SSL2102 Dimmable Greenchip driver for LED lighting Rev. 1.1 — 2 December 2011 Product data sheet 1. General description The SSL2102 is a Switched Mode Power Supply (SMPS) driver IC that operates in combination with a phase cut dimmer directly from rectified mains. It is designed to drive LED devices. The device includes a high-voltage power switch, a circuit to allow direct start-up from the rectified mains voltage and a high-voltage circuitry to supply the phase cut dimmer. For dimmer applications, an integrated dedicated circuitry optimizes the dimming curve. • SSL2101: fully integrated LED driver for lamps up to 10 W • SSL2102: fully integrated LED driver for lamps up to 25 W • SSL2103: gives the application designer flexibility to: – Use an external power switch to allow the IC to provide any power – Use external bleeder transistors to provide extended dimmer interoperability 2. Features and benefits Easy migration to existing lighting control infrastructure Supports most available dimming solutions Optimized efficiency with valley switching managed by a built-in circuitry Demagnetization detection OverTemperature Protection (OTP) Short-Winding Protection (SWP) and Over Current Protection (OCP) Internal VCC generation allowing start-up from the rectified mains voltage Natural dimming curve by logarithmic correction, down to 1 % Limited external components required because of the high integration level Thermal enhanced SO20 wide body package Suitable for flyback and buck applications 3. Applications SSL applications below 25 W SSL retro-fit lamps (for example: GU10, E27) LED modules such as LED spots and down-lights LED strings suitable for retail displays, etc. SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 4. Quick reference data Table 1. Quick reference data Symbol Parameter Conditions RDSon drain-source on-state resistance power switch; ISOURCE = 0.50 A Tj = 25 C Min Typ Max Unit 4.5 6.5 7.5 - 9.5 10 ISOURCE = 0.20 A Tj = 125 C VCC supply voltage 8.5 - 40 V fosc oscillator frequency 10 100 200 kHz IDRAIN current on pin DRAIN VDRAIN > 60 V; no auxiliary supply - - 2.2 mA VDRAIN > 60 V; with auxiliary supply - 30 125 A VDRAIN voltage on pin DRAIN 40 - 600 V min minimum duty factor - 0 - % max maximum duty cycle - 75 - % Tamb ambient temperature 40 - +100 C 5. Ordering information Table 2. Ordering information Type number SSL2102T Package Name Description Version SO20 plastic small outline package; 20 leads; body width 7.5 mm SOT163-1 SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 2 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 6. Block diagram ISENSE SB_DRV 12 WB_DRV 1 4 BLEEDER VCC 5 20 SUPPLY DRAIN VALLEY 13 GND LOGIC 2, 3, 6, 7, 14, 16, 17, 18, 19 AUX 100 mV Stop RC 10 OSCILLATOR 15 Low freq SOURCE Blank THERMAL SHUTDOWN BRIGHTNESS RC2 POWER - UP RESET 8 9 PROTECTION LOGIC FRC Overcurrent PWMLIMIT 11 0.5 V PWM LIMIT CIRCUIT 1.5 V Short-winding protection 014aaa810 Fig 1. Block diagram SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 3 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 7. Pinning information 7.1 Pinning SBLEED 1 20 DRAIN GND 2 19 GND GND 3 18 GND WBLEED 4 17 GND VCC 5 GND 6 GND 7 14 GND BRIGHTNESS 8 13 AUX RC2 9 12 ISENSE SSL2102 RC 10 16 GND 15 SOURCE 11 PWMLIMIT 014aaa807 Fig 2. Pin configuration SO20 7.2 Pin description Table 3. SSL2102 Product data sheet Pin description Symbol Pin Description SBLEED 1 drain of internal strong bleeder switch GND 2 ground GND 3 ground WBLEED 4 drain of internal weak bleeder switch VCC 5 supply voltage GND 6 ground GND 7 ground BRIGHTNESS 8 brightness input RC2 9 setting for frequency reduction RC 10 frequency setting PWMLIMIT 11 PWM limit input ISENSE 12 current sense input for WBLEED AUX 13 Input for voltage from auxiliary winding for timing (demagnetization) GND 14 ground SOURCE 15 source of internal power switch GND 16 ground GND 17 ground GND 18 ground GND 19 ground DRAIN 20 drain of internal power switch; input for start-up current and valley sensing All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 4 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 8. Functional description The SSL2102 is an LED driver IC that operates directly from the rectified mains. The SSL2102 uses on-time mode control and frequency control to control the LED brightness. The BRIGHTNESS and PWMLIMIT input of the IC can be used to control the LED light output in combination with an external dimmer. The PWMLIMIT input can also be used for Thermal Lumen Management (TLM) and for precision LED current control. 8.1 Start-up and UnderVoltage LockOut (UVLO) Initially, the IC is self-supplying from the rectified mains voltage. The IC starts switching as soon as the voltage on pin VCC passes the VCC(startup) level. The supply can be taken over by the auxiliary winding of the transformer as soon as VCC is high enough and the supply from the line is stopped for high efficiency operation. Alternatively the IC can be supplied via a bleeder resistor connected to a high voltage. Remark: The maximum VCC voltage rating of the IC. If for some reason the auxiliary supply is not sufficient, the high-voltage supply can also supply the IC. As soon as the voltage on pin VCC drops below the VCC(UVLO) level, the IC stops switching and will restart from the rectified mains voltage, if the internal current delivered is sufficient. 8.2 Oscillator An internal oscillator inside the IC provides the timing for the switching converter logics. The frequency of the oscillator is set by the external resistors and the capacitor on pin RC and pin RC2. The external capacitor is charged rapidly to the VRC(max) level and, starting from a new primary stroke, it discharges to the VRC(min) level. Because the discharge is exponential, the relative sensitivity of the duty factor to the regulation voltage at low duty factor is almost equal to the sensitivity at high duty factors. This results in a more constant gain over the duty factor range compared to Pulse Width Modulated (PWM) systems with a linear sawtooth oscillator. Stable operation at low duty factors is easily realized. The frequency of the converter when VBRIGHTNESS is high can be estimated using Equation 1: 1 1 RC = ------- -------- – t ch arg e 3.5 f osc (1) R equals the parallel resistance of both oscillator resistors. C is the capacitor connected at the RC pin (pin 8). The BRIGHTNESS input controls the frequency reduction mode. Figure 3 shows that the oscillator switches over from an RC curve with R1//R2 to R1 only. A low BRIGHTNESS voltage will reduce the switching frequency. SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 5 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 5V STARplug OSCILLATOR 24 μA RC R1 220 kΩ R2 10 kΩ BRIGHTNESS Comparator V V C1 330 pF RC2 rc_threshold 014aaa574 Fig 3. Brightness control block A typical RC waveform is given in Figure 4. The RC switch-over threshold is controlled by the BRIGHTNESS pin. To ensure that the capacitor can be charged within the charge time, the value of the oscillator capacitor should be limited to 1 nF. Leakage current limits the value of the resistor connected between the RC pin and the ground should be limited to a maximum of 220 k. Voltage (mV) RC voltage rc_threshhold 75 mV time Fig 4. 014aaa582 Brightness timing waveform 8.3 Duty factor control The duty factor is controlled by an internally regulated voltage and the oscillator signal on pin RC. The internal regulation voltage is set by the voltage on the PWMLIMIT pin. A low PWMLIMIT voltage will results in a low on-time for the internal power switch. The minimum duty factor of the switched mode power supply can be set to 0 %. The maximum duty factor is set to 75 %. SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 6 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 8.4 Bleeder for dimming applications The SSL2102 IC contains some circuitry intended for mains dimmer compatibility. This circuit contains two current sinks that are called bleeders. A strong bleeder is used for zero-cross reset of the dimmer and TRIAC latching. A weak bleeder is added to maintain the hold current through the dimmer. The strong bleeder switch is switched on when the maximum voltage on the WBLEED pin and the SBLEED pin is below the Vth(SBLEED) level (52 V typically). The weak bleeder switch is switched on as soon as the voltage on pin ISENSE exceeds the Vth(high)(ISENSE) level (100 mV typically). The weak bleeder switch is switched off when the ISENSE voltage drops below the Vth(low)(ISENSE) level (250 mV typically). The weak bleeder switch is also switched off when the strong bleeder switch is switched on. See Figure 5. WBLEED SBLEED D2 D3 I1 Integrated 20 μA B1 LOW V DETECT M2 M1 Q SR −0.1 V OR −0.25 V ISENSE GND 014aaa571 Fig 5. Bleeder circuit 8.5 Valley switching A new cycle is started when the primary switch is switched on (see Figure 6). After a time determined by the oscillator voltage, RC and the internal regulation level, the switch is turned off and the secondary stroke starts. The internal regulation level is determined by the voltage on pin PWMLIMIT. After the secondary stroke, the drain voltage shows an oscillation with a frequency of approximately: 1 ---------------------------------------------2 Lp Cp (2) Where: Lp = primary self inductance Cp = parasitic capacitance on drain node SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 7 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting As soon as the oscillator voltage is high again and the secondary stroke has ended, the circuit waits for a low drain voltage before starting a new primary stroke. Figure 6 shows the drain voltage together with the valley signal, the signal indicating the secondary stroke and the RC voltage. The primary stroke starts some time before the actual valley at low ringing frequencies, and some time after the actual valley at high ringing frequencies. primary stroke secondary stroke secondary ringing drain valley secondary stroke A RC oscillator regulation level B 014aaa572 A: Start of new cycle with valley switching. B: Start of new cycle in a classical PWM system. Fig 6. Signals for valley switching, flyback configuration Figure 7 shows a typical curve for a reflected output voltage N at an output voltage of 80 V. This voltage is the output voltage transferred to the primary side of the transformer with the factor N (determined by the turns ratio of the transformer). It shows that the system switches exactly at minimum drain voltage for ringing frequencies of 480 kHz, thus reducing the switch-on losses to a minimum. At 200 kHz, the next primary stroke is started at 33 before the valley. The switch-on losses are still reduced significantly. SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 8 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 014aaa573 40 phase (°) 20 0 −20 −40 0 200 400 600 800 f (kHz) (1) At N Vo = 80 V) Fig 7. Typical phase of drain ringing at switch-on (at 8.6 Demagnetization The system operates in discontinuous conduction mode if the AUX pin is connected. As long as the secondary stroke has not ended, the oscillator will not start a new primary stroke. During the first tsup(xfmr_ring) seconds, demagnetization recognition is suppressed. This suppression may be necessary in applications where the transformer has a large leakage inductance and at low output voltages. 8.7 Overcurrent protection The cycle-by-cycle peak drain current limit circuit uses the external source resistor RSENSE1 to measure the current. The circuit is activated after the leading edge blanking time tleb. The protection circuit limits the source voltage over the RSENSE resistor to Vth(ocp)SOURCE and thus limits the primary peak current. 8.8 Short-winding protection The short-winding protection circuit is also activated after the leading edge blanking time. If the source voltage exceeds the short-winding protection threshold voltage Vth(swp)SOURCE, the IC stops switching. Only a power-on reset will restart normal operation. The short-winding protection also protects in case of a secondary diode short circuit. 8.9 Overtemperature protection Accurate temperature protection is provided in the device. When the junction temperature exceeds the thermal shut-down temperature, the IC stops switching. During thermal protection, the IC current is lowered to the start-up current. The IC continues normal operation as soon as the overtemperature situation has disappeared. 1. RSENSE is the resistor between the SOURCE pin and GND SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 9 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 9. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are measured with respect to ground; positive currents flow into the device; pins VCC and RC cannot be current driven. Pins ISENSE and AUX cannot be voltage driven. Symbol Parameter Conditions Min Max Unit VCC supply voltage continuous 0.4 +40 V VRC voltage on pin RC 0.4 +3 V VRC2 voltage on pin RC2 0.4 +3 V 0.4 +5 V Voltages VBRIGHTNESS voltage on pin BRIGHTNESS VPWMLIMIT voltage on pin PWMLIMIT 0.4 +5 V VSOURCE voltage on pin SOURCE 0.4 +5 V VDRAIN voltage on pin DRAIN DMOS power transistor; Tamb = 25 C 0.4 +600 V VSBLEED voltage on pin SBLEED off-state; Tj = 125 C 0.4 +600 V on-state; VVCC > 8.5 V; Tj < 125 C 0.4 +16 V off-state; Tj < 125 C 0.4 +600 V on-state; VVCC > 8.5 V; Tj < 125 C 0.4 +12 V VWBLEED voltage on pin WBLEED Currents IISENSE current on pin ISENSE 20 +5 mA IAUX current on pin AUX 10 +5 mA ISOURCE current on pin SOURCE 2 +2 A IDRAIN current on pin DRAIN 2 +2 A - 1.6 W General SSL2102 Product data sheet Ptot total power dissipation Tamb = 70 C Tstg storage temperature 55 +150 C Tamb ambient temperature 40 +100 C Tj junction temperature 40 +150 C All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 10 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting Table 4. Limiting values …continued In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are measured with respect to ground; positive currents flow into the device; pins VCC and RC cannot be current driven. Pins ISENSE and AUX cannot be voltage driven. Symbol VESD Parameter electrostatic discharge voltage Conditions human body model; Min Max Unit 1000 +1000 V [1] Pins 20, 1, 4 2000 +2000 V machine model [2] 200 +200 V charged device model [3] 500 +500 V All other pins [1] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor. [2] Machine model: equivalent to discharging a 200 pF capacitor through a 0.75 H coil and a 10 series resistor. [3] Charged device model: equivalent to charging the IC up to 1 kV and the subsequent discharging of each pin down to 0 V over a 1 resistor. 10. Thermal characteristics The heat sink for SSL2102 applications is provided by the Printed-Circuit Board (PCB) copper. The SSL2102 uses thermal leads (pins 2, 3, 6, 7,16, 17, 18 and 19) for heat transfer from the die to PCB. Enhanced thermal lead connection may drastically reduce thermal resistance. The following equation shows the relationship between the maximum allowable power dissipation P and the thermal resistance from junction to ambient. R th j – a = T j max – T amb P Where: Rth(j-a) = thermal resistance from junction to ambient Tj(max) = maximum junction temperature Tamb = ambient temperature P = power dissipation The thermal resistance as a function of the PCB area (Board: 0.8 mm thickness, 2 layers, Bottom Cu coverage 90 %, Cu thickness 70 m (390 W/mK), Core material conductivity: 0.5 W/mK, 10 vias dia 0.3 mm) is shown in Figure 8 SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 11 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 014aaa812 100 Rth(j-a) (°C/W) 80 60 (1) 40 (2) (3) 20 0 2000 4000 6000 8000 10000 PCB area (mm2) (1) Top Cu coverage 20 % (2) Top Cu coverage 50 % (3) Top Cu coverage 100 % Fig 8. SSL2102 core material conductivity Table 5: Thermal characteristics Symbol Parameter Rth(j-a) thermal resistance from junction to ambient [1] Conditions [1] Typ Unit 62 KW Measured on a JEDEC test board (standard EIA/JESD 51-3) in free air with natural convection. 11. Characteristics Table 6. Characteristics Tamb = 25 C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz. Symbol Parameter Conditions Min Typ Max Unit ICC supply current normal operation; VDRAIN = 60 V; VCC = 20 V - 1.7 2 mA ICC(ch) charge supply current VDRAIN > 60 V; VCC = 0 V -6 4.5 - mA VCC supply voltage 8.5 - 40 V VCC(startup) start-up supply voltage 9.75 10.25 10.75 V VCC(UVLO) undervoltage lockout supply voltage 7.9 8.2 8.5 V Supply SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 12 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting Table 6. Characteristics …continued Tamb = 25 C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz. Symbol Parameter Conditions Min Typ Max Unit IDRAIN current on pin DRAIN VDRAIN > 60 V; no auxiliary supply - - 2.2 mA VDRAIN > 60 V; with auxiliary supply - 30 125 A 40 - 600 V - 0 - % - 75 - % 50 100 150 mV 1.0 1.5 2.0 s VDRAIN voltage on pin DRAIN Pulse width modulator min minimum duty factor max maximum duty cycle f = 100 kHz SOPS Vdet(demag) demagnetization detection voltage tsup(xfmr_ring) transformer ringing suppression time at start of secondary stroke RC oscillator VRC(min) minimum voltage on pin RC 60 75 90 mV VRC(max) maximum voltage on pin RC 2.4 2.5 2.6 V tch(RC) charge time on pin RC - 1 - s VBRIGHTNESS voltage on pin BRIGHTNESS fosc oscillator frequency IBRIGHTNESS current on pin BRIGHTNESS 2.5 V RC2 trip level - 0.5 - V 180 mV RC2 trip level - 1.25 - V 75 mV RC2 trip level - 2.3 - V 10 100 200 kHz 20 24 28 A VBRIGHTNESS = 0 V Bleeder SSL2102 Product data sheet Vth(SBLEED) threshold voltage on pin SBLEED 46 52 56 V Vth(low)ISENSE low threshold voltage on pin ISENSE - 250 - mV Vth(high)ISENSE high threshold voltage on pin ISENSE - 100 - mV RDSon(SBLEED) drain-source on-state resistance on pin SBLEED Tj = 25 C 140 170 200 Tj = 125 C 220 270 320 ISBLEED = 25 mA All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 13 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting Table 6. Characteristics …continued Tamb = 25 C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz. Symbol Parameter Conditions Min Typ Max Unit RDSon(WBLEED) drain-source on-state resistance on pin WBLEED IWBLEED = 10 mA Tj = 25 C 250 310 350 Tj = 125 C 400 500 600 25 - 18 A maximum duty cycle = 3V - 3 - V minimum duty factor threshold - 0.45 - V - 100 - V/s 200 550 800 kHz - 150 - ns Duty factor regulator: pin PWMLIMIT IPWMLIMIT current on pin PWMLIMIT VPWMLIMIT voltage on pin PWMLIMIT Valley switching (V/t)vrec valley recognition voltage change with time minimum absolute value fring ringing frequency N VO = 100 V td(vrec-swon) valley recognition to switch-on delay time [1] Current and short circuit winding protection Vth(ocp)SOURCE overcurrent protection threshold voltage on pin SOURCE dV/dt = 0.1 V/s 0.47 0.50 0.53 V Vth(swp)SOURCE short-winding protection threshold voltage on pin SOURCE dV/dt = 0.1 V/s - 1.5 - V td(ocp-swoff) delay time from overcurrent protection to switch-off dV/dt = 0.5 V/s - 160 185 ns tleb leading edge blanking time 250 350 450 ns - - 125 A 600 - - V 4.50 6.5 7.5 - 9.5 - FET output stage IL(DRAIN) leakage current on VDRAIN = 600 V pin DRAIN VBR(DRAIN) breakdown voltage on pin DRAIN Tamb = 25 C RDSon drain-source on-state resistance power switch; ISOURCE = 0.50 A Tj = 25 C ISOURCE = 0.20 A Tj = 125 C SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 14 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting Table 6. Characteristics …continued Tamb = 25 C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz. Symbol Parameter Conditions Min Typ Max Unit tf(DRAIN) fall time on pin DRAIN input voltage: 300 V; no external capacitor at drain - 75 - ns Temperature protection Totp overtemperature protection trip junction temperature 150 160 170 C Totp(hys) overtemperature protection trip hysteresis junction temperature - 2 - C [1] Voltage change in time for valley recognition. 100 fmax 80 60 fosc (kHz) 40 20 fmin 0 0 1 2 3 VBRIGHTNESS (V) 014aaa664 Fig 9. SSL2102 Product data sheet Typical frequency as a function of voltage on pin BRIGHTNESS All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 15 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 12 ton (μs) 8 4 0 0 1 2 3 VPWMLIMIT (V) 014aaa665 VBRIGHTNESS = 3 V Fig 10. Turn-on time as a function of voltage on pin PWMLIMIT 120 ton (μs) 80 40 0 0 1 2 VPWMLIMIT (V) 3 014aaa666 VBRIGHTNESS = 1 V Fig 11. Turn-on time as a function of voltage on pin PWMLIMIT SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 16 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 12. Application information L1 LED + RGND N LED − SBleed TC TC WBleed VCC GND GND Brightness RC2 RC 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 DRAIN TC TC TC VCC TC Source TC Aux lsense PWMLimit SSL2102/SO20-W RGND 014aaa823 Fig 12. Application example SSL2102 SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 17 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 13. Package outline SO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1 D E A X c HE y v M A Z 20 11 Q A2 A (A 3) A1 pin 1 index θ Lp L 10 1 e bp detail X w M 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y mm 2.65 0.3 0.1 2.45 2.25 0.25 0.49 0.36 0.32 0.23 13.0 12.6 7.6 7.4 1.27 10.65 10.00 1.4 1.1 0.4 1.1 1.0 0.25 0.25 0.1 0.01 0.019 0.013 0.014 0.009 0.51 0.49 0.30 0.29 0.05 0.419 0.043 0.055 0.394 0.016 inches 0.1 0.012 0.096 0.004 0.089 0.043 0.039 0.01 0.01 Z (1) 0.9 0.4 0.035 0.004 0.016 θ 8o o 0 Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT163-1 075E04 MS-013 JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-19 Fig 13. Package outline SOT163-1 (SO20) SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 18 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 14. Revision history Table 7. Revision history Document ID Release date Data sheet status Change notice Supersedes SSL2102 v.1.1 20111202 Product data sheet - SSL2102 v.1 Modifications: SSL2102 v.1 SSL2102 Product data sheet • • • • GreenChip trademark has been added. Section 1 “General description” has been updated. Section 2 “Features and benefits” has been updated. Section 3 “Applications” has been updated. 20090629 Product data sheet - All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 - © NXP B.V. 2011. All rights reserved. 19 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 15. Legal information 15.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 15.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 15.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 20 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. 15.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. GreenChip — is a trademark of NXP B.V. 16. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] SSL2102 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1.1 — 2 December 2011 © NXP B.V. 2011. All rights reserved. 21 of 22 SSL2102 NXP Semiconductors Dimmable Greenchip driver for LED lighting 17. Contents 1 2 3 4 5 6 7 7.1 7.2 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 10 11 12 13 14 15 15.1 15.2 15.3 15.4 16 17 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Quick reference data . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pinning information . . . . . . . . . . . . . . . . . . . . . . 4 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4 Functional description . . . . . . . . . . . . . . . . . . . 5 Start-up and UnderVoltage LockOut (UVLO) . . 5 Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Duty factor control . . . . . . . . . . . . . . . . . . . . . . 6 Bleeder for dimming applications . . . . . . . . . . . 7 Valley switching . . . . . . . . . . . . . . . . . . . . . . . . 7 Demagnetization. . . . . . . . . . . . . . . . . . . . . . . . 9 Overcurrent protection . . . . . . . . . . . . . . . . . . . 9 Short-winding protection . . . . . . . . . . . . . . . . . . 9 Overtemperature protection . . . . . . . . . . . . . . . 9 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal characteristics . . . . . . . . . . . . . . . . . 11 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12 Application information. . . . . . . . . . . . . . . . . . 17 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 18 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 19 Legal information. . . . . . . . . . . . . . . . . . . . . . . 20 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 20 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Contact information. . . . . . . . . . . . . . . . . . . . . 21 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 2 December 2011 Document identifier: SSL2102