB 时间( tleb ( ocp ) )
期间,这个尖峰可以忽略。
8.6.3
过流保护 (OCP)
SSL2109 内置一个高精度的峰值检测器。当管脚 SOURCE 上的电压达到 Vth ( ocp ) SOURCE 时电流检测
器触发。通过接在 SOURCE 管脚上的一个电阻可以检测流过开关的电流。在 LEB 时间 tleb 后,检测
电路激活。由于 LED 电流是峰值电流(设计)的一半,因此在运行时自动提供最大 LED 电流保护
功能。过流检测和开关实际关闭之间有一个传输延时 td ( ocp  swoff ) 。由于这个延时,实际的峰值
电流比由 SOURCE 脚上串联电阻设置的 OCP 电平稍高一点。
8.6.4
过热保护 (OTP)
当芯片达到某一温度 Tth ( act ) otp 时,内部 OTP 功能触发,此时变换器停止工作。当芯片温度降低至
低于 Tth ( rel ) otp 时,OTP 安全重启保护功能和芯片将会再次重启。
8.6.5
低压保护
当输入电压降至接近于输出电压时,低压保护将限制灯的输出功率。由于输入功率必须保持恒定,
因此输入电压降低,输出电流将会增大到一个输入电路无法处理的程度。SSL2109 有一个开关最
大导通时间限制 ton ( high ) 。在开关导通阶段,线圈中电流的上升速度与输入输出电压差成比例。
因此,在 ton ( high ) 之前达不到电流峰值,从而降低了 LED 的输出电流平均值。
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
7
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
8.6.6
短路保护 (SWP)
如果流过 MOSFET 和接在 SOURCE 管脚上的外部电阻的电流急速上升,SWP 激活。在续流二极管短
路时,这个电流就会出现。此外,在电压输入端和 DRAIN 管脚之间有非常小或被短路的电感时,
这个电流也会出现。在 LEB 时间 tleb 后,SOURCE 管脚上的电压高于 1.5V 时,触发闭锁保护。此
外, Vcc 降至低于 Vcc ( rst ) 时,芯片就重置闭锁保护模式。
8.6.7
输出短路保护 (OSP)
在副边导通(开关时间)期间,如果在关断时间 toff ( high ) 限制范围内没有检测到波谷,那么输出
电压将会低于应用中所允许的最小值。这种情况会出现在启动期间或者存在短路时。当检测到
toff ( high ) 时,定时器启动;只有在以后的某个周期中出现有效的波谷检测时,定时器才停止工作。
如果在 t det( sc ) 时间内检测不到波谷,那么可以推断存在短路而不再启动,芯片进入闭锁保护模式。
当 Vcc 降至低于 Vrst(VCC) 时,芯片就复位闭锁保护模式。在 PWM 调光期间,OSP 定时器在关断
期间暂停工作。
8.7
VCC 供电
SSL2109 可以使用三种方法供电:
• 在正常运行下, DVDT 管脚上的电压脉冲经过整流后向 VCC 管脚供电。
• 在启动期间,有一个内部电流源连接至 HV 管脚。这个电流源提供内部能量,直至 dV/dt 供
电或 VCC 管脚上的外部电流给芯片供电
• 外部电压源连接至 VCC 管脚上
当 VCC 管脚上的电压高于 Vstart (VCC ) 时,芯片启动。当 VCC 管脚上的电压低于 Vstop (VCC ) 时,芯
片闭锁(停止振荡)。启动和停止电压之间的滞环允许芯片由一个缓冲电容供电,直至 dV/dt 电
源供电。SSL2109 内部有一个 VCC 钳位,这是一个内部稳压管(或稳压器),其用来限制 VCC
管脚上的电压在 VCC 的最大值。如果 dV/dt 供电的最大电流减去芯片的电流消耗低于 I DD 的最大
值(主要由门极驱动上的负载决定),那么 dV/dt 供电电路不需要外部稳压管。
8.8
DVDT 供电
DVDT 管脚连接至一个内部单边整流。当一个有足够振幅的交流电压加至该管脚,芯片直接被驱
动而不需要其他外部电源连接。该方案提供了一个有效的方法防止使用调节器给芯片持续供电而
产生附加的大功率损耗。和辅助电源供电不同,DVDT 供电不需要附加电感线圈。
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
8
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
8.9 VCC 调节器
在供电电压下降期间,输入电压会下降过低从而不能提供芯片所需要的流过 DVDT 管脚的电流。
在这种情况下,如果 VCC 电压降至低于 Vcc ( swon ) reg ,将会启动另一个调节器,该调节器产生的电
流可高达 I HVhigh ( oper ) 。该调节器的工作就是补充所需的供电电流来防止芯片进入 UVLO 模式,而
DVDT 供电没有这种功能。当 VCC 电压高于 Vcc ( swon ) reg 时,调节器停止工作。
8.10 NTC 功能和 PWM 调光
NTC 管脚可以作为 LED 过热保护的一个控制方式。此外,通过一个数字信号(PWM 调光),该管
脚也可以作为使能照明输出的输入端。该管脚有一个内部电流源,可以产生一个电流 Ioffset ( NTC ) 。
用来监控 LED 温度的 NTC 电阻可以直接连接至 NTC 管脚。对应于 NTC 电阻值和相应的 NTC
管脚上的电压,变换器的响应如图 5 所示
当 NTC 脚上的电压高于 Vth ( high ) NTC 时,如图 5(4),变换器传送额定输出电流。低于这个电压
水平时,峰值电流会渐渐减小直至达到 Vth ( high ) NTC ,如图 5(3),这里的峰值电流等于额定运
行时峰值电流的一半。当 NTC 管脚的电压超过 Vact (tmr ) NTC 时,如图 5(2)一个定时器开始工作,
造成这样状态可能有以下两种情况:
• 如果在时间 ttc ( deact ) NTC 内没有达到低电平 Vdeact (tmr ) NTC 图 5(1),那么检测到 LED 温度过高。
芯片停止工作并试图通过 HV 管脚电压重启。重启只发生在 NTC 管脚的电压高于 Vth ( high ) NTC 时
如图 5(4)。峰值电流的减小不会导致 NTC 温度变低,过热保护功能被激活。
• 当在时间 ttc ( deact ) NTC 内达到低电平 Vdeact (tmr ) NTC ,图 5(1)该管脚可能被外部拉低。不会触发
重启功能。反而,输出电流减小为 0。PWM 调光可以通过这种方法来实现。当电压高于
Vdeact (tmr ) NTC 时,输出电流再次上升。
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
9
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
软启动功能
8.10.1
NTC 管脚可以用于实现软启动功能。在开通期间,NTC 管脚上的电平为低电平。通过连接一个
电容(与 NTC 电阻并联),可以决定一个时间常数。时间常数会使 NTC 脚上的电平缓慢地升高。
当 NTC 管脚的电压超过 Vth (low) NTC 图 5(3)时,变换器以最大电流的一半开始工作。当 NTC 管
脚的电压达到 Vth ( high ) NTC 时图 5(4),输出电流缓慢地增大至最大值。
9. 极限值
表 4.
极限值
按照绝对最大额定值系统(IEC 60134).
符号
参数
条件
最小值
最大值
单位
SR
电压变化率
管脚 DRAIN 上
-5
+5
V/ns
fconv
变换频率
25
200
kHz
Ptot
Tamb
Tj
Tstg
总耗散功率
-
<tbd>
W
环境温度
-40
+125
°C
结点温度
-40
+150
°C
存储温度
-55
+150
°C
一般值
SO8 封装
电压
电源电压
连续的[3]
−0.4
+15
V
管脚 DRAIN 的电压
600V 版
−0.4
+600
V
管脚 HV 的电压
电流受限
−0.4
+600
V
管脚 SENSE 的电压
电流受限
−0.4
+5.2
V
管脚 NTC 的电压
电流受限
−0.4
+5.2
V
IDD
供电电流
管脚 Vcc[3]上
-
20
mA
IDRIVER
IDVDT
管脚 DRIVER 的电流
  10%
-0.4
1
A
-
1.3
A
-2.0
+2.0
KV
-1.0
+1.0
KV
-500
+500
V
VCC
VDRAIN
VHV
VSENSE
VNTC
电流
管脚 DVDT 的电流
人体模型 (除了 DRAIN
和 HV 以外的所有管脚)
静电放电电压
VESD
[1]
对于 DRAIN 和 HV 的人
体模型
带电装置
[2]
[1]
人体模型:相当于通过一个 1.5kΩ 的串联电阻给一个 100pF 的电容放电。
[2]
带电装置模式:
相当于给芯片充电至 1kV,
随后通过一个 1 Ω 电阻给每个管脚放电至 0V。
[3]
内部的钳位电路设置供电电压和电流限制
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
10
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
10. 热特性
表 5.
热特性
符号
参数
条件
典型值
单位
<tbd>
K/W
<tbd>
K/W
在大气中; SO8 封装,PCB:
Rth ( j  a )
结点至周围环境的热阻
2cm×3cm,2 层,
每层 35μm 厚
的铜
在大气中; SO8 封装,PCB:
Rth (i  c )
节点至外壳的热阻
2cm×3cm,2 层,
每层 35μm 厚
的铜
11. 特征值
表 6.
特征值
符号
最小
典型
值
值
参数
条件
Ileak ( DRAIN )
DRAIN 脚的漏电流
VDRAIN  600V
-
Ileak ( HV )
HV 脚的漏电流
VHV  600V
-
最大值
单位
10
A
-
30
A
高压
供电
VCC ( startup )
VCC ( stop )
启动电压
11
12
13
V
截止电压
8
9
10
V
VCC ( hys )
滞环电压
2.0
-
-
V
VCC ( rst )
重置电压
4.5
5
5.5
V
VCC ( swon) reg
VCC ( swoff ) reg
调节器的开通电压
dV/dt 供电不足
8.75
9.25
9.75
V
调节器的关断电压
dV/dt 供电不足
9.5
10
10.5
V
VCC ( reg ) hys
VCC ( regswon  stop )
调节器供电电压滞
VCC ( startup ) 和 VCC ( stop )
之间
VCC ( swoff ) reg  VCC ( swoff ) reg
后
调节器开通和关断
的供电电压差
VCC ( swon) reg  VCC ( stop )
0.3
V
0.3
V
功耗
在启动期间或者处于保
Istb ( HV )
SSL4101T
初步数据表
HV 管脚的待机电流
护模式; VHV
 100V
300
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
350
400
μA
恩智浦公司版权所有
11
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
表 6.
特征值(续)
符号
参数
条件
最小值
典型值
最大值
单位
ICC ( INT )
内部供电电流
额定运行
-
1.3
-
mA
1
1.3
1.6
mA
2
2.3
2.6
mA
480
500
520
mV
230
250
270
mV
V / t  0.1V /  s
-
75
100
ns
过流保护
260
300
340-
ns
短路保护
210
250
290
ns
30
50
1.4
1.5
1.6
V
-30
-20
-10
V / s
200
550
1000
kHz
15
20
25
V
-
100
-
ns
12.5
15
16
s
-0.3
-0.25
A
性能
待机:
VHV  40V ;
I sup( high) HV
HV 管脚的高供电
电流
VCC  VCC ( stop )
调节器工作:VHV  40V ;
启动后 VCC  VCC ( swon ) reg
电流和 SWP
Vth(ocp ) SOURCE
SOURCE 脚的过流
保护阈值电压
V / t  0.1V /  s
V / t  0.1V /  s
VNTC  0.325V
td (ocp  swoff )
tleb
tleb
Vth( swp ) SOURCE
从过流保护到关断
的延迟时间
前沿死区时间
前沿死区时间差
在过流保护和短路保护
前沿死区时间 tleb 之间
SOURCE 脚的短路
保护阈值电压
ns
波谷检测
(V / t )vrec
波谷检测电压随时
fring
振铃频率
Vvrec (min)
最小波谷检测电压
td (vrec  swon)
间的变化率
差
在 DRAIN 管脚上
管脚 DRAIN 上的压降
波谷识别到开通的
延迟时间
低压检测
ton ( high )
最大导通时间
DRIVER(管脚
DRIVER)
Isource ( DRIVER )
SSL4101T
初步数据表
DRIVER 管脚上的
源电流
VDRIVER  2V
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
12
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
表 6.
特征值(续)
符号
I sin k ( DRIVER)
Vo ( DRIVER )max
Vo ( DRIVER )min
t f ( DRIVER )
tr ( DRIVER )
参数
DRIVER 管脚上的灌电
流
条件
最小值
典型值
最大值
单位
VDRIVER  2V
0.25
0.3
-
A
VDRIVER  10V
0.6
0.75
9
10.5
12
V
-
<tbd>
<tbd>
V
-
<tbd>
-
V/ns
<tbd>
-
V/ns
DRIVER 管脚的最大输
出电压
DRIVER 管脚的最小大
输出电压
DRIVER 管脚的下降时
间
DRIVER 管脚的下降时
间
Cdriver  1nF
Cdriver  1nF
A
NTC 功能
Vth( high) NTC
Vth(low) NTC
Vact (tmr ) NTC
Vdeact (tmr ) NTC
NTC 脚的高电压阈值
0.47
0.5
0.53
V
NTC 脚的低电压阈值
0.325
0.35
0.375
V
0.27
0.3
0.325
V
0.15
0.2
0.25
V
NTC 脚的定时器激活电
压
NTC 脚的定时器关断电
压
tto( deact ) NTC
NTC 脚的停用超时时间
32
44
56
s
Ioffset ( NTC )
NTC 脚的补偿电流
-
-47
-
A
t det( sc )
短路检测时间
16
20
24
ms
toff ( high )
最大关断时间
30
36
42
μs
过热保护激活阈值温度
160
170
180
°C
过热保护释放阈值温度
90
100
110
°C
OSP
过热保护
Tth ( act )otp
Tth ( rel )otp
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
13
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
12. 应用信息
使用 SSL2109 的 LED 驱动器是工作在 BCM 模式的降压式变换器,见图 6。在启动阶段通过 HV 管
脚给芯片供电,正常工作时通过电容 C5 给芯片供电,电容 C3 用来缓冲芯片的供电电压。检测电
阻 R4 和 R5 将流过 MOSFET Q1 的电流转化成管脚 Source 上的电压。这些电阻的值决定了 MOSFET
Q1 的原边最大峰值电流,同样的也决定了流过 LED 的电流。电阻 R6 减小 DRIVER 管脚的反向电
流。DRAIN 管脚和 Q1 的漏极相连用来进行波谷检测。
在图 6 所示的例子中,NTC 管脚用于温度保护。温度标准由热敏电阻 R3 设定,电容 C4 用来降低
NTC 管脚上的噪音。更多信息可以在 SSL2109 应用手册中找到。
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
14
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
13. 封装外形
图 7.封装外形 SOT96-1(SOT8)
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
15
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
14. 缩略词
表 7.
缩略词
首字母缩写
描述
BCM
临界导通模式
BOM
材料清单
LED
发光二极管
LEB
前沿消隐
MOSFET
金属氧化物半导体场效应晶体管
OCP
过流保护
OSP
输出短路保护
OTP
过热保护
PCB
印刷电路板
PWM
脉冲宽度调制
SWP
绕组短路保护
UVLO
欠电压闭锁
ZCS
零电流开关
15. 参考资料
[1]
SSL2108x — 数据手册:LED 照明驱动器
[2]
AN11041—应用手册:SSL 应用系列中的 SSL2108X 驱动器
[3]
AN10876—应用手册:SSL 应用系列中的降压式变换器
[4]
UM10512—用户手册:LED 照明绿色芯片控制器
[5]
AN11136—应用手册:SSL 应用系列中的降压式变换器
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
16
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
16. 修订历史
表 8.
修订历史
文档编号
发布日期
数据手册状态
变更说明
取代
v.1
2011××××
目标数据手册
-
-
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
17
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
17. 法律信息
17.1 数据表状态
文档状况[1][2]
生产状况[3]
阐释
目标[简短]数据表
开发
本资料包含来自用于产品开发的目标技术规格的数据。
初步[简短]数据表
认证
本资料包含来自初步技术规格的数据。
产品[简短]数据表
生产
本资料包含产品技术规格。
[1] 在开始或结束设计之前,请查阅最近发布的资料。
[2] 术语„短的数据表‟在“定义”部分中解释。
[3] 本资料中描述的装置的产品状态自从本资料出版以来可能已经发生了变化,在多个装置的情况下可能会不同。最新的产品状
态信息可通过互联网获得,URL网址为:http://www.nxp.com。
17.2 定义
草案——资料只是草案版本。内容仍然在进行内部审核,还未得到正式批准;这可能导致变更或增加。恩智浦半导体公司
对于信息的准确性或完整性不给出任何陈述或担保,而且对于使用此信息的后果也不承担任何责任。
短的数据表——简短数据表是来自具有相同产品型号和标题的完整数据表的摘要。简短数据表只打算作为快速参考,不得
认为它含有详细的完整信息。对于详细的完整信息,参见相关完整数据表;请向当地恩智浦半导体公司销售处索取。一旦与简
短数据表发生了任何矛盾或冲突,以完整数据表为准。
产品说明——除非NXP半导体和客户另外在书面上达成协议,否则,双方都应承认产品数据手册上的信息和数据所定义的
产品说明。但是,在产品数据手册中, NXP半导体产品认为能提供功能和质量超过描述的,所产生的协议不会有法律效力。
17.3 声明
有限的保修和责任——本文档中的信息是准确和可靠的。但是恩智浦半导体公司不会对此信息的准确性或完整性给出任何
明示或暗示的陈述或担保,而且对于使用此信息的后果也不承担任何责任。
在任何间接、偶然发生、恶劣、特殊或者从属损害(包括—未采取限制措施—丧失利润、丧失储蓄、破产、移除或者替代
任何产品的成本或者再次加工的费用),不论这些损害是在民事侵权(包括失职)、担保、违约或者其他法律规定基础上发生
的。
尽管,客户所遭受的一些损害无论存在什么原因,NXP半导体都会统计和整理,客户如认为手册中所描述的产品信息有限,
可以依照NXP半导体商业销售的条款和规定。
更改的权力——恩智浦半导体公司有权在任何时候对本资料中出版的信息进行更改,包括但不限于技术规格和产品描述,
随时都可能并且不会另行通知。本资料取代和替换在此出版之间提供的所有信息。
适用性——恩智浦半导体公司的产品没有设计、授权或担保能适用于生命支持、生命危险或安全危险的系统或设备,或者
是在合理地预计到恩智浦半导体公司产品的故障或功能失常能导致人员伤害、死亡或严重财产或环境损坏之场合的应用。对于
恩智浦半导体公司产品在此类设备或应用中的包含和/或使用,恩智浦半导体公司不承担任何责任;因此,此类包含和/或使用应
该由客户独自承担风险。
应用——此处对任何产品的应用的描述只是为了举例。恩智浦半导体公司不会做出任何表示和担保,在更多的测试和修改
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
18
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
前,该应用能用于规范使用。
客户要对设计和运行他们的产品(使用恩智浦半导体公司的产品)负责,并且恩智浦半导体公司可以对任何应用和客户设
计提供无责任的援助。对于客户和第三方客户的设计和使用,决定恩智浦半导体产品是否适用是客户的首要责任。客户应该提
供合适的设计和运行安全保障,以保证产品的风险降至最低。
由于客户或第三方客户自身的不慎或违规操作而导致的失灵、损坏、费用、问题,恩智浦半导体公司概不负责。对于使用
恩智浦半导体产品的客户的产品,客户有责任作出所有必要的测试,以避免出现故障。
极限值——高于一个或多个极限值(按照IEC 60134的“绝对最大额定值系统”的定义)的应力可能导致装置的永久性损坏。
极限值只是应力额定值,并不意味着装置可以在这些极限值或本资料的“特征”部分给出的数值之上的任何其它条件下操作。长期
暴露到极限值下可能会影响装置的质量和可靠性。
销售条款和条件——如未与恩智浦半导体公司达成另外的明确书面协议,恩智浦半导体公司的产品是按照商业销售的通用
条款和条件销售的,它发布在网站http://www.nxp.com/profile/terms上,除非有另外的个别协议,否则以此为准。各自的协议和条
款应该申请以免被取消。恩智浦半导体公司明确反对客户以普通的客户条款和条件收购恩智浦半导体产品。
无销售要约或许可证——本资料中的任何信息均不得被解释为、或者认为是产品销售要约;它们对于在任何版权、专利或
其它工业或知识产权之下的任何许可证的接受或准许、转让或暗示是公开的。
快速参考数据——快速参考数据是对本资料“极限值和特征”部分中给出的产品数据的摘要,因此它并不完整,也不详细,
没有法律约束力。
出口管理——此处的文件和项目描述会受到出口管理规定的制约。出口首先要获得进口国的许可。
非汽车合格产品——除非数据表明确表示该产品在汽车上是合格产品,否则产品为非汽车使用。该产品在汽车测试或者应
用要求上即不合格,也未通过测试。在汽车设备或者应用中使用非汽车合格内产品使用非免检产品所产生的后果,NXP将不负
任何法律责任。如果客户在汽车规范和标准下,使用产品进行汽车应用的设计,那么顾客(A)应使用无恩智浦公司对汽车应用、
使用和规范做出担保的产品,(B)任何时候客户使用了超出恩智浦公司规范的汽车应用后,须由客户承担主要风险,(C)对
于客户在汽车应用的设计和使用产品超过了NXP半导体的标准范围和产品的使用说明,所产生的债务、损害或者故障产品索赔,
NXP将不会承担任何责任。
17.4 商标
说明:所有参考到的品牌、产品名称、服务名称和商标均是它们各自所有人的财产。
18. 联系信息
了解更多信息,请登录:http://www.nxp.com
关于销售办事处地址,请发送电子邮件到:[email protected]
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
19
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
19. 表格
表
表
表
表
表
表
表
表
1.
2.
3.
4.
5.
6.
7.
8.
SSL4101T
初步数据表
快速参考手册 . . . . . . . . . . . . . . . . . . . .2
订购信息 . . . . . . . . . . . . . . . . . . . . . . . .2
管脚描述 . . . . . . . . . . . . . . . . . . . . . . . .4
极限值. . . . . . . . . . . . . . . . . . . . . . . . . . . .10
热特性. . . . . . . . . . . . . . . . . . . . . . . . . . . .11
特征值 . . . . . . . . . . . . . . . . . . . . . . . . . .11
缩略词. . . . . . . . . . . . . . . . . . . . . . . . . . . .16
修订历史. . . . . . . . . . . . . . . . . . . . . . . . . .17
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
20
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
20. 插图
图 1.
图 2.
图 3.
图 4.
图 5.
图 6.
图 7.
SSL2109 方框图. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
管脚配置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … . . . . 3
SSL2109 的基本应用电路图. . . . . . . . . . . . . . . . . . . . . . 4
Buck 波形和波谷检测. . . . . . . . . . . . . . . . . . . . . . . . . . . .6
NTC 控制曲线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
SSL2109 典型应用电路. . . . . . . . . . . . . . . . . . . .. . . . . . .14
SOT96-1(SOT8)的封装外形. . . . . . . . . . . . . . . . . . . .15
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
21
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
21. 目录
1. 概述 .................................................................................. Error! Bookmark not defined.
2 特征和优点 ......................................................................................................................... 1
3 应用 ..................................................................................................................................... 2
4 快速参考数据 ..................................................................................................................... 2
5. 订购信息 ......................................................................................................................... 2
6. 模块框图 ......................................................................................................................... 3
7. 管脚信息 ......................................................................................................................... 3
7.1 管脚 .................................................................................................................. 3
7.2 管脚描述 .......................................................................................................... 4
8. 功能描述 ......................................................................................................................... 4
8.1 简介 .................................................................................................................. 4
8.2 变换器运行 ...................................................................................................... 4
8.3 变换频率 .......................................................................................................... 5
8.4 Driver 管脚 ....................................................................................................... 5
8.5 波谷检测 .......................................................................................................... 5
8.6 保护功能 .......................................................................................................... 6
8.7 VCC 供电 ........................................................................................................... 8
8.8 DVDT 供电 ........................................................................................................ 8
8.9 VCC 调节器 ......................................................................................................... 9
8.10 NTC 功能和 PWM 调光 .................................................................................... 9
8.10.1 软启动功能 ............................................................................................... 10
9. 极限值 ........................................................................................................................... 10
10. 热特性 ........................................................................................................................... 11
11. 特性 ............................................................................................................................... 11
12. 应用信息 ....................................................................................................................... 12
13. 封装外形 ....................................................................................................................... 15
14. 缩略词 ........................................................................................................................... 16
15. 参考资料 ....................................................................................................................... 16
16. 修订历史 ....................................................................................................................... 17
17. 法律信息 ....................................................................................................................... 18
17.1 数据表状态 ....................................................................................................... 18
17.2 定义 .................................................................................................................. 18
17.3 声明 ................................................................................................................... 18
17.4 商标 ................................................................................................................... 19
18. 联系信息 ....................................................................................................................... 19
19. 表格 ............................................................................................................................... 20
20. 插图 ............................................................................................................................... 21
21. 目录 ............................................................................................................................... 22
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
22
SSL2109
NXP 半导体
用于 LED 照明的绿色芯片驱动器
此文档仅供参考。任何内容变更以官方英文数据手册为准。
与本资料及其所描述产品相关的重要注意事项已经包括在“法律信息”部分。
© NXP B.V. 2011。版权所有。
有关详细信息,请访问: http://www.nxp.com
销售办事处的地址,请发电子邮件至: [email protected]
发布日期: 2012 年 1 月 10 日
文档标识符: SSL2109
SSL4101T
初步数据表
法律免责声明适用于所有信息
版本 .1---- 2012 年 1 月 10 日
恩智浦公司版权所有
23
SSL2109 series
Compact non-dimmable LED controller IC
Rev. 4 — 26 October 2012
Product data sheet
1. General description
The SSL2109 series is a range of high-voltage Integrated Circuits (IC) for driving LED
lamps in general lighting applications.
The main benefits of this IC include:
•
•
•
•
•
•
•
Small Printed-Circuit Board (PCB) footprint and compact solution
High efficiency (up to 95 %) for non-dimmable high power factor solutions
High power factor >0.9 (application dependent)
Ease of integration and many protection features
Low electronic Bill Of Material (BOM)
Highly flexible IC for use in buck, buck/boost and flyback modes
Single inductor used for non-isolated configurations because of internal
demagnetization detection and dV/dt supply
The IC is supplementary to the SSL21081/SSL21083 series but without an internal switch.
The IC range has been designed to start up directly from the HV supply by an internal
high-voltage current source. Thereafter, the dV/dt supply is used with capacitive coupling
from the drain, or any other auxiliary supply. This functionality provides full flexibility in the
application design. An internal clamp limits the supply voltage.
The IC provides accurate output current control to within 5 % LED current accuracy. The
IC can be operated using Pulse-Width Modulation (PWM) current regulation and has
many protection features including easy LED temperature feedback.
2. Features and benefits
LED controller IC for driving strings of LEDs or high-voltage LED modules from a
rectified mains supply
Part of a high-efficiency switch mode flyback or buck product family.
Controller-only which can drive an external MOSFET
Controller that has power-efficient boundary conduction mode of operation with:
No reverse recovery losses in freewheel diode
Zero Current Switching (ZCS) for switch turn-on
Zero voltage or valley switching for switch turn-off
Minimal required inductance value and size
SL2109AT: suitable for high power factor (>0.9) applications
Applicable in buck, buck/boost and flyback topologies
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
Direct PWM current regulation possible
Fast transient response through cycle-by-cycle current control:
Negligible AC mains ripple in LED current and minimal total capacitance in low
ripple configurations
No over or undershoots in the LED current
Simple high input power factor solution (>0.9)
Internal Protection features:
UnderVoltage LockOut (UVLO)
Leading-Edge Blanking (LEB)
OverCurrent Protection (OCP)
Short-Winding Protection (SWP); SSL2109T only
Internal OverTemperature Protection (OTP)
Brownout protection
Output Short Protection (OSP)
Low component count (see Figure 4) LED driver solution:
No dim switch and high-side driver required for PWM current regulation
Easy external temperature protection with a single NTC
Option for soft-start function
Compatible with wall switches with built-in indication light during standby
IC lifetime easily matches or surpasses LED lamp lifetime
3. Applications
The SSL2109 is intended for compact LED lamps with accurate fixed current output for
single mains input voltages. Mains input voltages include 100 V, 120 V and 230 V (AC).
The output signal can be modulated using a PWM signal. The power range is determined
by external components.
4. Quick reference data
Table 1.
Quick reference data
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VCC
supply voltage
operating range
8
-
14
V
ICC(INT)
internal supply current
normal operation
-
1.3
-
mA
VHV
voltage on pin HV
-
-
600
V
VDRAIN
voltage on pin DRAIN
−0.4
-
600
V
fconv
conversion frequency
-
100
-
kHz
9
10.5
12
V
Vo(DRIVER)max maximum output voltage
on pin DRIVER
SSL2109_SER
Product data sheet
VCC > VCC(startup)
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
2 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
5. Ordering information
Table 2.
Ordering information
Type number
SSL2109AT
Package
Name
Description
Version
SO8
plastic small package outline body; 8 leads; body width
3.9 mm
SOT96-1
SSL2109T
6. Block diagram
HV
VCC
1
2
JFET
dV/dT
SUPPLY
6
VALLEY
DETECTION
8
DVDT
SUPPLY:
INTERNAL
REGULATOR
AND
BANDGAP
DRAIN
LOGIC
TOFFMAX
NTC
3
NTC
FUNCTION
THERMAL
SHUTDOWN
TONMAX
LOGIC
CONTROL
AND
PROTECTION
5
DRIVER
BLANK
POR
4
SOURCE
OCP
GND
7
0.5 V < > 0.25 V
aaa-003466
Fig 1.
SSL2109_SER
Product data sheet
SSL2109AT block diagram
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
3 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
HV
VCC
1
2
JFET
dV/dT
SUPPLY
6
VALLEY
DETECTION
8
DVDT
SUPPLY:
INTERNAL
REGULATOR
AND
BANDGAP
DRAIN
LOGIC
TOFFMAX
NTC
3
NTC
FUNCTION
THERMAL
SHUTDOWN
TONMAX
LOGIC
CONTROL
AND
PROTECTION
5
DRIVER
BLANK
POR
4
SOURCE
1.5 V
SWP
GND
7
OCP
0.5 V < > 0.25 V
aaa-001925
Fig 2.
SSL2109_SER
Product data sheet
SSL2109T block diagram
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
4 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
7. Pinning information
7.1 Pinning
HV
1
VCC
2
8
DRAIN
7
GND
IC
NTC
3
6
DVDT
SOURCE
4
5
DRIVER
aaa-001742
Fig 3.
SSL2109 pin configuration
7.2 Pin description
Table 3.
SSL2109_SER
Product data sheet
Pin description
Symbol
Pin
Description
HV
1
high-voltage supply pin
VCC
2
supply voltage
NTC
3
temperature protection input
SOURCE
4
low-side external switch
DRIVER
5
driver output
DVDT
6
AC supply pin
GND
7
ground
DRAIN
8
high-side external switch
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
5 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
8. Functional description
8.1 Introduction
The SSL2109 is a range of products for small form factor retrofit SSL lamps and separate
LED drivers.
8.2 Converter operation
The converter in the SSL2129 is a Boundary Conduction Mode (BCM), peak current
controlled system. See Figure 4 for the basic application diagram. See Figure 5 for the
waveforms.
This converter type operates at the boundary between continuous and discontinuous
mode. Energy is stored in inductor L each period that the switch is on. The inductor
current IL is zero when the MOSFET is switched on. The amplitude of the current build-up
in L is proportional to the voltage drop over the inductor and the time that the MOSFET
switch is on. When the MOSFET is switched off, the energy in the inductor is released
towards the output. The current then falls at a rate proportional to the value of VOUT. The
LED current ILED depends on the peak current through the inductor (SSL2109 controlled)
and on the HV bus voltage while it is optimized for a high power factor. A new cycle is
started once the inductor current IL is zero. This quasi-resonant operation results in higher
efficiency.
Rinrush
Vsec
LEDs
HV
VCC
NTC
GND
6
1
8
2
IC
3
5
7
4
DVDT
DRAIN
DRIVER
SOURCE
NTC
Rsense
aaa-001743
Fig 4.
SSL2109AT basic low ripple buck application diagram
8.3 Driver pin
The SSL2109 is equipped with an internal driver that can control an external switch. The
voltage on the driver output pin is increased towards Vo(DRIVER)max to open the switch
during the first cycle (t0 to t1). The voltage on the driver output pin is pulled down towards
a low level from the start of the secondary stroke until the next cycle starts (t0 to t00).
During transition from low to high and back, there is a controlled switching slope
steepness. This controlled condition limits the high frequency radiation from the circuit to
the surrounding area.
At the lowest VCC voltage (VCC(stop)), the voltage of the driver is VO(DRIVER)min.
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
6 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
8.4 Valley detection
A new cycle is started when the primary switch is switched on (see Figure 5). In the
following sections, “on” represents the conductive state and off the non-conductive state.
Following time t1, when the peak current is detected on the SOURCE pin, the switch is
turned off and the secondary stroke starts at t2. When the secondary stroke is completed
with the coil current at t3 equaling zero, the drain voltage starts to oscillate at
approximately VIN − VOUT level. The peak to peak amplitude equals 2 × VOUT. A special
feature, called valley detection is an integrated part of the SSL2109 circuitry. Dedicated
built-in circuitry connected to the DRAIN pin, senses when the voltage on the drain of the
switch has reached its lowest value. The next cycle is then started at t00 and as a result
the capacitive switching losses are reduced. A valley is detected and accepted if both the
frequency of the oscillations and the voltage swing are within the range specified (fring and
∆Vvrec(min)) for detection. ∆Vvrec(min) is the voltage differential between the HV (pin) in and
the DRAIN pin. If a valid valley is not detected, the secondary stroke is continued until the
maximum off-time (toff(high)) is reached, then the next cycle is started.
A series resistance can be included at the drain sensing pin for flyback mode to remove
the high-frequency ringing caused by the transformer leakage inductance.
VGATE
VOUT
VDRAIN
VIN
valley
0
demagnetization
magnetization
IL
0
2
1
t0
t1
3
t2
4
t3
t00
T
aaa-001744
Fig 5.
SSL2109_SER
Product data sheet
Buck waveforms and valley detection
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
7 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
8.5 Protective features
The IC has the following protections:
•
•
•
•
•
•
•
•
UnderVoltage LockOut (UVLO)
Leading-Edge Blanking (LEB)
OverCurrent Protection (OCP)
Internal OverTemperature Protection (OTP)
Brownout protection
Short-Winding Protection (SWP) SSL2109T only
Output Short Protection (OSP)
LED overtemperature control and protection
The SWP and the OSP are latched protections. These protections cause the IC to halt
until a reset (a result of power cycling) is executed. When VCC drops lower than VCC(rst),
the IC resets the latch protection mode. The internal OTP and LED over temperature
protections are safe-restart protections. When VCC drops lower than VCC(rst), the IC resets
the latch protection mode. If VCC drops below VCC(stop), the IC halts. Switching starts only
when no fault condition exists.
8.5.1 UnderVoltage LockOut (UVLO)
When the voltage on the VCC pin drops lower than VCC(stop), the IC stops switching. An
attempt is then made to restart by supplying VCC from the HV pin voltage.
8.5.2 Leading-Edge Blanking (LEB)
To prevent false detection of the short-winding or overcurrent, a blanking time following
switch-on is implemented. When the MOSFET switch turns on there can be a short
current spike due to capacitive discharge of voltage over the drain and source. During the
LEB time (tleb), the spike is disregarded.
8.5.3 OverCurrent Protection (OCP)
The SSL2109 contains a highly accurate peak current detector. It triggers when the
voltage at the SOURCE pin reaches the peak-level Vth(ocp)SOURCE. The current through
the switch is sensed using a resistor connected to the SOURCE pin. The sense circuit is
activated following LEB time tleb. As the LED current is half the peak current (by design), it
automatically provides protection for maximum LED current during operation. There is a
propagation delay between overcurrent detection and the actual closure of the switch
td(ocp-swoff). Due to the delay, the actual peak current is slightly higher than the OCP level
set using the resistor in series to the SOURCE pin.
8.5.4 OverTemperature Protection (OTP)
When the internal OTP function is triggered at a certain IC temperature (Tth(act)otp), the
converter stops operating. The OTP safe-restart protection and the IC restarts again with
switching resuming when the IC temperature drops lower than Tth(rel)otp.
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
8 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
8.5.5 Brownout protection
Brownout protection is designed to limit the lamp power when the input voltage drops
close to the output voltage level. Since the input power has to remain constant, the input
current would otherwise increase to a level that is too large for the input circuitry. For the
SSL2109, there is a maximum limit on the on-time of switch ton(high).
The rate of current rise in the coil during the on-phase is proportional to the difference
between input voltage and output voltage. Therefore, the peak current cannot be reached
before ton(high) and as a result the average output current to the LEDs is reduced.
8.5.6 Short-Winding Protection (SWP); SSL2109T only
SWP activates if there is a steep rising current through the MOSFET. The voltage across
the external resistor connected to the SOURCE pin increases. This current can occur
when there is a short from the freewheel diode. Additionally, it occurs due to a
small/shorted inductor between the input voltage and the DRAIN pin. If the voltage on the
SOURCE pin is greater than 1.5 V, latched protection is triggered following LEB time tleb.
In addition, if VCC drops lower than VCC(rst) the IC resets the latched protection mode.
8.5.7 Output Short-circuit Protection (OSP)
During the second stroke (switch-off time), if a valley is not detected within the off-time
limit (toff(high)), then typically the output voltage is less than the minimum limit allowed in
the application. This condition can occur either during starting up or due to a short-circuit.
A timer tdet(sc) is started when toff(high) is detected. Timer tdet(sc) is stopped when a valid
valley detection occurs in one of the subsequent cycles.
The timer can also be stopped if the maximum limit on the on-time of the switch (ton(high))
is reached, which is usually the case at start-up (brownout protection). If no valley is
detected and (ton(high)) is not reached before tdet(sc), then it is concluded that a real
short-circuit exists. The IC enters latched protection. If VCC drops lower than VCC(rst), the
IC resets the latched protection mode (see Figure 6). During PWM dimming, the OSP
timer is paused during the off cycle.
toff(high)
ton(high)
S
Q
R
TIMER
tdet(sc)
S
Q
OSP
R
≥1
VALLEY
DETECTION
VCC(rst)
aaa-005703
Fig 6.
OPS logic diagram
8.6 VCC supply
The SSL2109 can be supplied using three methods:
• Under normal operation, the voltage swing on the DVDT pin is rectified within the IC
providing current towards the VCC pin
• At start-up, there is an internal current source connected to the HV pin. The current
source provides internal power until either the dV/dt supply or an external current on
the VCC pin provides the supply
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
9 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
• An external voltage source can be connected to the VCC pin
The IC starts up when the voltage at the VCC pin is higher than VCC(startup). The IC locks
out (stops switching) when the voltage at the VCC pin is lower than VCC(stop). The
hysteresis between the start and stop levels allows the IC to be supplied by a buffer
capacitor until the dV/dt supply is settled. The SSL2109 has an internal VCC clamp, which
is an internal active Zener (or shunt regulator). This internal active Zener limits the voltage
on the supply VCC pin to the maximum value of VCC. An external Zener diode is not
needed in the supply circuit, if the maximum current of the dV/dt supply minus the current
consumption of the IC (determined by the load on the gate drivers) is lower than the IDD
maximum value.
8.7 DVDT pin supply
The DVDT pin is connected to an internal single-sided rectification stage. When an
alternating voltage with sufficient amplitude is supplied to the pin, the IC can be powered
without any other external power connection. This solution provides an effective method
to prevent the additional high-power losses, which would result if a regulator were used for
continuously powering the IC. Unlike an auxiliary supply, additional inductor windings are
not needed.
8.8 VCC regulator
During supply dips, the input voltage can drop too low to supply the required IC current
through the DVDT pin. Under these conditions, if the VCC voltage drops lower than
VCC(swon)reg level, another regulator with a current capability of up to IHVhigh(oper) is started.
The job of the regulator is to fill in the required supply current, which the DVDT supply
does not deliver preventing the IC going into UVLO. When the VCC voltage is higher than
VCC(swon)reg level, the regulator is turned off.
8.9 NTC functionality and PWM dimming
The NTC pin can be used as a control method for LED thermal protection. Alternatively,
the pin can be used as an input to disable/enable light output using a digital signal (PWM
dimming). The pin has an internal current source that generates the current of Ioffset(NTC).
An NTC resistor to monitor the LED temperature can be directly connected to the NTC
pin. Depending on the resistance value and the corresponding voltage on the NTC pin,
the converter reacts as shown in Figure 7.
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
10 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
Peak current
Fig 7.
1
2
3
4
Vth(high)NTC
Vth(ocp)SOURCE = 250 mV
Vth(low)NTC
Ipk / 2
Vact(tmr)NTC
Vth(ocp)SOURCE = 500 mV
Vdeact(tmr)NTC
Ipk
5
VNTC
001aan700
NTC control curve
When the voltage on the NTC pin is higher than Vth(high)NTC see Figure 7 (4), the converter
delivers nominal output current. When the voltage is lower than this level, the peak current
is gradually reduced until Vth(low)NTC is reached, see Figure 7 (3). The peak current is now
half the peak current of nominal operation. When Vact(tmr)NTC is passed, see Figure 7 (2) a
timer starts to run to distinguish between the following situations:
• If the low-level Vdeact(tmr)NTC is not reached within time tto(deact)NTC, Figure 7 (1) LED
overtemperature is detected. The IC stops switching and attempts to restart from the
HV pin voltage. Restart takes place when the voltage on NTC pin is higher than
Vth(high)NTC, see Figure 7 (4). It is assumed that the reduction in peak current did not
result in a lower NTC temperature and LED OTP is activated.
• If the low-level Vdeact(tmr)NTC is reached within the time tto(deact)NTC, Figure 7 (1) it is
assumed that the pin is pulled down externally. The restart function is not triggered.
Instead, the output current is reduced to zero. PWM dimming can be implemented this
way. The output current rises again when the voltage is higher than Vdeact(tmr)NTC.
8.9.1 Soft-start function
The NTC pin can be used to make a soft start function. During switch-on, the level on the
NTC pin is low. By connecting a capacitor (in parallel with the NTC resistor), a time
constant can be defined. The time constant causes the level on the NTC pin to increase
slowly. When passing level Vth(low)NTC Figure 7 (3), the convertor starts with half of the
maximum current. The output current slowly increases to maximum when Vth(high)NTC
Figure 7 (4) is reached.
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
11 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
9. Limiting values
Table 4.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
SR
slew rate
on pin DRAIN
−5
+5
V/ns
Ptot
total power dissipation
SO8 package
-
0.6
W
Tamb
ambient temperature
−40
+125
°C
Tj
junction temperature
−40
+150
°C
Tstg
storage temperature
−55
+150
°C
continuous [1]
−0.4
+14
V
General
Voltages
VCC
supply voltage
VDRAIN
voltage on pin DRAIN
600 V version
−0.4
+600
V
VHV
voltage on pin HV
current limited
−0.4
+600
V
VSOURCE
voltage on pin SOURCE
current limited
−0.4
+5.2
V
VNTC
voltage on pin NTC
current limited
−0.4
+5.2
V
IDD
supply current
at pin VCC
-
20
mA
IDVDT
current on pin DVDT
duration 20 µs
maximum
-
1.3
A
VESD
electrostatic discharge
voltage
human body
model; (for all pins
except DRAIN and
HV)
−2
+2
kV
−1
+1
kV
−500
+500
V
Currents
[2]
human body
model for DRAIN
and HV
charged device
[3]
[1]
An internal clamp sets the supply voltage and current limits.
[2]
Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor.
[3]
Charged device model: equivalent to charging the IC up to 1 kV and the subsequent discharging of each
pin down to 0 V over a 1 Ω resistor.
10. Thermal characteristics
Table 5.
Symbol
Parameter
Conditions
Typ
Unit
Rth(j-a)
thermal resistance from
junction to ambient
in free air; PCB: 2 cm × 3 cm;
2-layer; 35 µm Cu per layer
159
K/W
in free air; PCB: JEDEC 2s2p
89
K/W
top package temperature measured
at the warmest point on top of the
case
0.49
K/W
Ψj-top
SSL2109_SER
Product data sheet
Thermal characteristics
thermal resistance from
junction to top
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
12 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
11. Characteristics
Table 6.
Characteristics
Symbol
Parameter
fconv
conversion frequency
Conditions
Min
Typ
Max
Unit
-
100
-
kHz
High-voltage
Ileak(DRAIN)
leakage current on pin DRAIN
VDRAIN = 600 V
-
-
10
µA
Ileak(HV)
leakage current on pin HV
VHV = 600 V
-
-
30
µA
VCC
supply voltage
operating range
8
-
14
V
VCC(startup)
start-up supply voltage
11
12
13
V
VCC(stop)
stop supply voltage
8
9
10
V
VCC(hys)
hysteresis of supply voltage
2
-
4.5
V
VCC(rst)
reset supply voltage
4.5
5
5.5
V
VCC(swon)reg
regulator switch-on supply voltage
insufficient dV/dt supply
8.75
9.25
9.75
V
VCC(swoff)reg
regulator switch-off supply voltage
insufficient dV/dt supply
9.5
10
10.5
V
VCC(reg)hys
regulator supply voltage hysteresis VCC(swoff)reg − VCC(swon)reg
0.3
-
-
V
VCC(swon)reg − VCC(stop)
0.3
-
-
V
Supply
between VCC(startup) and VCC(stop)
VCC(regswon-stop) supply voltage difference between
regulator switch-on and stop
[1]
Consumption
Istb(HV)
standby current on pin HV
during start-up or in protection;
VHV = 100 V
300
350
400
µA
ICC(INT)
internal supply current
normal operation
-
1.3
-
mA
high supply current on pin HV
Standby: VHV = 40 V;
VCC < VCC(stop)
1
1.3
1.6
mA
Regulator On: VHV = 40 V;
VCC < VCC(swon)reg after start-up
2
2.3
2.6
mA
overcurrent protection threshold
voltage on pin SOURCE
∆V/∆t = 0.1 V/µs
480
500
520
mV
∆V/∆t = 0.1 V/µs; VNTC = 0.325 V
230
250
270
mV
td(ocp-swoff)
delay time from overcurrent
protection to switch-off
∆V/∆t = 0.1 V/µs
-
75
100
ns
tleb
leading edge blanking time
Capability
Isup(high)HV
Current and SWP
Vth(ocp)SOURCE
overcurrent protection
260
300
340
ns
short-winding protection
210
250
290
ns
∆tleb
leading edge blanking time
difference
between tleb for overcurrent
protection and short-winding
protection
30
50
-
ns
Vth(swp)SOURCE
short-winding protection threshold
voltage on pin SOURCE
SSL2109T only
1.4
1.5
1.6
V
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
13 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
Table 6.
Characteristics …continued
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
(∆V/∆t)vrec
valley recognition voltage change
with time
on pin DRAIN
−30
−20
−10
V/µs
fring
ringing frequency
200
550
1000
kHz
∆Vvrec(min)
minimum valley recognition
voltage difference
15
20
25
V
td(vrec-swon)
valley recognition to switch-on
delay time
-
100
-
ns
12.5
15
17.5
µs
Valley detection
[2]
voltage drop on pin DRAIN
Brownout detection
ton(high)
high on-time
Driver (pin DRIVER)
Isource(DRIVER)
source current on pin DRIVER
1.5 ms maximum; VDRIVER = 2 V
-
−0.195 -
A
Isink(DRIVER)
sink current on pin DRIVER
20 µs maximum; VDRIVER = 2 V
-
0.28
-
A
20 µs maximum; VDRIVER = 10 V
-
0.46
-
A
Vo(DRIVER)max
maximum output voltage on pin
DRIVER
VCC > VCC(startup)
9
10.5
12
V
Vo(DRIVER)min
minimum output voltage on pin
DRIVER
VCC = VCC(stop)
6.5
7.5
8.5
V
V
NTC functionality
Vth(high)NTC
high threshold voltage on pin NTC
0.47
0.5
0.53
Vth(low)NTC
low threshold voltage on pin NTC
0.325
0.35
0.375 V
Vact(tmr)NTC
timer activation voltage on pin NTC
0.26
0.3
0.325 V
Vdeact(tmr)NTC
timer deactivation voltage on pin
NTC
0.17
0.2
0.23
V
tto(deact)NTC
deactivation time-out time on pin
NTC
33
46
59
µs
Ioffset(NTC)
offset current on pin NTC
-
−47
-
µA
tdet(sc)
short-circuit detection time
16
20
24
ms
toff(high)
high off-time
30
36
42
µs
OSP
Temperature protection
Tth(act)otp
overtemperature protection
activation threshold temperature
160
170
180
°C
Tth(rel)otp
overtemperature protection
release threshold temperature
90
100
110
°C
[1]
The maximum operating voltage at VCC can exceed 14 V when determined by the IC using the dV/dt supply.
[2]
This parameter is not tested during production, by design it is guaranteed
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
14 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
12. Application information
A LED driver with the SSL2109 can be a buck, tapped buck or flyback converter operating
in BCM. Figure 8 shows a buck solution in a low ripple configuration using a minimum of
components.
Capacitor C3 buffers the IC supply voltage, which is powered via the HV pin at start-up
and via C5 during normal operation. Sense resistors R4 and R5 converts the current
through MOSFET Q1 into a voltage on pin Source. The value of these resistors defines
the maximum primary peak current on MOSFET Q1, and thus the LED current. Resistor
R6 reduces the reverse current into the DRIVER pin. The DRAIN pin is connected with the
drain of Q1 for valley detection.
In the example shown in Figure 8, the NTC pin is used for temperature protection. The
temperature level is set by Negative Temperature Coefficient (NTC) resistor R3 and
capacitor C4 reduces noise on the NTC pin. Further information can be found in the
SSL2109 application note.
LED+
L1
1 mH
R1
fuse
L
L 1
J6-1
2
D1
1
DBLS105G
3
500 mA SL
4
1
LED+
J5-1
C1
2.2 µF
385 V
U1
RV1
varistor 275 V
N U
N1
HV
VCC
R2
NTC
J6-2
C6
10 µF
160 V
D2
BYV25G-600
C2
3.3 µF
400 V
10 Ω
SOURCE
LED8
1
2
SSL2109
7
3
6
4
5
L2
DRAIN
GND
DVDT
LEDJ5-2
C5
DRIVER 120 pF
1 kV
Q1
MOSFET N
R6
100 Ω,1206
C4
1 nF
C3
1 µF
16 V
1
2.1 mH
1000 mA
R3
NTC
100 kΩ
R4
2.2, 1 %
R5
1.5, 1 %
aaa-001746
Fig 8.
A typical SSL2109 buck low ripple application
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
15 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
13. Package outline
SO8: plastic small outline package; 8 leads; body width 3.9 mm
SOT96-1
D
E
A
X
c
y
HE
v M A
Z
5
8
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
4
1
e
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (2)
e
HE
L
Lp
Q
v
w
y
Z (1)
mm
1.75
0.25
0.10
1.45
1.25
0.25
0.49
0.36
0.25
0.19
5.0
4.8
4.0
3.8
1.27
6.2
5.8
1.05
1.0
0.4
0.7
0.6
0.25
0.25
0.1
0.7
0.3
0.01
0.019 0.0100
0.014 0.0075
0.20
0.19
0.16
0.15
inches
0.010 0.057
0.069
0.004 0.049
0.05
0.039 0.028
0.244
0.041
0.016 0.024
0.228
0.01
0.01
0.028
0.004
0.012
θ
8o
o
0
Notes
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.
Fig 9.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT96-1
076E03
MS-012
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
99-12-27
03-02-18
Package outline SOT96-1 (SOT8)
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
16 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
14. Abbreviations
Table 7.
SSL2109_SER
Product data sheet
Abbreviations
Acronym
Description
BCM
Boundary Conduction Mode
BOM
Bill Of Materials
LEB
Leading-Edge Blanking
LED
Light Emitting Diode
MOSFET
Metal-Oxide Semiconductor Field-Effect Transistor
OCP
OverCurrent Protection
OSP
Output Short Protection
OTP
OverTemperature Protection
PCB
Printed-Circuit Board
PWM
Pulse-Width Modulation
SWP
Short-Winding Protection
UVLO
UnderVoltage LockOut
ZCS
Zero-Current Switching
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
17 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
15. Revision history
Table 8.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
SSL2109_SER v.4
20121026
Product data sheet
-
SSL2109T v.3
SSL2109_SER v.3
20120604
Product data sheet
-
SSL2109T v.2
SSL2109T v.2
20120426
Product data sheet
-
SSL2109 v.1.1
SSL2109 v.1.1
20120410
Preliminary data sheet
-
SSL2109 v.1
SSL2109 v.1
20120330
Preliminary data sheet
-
-
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
18 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
16. Legal information
16.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
16.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
16.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
SSL2109_SER
Product data sheet
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
19 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
16.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
GreenChip — is a trademark of NXP B.V.
17. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
SSL2109_SER
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 4 — 26 October 2012
© NXP B.V. 2012. All rights reserved.
20 of 21
SSL2109 series
NXP Semiconductors
Compact non-dimmable LED controller IC
18. Contents
1
2
3
4
5
6
7
7.1
7.2
8
8.1
8.2
8.3
8.4
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.6
8.7
8.8
8.9
8.9.1
9
10
11
12
13
14
15
16
16.1
16.2
16.3
16.4
17
18
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2
Ordering information . . . . . . . . . . . . . . . . . . . . . 3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pinning information . . . . . . . . . . . . . . . . . . . . . . 5
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5
Functional description . . . . . . . . . . . . . . . . . . . 6
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Converter operation . . . . . . . . . . . . . . . . . . . . . 6
Driver pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Valley detection. . . . . . . . . . . . . . . . . . . . . . . . . 7
Protective features . . . . . . . . . . . . . . . . . . . . . . 8
UnderVoltage LockOut (UVLO) . . . . . . . . . . . . 8
Leading-Edge Blanking (LEB) . . . . . . . . . . . . . 8
OverCurrent Protection (OCP) . . . . . . . . . . . . . 8
OverTemperature Protection (OTP) . . . . . . . . . 8
Brownout protection . . . . . . . . . . . . . . . . . . . . . 9
Short-Winding Protection (SWP); SSL2109T
only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output Short-circuit Protection (OSP). . . . . . . . 9
VCC supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DVDT pin supply. . . . . . . . . . . . . . . . . . . . . . . 10
VCC regulator . . . . . . . . . . . . . . . . . . . . . . . . . 10
NTC functionality and PWM dimming . . . . . . . 10
Soft-start function . . . . . . . . . . . . . . . . . . . . . . 11
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 12
Thermal characteristics . . . . . . . . . . . . . . . . . 12
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 13
Application information. . . . . . . . . . . . . . . . . . 15
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 17
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 18
Legal information. . . . . . . . . . . . . . . . . . . . . . . 19
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 19
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Contact information. . . . . . . . . . . . . . . . . . . . . 20
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2012.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 26 October 2012
Document identifier: SSL2109_SER