MB9B360L Series 32-Bit ARM® Cortex®-M4F, FM4 Microcontroller Datasheet.pdf

MB9B360L Series
32-Bit ARM® Cortex® - M4F
FM4 Microcontroller
Devices in the MB9B360L Series are highly integrated 32-bit microcontrollers with high performance and competitive cost.
®
®
This series is based on the ARM Cortex -M4F Processor with on-chip Flash memory and SRAM. The series has peripheral
2
functions such as Motor Control Timers, ADCs and Communication Interfaces (USB, UART, CSIO, I C, LIN).
Features
®
®
32-bit ARM Cortex -M4F Core
[SRAM]
 Processor version: r0p1
This is composed of three independent SRAMs (SRAM0,
SRAM1, and SRAM2). SRAM0 is connected to I-code bus and
D-code bus of Cortex-M4F core. SRAM1 and SRAM2 are
connected to System bus of Cortex-M4F core.
 Up to 160 MHz Frequency Operation
 FPU built-in
 SRAM0: Up to 32 Kbytes
 Support DSP instruction
 Memory Protection Unit (MPU): improves the reliability of an
embedded system
 Integrated Nested Vectored Interrupt Controller (NVIC): 1
NMI (non-maskable interrupt) and 128 peripheral interrupts
and 16 priority levels
 24-bit System timer (Sys Tick): System timer for OS task
management
 SRAM1: Up to 16 Kbytes
 SRAM2: Up to 16 Kbytes
USB Interface
USB interface is composed of Function and Host.
 USB function
 USB2.0
Full-Speed supported
6 Endpoint supported
• Endpoint 0 is control transfer
• Endpoint 1, 2 can be selected Bulk-transfer,
Interrupt-transfer or Isochronous-transfer
• Endpoint 3 to 5 can select Bulk-transfer or
Interrupt-transfer
• Endpoint 1 to 5 comprise Double Buffer
 The size of each endpoint is according to the follows.
• Endpoint 0, 2 to 5: 64 bytes
• Endpoint 1: 256 bytes
 Max
On-chip Memories
[Flash memory]
These series are based on two independent on-chip Flash
memories.
 MainFlash memory
 Up
to 512 Kbytes
Flash Accelerator System with 16 Kbytes trace
buffer memory
 The read access to Flash memory can be achieved without
wait-cycle up to operation frequency of 72 MHz. Even at
the operation frequency more than 72 MHz, an equivalent
access to Flash memory can be obtained by Flash
Accelerator System.
 Security function for code protection
 Built-in
 WorkFlash memory
 32
Kbytes
cycle:
• 6wait-cycle: the operation frequency more than 120 MHz,
and up to 160 MHz
• 4wait-cycle: the operation frequency more than 72 MHz,
and up to 120 MHz
• 2wait-cycle: the operation frequency more than 40 MHz,
and up to 72 MHz
• 0wait-cycle: the operation frequency up to 40 MHz
 Security function is shared with code protection
 Read
Cypress Semiconductor Corporation
Document Number: 002-04930 Rev.*A
 USB host
 USB2.0
Full/Low-speed supported
interrupt-transfer and Isochronous-transfer
 Bulk-transfer,
support
Device connected/dis-connected automatically detect
 IN/OUT token handshake packet automatically
 Max 256-byte packet-length supported
 Wake-up function supported
 USB
• 198 Champion Court
•
San Jose, CA 95134-1709
408-943-2600
Revised May 12, 2016
MB9B360L Series
Multi-function Serial Interface (Max 6 channels)
 64 bytes with FIFO (the FIFO step numbers are variable
depending on the settings of the communication mode or bit
length.)
 Operation mode is selectable from the followings for each
channel.
 UART
 CSIO
 LIN
2
I C
 UART
 Full-duplex
double buffer
 Selection with or without parity supported
 Built-in dedicated baud rate generator
 External clock available as a serial clock
 Hardware Flow control : Automatically control the
transmission by CTS/RTS (only ch.4)
 Various error detect functions available (parity errors,
framing errors, and overrun errors)
 CSIO
 Full-duplex
double buffer
dedicated baud rate generator
 Overrun error detect function available
 Serial chip select function (ch.6 only)
 Supports high-speed SPI (ch.0 and ch.6 only)
 Data length 5 to 16-bit
 Built-in
 LIN
 LIN
protocol Rev.2.1 supported
double buffer
 Master/Slave mode supported
 LIN break field generation (can change to 13 to 16-bit
length)
 LIN break delimiter generation (can change to 1 to 4-bit
length)
 Various error detect functions available (parity errors,
framing errors, and overrun errors)
 I2 C
 Standard mode (Max 100 kbps) / High-speed mode (Max
400 kbps) supported
 Fast mode Plus (Fm+) (Max 1000 kbps, only for ch.3=ch.A
and ch.4=ch.B) supported
 Full-duplex
DMA Controller (8 channels)
DMA Controller has an independent bus for CPU, so CPU and
DMA Controller can process simultaneously.
DSTC (Descriptor System data Transfer Controller)
(128 channels)
The DSTC can transfer data at high-speed without going via
the CPU. The DSTC adopts the Descriptor system and,
following the specified contents of the Descriptor which has
already been constructed on the memory, can access directly
the memory /peripheral device and performs the data transfer
operation.
It supports the software activation, the hardware activation and
the chain activation functions.
A/D Converter (Max 15 channels)
[12-bit A/D Converter]
 Successive Approximation type
 Built-in 2 units
 Conversion time: 0.5 μs @ 5 V
 Priority conversion available (priority at 2levels)
 Scanning conversion mode
 Built-in FIFO for conversion data storage (for SCAN
conversion: 16steps, for Priority conversion: 4steps)
DA Converter (Max 2 channels)
 R-2R type
 12-bit resolution
Base Timer (Max 8 channels)
Operation mode is selectable from the followings for each
channel.
 16-bit PWM timer
 16-bit PPG timer
 16-/32-bit reload timer
 16-/32-bit PWC timer
General Purpose I/O Port
This series can use its pins as general purpose I/O ports when
they are not used for external bus or peripherals. Moreover, the
port relocate function is built in. It can set which I/O port the
peripheral function can be allocated.
 Capable of pull-up control per pin
 8 independently configured and operated channels
 Capable of reading pin level directly
 Transfer can be started by software or request from the
 Built-in the port relocate function
built-in peripherals
 Transfer address area: 32-bit (4 Gbytes)
 Transfer mode: Block transfer/Burst transfer/Demand
transfer
 Transfer data type: bytes/half-word/word
 Up to 48 high-speed general-purpose I/O ports @ 64 pin
Package
 Some pin is 5 V tolerant I/O.
See 4. Pin Description and 5. I/O Circuit Type for the
corresponding pins.
 Transfer block count: 1 to 16
 Number of transfers: 1 to 65536
Document Number: 002-04930 Rev.*A
Page 2 of 124
MB9B360L Series
Multi-function Timer (Max 2 units)
Dual Timer (32-/16-bit Down Counter)
The Multi-function timer is composed of the following blocks.
 16-bit free-run timer × 3 ch./unit
The Dual Timer consists of two programmable 32-/16-bit down
counters.
Operation mode is selectable from the followings for each
channel.
 Input capture × 4 ch./unit
 Free-running
 Output compare × 6 ch./unit
 Periodic (=Reload)
 A/D activation compare × 6 ch./unit
 One-shot
Minimum resolution: 6.25 ns
 Waveform generator × 3 ch./unit
 16-bit PPG timer × 3 ch./unit
Watch Counter
The following function can be used to achieve the motor
control.
The Watch counter is used for wake up from the low-power
consumption mode. It is possible to select the main clock, sub
clock, built-in high-speed CR clock or built-in low-speed CR
clock as the clock source.
 PWM signal output function
Interval timer: up to 64 s (Max) @ Sub Clock: 32.768 kHz
 DC chopper waveform output function
External Interrupt Controller Unit
 Dead time function
 External interrupt input pin: Max 16 pins
 Input capture function
 Include one non-maskable interrupt (NMI)
 A/D convertor activate function
 DTIF (Motor emergency stop) interrupt function
Real-time clock (RTC)
The Real-time clock can count
Year/Month/Day/Hour/Minute/Second/A day of the week from
01 to 99.
 Interrupt function with specifying date and time
(Year/Month/Day/Hour/Minute/Second/A day of the week.) is
available. This function is also available by specifying only
Year, Month, Day, Hour or Minute.
Watchdog Timer (2 channels)
A watchdog timer can generate interrupts or a reset when a
time-out value is reached.
This series consists of two different watchdogs, a "Hardware"
watchdog and a "Software" watchdog.
"Hardware" watchdog timer is clocked by low-speed internal
CR oscillator. Therefore, "Hardware" watchdog is active in any
power saving mode except STOP.
CRC (Cyclic Redundancy Check) Accelerator
 Timer interrupt function after set time or each set time.
The CRC accelerator helps a verify data transmission or
storage integrity.
 Capable of rewriting the time with continuing the time count.
CCITT CRC16 and IEEE-802.3 CRC32 are supported.
 Leap year automatic count is available.
 CCITT CRC16 Generator Polynomial: 0x1021
Quadrature Position/Revolution Counter (QPRC) (1
channel)
 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7
The Quadrature Position/Revolution Counter (QPRC) is used
to measure the position of the position encoder. Moreover, it is
possible to use up/down counter.
 The detection edge of the three external event input pins AIN,
BIN, and ZIN is configurable.
 16-bit position counter
 16-bit revolution counter
 Two 16-bit compare registers
Document Number: 002-04930 Rev.*A
Page 3 of 124
MB9B360L Series
Clock and Reset
VBAT
Five clock sources (2 external oscillators, 2 internal CR
oscillator, and Main PLL) that are dynamically selectable.
The consumption power during the RTC operation can be
reduced by supplying the power supply independent from the
RTC (calendar circuit)/32 kHz oscillation circuit. The following
circuits can also be used.
 Main clock:
4 MHz to 48 MHz
 RTC
 Sub Clock:
32.768 kHz
 32 kHz oscillation circuit
[Clocks]
 High-speed internal CR Clock: 4 MHz
 Power-on circuit
 Low-speed internal CR Clock: 100 kHz
 Back up register: 32 bytes
 Main PLL Clock
 Port circuit
[Resets]
Debug
 Reset requests from INITX pin
 Serial Wire JTAG Debug Port (SWJ-DP)
 Power on reset
 Software reset
Unique ID
Unique value of the device (41-bit) is set.
 Watchdog timers reset
 Low voltage detector reset
Power Supply
 Clock supervisor reset
 Wide range voltage:
Clock Super Visor (CSV)
Clocks generated by internal CR oscillators are used to
supervise abnormality of the external clocks.
Three Power Supplies
VCC
 Power supply for USB I/O:
USBVCC = 3.0 V to 3.6 V (when USB is used)
= 2.7 V to 5.5 V (when GPIO is used)
 External OSC clock failure (clock stop) is detected, reset is
asserted.
 External OSC frequency anomaly is detected, interrupt or
= 2.7 V to 5.5 V
 Power supply for VBAT:
VBAT
= 2.7 V to 5.5 V
reset is asserted.
Low-Voltage Detector (LVD)
This Series include 2-stage monitoring of voltage on the VCC
pins. When the voltage falls below the voltage has been set,
Low-Voltage Detector generates an interrupt or reset.
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
Low-power Consumption Mode
Six low-power consumption modes are supported.
 SLEEP
 TIMER
 RTC
 STOP
 Deep standby RTC (selectable from with/without RAM
retention)
 Deep standby stop (selectable from with/without RAM
retention)
Document Number: 002-04930 Rev.*A
Page 4 of 124
MB9B360L Series
Contents
Features................................................................................................................................................................................... 1
1. Product Lineup .................................................................................................................................................................. 7
2. Packages ........................................................................................................................................................................... 8
3. Pin Assignment ................................................................................................................................................................. 9
4. Pin Description ................................................................................................................................................................ 13
4.1
List of Pin Numbers ..................................................................................................................................................... 13
4.2
List of Pin Functions .................................................................................................................................................... 19
5. I/O Circuit Type................................................................................................................................................................ 28
6. Handling Precautions ..................................................................................................................................................... 35
6.1
Precautions for Product Design ................................................................................................................................... 35
6.2
Precautions for Package Mounting .............................................................................................................................. 36
6.3
Precautions for Use Environment ................................................................................................................................ 37
7. Handling Devices ............................................................................................................................................................ 38
8. Block Diagram ................................................................................................................................................................. 40
9. Memory Size .................................................................................................................................................................... 41
10. Memory Map .................................................................................................................................................................... 41
11. Pin Status in Each CPU State ........................................................................................................................................ 44
12. Electrical Characteristics ............................................................................................................................................... 51
12.1 Absolute Maximum Ratings ......................................................................................................................................... 51
12.2 Recommended Operating Conditions.......................................................................................................................... 52
12.3 DC Characteristics....................................................................................................................................................... 55
12.3.1 Current Rating .............................................................................................................................................................. 55
12.3.2 Pin Characteristics ....................................................................................................................................................... 62
12.4 AC Characteristics ....................................................................................................................................................... 64
12.4.1 Main Clock Input Characteristics .................................................................................................................................. 64
12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 65
12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 65
12.4.4 Operating Conditions of Main PLL (In the Case of Using Main Clock for Input Clock of PLL) ...................................... 66
12.4.5 Operating Conditions of USB PLL (In the Case of Using Main Clock for Input Clock of PLL) ...................................... 66
12.4.6 Operating Conditions of Main PLL (In the Case of Using Built-in High-speed CR Clock for Input Clock of Main PLL) 66
12.4.7 Reset Input Characteristics .......................................................................................................................................... 67
12.4.8 Power-on Reset Timing................................................................................................................................................ 67
12.4.9 GPIO Output Characteristics ........................................................................................................................................ 68
12.4.10 Base Timer Input Timing........................................................................................................................................... 69
12.4.11 UART Timing ............................................................................................................................................................ 70
12.4.12 External Input Timing ................................................................................................................................................ 95
12.4.13 Quadrature Position/Revolution Counter Timing ...................................................................................................... 96
2
12.4.14 I C Timing ................................................................................................................................................................. 98
12.4.15 JTAG Timing ........................................................................................................................................................... 100
12.5 12-bit A/D Converter .................................................................................................................................................. 101
12.6 12-bit D/A Converter .................................................................................................................................................. 104
12.7 USB Characteristics .................................................................................................................................................. 105
12.8 Low-Voltage Detection Characteristics ...................................................................................................................... 109
12.8.1 Low-Voltage Detection Reset ..................................................................................................................................... 109
12.8.2 Interrupt of Low-Voltage Detection ............................................................................................................................. 109
12.9 MainFlash Memory Write/Erase Characteristics ........................................................................................................ 110
Document Number: 002-04930 Rev.*A
Page 5 of 124
MB9B360L Series
12.10 WorkFlash Memory Write/Erase Characteristics ....................................................................................................... 110
12.11 Standby Recovery Time ............................................................................................................................................ 111
12.11.1 Recovery cause: Interrupt/WKUP ........................................................................................................................... 111
12.11.2 Recovery Cause: Reset .......................................................................................................................................... 113
13. Ordering Information .................................................................................................................................................... 115
14. Package Dimensions .................................................................................................................................................... 116
15. Major Changes .............................................................................................................................................................. 121
Document History ............................................................................................................................................................... 123
Sales, Solutions, and Legal Information ........................................................................................................................... 124
Document Number: 002-04930 Rev.*A
Page 6 of 124
MB9B360L Series
1. Product Lineup
Memory Size
Product name
MainFlash memory
WorkFlash memory
On-chip SRAM
SRAM0
SRAM1
SRAM1
MB9BF364K/L
256 Kbytes
32 Kbytes
32 Kbytes
16 Kbytes
8 Kbytes
8 Kbytes
MB9BF365K/L
MB9BF366K/L
384 Kbytes
32 Kbytes
48 Kbytes
24 Kbytes
12 Kbytes
12 Kbytes
512 Kbytes
32 Kbytes
64 Kbytes
32 Kbytes
16 Kbytes
16 Kbytes
Function
MB9BF364K
MB9BF365K
MB9BF366K
Product name
Pin count
48
Cortex-M4F, MPU, NVIC 128ch.
160 MHz
2.7 V to 5.5 V
1ch.
8ch.
128ch.
6ch. (Max)
(In ch.1, only I2C is available.)
CPU
MF Timer
Freq.
Power supply voltage range
USB2.0 (Function/Host)
DMAC
DSTC
Multi-function Serial Interface
(UART/CSIO/LIN/I2C)
Base Timer
(PWC/Reload timer/PWM/PPG)
A/D activation compare
Input capture
Free-run timer
Output compare
Waveform generator
PPG
QPRC
Dual Timer
Real-Time Clock
Watch Counter
CRC Accelerator
Watchdog Timer
External Interrupts
I/O Ports
MB9BF364L
MB9BF365L
MB9BF366L
64
6ch. (Max)
8ch. (Max)
6ch.
4ch.
3ch.
6ch.
3ch.
3ch.
1 unit
2 units (Max)
1ch.
1 unit
1 unit
1 unit
Yes
1ch. (SW) + 1ch. (HW)
15 pins (Max) + NMI × 1
33 pins (Max)
16 pins (Max) + NMI × 1
48 pins (Max)
12-bit A/D Converter
8ch. (2 units)
15ch. (2 units)
12-bit D/A Converter
2 units (Max)
CSV (Clock Super Visor)
LVD (Low-Voltage Detector)
High-speed
Built-in CR
Low-speed
Debug Function
Unique ID
Yes
2ch.
4 MHz (±2%)
100 kHz (Typ)
SWJ-DP
Yes
Note:
−
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
It is necessary to use the port relocate function of the I/O port according to your function use.
Document Number: 002-04930 Rev.*A
Page 7 of 124
MB9B360L Series
2. Packages
Product name
Package
LQFP: FPT-64P-M39 (0.65mm pitch)
LQFP: FPT-64P-M38 (0.5mm pitch)
LQFP: FPT-48P-M49 (0.5mm pitch)
QFN: LCC-64P-M24 (0.5mm pitch)
QFN: LCC-48P-M73 (0.5mm pitch)
MB9BF364K
MB9BF365K
MB9BF366K
-
-

-

MB9BF364L
MB9BF365L
MB9BF366L



-

: Supported
Note:
−
See 14. Package Dimensions for detailed information on each package.
Document Number: 002-04930 Rev.*A
Page 8 of 124
MB9B360L Series
3. Pin Assignment
FPT-64P-M38/M39
VSS
P81/UDP0
P80/UDM0
USBVCC
P60/SCK1_1/NMIX/WKUP0/IC01_2
P61/AN14/ADTG_5/SOT1_1/INT15_1/UHCONX0/IC00_2
P62/AN13/SIN1_1/RX0_0/TIOB3_1/INT14_1
P63/AN12/SIN0_1/TX0_0/TIOA3_1/INT13_1/ADTG_4
P64/AN11/SOT0_1/TIOB2_1/INT12_1
P65/AN10/SCK0_1/TIOA2_1/INT11_1/RTCCO_0/SUBOUT_0
P66/AN09/INT10_1/IC13_0/CROUT_1
P00/TRSTX
P01/TCK/SWCLK
P02/TDI
P03/TMS/SWDIO
P04/TDO/SWO
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
(TOP VIEW)
VCC
1
48
P26/AN08/SIN1_0/INT09_1/IC12_0
P50/AIN0_0/INT00_0/TIOA0_0/CTS4_0
2
47
P25/AN07/SOT1_0/INT08_1/IC11_0/CROUT_0
P51/BIN0_0/INT01_0/TIOB0_0/RTS4_0
3
46
P24/AN06/SCK1_0/INT07_1/IC10_0
P52/IC00_0/ZIN0_0/INT02_0/TIOA1_0/SIN4_0
4
45
P23/AN05/SCK0_0/TIOB1_1/INT06_1/DTTI1X_0
P53/IC01_0/INT03_0/TIOB1_0/SOT4_0
5
44
P22/AN04/SOT0_0/TIOA1_1/INT05_1/FRCK1_0
P54/IC02_0/INT04_0/TIOA2_0/SCK4_0
6
43
P21/AN03/ADTG_3/SIN0_0/TIOB0_1/INT04_1/RTO15_0
P55/IC03_0/INT05_0/TIOB2_0/SIN3_0
7
42
AVRH
LQFP - 64
P56/FRCK0_0/INT06_0/TIOA3_0/SOT3_0
8
41
AVRL
P57/DTTI0X_0/INT07_0/TIOB3_0/SCK3_0/ADTG_0
9
40
AVSS
P30/RTO00_0/AIN0_1/INT08_0/TIOA4_0/SIN2_0
10
39
AVCC
P31/RTO01_0/BIN0_1/INT09_0/TIOB4_0/SOT2_0
11
38
P20/AN02/SIN6_0/TIOA0_1/INT03_1/RTO14_0/RTCCO_1/SUBOUT_1/WKUP1
P32/RTO02_0/ZIN0_1/INT10_0/TIOA5_0/SCK2_0
12
37
P13/AN01/SOT6_0/TIOB7_1/RTO13_0/IC00_1/TX0_1
22
23
24
25
26
27
28
29
30
31
32
INITX
C
VSS
VCC
P40/TIOA7_0/INT14_0
P41/TIOB7_0/INT15_0/ADTG_1/WKUP3
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
VCC
21
33
P49/VWAKEUP
16
20
P10/DA0/TIOA4_1/INT00_1/AIN0_2/RTO10_0/IC03_1
VSS
P48/VREGCTL
34
19
15
18
P11/DA1/ADTG_2/SCS6_0/TIOB4_1/INT01_1/BIN0_2/RTO11_0/IC02_1
P35/WKUP2/RTO05_0/INT13_0/TIOB6_0/SCK4_1
17
P12/AN00/SCK6_0/TIOA7_1/INT02_1/ZIN0_2/RTO12_0/IC01_1/RX0_1
35
VBAT
36
14
P47/X1A
13
P46/X0A
P33/RTO03_0/INT11_0/TIOB5_0/SIN4_1
P34/RTO04_0/INT12_0/TIOA6_0/SOT4_1
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-04930 Rev.*A
Page 9 of 124
MB9B360L Series
LCC-64P-M24
VSS
P81/UDP0
P80/UDM0
USBVCC
P60/SCK1_1/NMIX/WKUP0/IC01_2
P61/AN14/ADTG_5/SOT1_1/INT15_1/UHCONX0/IC00_2
P62/AN13/SIN1_1/RX0_0/TIOB3_1/INT14_1
P63/AN12/SIN0_1/TX0_0/TIOA3_1/INT13_1/ADTG_4
P64/AN11/SOT0_1/TIOB2_1/INT12_1
P65/AN10/SCK0_1/TIOA2_1/INT11_1/RTCCO_0/SUBOUT_0
P66/AN09/INT10_1/IC13_0/CROUT_1
P00/TRSTX
P01/TCK/SWCLK
P02/TDI
P03/TMS/SWDIO
P04/TDO/SWO
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
(TOP VIEW)
VCC
1
48 P26/AN08/SIN1_0/INT09_1/IC12_0
P50/AIN0_0/INT00_0/TIOA0_0/CTS4_0
2
47 P25/AN07/SOT1_0/INT08_1/IC11_0/CROUT_0
P51/BIN0_0/INT01_0/TIOB0_0/RTS4_0
3
46 P24/AN06/SCK1_0/INT07_1/IC10_0
P52/IC00_0/ZIN0_0/INT02_0/TIOA1_0/SIN4_0
4
45 P23/AN05/SCK0_0/TIOB1_1/INT06_1/DTTI1X_0
P53/IC01_0/INT03_0/TIOB1_0/SOT4_0
5
44 P22/AN04/SOT0_0/TIOA1_1/INT05_1/FRCK1_0
P54/IC02_0/INT04_0/TIOA2_0/SCK4_0
6
43 P21/AN03/ADTG_3/SIN0_0/TIOB0_1/INT04_1/RTO15_0
P55/IC03_0/INT05_0/TIOB2_0/SIN3_0
7
P56/FRCK0_0/INT06_0/TIOA3_0/SOT3_0
8
P57/DTTI0X_0/INT07_0/TIOB3_0/SCK3_0/ADTG_0
9
40 AVSS
P30/RTO00_0/AIN0_1/INT08_0/TIOA4_0/SIN2_0
10
39 AVCC
P31/RTO01_0/BIN0_1/INT09_0/TIOB4_0/SOT2_0
11
38 P20/AN02/SIN6_0/TIOA0_1/INT03_1/RTO14_0/RTCCO_1/SUBOUT_1/WKUP1
P32/RTO02_0/ZIN0_1/INT10_0/TIOA5_0/SCK2_0
12
37 P13/AN01/SOT6_0/TIOB7_1/RTO13_0/IC00_1/TX0_1
P33/RTO03_0/INT11_0/TIOB5_0/SIN4_1
13
36 P12/AN00/SCK6_0/TIOA7_1/INT02_1/ZIN0_2/RTO12_0/IC01_1/RX0_1
P34/RTO04_0/INT12_0/TIOA6_0/SOT4_1
14
35 P11/DA1/ADTG_2/SCS6_0/TIOB4_1/INT01_1/BIN0_2/RTO11_0/IC02_1
P35/WKUP2/RTO05_0/INT13_0/TIOB6_0/SCK4_1
15
34 P10/DA0/TIOA4_1/INT00_1/AIN0_2/RTO10_0/IC03_1
VSS
16
33 VCC
42 AVRH
QFN - 64
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
P46/X0A
P47/X1A
VBAT
P48/VREGCTL
P49/VWAKEUP
INITX
C
VSS
VCC
P40/TIOA7_0/INT14_0
P41/TIOB7_0/INT15_0/ADTG_1/WKUP3
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
41 AVRL
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-04930 Rev.*A
Page 10 of 124
MB9B360L Series
FPT-48P-M49
VSS
P81/UDP0
P80/UDM0
USBVCC
P60/SCK1_1/NMIX/WKUP0/IC01_2
P61/AN14/ADTG_5/SOT1_1/INT15_1/UHCONX0/IC00_2
P66/AN09/INT10_1/CROUT_1
P00/TRSTX
P01/TCK/SWCLK
P02/TDI
P03/TMS/SWDIO
P04/TDO/SWO
48
47
46
45
44
43
42
41
40
39
38
37
(TOP VIEW)
VCC
1
36 P23/AN05/SCK0_0/TIOB1_1/INT06_1
P54/IC02_0/INT04_0/TIOA2_0
2
35 P22/AN04/SOT0_0/TIOA1_1/INT05_1
P55/IC03_0/INT05_0/TIOB2_0/SIN3_0
3
34 P21/AN03/ADTG_3/SIN0_0/TIOB0_1/INT04_1
P56/FRCK0_0/INT06_0/TIOA3_0/SOT3_0
4
33 AVRH
P57/DTTI0X_0/INT07_0/TIOB3_0/SCK3_0/ADTG_0
5
P30/RTO00_0/AIN0_1/INT08_0/TIOA4_0/SIN2_0
6
P31/RTO01_0/BIN0_1/INT09_0/TIOB4_0/SOT2_0
7
P32/RTO02_0/ZIN0_1/INT10_0/TIOA5_0/SCK2_0
8
29 P20/AN02/SIN6_0/TIOA0_1/INT03_1/RTCCO_1/SUBOUT_1/WKUP1
P33/RTO03_0/INT11_0/TIOB5_0/SIN4_1
9
28 P13/AN01/SOT6_0/TIOB7_1/IC00_1/TX0_1
P34/RTO04_0/INT12_0/TIOA6_0/SOT4_1
10
27 P12/AN00/SCK6_0/TIOA7_1/INT02_1/ZIN0_2/IC01_1/RX0_1
P35/WKUP2/RTO05_0/INT13_0/TIOB6_0/SCK4_1
11
26 P11/DA1/ADTG_2/SCS6_0/TIOB4_1/INT01_1/BIN0_2/IC02_1
VSS
12
25 P10/DA0/TIOA4_1/INIT00_1/AIN0_2/IC03_1
32 AVRL
31 AVSS
LQFP - 48
13
14
15
16
17
18
19
20
21
22
23
24
P46/X0A
P47/X1A
VBAT
INITX
C
VSS
VCC
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
30 AVCC
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-04930 Rev.*A
Page 11 of 124
MB9B360L Series
LCC-48P-M73
VSS
P81/UDP0
P80/UDM0
USBVCC
P60/SCK1_1/NMIX/WKUP0/IC01_2
P61/AN14/ADTG_5/SOT1_1/INT15_1/UHCONX0/IC00_2
P66/AN09/INT10_1/CROUT_1
P00/TRSTX
P01/TCK/SWCLK
P02/TDI
P03/TMS/SWDIO
P04/TDO/SWO
48
47
46
45
44
43
42
41
40
39
38
37
(TOP VIEW)
VCC
1
36 P23/AN05/SCK0_0/TIOB1_1/INT06_1
P54/IC02_0/INT04_0/TIOA2_0
2
35 P22/AN04/SOT0_0/TIOA1_1/INT05_1
P55/IC03_0/INT05_0/TIOB2_0/SIN3_0
3
34 P21/AN03/ADTG_3/SIN0_0/TIOB0_1/INT04_1
P56/FRCK0_0/INT06_0/TIOA3_0/SOT3_0
4
33 AVRH
P57/DTTI0X_0/INT07_0/TIOB3_0/SCK3_0/ADTG_0
5
P30/RTO00_0/AIN0_1/INT08_0/TIOA4_0/SIN2_0
6
P31/RTO01_0/BIN0_1/INT09_0/TIOB4_0/SOT2_0
7
P32/RTO02_0/ZIN0_1/INT10_0/TIOA5_0/SCK2_0
8
29 P20/AN02/SIN6_0/TIOA0_1/INT03_1/RTCCO_1/SUBOUT_1/WKUP1
P33/RTO03_0/INT11_0/TIOB5_0/SIN4_1
9
28 P13/AN01/SOT6_0/TIOB7_1/IC00_1/TX0_1
P34/RTO04_0/INT12_0/TIOA6_0/SOT4_1
10
27 P12/AN00/SCK6_0/TIOA7_1/INT02_1/ZIN0_2/IC01_1/RX0_1
P35/WKUP2/RTO05_0/INT13_0/TIOB6_0/SCK4_1
11
26 P11/DA1/ADTG_2/SCS6_0/TIOB4_1/INT01_1/BIN0_2/IC02_1
VSS
12
25 P10/DA0/TIOA4_1/INIT00_1/AIN0_2/IC03_1
32 AVRL
31 AVSS
QFN - 48
13
14
15
16
17
18
19
20
21
22
23
24
P46/X0A
P47/X1A
VBAT
INITX
C
VSS
VCC
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
30 AVCC
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-04930 Rev.*A
Page 12 of 124
MB9B360L Series
4. Pin Description
4.1
List of Pin Numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin No
LQFP64
QFN64
1
LQFP48
QFN48
1
2
-
3
-
4
-
5
-
Pin Name
VCC
P50
AIN0_0
INT00_0
TIOA0_0
CTS4_0
P51
BIN0_0
INT01_0
TIOB0_0
RTS4_0
P52
IC00_0
ZIN0_0
INT02_0
TIOA1_0
SIN4_0
P53
IC01_0
INT03_0
TIOB1_0
I/O circuit
type
Pin state
type
-
-
E
K
E
K
I
K
N
K
N
K
I
K
N
K
SOT4_0
(SDA4_0)
2
6
-
7
3
8
4
Document Number: 002-04930 Rev.*A
P54
IC02_0
INT04_0
TIOA2_0
SCK4_0
(SCL4_0)
P55
IC03_0
INT05_0
TIOB2_0
SIN3_0
P56
FRCK0_0
INT06_0
TIOA3_0
SOT3_0
(SDA3_0)
Page 13 of 124
MB9B360L Series
Pin No
LQFP64
LQFP48
QFN64
QFN48
9
5
Pin Name
P57
DTTI0X_0
INT07_0
TIOB3_0
I/O circuit
Pin state
type
type
N
K
G
K
G
K
G
K
G
K
G
K
G
Q
SCK3_0
(SCL3_0)
10
6
11
7
12
8
13
9
14
10
15
11
Document Number: 002-04930 Rev.*A
ADTG_0
P30
RTO00_0
AIN0_1
INT08_0
TIOA4_0
SIN2_0
P31
RTO01_0
BIN0_1
INT09_0
TIOB4_0
SOT2_0
(SDA2_0)
P32
RTO02_0
ZIN0_1
INT10_0
TIOA5_0
SCK2_0
(SCL2_0)
P33
RTO03_0
INT11_0
TIOB5_0
SIN4_1
P34
RTO04_0
INT12_0
TIOA6_0
SOT4_1
(SDA4_1)
P35
WKUP2
RTO05_0
INT13_0
TIOB6_0
SCK4_1
(SCL4_1)
Page 14 of 124
MB9B360L Series
Pin No
LQFP64
QFN64
16
LQFP48
QFN48
12
17
13
18
14
19
15
20
-
21
-
22
23
24
25
16
17
18
19
26
-
27
-
28
20
29
21
30
22
31
23
32
33
24
-
34
25
-
35
26
-
Document Number: 002-04930 Rev.*A
Pin Name
VSS
P46
X0A
P47
X1A
VBAT
P48
VREGCTL
P49
VWAKEUP
INITX
C
VSS
VCC
P40
TIOA7_0
INT14_0
P41
TIOB7_0
INT15_0
ADTG_1
WKUP3
PE0
MD1
MD0
PE2
X0
PE3
X1
VSS
VCC
P10
DA0
TIOA4_1
INT00_1
AIN0_2
IC03_1
RTO10_0
P11
DA1
ADTG_2
SCS6_0
TIOB4_1
INT01_1
BIN0_2
IC02_1
RTO11_0
I/O circuit
type
Pin state
type
-
-
P
S
Q
T
O
U
O
U
B
-
C
-
E
K
E
Q
C
E
J
D
A
A
A
B
-
-
R
J
R
J
Page 15 of 124
MB9B360L Series
Pin No
LQFP64
QFN64
36
LQFP48
QFN48
27
-
37
28
-
38
39
40
41
42
43
29
30
31
32
33
34
-
44
35
-
45
36
-
Document Number: 002-04930 Rev.*A
Pin Name
P12
AN00
SCK6_0
TIOA7_1
INT02_1
ZIN0_2
IC01_1
RTO12_0
P13
AN01
SOT6_0
(SDA6_0)
TIOB7_1
IC00_1
RTO13_0
P20
AN02
SIN6_0
TIOA0_1
INT03_1
RTCCO_1
SUBOUT_1
WKUP1
RTO14_0
AVCC
AVSS
AVRL
AVRH
P21
AN03
ADTG_3
SIN0_0
TIOB0_1
INT04_1
RTO15_0
P22
AN04
SOT0_0
(SDA0_0)
TIOA1_1
INT05_1
FRCK1_0
P23
AN05
SCK0_0
(SCL0_0)
TIOB1_1
INT06_1
DTTI1X_0
I/O circuit
type
Pin state
type
M
M
M
L
F
O
-
-
F
M
F
M
F
M
Page 16 of 124
MB9B360L Series
Pin No
LQFP64
QFN64
LQFP48
QFN48
46
-
47
-
48
-
49
37
50
38
51
39
52
40
53
41
54
42
-
55
-
56
-
Document Number: 002-04930 Rev.*A
Pin Name
P24
AN06
SCK1_0
(SCL1_0)
INT07_1
IC10_0
P25
AN07
SOT1_0
(SDA1_0)
INT08_1
IC11_0
CROUT_0
P26
AN08
SIN1_0
INT09_1
IC12_0
P04
TDO
SWO
P03
TMS
SWDIO
P02
TDI
P01
TCK
SWCLK
P00
TRSTX
P66
AN09
INT10_1
CROUT_1
IC13_0
P65
AN10
SCK0_1
(SCL0_1)
TIOA2_1
INT11_1
RTCCO_0
SUBOUT_0
P64
AN11
SOT0_1
(SDA0_1)
TIOB2_1
INT12_1
I/O circuit
type
Pin state
type
F
M
F
M
F
M
E
G
E
G
E
G
E
G
E
G
F
M
L
M
L
M
Page 17 of 124
MB9B360L Series
Pin No
LQFP64
QFN64
LQFP48
QFN48
Pin Name
I/O circuit
type
Pin state
type
F
M
F
M
F
M
I
F
-
-
H
R
H
R
-
-
P63
AN12
57
-
SIN0_1
TIOA3_1
INT13_1
ADTG_4
P62
AN13
58
-
59
43
60
44
61
45
62
46
63
47
64
48
Document Number: 002-04930 Rev.*A
SIN1_1
TIOB3_1
INT14_1
P61
AN14
ADTG_5
SOT1_1
(SDA1_1)
INT15_1
UHCONX0
IC00_2
P60
SCK1_1
(SCK1_1)
NMIX
WKUP0
IC01_2
USBVCC
P80
UDM0
P81
UDP0
VSS
Page 18 of 124
MB9B360L Series
4.2
List of Pin Functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin
function
ADC
Base Timer
0
Base Timer
1
Base Timer
2
Base Timer
3
Base Timer
4
Base Timer
5
Pin No
Pin name
ADTG_0
ADTG_1
ADTG_2
ADTG_3
ADTG_4
ADTG_5
AN00
AN01
AN02
AN03
AN04
AN05
AN06
AN07
AN08
AN09
AN10
AN11
AN12
AN13
AN14
TIOA0_0
TIOA0_1
TIOB0_0
TIOB0_1
TIOA1_0
TIOA1_1
TIOB1_0
TIOB1_1
TIOA2_0
TIOA2_1
TIOB2_0
TIOB2_1
TIOA3_0
TIOA3_1
TIOB3_0
TIOB3_1
TIOA4_0
TIOA4_1
TIOB4_0
TIOB4_1
TIOA5_0
TIOB5_0
Function description
A/D converter external trigger input pin
A/D converter analog input pin.
ANxx describes ADC ch.xx.
Base timer ch.0 TIOA pin
Base timer ch.0 TIOB pin
Base timer ch.1 TIOA pin
Base timer ch.1 TIOB pin
Base timer ch.2 TIOA pin
Base timer ch.2 TIOB pin
Base timer ch.3 TIOA pin
Base timer ch.3 TIOB pin
Base timer ch.4 TIOA pin
Base timer ch.4 TIOB pin
Base timer ch.5 TIOA pin
Base timer ch.5 TIOB pin
Document Number: 002-04930 Rev.*A
LQFP64
QFN64
9
27
35
43
57
59
36
37
38
43
44
45
46
47
48
54
55
56
57
58
59
2
38
3
43
4
44
5
45
6
55
7
56
8
57
9
58
10
34
11
35
12
13
LQFP48
QFN48
5
26
34
43
27
28
29
34
35
36
42
43
29
34
35
36
2
3
4
5
6
25
7
26
8
9
Page 19 of 124
MB9B360L Series
Pin
function
Base Timer
6
Base Timer
7
Debugger
External
Interrupt
Pin No
Pin name
TIOA6_0
TIOB6_0
TIOA7_0
TIOA7_1
TIOB7_0
TIOB7_1
SWCLK
SWDIO
SWO
TCK
TDI
TDO
TMS
TRSTX
INT00_0
INT00_1
INT01_0
INT01_1
INT02_0
INT02_1
INT03_0
INT03_1
INT04_0
INT04_1
INT05_0
INT05_1
Function description
Base timer ch.6 TIOA pin
Base timer ch.6 TIOB pin
Base timer ch.7 TIOA pin
Base timer ch.7 TIOB pin
Serial wire debug interface clock input pin
Serial wire debug interface data input / output pin
Serial wire viewer output pin
JTAG test clock input pin
JTAG test data input pin
JTAG debug data output pin
JTAG test mode state input/output pin
JTAG test reset Input pin
External interrupt request 00 input pin
External interrupt request 01 input pin
External interrupt request 02 input pin
External interrupt request 03 input pin
External interrupt request 04 input pin
External interrupt request 05 input pin
Document Number: 002-04930 Rev.*A
LQFP64
QFN64
14
15
26
36
27
37
52
50
49
52
51
49
50
53
2
34
3
35
4
36
5
38
6
43
7
44
LQFP48
QFN48
10
11
27
28
40
38
37
40
39
37
38
41
25
26
27
29
2
34
3
35
Page 20 of 124
MB9B360L Series
Pin
function
External
Interrupt
GPIO
Pin No
Pin name
INT06_0
INT06_1
INT07_0
INT07_1
INT08_0
INT08_1
INT09_0
INT09_1
INT10_0
INT10_1
INT11_0
INT11_1
INT12_0
INT12_1
INT13_0
INT13_1
INT14_0
INT14_1
INT15_0
INT15_1
NMIX
P00
P01
P02
P03
P04
P10
P11
P12
P13
P20
P21
P22
P23
P24
P25
P26
P30
P31
P32
P33
P34
P35
Function description
External interrupt request 06 input pin
External interrupt request 07 input pin
External interrupt request 08 input pin
External interrupt request 09 input pin
External interrupt request 10 input pin
External interrupt request 11 input pin
External interrupt request 12 input pin
External interrupt request 13 input pin
External interrupt request 14 input pin
External interrupt request 15 input pin
Non-Maskable Interrupt input pin
General-purpose I/O port 0
General-purpose I/O port 1
General-purpose I/O port 2
General-purpose I/O port 3
Document Number: 002-04930 Rev.*A
LQFP64
QFN64
8
45
9
46
10
47
11
48
12
54
13
55
14
56
15
57
26
58
27
59
60
53
52
51
50
49
34
35
36
37
38
43
44
45
46
47
48
10
11
12
13
14
15
LQFP48
QFN48
4
36
5
6
7
8
42
9
10
11
43
44
41
40
39
38
37
25
26
27
28
29
34
35
36
6
7
8
9
10
11
Page 21 of 124
MB9B360L Series
Pin No
Pin
function
Pin name
GPIO
P40
P41
P46
P47
P48
P49
P50
P51
P52
P53
P54
P55
P56
P57
P60
P61
P62
P63
P64
P65
P66
P80
P81
PE0
PE2
PE3
Function description
General-purpose I/O port 4
General-purpose I/O port 5
General-purpose I/O port 6
General-purpose I/O port 8
General-purpose I/O port E
Document Number: 002-04930 Rev.*A
LQFP64
QFN64
26
27
17
18
20
21
2
3
4
5
6
7
8
9
60
59
58
57
56
55
54
62
63
28
30
31
LQFP48
QFN48
13
14
2
3
4
5
44
43
42
46
47
20
22
23
Page 22 of 124
MB9B360L Series
Pin
function
Pin No
Pin name
SIN0_0
SIN0_1
Multifunction
Serial
0
SOT0_0
(SDA0_0)
SOT0_1
(SDA0_1)
SCK0_0
(SCL0_0)
SCK0_1
(SCL0_1)
SIN1_0
SIN1_1
Multifunction
Serial
1
SOT1_0
(SDA1_0)
SOT1_1
(SDA1_1)
SCK1_0
(SCL1_0)
SCK1_1
(SCL1_1)
SIN2_0
Multifunction
Serial
2
SOT2_0
(SDA2_0)
SCK2_0
(SCL2_0)
Function description
LQFP64
QFN64
43
LQFP48
QFN48
34
57
-
Multi-function serial interface ch.0 output pin.
This pin operates as SOT0 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA0
when it is used in an I2C (operation mode 4).
44
35
56
-
Multi-function serial interface ch.0 clock I/O pin.
This pin operates as SCK0 when it is used in a CSIO
(operation modes 2) and as SCL0 when it is used in an I2C
(operation mode 4).
45
36
55
-
48
-
58
-
Multi-function serial interface ch.1 output pin.
This pin operates as SOT1 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA1
when it is used in an I2C (operation mode 4).
47
-
59
43
Multi-function serial interface ch.1 clock I/O pin.
This pin operates as SCK1 when it is used in a CSIO
(operation modes 2) and as SCL1 when it is used in an I2C
(operation mode 4).
46
-
60
44
Multi-function serial interface ch.2 input pin
10
6
11
7
12
8
Multi-function serial interface ch.0 input pin
Multi-function serial interface ch.1 input pin
Multi-function serial interface ch.2 output pin.
This pin operates as SOT2 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA2
when it is used in an I2C (operation mode 4).
Multi-function serial interface ch.2 clock I/O pin.
This pin operates as SCK2 when it is used in a CSIO
(operation modes 2) and as SCL2 when it is used in an I2C
(operation mode 4).
Document Number: 002-04930 Rev.*A
Page 23 of 124
MB9B360L Series
Pin No
Pin function
Multifunction
Serial
3
Multifunction
Serial
4
Multifunction
Serial
6
Pin name
Function description
SIN3_0
Multi-function serial interface ch.3 input pin
Multi-function serial interface ch.3 output pin.
This pin operates as SOT3 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA3
when it is used in an I2C (operation mode 4).
Multi-function serial interface ch.3 clock I/O pin.
This pin operates as SCK3 when it is used in a CSIO
(operation modes 2) and as SCL3 when it is used in an I2C
(operation mode 4).
SOT3_0
(SDA3_0)
SCK3_0
(SCL3_0)
SIN4_0
SIN4_1
SOT4_0
(SDA4_0)
SOT4_1
(SDA4_1)
SCK4_0
(SCL4_0)
SCK4_1
(SCL4_1)
CTS4_0
RTS4_0
SIN6_0
SOT6_0
(SDA6_0)
SCK6_0
(SCL6_0)
SCS6_0
Multi-function serial interface ch.4 input pin
Multi-function serial interface ch.4 output pin.
This pin operates as SOT4 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA4
when it is used in an I2C (operation mode 4).
Multi-function serial interface ch.4 clock I/O pin.
This pin operates as SCK4 when it is used in a CSIO
(operation modes 2) and as SCL4 when it is used in an I2C
(operation mode 4).
Multi-function serial interface ch.4 CTS input pin
Multi-function serial interface ch.4 RTS output pin
Multi-function serial interface ch.6 input pin
This pin operates as SOT6 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA6
when it is used in an I2C (operation mode 4).
Multi-function serial interface ch.6 clock I/O pin.
This pin operates as SCK6 when it is used in a CSIO
(operation modes 2) and as SCL6 when it is used in an I2C
(operation mode 4).
Multi-function serial interface ch.6 serial chip select pin
Document Number: 002-04930 Rev.*A
LQFP64
QFN64
7
LQFP48
QFN48
3
8
4
9
5
4
13
9
5
-
14
10
6
-
15
11
2
3
38
29
37
28
36
27
35
26
Page 24 of 124
MB9B360L Series
Pin No
Pin function
Pin name
LQFP64
QFN64
LQFP48
QFN48
DTTI0X_0
Input signal controlling wave form generator outputs
RTO00 to RTO05 of Multi-function timer 0.
9
5
FRCK0_0
16-bit free-run timer ch.0 external clock input pin
8
4
IC00_0
4
-
IC00_1
37
28
IC00_2
59
43
IC01_0
5
-
36
27
IC01_1
IC01_2
Multifunction
Timer
0
Function description
16-bit input capture ch.0 input pin of Multi-function timer 0.
ICxx describes channel number.
60
44
IC02_0
6
2
IC02_1
35
26
IC03_0
7
3
34
25
10
6
11
7
12
8
13
9
14
10
15
11
IC03_1
RTO00_0
(PPG00_0)
RTO01_0
(PPG00_0)
RTO02_0
(PPG02_0)
RTO03_0
(PPG02_0)
RTO04_0
(PPG04_0)
RTO05_0
(PPG04_0)
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG00 when it is used in PPG0 output
modes.
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG00 when it is used in PPG0 output
modes.
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG02 when it is used in PPG0 output
modes.
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG02 when it is used in PPG0 output
modes.
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG04 when it is used in PPG0 output
modes.
Wave form generator output pin of Multi-function timer 0.
This pin operates as PPG04 when it is used in PPG0 output
modes.
Document Number: 002-04930 Rev.*A
Page 25 of 124
MB9B360L Series
Pin No
Pin function
Pin name
DTTI1X_0
FRCK1_0
IC10_0
IC11_0
IC12_0
IC13_0
RTO10_0
(PPG10_0)
Multifunction
Timer
1
RTO11_0
(PPG10_0)
RTO12_0
(PPG12_0)
RTO13_0
(PPG12_0)
RTO14_0
(PPG14_0)
RTO15_0
(PPG14_0)
Quadrature
Position/
Revolution
Counter
0
AIN0_0
AIN0_1
AIN0_2
BIN0_0
BIN0_1
BIN0_2
ZIN0_0
ZIN0_1
ZIN0_2
Function description
Input signal controlling wave form generator outputs
RTO10 to RTO15 of Multi-function timer 1.
16-bit free-run timer ch.1 external clock input pin
16-bit input capture ch.1 input pin of Multi-function timer 1.
ICxx describes channel number.
Wave form generator output pin of Multi-function timer 1.
This pin operates as PPG10 when it is used in PPG1 output
modes.
Wave form generator output pin of Multi-function timer 1.
This pin operates as PPG10 when it is used in PPG1 output
modes.
Wave form generator output pin of Multi-function timer 1.
This pin operates as PPG12 when it is used in PPG1 output
modes.
Wave form generator output pin of Multi-function timer 1.
This pin operates as PPG12 when it is used in PPG1 output
modes.
Wave form generator output pin of Multi-function timer 1.
This pin operates as PPG14 when it is used in PPG1 output
modes.
Wave form generator output pin of Multi-function timer 1.
This pin operates as PPG14 when it is used in PPG1 output
modes.
QPRC ch.0 AIN input pin
QPRC ch.0 BIN input pin
QPRC ch.0 ZIN input pin
Document Number: 002-04930 Rev.*A
LQFP64
QFN64
LQFP48
QFN48
45
-
44
46
47
48
54
-
34
-
35
-
36
-
37
-
38
-
43
-
2
10
34
3
11
35
4
12
36
6
25
7
26
8
36
Page 26 of 124
MB9B360L Series
Pin No
Pin function
Real-time
clock
USB
Low-Power
Consumpti
on
Mode
DAC
VBAT
Reset
Pin name
RTCCO_0
RTCCO_1
SUBOUT_0
SUBOUT_1
UDM0
UDP0
UHCONX0
WKUP0
WKUP1
WKUP2
WKUP3
DA0
DA1
VREGCTL
VWAKEUP
INITX
MD1
Mode
MD0
Power
VCC
USBVCC
GND
Clock
Analog
Power
VBAT
Power
Analog
GND
C pin
VSS
X0
X1
X0A
X1A
CROUT_0
CROUT_1
AVCC
AVRH
VBAT
AVSS
AVRL
C
Function description
0.5 seconds pulse output pin of Real-time clock
Sub clock output pin
Sub clock output pin
USB function/host D – pin
USB function/host D + pin
USB external pull-up control pin
Deep standby mode return signal input pin 0
Deep standby mode return signal input pin 1
Deep standby mode return signal input pin 2
Deep standby mode return signal input pin 3
D/A converter ch.0 analog output pin
D/A converter ch.1 analog output pin
On-board regulator control pin
The return signal input pin from a hibernation state
External Reset Input pin.
A reset is valid when INITX="L".
Mode 1 pin.
During serial programming to Flash memory, MD1="L" must
be input.
Mode 0 pin.
During normal operation, MD0="L" must be input. During
serial programming to Flash memory, MD0="H" must be
input.
Power supply Pin
3.3V Power supply port for USB I/O
GND Pin
Main clock (oscillation) input pin
Main clock (oscillation) I/O pin
Sub clock (oscillation) input pin
Sub clock (oscillation) I/O pin
Built-in high-speed CR-osc clock output port
A/D converter and D/A converter analog power supply pin
A/D converter analog reference voltage input pin
VBAT power supply pin.
Backup power supply (battery etc.) and system power
supply.
A/D converter and D/A converter
GND pin
A/D converter analog reference voltage input pin
Power supply stabilization capacity pin
Document Number: 002-04930 Rev.*A
LQFP64
QFN64
55
38
55
38
62
63
59
60
38
15
27
34
35
20
21
LQFP48
QFN48
29
29
46
47
43
44
29
11
25
26
-
22
16
28
20
29
21
1
25
33
61
16
24
32
64
30
31
17
18
47
54
39
42
1
19
45
12
18
24
48
22
23
13
14
42
30
33
19
15
40
31
41
23
32
17
Page 27 of 124
MB9B360L Series
5. I/O Circuit Type
Type
Circuit
P-ch
P-ch
Remarks
Digital output
X1
N-ch
Digital output
R
It is possible to select the main
oscillation / GPIO function
Pull-up resistor control
Digital input
Standby mode control
Clock input
A
When the main oscillation is
selected.
• Oscillation feedback resistor
: Approximately 1 MΩ
• With Standby mode control
When the GPIO is selected.
Standby mode control
Digital input
Standby mode control
•
•
•
•
•
CMOS level output.
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0
Pull-up resistor control
B
• CMOS level hysteresis input
• Pull-up resistor
: Approximately 50 kΩ
Pull-up resistor
Digital input
Document Number: 002-04930 Rev.*A
Page 28 of 124
MB9B360L Series
Type
Circuit
Remarks
Digital input
C
Digital output
N-ch
P-ch
P-ch
Digital output
E
N-ch
• Open drain output
• CMOS level hysteresis input
Digital output
R
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
Pull-up resistor control
Digital input
Standby mode control
P-ch
P-ch
N-ch
Digital output
Digital output
F
Pull-up resistor control
R
Digital input
Standby mode control
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
2
• When this pin is used as an I C
pin, the digital output P-ch
transistor is always off
Analog input
Input control
Document Number: 002-04930 Rev.*A
Page 29 of 124
MB9B360L Series
Type
Circuit
P-ch
P-ch
Remarks
Digital output
G
N-ch
Digital output
R
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -12 mA, IOL = 12 mA
2
• When this pin is used as an I C
pin, the digital output P-ch
transistor is always off
Pull-up resistor
control
Digital input
Standby mode
control
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
UDP output
UDP/Pxx
It is possible to select the USB
I/O / GPIO function.
USB Full-speed/Low-speed control
UDP input
When the USB I/O is selected.
• Full-speed, Low-speed control
H
Differential
UDM/Pxx
Differential input
USB/GPIO select
UDM input
UDM output
When the GPIO is selected.
•
•
•
•
CMOS level output
CMOS level hysteresis input
With standby mode control
IOH = -20.5 mA, IOL = 18.5 mA
USB Digital input/output direction
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
Document Number: 002-04930 Rev.*A
Page 30 of 124
MB9B360L Series
Type
Circuit
P-ch
P-ch
Remarks
Digital output
I
N-ch
Digital output
R
Pull-up resistor
control
Digital input
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
5 V tolerant
With standby mode control
IOH = -4 mA, IOL = 4 mA
Available to control of PZR
registers.
2
• When this pin is used as an I C
pin, the digital output P-ch
transistor is always off
Standby mode control
J
Mode input
P-ch
L
P-ch
N-ch
R
Digital output
Digital output
Pull-up resistor
control
Digital input
CMOS level hysteresis input
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -8 mA, IOL = 8 mA
2
• When this pin is used as an I C
pin, the digital output P-ch
transistor is always off
Standby mode
control
Document Number: 002-04930 Rev.*A
Page 31 of 124
MB9B360L Series
Type
Circuit
P-ch
P-ch
N-ch
Remarks
Digital output
Digital output
M
Pull-up resistor
control
Digital input
R
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -8 mA, IOL = 8 mA
2
• When this pin is used as an I C
pin, the digital output P-ch
transistor is always off
Standby mode
control
Analog input
Input control
Pull-up resistor
control
P-ch
P-ch
N
N-ch
N-ch
Digital output
Digital output
Fast mode control
R
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
(GPIO)
• IOL = 20 mA
(Fast Mode Plus)
2
• When this pin is used as an I C
pin, the digital output P-ch
transistor is always off
Digital input
Standby mode
control
Document Number: 002-04930 Rev.*A
Page 32 of 124
MB9B360L Series
Type
Circuit
P-ch
P-ch
O
N-ch
Remarks
Pull-up resistor
control
Digital output
Digital output
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
5 V tolerant
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• For I/O setting, refer to VBAT
Domain in the Peripheral
Manual
R
Digital input
Standby mode
control
P-ch
P-ch
X0A
N-ch
P
Pull-up resistor
control
Digital output
Digital output
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• For I/O setting, refer to VBAT
Domain in the Peripheral
Manual
R
Digital input
Standby mode
control
OSC
Document Number: 002-04930 Rev.*A
Page 33 of 124
MB9B360L Series
Type
Circuit
Pull-up resistor
control
Digital output
P-ch
P-ch
X1A
Remarks
It is possible to select the sub
oscillation / GPIO function
When the sub oscillation is selected.
Digital output
N-ch
Q
R
Digital input
Standby mode
control
OSC
RX
• Oscillation feedback resistor
: Approximately 10 MΩ
• With Standby mode control
When the GPIO is selected.
• CMOS level output.
• CMOS level hysteresis input
• With pull-up resistor control
• With standby mode control
• Pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• For I/O setting, refer to VBAT
Domain in the Peripheral
Manual
Standby mode
control
Clock input
P-ch
P-ch
N-ch
Digital output
Digital output
R
R
Pull-up resistor
control
Digital input
•
•
•
•
•
•
•
CMOS level output
CMOS level hysteresis input
With input control
Analog output
With pull-up resistor control
With standby mode control
Pull-up resistor
: Approximately 50 kΩ
• IOH = -12 mA, IOL = 12 mA
(4.5 V to 5.5 V)
• IOH = -8 mA, IOL = 8 mA
(2.7 V to 4.5 V)
Standby mode
control
Analog output
Document Number: 002-04930 Rev.*A
Page 34 of 124
MB9B360L Series
6. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.
6.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output
functions.
1. Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the
design stage.
2. Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.
Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
3. Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of
several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal
noise, surge levels, etc.
2. Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-04930 Rev.*A
Page 35 of 124
MB9B360L Series
Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from
such use without prior approval.
6.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales
representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or
mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected
to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress
recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed
or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections
caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and have established a ranking of
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended
conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength
may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of
moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing
moisture resistance and causing packages to crack. To prevent, do the following:
1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C
and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica
gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-04930 Rev.*A
Page 36 of 124
MB9B360L Series
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be
needed to remove electricity.
2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of
1 MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
4. Ground all fixtures and instruments, or protect with anti-static measures.
5. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies.
6.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
1. Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are
anticipated, consider anti-humidity processing.
2. Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use
anti-static measures or processing to prevent discharges.
3. Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you
use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
4. Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide
shielding as appropriate.
5. Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices
begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-04930 Rev.*A
Page 37 of 124
MB9B360L Series
7. Handling Devices
Power Supply Pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to
prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground
lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the
ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with each POWER pins and GND pins of this device at low impedance. It is also
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS near this
device.
Power Supply Pins
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed
operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the
fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard
VCC value, and the transient fluctuation rate does not exceed 0.1 V/μs at a momentary fluctuation such as switching the power
supply.
Crystal Oscillator Circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,
X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as
possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by
ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
Sub Crystal Oscillator
This series sub oscillator circuit is low gain to keep the low current consumption.
The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.
• Surface mount type
Size
Load capacitance
• Lead type
Load capacitance
: More than 3.2 mm × 1.5 mm
: Approximately 6 pF to 7 pF
: Approximately 6 pF to 7 pF
Using an External Clock
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1 (PE3)
can be used as a general-purpose I/O port.
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to
X0A. X1A (P47) can be used as a general-purpose I/O port.
Example of Using an External Clock
Device
X0(X0A)
Set as External clock
input
Can be used as
general-purpose
I/O ports.
Document Number: 002-04930 Rev.*A
X1(PE3), X1A (P47)
Page 38 of 124
MB9B360L Series
2
Handling when Using Multi-function Serial Pin as I C Pin
2
If it is using the multi-function serial pin as I C pins, P-ch transistor of digital output is always disabled.
2
2
However, I C pins need to keep the electrical characteristic like other pins and not to connect to the external I C bus system with
power OFF.
C Pin
This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND
pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use
by evaluating the temperature characteristics of a capacitor.
A smoothing capacitor of about 4.7 μF would be recommended for this series.
C
Device
CS
VSS
GND
Mode Pins (MD0)
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays
low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection
impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is
because of preventing the device erroneously switching to test mode due to noise.
Notes on Power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter and D/A converter, connect AVCC = VCC and AVSS = VSS.
Turning on:
Turning off:
VBAT → VCC → USBVCC
VCC → AVCC → AVRH
USBVCC → VCC → VBAT
AVRH → AVCC → VCC
Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end.
If an error is detected, retransmit the data.
Differences in Features among the Products with Different Memory Sizes and between Flash Products and
MASK Products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among
the products with different memory sizes and between Flash products and MASK products are different because chip layout and
memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.
Pull-Up Function of 5 V Tolerant I/O
Please do not input the signal more than VCC voltage at the time of pull-up function use of 5V tolerant I/O.
Handling when Using Debug Pins
When debug pins (TDO/TMS/TDI/TCK/TRSTX or SWO/SWDIO/SWCLK) are set to GPIO or other peripheral functions, only set
them as output, do not set them as input.
Document Number: 002-04930 Rev.*A
Page 39 of 124
MB9B360L Series
8. Block Diagram
MB9BF364K/L, F365K/L, F366K/L
TRSTX,TCK,
TDI,TMS
TDO
SRAM0
16/24/32 Kbytes
SWJ-DP
ROM
Table
SRAM1
8/12/16 Kbytes
Cortex-M4F Core I
@160 MHz(Max)
MPU
Multi-layer AHB (Max 160 MHz)
D
FPU
NVIC
Sys
AHB-APB Bridge:
APB0(Max 80 MHz)
Dual-Timer
Watchdog Timer
(Software)
Clock Reset
Generator
INITX
Watchdog Timer
(Hardware)
SRAM2
8/12/16 Kbytes
MainFlash I/F
MainFlash
512 Kbytes/
384 Kbytes/
256 Kbytes
Trace Buffer
(16 Kbytes)
Security
WorkFlash
32 Kbytes
WorkFlash I/F
USB2.0
(Host/
Func)
CSV
PHY
USBVCC
UDP0,UDM0
UHCONX0
DMAC
8ch.
CLK
DSTC
X0A
X1A
Main
Osc
PLL
VBAT Domain
Sub
Osc
AHB-AHB Bridge
Source Clock
X0
X1
CR
100 kHz
CR
4 MHz
GPIO
PIN-FunctionCtrl
CROUT
ADTGx
TIOAx
TIOBx
AINx
BINx
ZINx
12-bit A/D Converter
Unit 0
Base Timer
16-bit 16ch./
32-bit 8ch.
QPRC
1ch.
A/D Activation Compare
6ch.
ICxx
FRCKx
16-bit Input Capture
4ch.
16-bit Free-run Timer
3ch.
16-bit Output Compare
6ch.
DTTIxX
RTOxx
USB Clock Ctrl
Unit 1
Waveform Generator
3ch.
16-bit PPG
3ch.
Multi-function Timer × 2
Document Number: 002-04930 Rev.*A
PLL
.
.
.
PEx
Power-On
Reset
LVD Ctrl
LVD
IRQ-Monitor
Regulator
C
CRC Accelerator
AHB-APB Bridge : APB2 (Max 80 MHz)
ANxx
AHB-APB Bridge : APB1 (Max 160 MHz)
AVCC,
AVSS,
AVRH
P0x,
P1x,
Watch Counter
Deep Standby Ctrl
WKUPx
Peripheral Clock Gating
Low-speed CR Prescaler
VBAT Domain
Real-Time Clock
Port Ctrl.
VWAKEUP
VREGCTL
RTCCO,
SUBOUT
External Interrupt
Controller
16pin + NMI
INTxx
NMIX
MODE-Ctrl
MD0,
MD1
Multi-function Serial I/F
6ch.
HW flow control(ch.4)
SCKx
SINx
SOTx
CTS4
RTS4
12-bit D/A Converter
2units
DAx
Page 40 of 124
MB9B360L Series
9. Memory Size
See Memory size in 1. Product Lineup to confirm the memory size.
10. Memory Map
Memory Map (1)
Peripherals Area
0x41FF_FFFF
Reserved
0x4007_0000
0x4006_F000
GPIO
Reserved
0xFFFF_FFFF
Reserved
0xE010_0000
0xE000_0000
Cortex-M4F Private
Peripherals
0x4006_2000
0x4006_1000
0x4006_0000
0x4005_0000
0x4004_0000
External Device
Area
0x6000_0000
Reserved
0x4400_0000
0x4200_0000
32 Mbytes
Bit band alias
Peripherals
0x4000_0000
Reserved
0x2400_0000
0x2200_0000
32 Mbytes
Bit band alias
Reserved
0x2010_0000
0x200E_0000
0x200C_0000
See "lMemory Map (2)"
for the memory size
details.
0x2004_4000
0x2004_0000
0x2003_C000
0x2000_0000
0x1FFF_8000
0x0050_0000
0x0040_0000
WorkFlash I/F
WorkFlash
Reserved
SRAM2
SRAM1
Reserved
SRAM0
Reserved
Security/CR Trim
MainFlash
0x0000_0000
Reserved
USB ch.0
Reserved
0x4003_C800
0x4003_C100 Peripheral Clock Gating
0x4003_C000 Low Speed CR Prescaler
0x4003_B000
RTC/Port Ctrl
0x4003_A000
Watch Counter
0x4003_9000
CRC
0x4003_8000
MFS
Reserved
0x4003_7000
0x4003_6000
USB Clock ctrl
0x4003_5000
LVD/DS mode
0x4003_4000
Reserved
0x4003_3000
D/AC
Reserved
0x4003_2000
0x4003_1000
Int-Req.Read
0x4003_0000
EXTI
0x4002_F000
Reserved
0x4002_E000
CR Trim
0x4002_8000
0x4002_7000
0x4002_6000
0x4002_5000
0x4002_4000
0x4002_2000
0x4002_1000
0x4002_0000
0x4001_6000
0x4001_5000
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
0x4000_1000
0x4000_0000
Document Number: 002-04930 Rev.*A
DSTC
DMAC
Reserved
A/DC
QPRC
Base Timer
PPG
Reserved
MFT Unit1
MFT Unit0
Reserved
Dual Timer
Reserved
SW WDT
HW WDT
Clock/Reset
Reserved
MainFlash I/F
Page 41 of 124
MB9B360L Series
Memory Map (2)
MB9BF366K/L
0x2008_0000
MB9BF365K/L
0x2008_0000
Reserved
0x200C_8000
0x200C_0000
0x2008_0000
Reserved
0x200C_8000
WorkFlash
32 Kbytes
MB9BF364K/L
0x200C_0000
Reserved
Reserved
0x200C_8000
WorkFlash
32 Kbytes
0x200C_0000
Reserved
0x2004_4000
WorkFlash
32 Kbytes
Reserved
0x2004_3000
SRAM2
16 Kbytes
0x2004_0000
0x2004_0000
SRAM1
16 Kbytes
0x2003_D000
SRAM2
12 Kbytes
SRAM1
12 Kbytes
0x2004_2000
0x2004_0000
0x2003_E000
SRAM2
8 Kbytes
SRAM1
8 Kbytes
0x2003_C000
0x2000_0000
0x2000_0000
SRAM0
32 Kbytes
Reserved
Reserved
Reserved
0x1FFF_A000
0x2000_0000
SRAM0
24 Kbytes
0x1FFF_C000
SRAM0
16 Kbytes
0x1FFF_8000
0x0050_0000
0x0040_2000
0x0040_0000
0x0050_0000
CR trimming
Security
Reserved
Reserved
Reserved
0x0040_2000
0x0040_0000
0x0050_0000
CR trimming
Security
0x0040_2000
0x0040_0000
CR trimming
Security
Reserved
Reserved
0x0008_0000
Reserved
0x0006_0000
MainFlash
512 Kbytes
0x0000_0000
Document Number: 002-04930 Rev.*A
0x0004_0000
MainFlash
384 Kbytes
0x0000_0000
MainFlash
256 Kbytes
0x0000_0000
Page 42 of 124
MB9B360L Series
Peripheral Address Map
Start address
End address
0x4000_0000
0x4000_1000
0x4001_0000
0x4001_1000
0x4001_2000
0x4001_3000
0x4001_5000
0x4001_6000
0x4002_0000
0x4002_1000
0x4002_2000
0x4002_4000
0x4002_5000
0x4002_6000
0x4002_7000
0x4002_8000
0x4002_E000
0x4002_F000
0x4003_0000
0x4003_1000
0x4003_2000
0x4003_3000
0x4003_4000
0x4003_5000
0x4003_5800
0x4003_6000
0x4003_7000
0x4003_8000
0x4003_9000
0x4003_A000
0x4003_B000
0x4003_C000
0x4003_C100
0x4003_C800
0x4004_0000
0x4005_0000
0x4006_0000
0x4006_1000
0x4006_2000
0x4006_F000
0x4006_7000
0x200E_0000
0x4000_0FFF
0x4000_FFFF
0x4001_0FFF
0x4001_1FFF
0x4001_2FFF
0x4001_4FFF
0x4001_5FFF
0x4001_FFFF
0x4002_0FFF
0x4002_1FFF
0x4003_FFFF
0x4002_4FFF
0x4002_5FFF
0x4002_6FFF
0x4002_7FFF
0x4002_DFFF
0x4002_EFFF
0x4002_FFFF
0x4003_0FFF
0x4003_1FFF
0x4003_4FFF
0x4003_3FFF
0x4003_4FFF
0x4003_57FF
0x4003_5FFF
0x4003_6FFF
0x4003_7FFF
0x4003_8FFF
0x4003_9FFF
0x4003_AFFF
0x4003_BFFF
0x4003_C0FF
0x4003_C7FF
0x4003_FFFF
0x4004_FFFF
0x4005_FFFF
0x4006_0FFF
0x4006_1FFF
0x4006_EFFF
0x4006_FFFF
0x41FF_FFFF
0x200E_FFFF
Document Number: 002-04930 Rev.*A
Bus
AHB
APB0
APB1
APB2
AHB
Peripherals
MainFlash I/F register
Reserved
Clock/Reset Control
Hardware Watchdog timer
Software Watchdog timer
Reserved
Dual-Timer
Reserved
Multi-function timer unit0
Multi-function timer unit1
Reserved
PPG
Base Timer
Quadrature Position/Revolution Counter
A/D Converter
Reserved
Internal CR trimming
Reserved
External Interrupt Controller
Interrupt Request Batch-Read Function
Reserved
D/A Converter
Reserved
Low Voltage Detector
Deep standby mode Controller
USB clock generator
Reserved
Multi-function serial Interface
CRC
Watch Counter
RTC/Port Ctrl
Low-speed CR Prescaler
Peripheral Clock Gating
Reserved
USB ch.0
Reserved
DMAC register
DSTC register
Reserved
GPIO
Reserved
WorkFlash I/F register
Page 43 of 124
MB9B360L Series
11. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX=0
This is the period when the INITX pin is the L level.
 INITX=1
This is the period when the INITX pin is the H level.
 SPL=0
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.
 SPL=1
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at 0
This is the status that the input function cannot be used. Internal input is fixed at L.
 Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
 GPIO selected
In Deep standby mode, pins switch to the general-purpose I/O port.
 Setting prohibition
Prohibition of a setting by specification limitation.
Document Number: 002-04930 Rev.*A
Page 44 of 124
MB9B360L Series
Pin status Type
List of Pin Status
A
Function
Group
Power-on
Reset or
Low-voltage
Detection
State
Power
Supply
Unstable
‐
‐
INITX
Input
State
Device
Internal
Reset
State
Power Supply
Stable
INITX=0
‐
INITX=1
‐
Run
Mode
or Sleep
Mode
State
Power
Supply
Stable
INITX=1
‐
Timer Mode,
RTC Mode, or
Stop Mode State
Deep Standby RTC
Mode or Deep Standby
Stop Mode State
Power Supply
Stable
Power Supply
Stable
INITX=1
SPL=0
SPL=1
INITX=1
SPL=0
SPL=1
GPIO
Hi-Z /
selected
Internal
Internal
input fixed
input fixed
at 0
at 0
Return from
Deep
Standby
Mode State
Power
Supply
Stable
INITX=1
-
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Main
crystal
oscillator
input pin/
External
main clock
input
selected
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
GPIO
selected
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
External
main clock
input
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Main
crystal
oscillator
output pin
Hi-Z /
Internal input
fixed at "0"/
or Input enable
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
Maintain previous state /
When oscillation stops*1, Hi-Z /
Internal input fixed at 0
C
INITX
input pin
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
D
Mode
input pin
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
B
Document Number: 002-04930 Rev.*A
Page 45 of 124
Pin status Type
MB9B360L Series
E
F
Function
Group
Power-on
Reset or
Low-voltage
Detection
State
INITX
Input
State
Device
Internal
Reset
State
Mode
input pin
Power
Supply
Unstable
‐
‐
Input
enabled
INITX=0
‐
Input
enabled
INITX=1
‐
Input
enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
NMIX
selected
Setting
disabled
Setting
disabled
Setting
disabled
Resource
other than
above
selected
Hi-Z
GPIO
selected
JTAG
selected
Hi-Z
Power Supply
Stable
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
G
J
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Analog
output
selected
Setting
disabled
Setting
disabled
Setting
disabled
Resource
other than
above
selected
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
GPIO
selected
K
External
interrupt
enabled
selected
Resource
other than
above
selected
GPIO
selected
Hi-Z
Hi-Z /
Input
enabled
Document Number: 002-04930 Rev.*A
Hi-Z /
Input
enabled
Run Mode
or SLEEP
Mode
State
Power
Supply
Stable
INITX=1
‐
Input
enabled
Maintain
previous
state
TIMER Mode,
RTC Mode, or
STOP Mode State
Deep Standby RTC
Mode or Deep Standby
STOP Mode State
Power Supply
Stable
Power Supply
Stable
SPL=0
Input
enabled
Maintain
previous
state
INITX=1
SPL=1
Input
enabled
Hi-Z /
Input
enabled
INITX=1
SPL=0
SPL=1
Input
Input
enabled
enabled
Hi-Z /
GPIO
Input
selected
enabled
GPIO
selected
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
*2
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
GPIO
selected
Hi-Z /
WKUP
input
enabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
*3
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
Maintain
previous
state
WKUP
input
enabled
Return
from
Deep
Standby
Mode
State
Power
Supply
Stable
INITX=1
Input
enabled
Hi-Z /
Internal
input fixed
at 0
Page 46 of 124
Pin status Type
MB9B360L Series
Function
Group
Power-on
Reset or
Low-voltage
Detection
State
Power
Supply
Unstable
‐
‐
INITX
Input
State
Device
Internal
Reset
State
Run Mode
or Sleep
Mode
State
Timer Mode,
RTC Mode, or
Stop Mode State
Deep Standby RTC
Mode or Deep Standby
Stop Mode State
Power Supply
Stable
Power Supply
Stable
INITX=1
SPL=0
SPL=1
INITX=1
SPL=0
SPL=1
Return
from
Deep
Standby
Mode
State
Power
Supply
Stable
INITX=1
-
INITX=0
‐
INITX=1
‐
Power
Supply
Stable
INITX=1
‐
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Power Supply
Stable
Analog
input
selected
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Resource
other than
above
selected
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
L
Analog
input
selected
M External
interrupt
enabled
selected
Resource
other than
above
selected
GPIO
selected
Maintain
previous
state
Setting
disabled
Setting
disabled
Document Number: 002-04930 Rev.*A
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Page 47 of 124
Pin status Type
MB9B360L Series
Function
Group
Analog
input
selected
Power-on
Reset or
Low-voltage
Detection
State
Power
Supply
Unstable
‐
‐
Hi-Z
INITX
Input
State
Device
Internal
Reset
State
Power Supply
Stable
INITX=0
‐
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
INITX=1
‐
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Setting
disabled
Setting
disabled
Run Mode
or Sleep
Mode
State
Power
Supply
Stable
INITX=1
‐
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Timer Mode,
RTC Mode, or
Stop Mode State
Deep Standby RTC
Mode or Deep Standby
Stop Mode State
Power Supply
Stable
Power Supply
Stable
INITX=1
SPL=0
SPL=1
Hi-Z /
Hi-Z /
Internal
Internal
input fixed
input fixed
at 0 /
at 0 /
Analog
Analog
input
input
enabled
enabled
WKUP
enabled
O External
interrupt
enabled
selected
Resource
other than
above
selected
Setting
disabled
Maintain
previous
state
Hi-Z
Hi-Z
Input
enabled
Hi-Z
Input
enabled
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
GPIO
selected
Analog
input
selected
P
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
WKUP
enabled
Resource
other than
above
selected
Setting
disabled
Setting
disabled
GPIO
selected
Document Number: 002-04930 Rev.*A
Setting
disabled
Maintain
previous
state
Maintain
previous
state
INITX=1
SPL=0
SPL=1
Hi-Z /
Hi-Z /
Internal
Internal
input fixed
input fixed
at 0 /
at 0 /
Analog
Analog
input
input
enabled
enabled
WKUP
WKUP
input
input
enabled
enabled
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Maintain
previous
state
WKUP
input
enabled
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
WKUP
input
enabled
Hi-Z /
Internal
input fixed
at 0
Return
from
Deep
Standby
Mode
State
Power
Supply
Stable
INITX=1
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
GPIO
selected
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
GPIO
selected
Page 48 of 124
Pin status Type
MB9B360L Series
Function
Group
Power-on
Reset or
Low-voltage
Detection
State
INITX
Input
State
Device
Internal
Reset
State
Run Mode
or Sleep
Mode
State
Power
Supply
Unstable
‐
INITX=0
INITX=1
Power
Supply
Stable
INITX=1
‐
‐
‐
‐
Power Supply
Stable
Timer Mode,
RTC Mode, or
Stop Mode State
Deep Standby RTC
Mode or Deep Standby
Stop Mode State
Power Supply
Stable
Power Supply
Stable
INITX=1
SPL=0
WKUP
enabled
External
interrupt
enabled
Q
selected
Resource
other than
above
selected
GPIO
selected
GPIO
selected
Setting
disabled
Setting
disabled
Maintain
previous
state
Setting
disabled
Maintain
previous
state
Hi-Z
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Input
enabled
Maintain
previous
state
USB I/O pin
Setting
disabled
Setting
disabled
Maintain
previous
state
Hi-Z /
Input
enabled
R
Setting
disabled
INITX=1
SPL=1
SPL=0
SPL=1
Return
from
Deep
Standby
Mode
State
Power
Supply
Stable
INITX=1
-
WKUP
input
enabled
Hi-Z /
WKUP
input
enabled
GPIO
selected
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at "0"
Hi-Z /
Input
enabled
GPIO
selected
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input fixed
at "0"
Hi-Z /
Input
enabled
Hi-Z at
transmission/
Input
enabled/
Internal
input fixed
at 0 at
reception
Hi-Z at
transmission/
Input
enabled/
Internal
input fixed
at 0 at
reception
Hi-Z /
Input
enabled
GPIO
selected
*1: Oscillation is stopped at Sub timer mode, sub CR timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep
Standby Stop mode.
*2: Maintain previous state at timer mode. GPIO selected Internal input fixed at 0 at RTC mode, Stop mode.
*3: Maintain previous state at timer mode. Hi-Z/Internal input fixed at 0 at RTC mode, Stop mode.
Document Number: 002-04930 Rev.*A
Page 49 of 124
MB9B360L Series
VBAT Pin Status Type
List of VBAT Domain Pin Status
S
VBAT
Power-on
Reset
Device
Internal
Reset
State
INITX
Input
State
Function
Group
Power
Supply
Unstable
‐
‐
Power Supply Stable
INITX=0
‐
INITX=1
‐
Run
Mode or
Sleep
Mode
State
Power
Supply
Stable
INITX=1
‐
Timer Mode,
RTC Mode, or
Stop Mode State
Deep Standby
RTC Mode or Deep
Standby Stop Mode State
Power Supply Stable
Power Supply Stable
INITX=1
SPL=0
INITX=1
SPL=1
SPL=0
SPL=1
Return
from
Deep
Standby
Mode
State
VBAT
RTC
Mode
State
Return
from
VBAT
RTC
Mode
State
Power
Supply
Stable
INITX=1
-
Power
Supply
Stable
-
Power
Supply
Stable
-
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
GPIO
selected
Internal
input fixed
at "0"
Sub
crystal
oscillator
input pin /
External
sub clock
input
selected
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
GPIO
selected
Internal
input fixed
at "0"
Hi-Z /
Internal
input fixed
at "0"
GPIO
selected
Setting
prohibition
-
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state/
When
oscillation
stops*,
Hi-Z/
Internal
input fixed
at "0"
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
External
sub clock
input
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at "0"
Maintain
previous
state/
When
oscillation
stops*,
Hi-Z /
Internal
input fixed
at "0"
Maintain
previous
state
T
Sub
crystal
oscillator
output pin
Hi-Z /
Internal
input
fixed at 0/
or Input
enable
Hi-Z /
Internal
Input
fixed
at "0"
Hi-Z /
Internal
Input
fixed
at "0"
Maintain
previous
state
Maintain
previous
state/
When
oscillation
stops*,
Hi-Z /
Internal
input fixed
at "0"
Hi-Z
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Resource
selected
U
GPIO
selected
Hi-Z /
Internal
input fixed
at "0"
GPIO
selected
Setting
prohibition
-
Maintain
previous
state/
When
oscillation
stops*,
Hi-Z/
Internal
input fixed
at "0"
Hi-Z /
Internal
input fixed
at "0"
Maintain
previous
state/
When
oscillation
stops*,
Hi-Z/
Internal
input fixed
at "0"
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
*: Oscillation is stopped at Stop mode and Deep Standby Stop mode.
Document Number: 002-04930 Rev.*A
Page 50 of 124
MB9B360L Series
12. Electrical Characteristics
12.1 Absolute Maximum Ratings
Parameter
Rating
Symbol
Min
Unit
Max
Power supply voltage *1, *2
VCC
VSS - 0.5
VSS + 6.5
V
Power supply voltage (for USB)*1, * 3
USBVCC
VSS - 0.5
VSS + 6.5
V
Power supply voltage (VBAT) * *
VBAT
VSS - 0.5
VSS + 6.5
V
Analog power supply voltage *1 ,*5
Analog reference voltage *1 ,*5
AVCC
AVRH
VSS - 0.5
VSS - 0.5
VSS + 6.5
VSS + 6.5
VCC + 0.5
(≤ 6.5V)
USBVCC + 0.5
(≤ 6.5V)
V
V
VSS + 6.5
1, 4
VSS - 0.5
Input voltage *1
VI
VSS - 0.5
VSS - 0.5
Analog pin input voltage *
1
Output voltage *1
6
VIA
VSS - 0.5
VO
VSS - 0.5
"L" level maximum output current *
IOL
-
"L" level average output current *7
IOLAV
-
"L" level total maximum output current
"L" level total maximum output current *8
∑IOL
∑IOLAV
-
"H" level maximum output current *6
IOH
-
"H" level average output current *7
IOHAV
-
"H" level total maximum output current
"H" level total average output current *8
Storage temperature
∑IOH
∑IOHAV
TSTG
- 55
AVCC + 0.5
(≤ 6.5V)
VCC + 0.5
(≤ 6.5V)
10
20
20
22.4
4
8
12
20
100
50
Remarks
V
Except for USB pin
V
USB pin
V
5 V tolerant
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
4 mA type
8 mA type
12 mA type
I2C Fm+
4 mA type
8 mA type
12 mA type
I2C Fm+
- 10
mA
4 mA type
- 20
mA
8 mA type
- 20
-4
-8
- 12
- 100
- 50
+ 150
mA
mA
mA
mA
mA
mA
°C
12 mA type
4 mA type
8 mA type
12 mA type
*1: These parameters are based on the condition that VSS = AVSS = 0.0 V.
*2: VCC must not drop below VSS - 0.5 V.
*3: USBVCC must not drop below VSS - 0.5 V.
*4: VBAT must not drop below VSS - 0.5 V.
*5: Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on.
*6: The maximum output current is defined as the value of the peak current flowing through any one of the
corresponding pins.
*7: The average output current is defined as the average current value flowing through any one of the
corresponding pins for a 100ms period.
*8: The total average output current is defined as the average current value flowing through all of
corresponding pins for a period of 100 ms.
WARNING:
−
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current
or temperature) in excess of absolute maximum ratings.
Do not exceed any of these ratings.
Document Number: 002-04930 Rev.*A
Page 51 of 124
MB9B360L Series
12.2 Recommended Operating Conditions
Parameter
Symbol
Power supply voltage
VCC
Conditions
-
Value
Min
2.7
3.0
Power supply voltage (for USB)
USBVCC
2.7
Power supply voltage (VBAT)
Analog power supply voltage
Analog reference voltage
Junction temperature
Operating
temperature
Ambient temperature
VBAT
AVCC
AVRH
Tj
TA
-
2.7
2.7
*3
- 40
- 40
Max
5.5
3.6
(≤ VCC)
5.5
(≤ VCC)
5.5
5.5
AVCC
+ 125
*4
Unit
Remarks
V
*1
V
*2
V
V
V
°C
°C
AVCC=VCC
*1: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0).
*2: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80).
*3: The minimum value of Analog reference voltage depends on the value of compare clock cycle (Tcck).
See "5. 12-bit A/D Converter" for the details.
*4: The maximum temperature of the ambient temperature (Ta) can guarantee a range that does not exceed
the junction temperature (Tj).
The calculation formula of the ambient temperature (Ta) is shown below.
TA(Max) = Tj(Max) - Pd(Max) × θja
Pd: Power dissipation (W)
θja: Package thermal resistance (°C/W)
Pd (Max) = VCC × ICC (Max) + Σ (IOL×VOL) + Σ ((VCC-VOH) × (- IOH))
IOL: L level output current
IOH: H level output current
VOL: L level output voltage
VOH: H level output voltage
Package thermal resistance and maximum permissible power for each package are shown below.
The operation is guaranteed maximum permissible power or less for semiconductor devices.
Table for Package Thermal Resistance and Maximum Permissible Power
Package
FPT-48P-M49
(0.5mm pitch)
LCC-48P-M73
(0.5mm pitch)
FPT-64P-M38
(0.5mm pitch)
FPT-64P-M39
(0.65mm pitch)
LCC-64P-M24
(0.5mm pitch)
Printed circuit board
Single-layered both sides
4 layers
Single-layered both sides
4 layers
Single-layered both sides
4 layers
Single-layered both sides
4 layers
Single-layered both sides
4 layers
Thermal
resistance θja
(°C/W)
87
53
30
24
70
45
61
40
24
21
Maximum permissible power (mW)
TA=+85°C
460
755
1333
1667
571
889
656
1000
1667
1905
TA=+105°C
230
377
667
833
286
444
328
500
833
952
WARNING:
1. The recommended operating conditions are required to ensure the normal operation of the semiconductor device. All of the
device's electrical characteristics are warranted when the device is operated under these conditions.
Any use of semiconductor devices will be under their recommended operating condition.
Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device
failure.
No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.
Document Number: 002-04930 Rev.*A
Page 52 of 124
MB9B360L Series
Calculation Method of Power Dissipation (Pd)
The power dissipation is shown in the following formula.
Pd = VCC × ICC + Σ (IOL × VOL) + Σ ((VCC-VOH) × (-IOH))
IOL: "L" level output current
IOH: "H" level output current
VOL: "L" level output voltage
VOH: "H" level output voltage
ICC is a current consumed in device.
It can be analyzed as follows.
ICC = ICC(INT) + ΣICC(IO)
ICC(INT): Current consumed in internal logic and memory, etc. through regulator
ΣICC(IO): Sum of current (I/O switching current) consumed in output pin
For ICC (INT), it can be anticipated by "(1) Current Rating" in "3. DC Characteristics" (This rating value does not include ICC (IO) for a
value at pin fixed).
For Icc (IO), it depends on system used by customers.
The calculation formula is shown below.
ICC(IO) = (CINT + CEXT) × VCC × fsw
CINT: Pin internal load capacitance
CEXT: External load capacitance of output pin
fSW: Pin switching frequency
Parameter
Pin internal load capacitance
Symbol
CINT
Conditions
Capacitance Value
4 mA type
1.93 pF
8 mA type
3.45 pF
12 mA type
3.42 pF
Calculate ICC (Max) as follows when the power dissipation can be evaluated.
1. Measure current value ICC (Typ) at normal temperature (+25°C).
2. Add maximum leak current value ICC (leak_max) at operating on a value in (1).
ICC(Max) = ICC(Typ) + ICC(leak_max)
Parameter
Maximum leak current at operating
Document Number: 002-04930 Rev.*A
Symbol
ICC(leak_max)
Conditions
Tj = +125 °C
Tj = +105 °C
Tj = +85 °C
Current Value
28 mA
17 mA
13 mA
Page 53 of 124
MB9B360L Series
Current Explanation Diagram
Pd = VCC×ICC + Σ(IOL×VOL)+Σ((VCC-VOH)×(-IOH))
ICC = ICC(INT)+ΣICC(IO)
VCC
A
ICC
Chip
ICC(INT)
ΣICC(IO)
A
Regulator
VOL
V
A
・・・
V
IOL
Flash
VOH
・・・
Logic
IOH
RAM
ICC(IO)
CEXT
・・・
Document Number: 002-04930 Rev.*A
Page 54 of 124
MB9B360L Series
12.3 DC Characteristics
12.3.1 Current Rating
Parameter
Power
supply
current
Parameter
Power
supply
current
Symbol
ICC
Symbol
ICC
Pin
Name
VCC
Pin
Name
VCC
Conditions
Normal
operation
(PLL)
*5, *6
Conditions
Normal
operation
(PLL)
*8
Frequency*
4
Value
2
Max*
1
Typ*
160 MHz
44
72
144 MHz
120 MHz
100 MHz
80 MHz
60 MHz
40 MHz
20 MHz
8 MHz
4 MHz
160 MHz
144 MHz
120 MHz
100 MHz
80 MHz
60 MHz
40 MHz
20 MHz
8 MHz
4 MHz
40
34
29
23
18
13
7.7
4.6
3.6
30
27
23
20
16
13
9
5.7
3.7
3
67
60
55
48
42
37
31
27
26
58
54
49
46
41
38
33
30
27
26
Frequency*
7
Value
2
Max*
1
Typ*
160 MHz
64
101
144 MHz
120 MHz
100 MHz
80 MHz
60 MHz
40 MHz
20 MHz
8 MHz
4 MHz
160 MHz
144 MHz
120 MHz
100 MHz
80 MHz
60 MHz
40 MHz
20 MHz
8 MHz
4MHz
60
52
46
39
32
25
15
7.8
5.2
47
43
39
35
30
25
20
13
6.7
4.6
96
88
81
73
65
58
47
39
36
80
75
71
66
61
55
50
42
36
34
Unit
Remarks
mA
*3
When all peripheral
clocks are ON
mA
*3
When all peripheral
clocks are OFF
Unit
Remarks
mA
*3
When all peripheral
clocks are ON
mA
*3
When all peripheral
clocks are OFF
*1: TA=+25 °C, VCC=3.3 V
*2: Tj=+125 °C, VCC=5.5 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2
*5: When operating flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 1)
*6: Data access is nothing to MainFlash memory
*7: Frequency is a value of HCLK. PCLK0=PCLK2=HCLK/2, PCLK1=HCLK
*8: When stopping flash accelerator mode and trace buffer function (FRWTR.RWT = 10, FBFCR.BE = 0)
Document Number: 002-04930 Rev.*A
Page 55 of 124
MB9B360L Series
Parameter
Power
supply
current
Symbol
ICC
Pin
Name
VCC
Frequency*
(MHz)
Conditions
Normal
operation
(PLL)
*5
4
Value
1
2
Typ*
Max*
72 MHz
41
75
60 MHz
36
69
48 MHz
31
64
36 MHz
25
57
24 MHz
18
50
12 MHz
8 MHz
4 MHz
72 MHz
60 MHz
48 MHz
36 MHz
24 MHz
11
8.1
5.4
32
28
24
20
15
42
39
37
63
58
54
50
45
12 MHz
9.1
38
8 MHz
4 MHz
6.9
4.6
36
34
Unit
Remarks
mA
*3
When all peripheral
clocks are ON
mA
*3
When all peripheral
clocks are OFF
*1: TA=+25 °C, VCC=3.3 V
*2: Tj=+125 °C, VCC=5.5 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK
*5: When 0 wait-cycle mode (FRWTR.RWT = 00, FSYNDN.SD = 00)
Parameter
Symbol
Pin
Name
Conditions
Normal
operation
(built-in
high-speed CR)
Power
supply
current
ICC
VCC
Normal
operation
(sub oscillation)
Normal
operation
(built-in
low-speed CR)
Frequency*
*5
*5
*5
4
Value
1
2
Typ*
Max*
Unit
Remarks
*3
When all peripheral
clocks are ON
*3
When all peripheral
clocks are OFF
3.3
29
mA
2.8
29
mA
0.51
27
mA
*3
When all peripheral
clocks are ON
0.50
27
mA
*3
When all peripheral
clocks are OFF
0.54
27
mA
*3
When all peripheral
clocks are ON
0.52
27
mA
*3
When all peripheral
clocks are OFF
4 MHz
32 kHz
100 kHz
*1: TA=+25 °C, VCC=3.3 V
*2: Tj=+125 °C, VCC=5.5 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2
*5: When 0 wait-cycle mode (FRWTR.RWT = 00, FSYNDN.SD = 000)
Document Number: 002-04930 Rev.*A
Page 56 of 124
MB9B360L Series
Parameter
Power
supply
current
Parameter
Power
supply
current
Symbol
ICCS
Symbol
ICCS
Pin
Name
VCC
Pin
Name
VCC
Conditions
Sleep
operation
(PLL)
Conditions
Sleep
operation
(PLL)
Frequency*
Value
4
1
2
Typ*
Max*
160 MHz
28
58
144 MHz
120 MHz
100 MHz
80 MHz
60 MHz
40 MHz
20 MHz
8 MHz
4 MHz
160 MHz
144 MHz
120 MHz
100 MHz
80 MHz
60 MHz
40 MHz
20 MHz
8 MHz
4 MHz
25
21
18
15
12
8.8
5.6
3.8
3.2
14
13
11
9.7
8.1
6.7
5.2
3.7
2.9
2.6
55
50
46
43
39
36
32
30
29
44
43
40
38
36
34
32
30
29
29
Frequency*
5
Value
2
Max*
1
Typ*
72 MHz
19
47
60 MHz
16
43
48 MHz
13
40
36 MHz
10
37
24 MHz
7.8
34
12 MHz
8 MHz
4 MHz
72 MHz
60 MHz
48 MHz
36 MHz
24 MHz
5.2
4.3
3.5
8.8
7.7
6.6
5.5
4.4
31
30
29
36
35
34
32
31
12 MHz
3.4
30
8 MHz
4 MHz
3
2.7
29
29
Unit
Remarks
mA
*3
When all peripheral
clocks are ON
mA
*3
When all peripheral
clocks are OFF
Unit
Remarks
mA
*3
When all peripheral
clocks are ON
mA
*3
When all peripheral
clocks are OFF
*1: TA=+25 °C, VCC=3.3 V
*2: Tj=+125 °C, VCC=5.5 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2
*5: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK
Document Number: 002-04930 Rev.*A
Page 57 of 124
MB9B360L Series
Parameter
Symbol
Pin
Name
Conditions
Sleep
operation
(built-in
high-speed CR)
Power
supply
current
ICCS
VCC
Sleep
operation
(sub oscillation)
Sleep
operation
(built-in
low-speed CR)
Frequency*
Value
4
1
2
Unit
Remarks
Typ*
Max*
1.3
27
mA
0.91
27
mA
0.49
27
mA
0.48
27
mA
0.51
27
mA
*3
When all peripheral
clocks are ON
0.49
27
mA
*3
When all peripheral
clocks are OFF
4 MHz
32 kHz
100 kHz
*3
When all peripheral
clocks are ON
*3
When all peripheral
clocks are OFF
*3
When all peripheral
clocks are ON
*3
When all peripheral
clocks are OFF
*1: TA=+25 °C, VCC=3.3 V
*2: Tj=+125 °C, VCC=5.5 V
*3: When all ports are fixed.
*4: Frequency is a value of HCLK. PCLK0=PCLK1=PCLK2=HCLK/2
Document Number: 002-04930 Rev.*A
Page 58 of 124
MB9B360L Series
Parameter
Symbol
Pin
Name
ICCH
Conditions
STOP mode
TIMER mode
(built-in
high-speed CR)
Power supply
current
ICCT
VCC
TIMER mode
(sub oscillation)
TIMER mode
(built-in
low-speed CR)
ICCR
RTC mode
(sub oscillation)
Frequency
-
4 MHz
32 kHz
100 kHz
32 kHz
Value
1
2
Unit
Remarks
Typ*
Max*
0.25
1.0
mA
-
11
mA
-
14
mA
0.54
1.54
mA
-
12
mA
-
15
mA
0.25
1.0
mA
*3, *4
TA =+25°C
-
11
mA
*3, *4
TA =+85°C
-
14
mA
0.26
1.0
mA
-
11
mA
-
14
mA
0.25
1.0
mA
-
11
mA
-
14
mA
*3, *4
TA=+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*3, *4
TA =+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*3, *4
TA =+105°C
*3, *4
TA =+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*3, *4
TA =+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*1: VCC=3.3 V
*2: VCC=5.5 V
*3: When all ports are fixed.
*4: When LVD is OFF
Document Number: 002-04930 Rev.*A
Page 59 of 124
MB9B360L Series
Parameter
Pin
Name
Symbol
Conditions
Frequency
Deep standby
STOP mode
(When RAM is
OFF)
ICCHD
Value
Typ
*1
2
Max*
Unit
27
140
µA
-
590
µA
-
770
µA
32
180
µA
-
870
µA
-
1200
µA
27
140
µA
-
590
µA
-
770
µA
32
180
µA
-
870
µA
-
1200
µA
0.015
0.14
µA
-
4.0
µA
-
9.4
µA
1.3
2.4
µA
-
6.2
µA
-
12
µA
Deep standby
STOP mode
(When RAM is
ON)
VCC
Power
supply
current
Deep standby
RTC mode
(When RAM is
OFF)
ICCRD
32 kHz
Deep standby
RTC mode
(When RAM is
ON)
RTC stop
ICCVBAT
VBAT
-
RTC operation
Remarks
*3, *4
TA=+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*3, *4
TA =+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*3, *4
TA =+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*3, *4
TA =+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*3, *4, *5
TA =+25°C
*3, *4, *5
TA =+85°C
*3, *4, *5
TA =+105°C
*3, *4
TA =+25°C
*3, *4
TA =+85°C
*3, *4
TA =+105°C
*1: VCC=3.3 V
*2: VCC=5.5 V
*3: When all ports are fixed.
*4: When LVD is OFF
*5: When sub oscillation is OFF
Document Number: 002-04930 Rev.*A
Page 60 of 124
MB9B360L Series
Parameter
Low-voltage
detection circuit
(LVD) power
supply current
ICCLVD
Main flash
memory
write/erase
current
ICCFLASH
Work flash
memory
write/erase
current
ICCWFLASH
Value
Pin
Name
Symbol
VCC
Conditions
Min
Typ
Max
Unit
At operation
-
4
7
μA
At Write/Erase
-
13.4
15.9
mA
At Write/Erase
-
11.5
13.6
mA
Remarks
For occurrence of
interrupt
Peripheral current dissipation
Clock
System
Peripheral
Unit
Frequency (MHz)
40
80
160
GPIO
All ports
0.21
0.43
0.92
DMAC
-
0.71
1.43
2.74
DSTC
-
0.36
0.72
1.46
USB
1ch.
0.42
0.80
1.60
Base timer
4ch.
0.18
0.36
0.70
1 unit/4ch.
0.57
1.13
2.24
1 unit
0.04
0.08
0.16
A/DC
1 unit
0.21
0.40
0.79
Multi-function serial
1ch.
0.33
0.67
-
HCLK
PCLK1
PCLK2
Unit
Remarks
mA
Multi-functional
timer/PPG
Quadrature
position/Revolution
counter
Document Number: 002-04930 Rev.*A
mA
mA
Page 61 of 124
MB9B360L Series
12.3.2 Pin Characteristics
(VCC = USBVCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V)
Value
Parameter
"H" level input
voltage
(hysteresis
input)
"L" level input
voltage
(hysteresis
input)
Symbol
VIHS
VILS
Pin Name
CMOS
hysteresis
input pin,
MD0, MD1
5V tolerant
input pin
Input pin
doubled as I2C
Fm+
CMOS
hysteresis
input pin,
MD0, MD1
5V tolerant
input pin
Input pin
doubled as I2C
Fm+
4mA type
8mA type
"H" level output
voltage
VOH
12mA type
The pin
doubled as
USB I/O
The pin
doubled as I2C
Fm+
Document Number: 002-04930 Rev.*A
Conditions
Min
Typ
Max
Unit
-
VCC×0.8
-
VCC + 0.3
V
-
VCC×0.8
-
VSS + 5.5
V
-
VCC×0.7
-
VSS + 5.5
V
-
VSS - 0.3
-
VCC×0.2
V
-
VSS - 0.3
-
VCC×0.2
V
-
VSS
-
VCC×0.3
V
VCC - 0.5
-
VCC
V
VCC - 0.5
-
VCC
V
VCC - 0.5
-
VCC
V
USBVCC - 0.4
-
USBVCC
V
VCC - 0.5
-
VCC
V
VCC ≥ 4.5 V,
IOH = - 4 mA
VCC < 4.5 V,
IOH = - 2 mA
VCC ≥ 4.5 V,
IOH = - 8 mA
VCC < 4.5 V,
IOH = - 4 mA
VCC ≥ 4.5 V,
IOH = - 12 mA
VCC < 4.5 V,
IOH = - 8 mA
USBVCC ≥ 4.5 V,
IOH = - 20.5 mA
USBVCC < 4.5 V,
IOH = - 13.0 mA
VCC ≥ 4.5 V,
IOH = - 4 mA
VCC < 4.5 V,
IOH = - 3 mA
Remarks
At GPIO
Page 62 of 124
MB9B360L Series
Value
Parameter
Symbol
Pin Name
Conditions
Min
Typ
Unit
Max
Remarks
VCC ≥ 4.5 V,
IOL = 4 mA
4 mA type
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
VSS
-
0.4
V
VCC < 4.5 V,
IOL = 2 mA
VCC ≥ 4.5 V,
IOH = 8 mA
8 mA type
VCC < 4.5 V,
IOH = 4 mA
VCC ≥ 4.5 V,
IOL = 12 mA
12 mA type
"L" level output
voltage
VCC < 4.5 V,
IOL = 8 mA
VOL
The pin
doubled as
USB I/O
USBVCC ≥ 4.5 V,
IOL = 18.5 mA
USBVCC < 4.5 V,
IOL = 10.5 mA
VCC ≥ 4.5 V,
IOH = 4 mA
The pin
doubled as
I2C Fm+
At GPIO
VCC < 4.5 V,
IOH = 3 mA
VCC ≤ 5.5 V,
IOH = 20 mA
Input leak
current
IIL
-
Pull-up resistor
value
RPU
Pull-up pin
CIN
Other than
VCC,
USBVCC,
VBAT,
VSS,
AVCC,
AVSS,
AVRH
Input
capacitance
Document Number: 002-04930 Rev.*A
At I2C Fm+
-
-5
-
+5
VCC ≥ 4.5 V
25
50
100
VCC < 4.5 V
30
80
200
-
-
5
15
μA
kΩ
pF
Page 63 of 124
MB9B360L Series
12.4 AC Characteristics
12.4.1 Main Clock Input Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Pin
Name
Symbol
Input frequency
fCH
Input clock cycle
tCYLH
Input clock pulse
width
Input clock rising time
and falling time
Internal operating
clock*1 frequency
Internal operating
clock*1 cycle time
X0,
X1
tCF,
tCR
Value
Conditions
Min
Max
VCC ≥ 4.5 V
VCC < 4.5 V
VCC ≥ 4.5 V
VCC < 4.5 V
VCC ≥ 4.5 V
VCC < 4.5 V
PWH/tCYLH,
PWL/tCYLH
4
4
4
4
20.83
50
48
20
48
20
250
250
45
-
Unit
Remarks
MHz
When crystal oscillator is connected
MHz
When using external clock
ns
When using external clock
55
%
When using external clock
-
5
ns
When using external clock
fCC
-
-
-
160
MHz
Base clock (HCLK/FCLK)
fCP0
fCP1
-
-
-
80
160
MHz
MHz
APB0 bus clock*2
APB1 bus clock*2
fCP2
-
-
-
80
MHz
APB2 bus clock*2
tCYCC
-
-
6.25
-
ns
Base clock (HCLK/FCLK)
tCYCP0
tCYCP1
-
-
12.5
6.25
-
ns
ns
APB0 bus clock*2
APB1 bus clock*2
tCYCP2
-
-
12.5
-
ns
APB2 bus clock*2
*1: For more information about each internal operating clock, see CHAPTER 2-1: Clock in FM4 Family Peripheral Manual Main
part (002-04856).
*2: For about each APB bus which each peripheral is connected to, see 8. Block Diagram in this data sheet.
X0
Document Number: 002-04930 Rev.*A
Page 64 of 124
MB9B360L Series
12.4.2 Sub Clock Input Characteristics
(VBAT = 2.7V to 5.5V, VSS = 0V)
Parameter
Pin
Name
Symbol
Input frequency
1/ tCYLL
Input clock cycle
tCYLL
Input clock pulse width
-
X0A,
X1A
Value
Conditions
Min
Typ
Max
Unit
Remarks
-
-
32.768
-
kHz
-
32
-
100
kHz
When crystal oscillator is
connected
When using external clock
-
10
-
31.25
μs
When using external clock
PWH/tCYLL,
PWL/tCYLL
45
-
55
%
When using external clock
0.8 × VBAT
VBAT
VBAT
VBAT
VBAT
X0A
12.4.3 Built-in CR Oscillation Characteristics
Built-in High-speed CR
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Conditions
Value
Min
Typ
Max
TJ = -20°C to +105°C
3.92
4
4.08
TJ = - 40°C to +125°C
3.88
4
4.12
TJ = - 40°C to +125°C
3
4
5
Unit
Remarks
When trimming *
Clock frequency
fCRH
MHz
When not trimming
*: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming.
Built-in Low-speed CR
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Clock frequency
Symbol
fCRL
Condition
-
Document Number: 002-04930 Rev.*A
Value
Min
50
Typ
100
Max
150
Unit
Remarks
kHz
Page 65 of 124
MB9B360L Series
12.4.4 Operating Conditions of Main PLL (In the Case of Using Main Clock for Input Clock of PLL)
(VCC = 2.7V to 5.5V, VSS = 0V)
Value
Parameter
Symbol
Unit
Remarks
Min
Typ
Max
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
tLOCK
200
-
-
μs
fPLLI
4
-
16
MHz
PLL multiplication rate
-
13
-
80
multiplier
PLL macro oscillation clock frequency
fPLLO
200
-
320
MHz
Main PLL clock frequency*2
fCLKPLL
-
-
160
MHz
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see CHPATER 2-1: Clock in FM4 Family Peripheral Manual Main part
(002-04856).
12.4.5 Operating Conditions of USB PLL (In the Case of Using Main Clock for Input Clock of PLL)
(VCC = 2.7V to 5.5V, VSS = 0V)
Value
Parameter
Symbol
Min
Typ
Unit
Max
PLL oscillation stabilization wait time*1
(LOCK UP time)
tLOCK
100
-
-
μs
PLL input clock frequency
fPLLI
4
-
16
MHz
PLL multiplication rate
-
13
-
80
multiplier
PLL macro oscillation clock frequency
fPLLO
200
-
320
MHz
fCLKSPLL
-
-
48
MHz
USB clock frequency*
2
Remarks
After the M frequency division
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about USB clock, see CHAPTER 2-2: USB Clock Generation in FM4 Family Peripheral Manual
Communication Macro part (002-04862).
12.4.6 Operating Conditions of Main PLL (In the Case of Using Built-in High-speed CR Clock for Input Clock of Main PLL)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiplication rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Symbol
Value
Min
Typ
Unit
Max
tLOCK
200
-
-
μs
fPLLI
fPLLO
fCLKPLL
3.8
50
190
-
4
-
4.2
75
320
160
MHz
multiplier
MHz
MHz
Remarks
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see CHAPTER 2-1: Clock in FM4 Family Peripheral Manual Main part
(002-04856).
Note:
−
Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency and temperature has
been trimmed.
Document Number: 002-04930 Rev.*A
Page 66 of 124
MB9B360L Series
12.4.7 Reset Input Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Reset input time
Symbol
tINITX
Pin
Name
Value
Condition
INITX
-
Min
Unit
Max
500
-
Remarks
ns
12.4.8 Power-on Reset Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Power supply rising time
Tr
Power supply shut down time
Toff
Time until releasing
Power-on reset
Tprt
Value
Pin Name
VCC
Min
Max
Unit
0
-
ms
1
-
ms
0.33
0.60
ms
Remarks
VCC_minimum
VCC
VDL_minimum
0.2V
0.2V
0.2V
Tr
Tprt
Internal RST
RST Active
Toff
Release
CPU Operation
start
Glossary
• VCC_minimum: Minimum VCC of recommended operating conditions.
• VDL_minimum: Minimum detection voltage of Low-Voltage detection reset.
See 12.8. Low-Voltage Detection Characteristics.
Document Number: 002-04930 Rev.*A
Page 67 of 124
MB9B360L Series
12.4.9 GPIO Output Characteristics
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Output frequency
Symbol
tPCYCLE
Pin Name
Pxx*
Value
Conditions
Min
Unit
Max
VCC ≥ 4.5 V
-
50
MHz
VCC < 4.5 V
-
32
MHz
*: GPIO is a target.
Pxx
tPCYCLE
Document Number: 002-04930 Rev.*A
Page 68 of 124
MB9B360L Series
12.4.10 Base Timer Input Timing
Timer Input Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Value
Parameter
Symbol
tTIWH,
tTIWL
Input pulse width
Pin Name
Conditions
TIOAn/TIOBn
(when using as
ECK, TIN)
-
Min
2tCYCP
tTIWH
Unit
Max
-
Remarks
ns
tTIWL
ECK
VIHS
VIHS
VILS
TIN
VILS
Trigger Input Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
tTRGH,
tTRGL
Input pulse width
Pin Name
Conditions
TIOAn/TIOBn
(when using as
TGIN)
-
2tCYCP
tTRGH
TGIN
VIHS
Value
Min
Unit
Max
-
Remarks
ns
tTRGL
VIHS
VILS
VILS
Note:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see 8. Block Diagram in this data sheet.
Document Number: 002-04930 Rev.*A
Page 69 of 124
MB9B360L Series
12.4.11 UART Timing
Synchronous Serial (SPI = 0, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Serial clock cycle time
tSCYC
SCK↓→SOT delay time
tSLOVI
SIN→SCK↑
setup time
tIVSHI
SCK↑→SIN hold time
tSHIXI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK↓→SOT delay time
tSLOVE
SIN→SCK↑
setup time
tIVSHE
SCK↑→SIN hold time
tSHIXE
SCK falling time
SCK rising time
tF
tR
Pin
Name
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
Internal shift
clock operation
External shift
clock
operation
VCC ≥ 4.5 V
Min
Max
VCC < 4.5 V
Min
Max
Conditions
Unit
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
Document Number: 002-04930 Rev.*A
Page 70 of 124
MB9B360L Series
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
VIH
VIL
SIN
tSHIXI
VIH
VIL
MS bit = 0
tSLSH
VIH
SCK
tF
VIL
tSHSL
VIL
SIN
VIH
tR
tSLOVE
SOT
VIH
VOH
VOL
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
MS bit = 1
Document Number: 002-04930 Rev.*A
Page 71 of 124
MB9B360L Series
Synchronous Serial (SPI = 0, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Serial clock cycle time
SCK↑→SOT delay time
Symbol
tSCYC
SCKx
tSHOVI
SCKx,
SOTx
SIN→SCK↓
setup time
tIVSLI
SCK↓→SIN hold time
tSLIXI
Serial clock "L" pulse width
tSLSH
SCKx,
SINx
SCKx,
SINx
SCKx
Serial clock "H" pulse width
tSHSL
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
VCC ≥ 4.5 V
VCC < 4.5 V
Pin
Name
Conditions
Internal shift
clock operation
Min
Max
Min
Max
Unit
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 10
-
2tCYCP - 10
-
ns
tCYCP + 10
-
tCYCP + 10
-
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
SCK↑→SOT delay time
tSHOVE
SIN→SCK↓
setup time
tIVSLE
SCK↓→SIN hold time
tSLIXE
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
External shift
clock operation
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
Document Number: 002-04930 Rev.*A
Page 72 of 124
MB9B360L Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
VIH
VIL
SIN
tSLIXI
VIH
VIL
MS bit = 0
tSHSL
tSLSH
VIH
SCK
VIH
VIL
tR
VIL
tF
tSHOVE
SOT
SIN
VIL
VOH
VOL
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
MS bit = 1
Document Number: 002-04930 Rev.*A
Page 73 of 124
MB9B360L Series
Synchronous Serial (SPI = 1, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Pin
Name
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Min
Max
Min
Max
Unit
Serial clock cycle time
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
ns
SCK↑→SOT delay time
tSHOVI
SCKx,
SOTx
- 30
+ 30
- 20
+ 20
ns
SIN→SCK↓
setup time
tIVSLI
50
-
30
-
ns
SCK↓→SIN hold time
tSLIXI
0
-
0
-
ns
SOT→SCK↓ delay time
tSOVLI
2tCYCP - 30
-
2tCYCP - 30
-
ns
Serial clock "L" pulse width
tSLSH
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock "H" pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
SCK↑→SOT delay time
tSHOVE
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
Internal shift
clock
operation
External shift
clock
operation
SIN→SCK↓
setup time
tIVSLE
SCK↓→SIN hold time
tSLIXE
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
Document Number: 002-04930 Rev.*A
Page 74 of 124
MB9B360L Series
tSCYC
VOH
VOL
SCK
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
MS bit = 0
tSLSH
VIH
VIL
tSHSL
VIH
VIL
SCK
tF
*
tR
VIH
tSHOVE
VOH
VOL
VOH
VOL
tIVSLE
SOT
SIN
tSLIXE
VIH
VIL
VIH
VIL
MS bit = 1
*: Changes when writing to TDR register
Document Number: 002-04930 Rev.*A
Page 75 of 124
MB9B360L Series
Synchronous Serial (SPI = 1, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Serial clock cycle time
tSCYC
SCK↓→SOT delay time
tSLOVI
Pin
Name
Conditions
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
Internal shift
clock
operation
VCC < 4.5 V
VCC ≥ 4.5 V
Min
Min
Max
Max
Unit
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
SIN→SCK↑
setup time
tIVSHI
SCK↑→SIN hold time
tSHIXI
SOT→SCK↑ delay time
tSOVHI
Serial clock "L" pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock "H" pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
SCK↓→SOT delay time
tSLOVE
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
External shift
clock
operation
SIN→SCK↑
setup time
tIVSHE
SCK↑→SIN hold time
tSHIXE
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCLKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
Document Number: 002-04930 Rev.*A
Page 76 of 124
MB9B360L Series
tSCYC
VOH
SCK
tSOVHI
SOT
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
MS bit = 0
tSHSL
tR
SCK
VIL
VIH
tSLSH
VIH
VIL
tF
VIL
VIH
tSLOVE
SOT
VOH
VOL
VOH
VOL
tIVSHE
SIN
tSHIXE
VIH
VIL
VIH
VIL
MS bit = 1
Document Number: 002-04930 Rev.*A
Page 77 of 124
MB9B360L Series
High-speed Synchronous Serial (SPI = 0, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Pin
Name
VCC ≥ 4.5V
VCC < 4.5V
Conditions
Min
Max
Min
Max
Unit
Serial clock cycle time
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
ns
SCK↓→SOT delay time
tSLOVI
SCKx,
SOTx
-10
+10
-10
+10
ns
SIN→SCK↑
setup time
tIVSHI
SCKx,
SINx
-
12.5
-
ns
SCK↑→SIN hold time
tSHIXI
SCKx,
SINx
5
-
5
-
ns
Serial clock "L" pulse width
tSLSH
SCKx
2tCYCP – 5
-
2tCYCP – 5
-
ns
Serial clock "H" pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK↓→SOT delay time
tSLOVE
SCKx,
SOTx
-
15
-
15
ns
SIN→SCK↑
setup time
tIVSHE
SCKx,
SINx
5
-
5
-
ns
SCK↑→SIN hold time
tSHIXE
5
-
5
-
ns
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
Internal shift
clock operation
14
12.5*
External shift
clock operation
SCKx,
SINx
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
These characteristics only guarantee the following pins.
−
−
−
No chip select:
SIN0_1, SOT0_1, SCK0_1
Chip select:
SIN6_0, SOT6_0, SCK6_0, SCS6_0
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
Document Number: 002-04930 Rev.*A
Page 78 of 124
MB9B360L Series
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
VIH
VIL
SIN
tSHIXI
VIH
VIL
MS bit = 0
tSLSH
SCK
VIH
tF
VIL
tSHSL
VIL
SIN
VIH
tR
tSLOVE
SOT
VIH
VOH
VOL
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
MS bit = 1
Document Number: 002-04930 Rev.*A
Page 79 of 124
MB9B360L Series
High-speed Synchronous Serial (SPI = 0, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Pin
Name
Serial clock cycle time
tSCYC
SCKx
SCK↑→SOT delay time
tSHOVI
SCKx,
SOTx
Internal shift
clock operation
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Min
Max
Min
Max
Unit
4tCYCP
-
4tCYCP
-
ns
-10
+10
-10
+10
ns
-
12.5
-
ns
14
SIN→SCK↓
setup time
tIVSLI
SCKx,
SINx
SCK↓→SIN hold time
tSLIXI
SCKx,
SINx
5
-
5
-
ns
Serial clock "L" pulse width
tSLSH
SCKx
2tCYCP – 5
-
2tCYCP – 5
-
ns
Serial clock "H" pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK↑→SOT delay time
tSHOVE
SCKx,
SOTx
-
15
-
15
ns
5
-
5
-
ns
12.5*
External shift
clock operation
SIN→SCK↓
setup time
tIVSLE
SCKx,
SINx
SCK↓→SIN hold time
tSLIXE
SCKx,
SINx
5
-
5
-
ns
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
These characteristics only guarantee the following pins.
−
−
No chip select:
SIN0_1, SOT0_1, SCK0_1
−
Chip select:
SIN6_0, SOT6_0, SCK6_0, SCS6_0
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
Document Number: 002-04930 Rev.*A
Page 80 of 124
MB9B360L Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
VIH
VIL
SIN
tSLIXI
VIH
VIL
MS bit = 0
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
VIL
tF
tSHOVE
SOT
SIN
VIL
VOH
VOL
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
MS bit = 1
Document Number: 002-04930 Rev.*A
Page 81 of 124
MB9B360L Series
High-speed Synchronous Serial (SPI = 1, SCINV = 0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Pin
Name
Conditions
VCC < 4.5 V
VCC ≥ 4.5 V
Min
Min
Max
Max
Unit
Serial clock cycle time
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
ns
SCK↑→SOT delay time
tSHOVI
SCKx,
SOTx
-10
+10
-10
+10
ns
SIN→SCK↓
setup time
tIVSLI
SCKx,
SINx
-
12.5
-
ns
SCK↓→SIN hold time
tSLIXI
SCKx,
SINx
5
-
5
-
ns
SOT→SCK↓ delay time
tSOVLI
SCKx,
SOTx
2tCYCP – 10
-
2tCYCP – 10
-
ns
Serial clock "L" pulse width
tSLSH
SCKx
2tCYCP – 5
-
2tCYCP – 5
-
ns
Serial clock "H" pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK↑→SOT delay time
tSHOVE
SCKx,
SOTx
-
15
-
15
ns
5
-
5
-
ns
Internal shift
clock operation
14
12.5*
External shift
clock operation
SIN→SCK↓
setup time
tIVSLE
SCKx,
SINx
SCK↓→SIN hold time
tSLIXE
SCKx,
SINx
5
-
5
-
ns
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
These characteristics only guarantee the following pins.
−
−
−
No chip select:
SIN0_1, SOT0_1, SCK0_1
Chip select:
SIN6_0, SOT6_0, SCK6_0, SCS6_0
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
Document Number: 002-04930 Rev.*A
Page 82 of 124
MB9B360L Series
tSCYC
VOH
VOL
SCK
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
MS bit = 0
tSLSH
VIH
SCK
VIH
VIL
tF
*
SOT
VIL
tSHSL
tR
VIH
tSHOVE
VOH
VOL
SIN
VOH
VOL
tIVSLE
tSLIXE
VIH
VIL
VIH
VIL
MS bit = 1
*: Changes when writing to TDR register
Document Number: 002-04930 Rev.*A
Page 83 of 124
MB9B360L Series
High-speed Synchronous Serial (SPI = 1, SCINV = 1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Conditions
VCC < 4.5 V
VCC ≥ 4.5 V
Min
Min
Symbol
Pin Name
Internal shift clock operation
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
ns
SCK↓→SOT delay time
tSLOVI
SCKx,
SOTx
-10
+10
-10
+10
ns
SIN→SCK↑
setup time
tIVSHI
SCKx,
SINx
-
12.5
-
ns
SCK↑→SIN hold time
tSHIXI
SCKx,
SINx
5
-
5
-
ns
SOT→SCK↑ delay time
tSOVHI
SCKx,
SOTx
2tCYCP – 10
-
2tCYCP – 10
-
ns
Serial clock "L" pulse width
tSLSH
SCKx
2tCYCP – 5
-
2tCYCP – 5
-
ns
Serial clock "H" pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK↓→SOT delay time
tSLOVE
SCKx,
SOTx
-
15
-
15
ns
SIN→SCK↑
setup time
tIVSHE
SCKx,
SINx
5
-
5
-
ns
SCK↑→SIN hold time
tSHIXE
SCKx,
SINx
5
-
5
-
ns
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
Internal shift
clock
operation
External shift
clock
operation
Max
Max
Unit
14
12.5*
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
These characteristics only guarantee the following pins.
−
−
−
No chip select:
SIN0_1, SOT0_1, SCK0_1
Chip select:
SIN6_0, SOT6_0, SCK6_0, SCS6_0
When the external load capacitance CL = 30 pF. (For *, when CL = 10 pF)
Document Number: 002-04930 Rev.*A
Page 84 of 124
MB9B360L Series
tSCYC
VOH
SCK
tSOVHI
SOT
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
MS bit = 0
tSHSL
tR
SCK
VIL
VIH
tSLSH
VIH
VIL
tF
VIL
VIH
tSLOVE
SOT
VOH
VOL
VOH
VOL
tIVSHE
SIN
tSHIXE
VIH
VIL
VIH
VIL
MS bit = 1
Document Number: 002-04930 Rev.*A
Page 85 of 124
MB9B360L Series
When Using High-speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↓→SCK↓setup time
tCSSI
SCK↑→SCS↑ hold time
tCSHI
SCS deselect time
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Min
Max
Min
Unit
Max
(*1)-20
(*1)+0
(*1)-20
(*1)+0
ns
(*2)+0
(*2)+20
(*2)+0
(*2)+20
ns
tCSDI
(*3)-20+5tCYCP
(*3)+20+5tCYCP
(*3)-20+5tCYCP
(*3)+20+5tCYCP
ns
SCS↓→SCK↓setup time
tCSSE
3tCYCP+15
-
3tCYCP+15
-
ns
SCK↑→SCS↑ hold time
tCSHE
0
-
0
-
ns
3tCYCP+15
-
3tCYCP+15
-
ns
Internal shift
clock operation
External shift
clock operation
SCS deselect time
tCSDE
SCS↓→SOT delay time
tDSE
-
25
-
25
ns
SCS↑→SOT delay time
tDEE
0
-
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual.
When the external load capacitance CL = 30 pF.
Document Number: 002-04930 Rev.*A
Page 86 of 124
MB9B360L Series
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
input
tCSDE
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
Document Number: 002-04930 Rev.*A
Page 87 of 124
MB9B360L Series
When Using High-speed Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=1)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↓→SCK↑setup time
tCSSI
SCK↓→SCS↑ hold time
tCSHI
SCS deselect time
tCSDI
SCS↓→SCK↑setup time
SCK↓→SCS↑ hold time
SCS deselect time
tCSDE
SCS↓→SOT delay time
tDSE
SCS↑→SOT delay time
tDEE
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Min
Max
Min
Unit
Max
(*1)-20
(*1)+0
(*1)-20
(*1)+0
ns
(*2)+0
(*2)+20
(*2)+0
(*2)+20
ns
(*3)-20+5tCYCP
(*3)+20+5tCYCP
(*3)-20+5tCYCP
(*3)+20+5tCYCP
ns
tCSSE
3tCYCP+15
-
3tCYCP+15
-
ns
tCSHE
0
-
0
-
ns
3tCYCP+15
-
3tCYCP+15
-
ns
-
25
-
25
ns
0
-
0
-
ns
Internal shift
clock
operation
External shift
clock
operation
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part
(002-04856).
−
When the external load capacitance CL = 30 pF.
Document Number: 002-04930 Rev.*A
Page 88 of 124
MB9B360L Series
SCS
output
tCSDI
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
SCS
input
tCSDE
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
Document Number: 002-04930 Rev.*A
Page 89 of 124
MB9B360L Series
When Using High-speed Synchronous Serial Chip Select (SPI = 1, SCINV = 0, MS=0, CSLVL=0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↑→SCK↓setup time
tCSSI
SCK↑→SCS↓ hold time
tCSHI
SCS deselect time
tCSDI
SCS↑→SCK↓setup time
tCSSE
SCK↑→SCS↓ hold time
tCSHE
SCS deselect time
tCSDE
SCS↑→SOT delay time
tDSE
SCS↓→SOT delay time
tDEE
Internal shift
clock
operation
External shift
clock
operation
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Min
Max
Min
Max
Unit
(*1)-20
(*1)+0
(*1)-20
(*1)+0
ns
(*2)+0
(*2)+20
(*2)+0
(*2)+20
ns
(*3)-20+5tCYCP
(*3)+20+5tCYCP
(*3)-20+5tCYCP
(*3)+20+5tCYCP
ns
3tCYCP+15
-
3tCYCP+15
-
ns
0
-
0
-
ns
3tCYCP+15
-
3tCYCP+15
-
ns
-
25
-
25
ns
0
-
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part
(002-04856).
−
When the external load capacitance CL = 30 pF.
Document Number: 002-04930 Rev.*A
Page 90 of 124
MB9B360L Series
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
tCSDE
SCS
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
SOT
(SPI=1)
tDSE
Document Number: 002-04930 Rev.*A
Page 91 of 124
MB9B360L Series
When Using High-speed Synchronous Serial Chip Select (SPI = 1, SCINV = 1, MS=0, CSLVL=0)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
SCS↑→SCK↑setup time
tCSSI
SCK↓→SCS↓ hold time
tCSHI
SCS deselect time
tCSDI
SCS↑→SCK↑setup time
tCSSE
SCK↓→SCS↓ hold time
tCSHE
SCS deselect time
tCSDE
SCS↑→SOT delay time
tDSE
SCS↓→SOT delay time
tDEE
Internal shift
clock
operation
External shift
clock
operation
VCC ≥ 4.5 V
VCC < 4.5 V
Conditions
Min
Max
Min
Max
Unit
(*1)-20
(*1)+0
(*1)-20
(*1)+0
ns
(*2)+0
(*2)+20
(*2)+0
(*2)+20
ns
(*3)-20+5tCYCP
(*3)+20+5tCYCP
(*3)-20+5tCYCP
(*3)+20+5tCYCP
ns
3tCYCP+15
-
3tCYCP+15
-
ns
0
-
0
-
ns
3tCYCP+15
-
3tCYCP+15
-
ns
-
25
-
25
ns
0
-
0
-
ns
(*1): CSSU bit value×serial chip select timing operating clock cycle [ns]
(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]
(*3): CSDS bit value×serial chip select timing operating clock cycle [ns]
Notes:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which UART is connected to, see 8. Block Diagram in this data sheet.
−
About CSSU, CSHD, CSDS, serial chip select timing operating clock, see FM4 Family Peripheral Manual Main part
(002-04856).
−
When the external load capacitance CL = 30 pF.
Document Number: 002-04930 Rev.*A
Page 92 of 124
MB9B360L Series
tCSDI
SCS
output
tCSSI
tCSHI
SCK
output
SOT
(SPI=0)
SOT
(SPI=1)
tCSDE
SCS
input
tCSSE
tCSHE
SCK
input
tDEE
SOT
(SPI=0)
tDSE
SOT
(SPI=1)
Document Number: 002-04930 Rev.*A
Page 93 of 124
MB9B360L Series
External Clock (EXT = 1): when in Asynchronous Mode Only
(VCC = 2.7V to 5.5V, VSS = 0V)
Value
Parameter
Serial clock "L" pulse width
Serial clock "H" pulse width
SCK falling time
SCK rising time
Symbol
tSLSH
tSHSL
tF
tR
Condition
SCK
VIL
Document Number: 002-04930 Rev.*A
tCYCP + 10
tCYCP + 10
-
CL = 30 pF
tR
Min
5
5
tSHSL
VIH
Unit
Max
ns
ns
ns
ns
tF
tSLSH
VIH
VIL
Remarks
VIL
VIH
Page 94 of 124
MB9B360L Series
12.4.12 External Input Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Value
Parameter
Symbol
Pin Name
Conditions
Min
Unit
Max
ADTG
Input pulse
width
tINH,
tINL
FRCKx
ICxx
DTTIxX
INT00 to INT31,
NMIX
WKUPx
Remarks
A/D converter trigger input
-
2tCYCP*1
-
ns
-
2tCYCP*1
2tCYCP + 100*1
500*2
500*3
-
ns
ns
ns
ns
-
Free-run timer input clock
Input capture
Waveform generator
External interrupt,
NMI
Deep standby wake up
*1: tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in timer mode.
About the APB bus number which the A/D converter, multi-function timer, external interrupt are connected to, see 8. Block
Diagram in this data sheet.
*2: When in Stop mode, in timer mode.
*3: When in deep standby RTC mode, in Deep Standby Stop mode.
Document Number: 002-04930 Rev.*A
Page 95 of 124
MB9B360L Series
12.4.13 Quadrature Position/Revolution Counter Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
AIN pin H width
AIN pin L width
BIN pin H width
BIN pin L width
BIN rising time from
AIN pin H level
AIN falling time from
BIN pin H level
BIN falling time from
AIN pin L level
AIN rising time from
BIN pin L level
AIN rising time from
BIN pin H level
BIN falling time from
AIN pin H level
AIN falling time from
BIN pin L level
BIN rising time from
AIN pin L level
ZIN pin H width
ZIN pin L width
AIN/BIN rising and falling time from
determined ZIN level
Determined ZIN level from AIN/BIN rising
and falling time
Value
Conditions
Min
tAHL
tALL
tBHL
tBLL
-
tAUBU
PC_Mode2 or PC_Mode3
tBUAD
PC_Mode2 or PC_Mode3
tADBD
PC_Mode2 or PC_Mode3
tBDAU
PC_Mode2 or PC_Mode3
tBUAU
PC_Mode2 or PC_Mode3
tAUBD
PC_Mode2 or PC_Mode3
tBDAD
PC_Mode2 or PC_Mode3
tADBU
PC_Mode2 or PC_Mode3
tZHL
tZLL
QCR:CGSC = 0
QCR:CGSC = 0
tZABE
QCR:CGSC = 1
tABEZ
QCR:CGSC = 1
2tCYCP*
Max
-
Unit
ns
*: tCYCP indicates the APB bus clock cycle time except stop when in Stop mode, in timer mode.
About the APB bus number which Quadrature Position/Revolution Counter is connected to, see 8. Block Diagram in this data
sheet.
tALL
tAHL
AIN
tAUBU
tADBD
tBUAD
tBDAU
BIN
tBHL
Document Number: 002-04930 Rev.*A
tBLL
Page 96 of 124
MB9B360L Series
tBLL
tBHL
BIN
tBUAU
tBDAD
tAUBD
tADBU
AIN
tAHL
tALL
ZIN
ZIN
AIN/BIN
Document Number: 002-04930 Rev.*A
Page 97 of 124
MB9B360L Series
2
12.4.14 I C Timing
Typical Mode, High-speed Mode
(VCC = 2.7V to 5.5V, VSS = 0V)
Typical Mode
Parameter
Symbol
Conditions
Min
High-speed Mode
Max
Min
Max
Unit
SCL clock frequency
(Repeated) START condition
hold time
SDA ↓ → SCL ↓
FSCL
0
100
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
SCL clock "L" width
tLOW
4.7
-
1.3
-
μs
SCL clock "H" width
tHIGH
4.0
-
0.6
-
μs
4.7
-
0.6
-
μs
tHDDAT
0
3.45*2
0
0.9*3
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
2tCYCP*4
-
2tCYCP*4
-
ns
4tCYCP*4
-
4tCYCP*4
-
ns
6tCYCP*4
-
6tCYCP*4
-
ns
8tCYCP*4
-
8tCYCP*4
-
ns
10tCYCP*4
-
10tCYCP*4
-
ns
12tCYCP*4
-
12tCYCP*4
-
ns
14tCYCP*4
-
14tCYCP*4
-
ns
16tCYCP*4
-
16tCYCP*4
-
ns
(Repeated) START condition
setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
"STOP condition" and
"START condition"
Noise filter
tSUSTA
tSP
CL = 30 pF,
R = (Vp/IOL)*1
2 MHz ≤
tCYCP<40 MHz
40 MHz ≤
tCYCP<60 MHz
60 MHz ≤
tCYCP<80 MHz
80 MHz ≤
tCYCP<100 MHz
100 MHz ≤
tCYCP<120 MHz
120 MHz ≤
tCYCP<140 MHz
140 MHz ≤
tCYCP<160 MHz
160 MHz ≤
tCYCP<180 MHz
Remarks
*5
*1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power
supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least "L" period (tLOW) of device's SCL signal.
2
2
*3: A high-speed mode I C bus device can be used on a typical mode I C bus system as long as the device satisfies the requirement
of tSUDAT ≥ 250 ns.
*4: tCYCP is the APB bus clock cycle time.
2
About the APB bus number that I C is connected to, see "8. Block Diagram" in this data sheet.
*5: The noise filter time can be changed by register settings.
Change the number of the noise filter steps according to APB bus clock frequency.
Document Number: 002-04930 Rev.*A
Page 98 of 124
MB9B360L Series
Fast Mode Plus (Fm+)
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Fast Mode Plus
6
(Fm+)*
Conditions
Min
SCL clock frequency
(Repeated) START condition hold time
SDA ↓ → SCL ↓
SCL clock "L" width
SCL clock "H" width
SCL clock frequency
(Repeated) START condition hold time
SDA ↓ → SCL ↓
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
"STOP condition" and
"START condition"
Noise filter
Unit
FSCL
0
1000
kHz
tHDSTA
0.26
-
μs
tLOW
tHIGH
tSUSTA
0.5
0.26
0.26
-
μs
μs
μs
0
0.45*2, *3
μs
tSUDAT
50
-
ns
tSUSTO
0.26
-
μs
tBUF
0.5
-
μs
6 tCYCP*4
-
ns
8 tCYCP*4
-
ns
10 tCYCP*4
-
ns
12 tCYCP*4
-
ns
14 tCYCP*4
-
ns
16 tCYCP*4
-
ns
tHDDAT
tSP
CL = 30 pF,
R = (Vp/IOL)*1
60 MHz ≤
tCYCP<80 MHz
80 MHz ≤
tCYCP<100 MHz
100 MHz ≤
tCYCP<120 MHz
120 MHz ≤
tCYCP<140 MHz
140 MHz ≤
tCYCP<160 MHz
160 MHz ≤
tCYCP<180 MHz
Remarks
Max
*5
*1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power
supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.
2
2
*3: A high-speed mode I C bus device can be used on a typical mode I C bus system as long as the device satisfies the requirement
of "tSUDAT ≥ 250 ns".
*4: tCYCP is the APB bus clock cycle time.
2
About the APB bus number that I C is connected to, see 8. Block Diagram in this data sheet.
To use fast mode plus (Fm+), set the peripheral bus clock at 64 MHz or more.
*5: The noise filter time can be changed by register settings.
Change the number of the noise filter steps according to APB bus clock frequency.
2
*6: When using fast mode plus (Fm+), set the I/O pin to the mode corresponding to I C Fm+ in the EPFR register. See CHAPTER
12: I/O Port in FM4 Family Peripheral Manual Main part (002-04856) for the details.
SDA
SCL
Document Number: 002-04930 Rev.*A
Page 99 of 124
MB9B360L Series
12.4.15 JTAG Timing
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Pin Name
Value
Conditions
Min
TMS, TDI setup time
tJTAGS
TCK,
TMS, TDI
VCC ≥ 4.5 V
TMS, TDI hold time
tJTAGH
TCK,
TMS, TDI
VCC ≥ 4.5 V
TDO delay time
tJTAGD
TCK,
TDO
VCC < 4.5 V
VCC < 4.5 V
VCC ≥ 4.5 V
VCC < 4.5 V
Unit
Remarks
Max
15
-
ns
15
-
ns
-
25
-
45
ns
Note:
−
When the external load capacitance CL= 30 pF.
TCK
TMS/TDI
TDO
Document Number: 002-04930 Rev.*A
Page 100 of 124
MB9B360L Series
12.5 12-bit A/D Converter
Electrical Characteristics for the A/D Converter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V)
Parameter
Symbol
Value
Pin Name
Min
Unit
Typ
Resolution
Integral Nonlinearity
Differential Nonlinearity
Zero transition voltage
Full-scale transition voltage
VZT
VFST
AN00 to AN14
AN00 to AN14
-4.5
-2.5
-15
AVRH - 15
-
12
+4.5
+2.5
+15
AVRH + 15
bit
LSB
LSB
mV
mV
Conversion time
-
-
0.5*1
-
-
μs
*2
10
μs
Sampling time
Ts
-
Compare clock cycle*3
Tcck
-
State transition time to
operation permission
Tstt
Power supply current (analog
+ digital)
Remarks
Max
*2
-
25
-
1000
50
-
1000
-
1.0
-
-
μs
-
AVCC
-
0.69
0.3
0.92
12
mA
μA
Reference power supply
current
(between AVRH and AVSS)
-
AVRH
-
1.1
1.97
mA
0.2
4.2
μA
Analog input capacity
CAIN
-
-
-
10
pF
Analog input resistance
RAIN
-
-
-
Interchannel disparity
-
-
-
-
1.2
1.8
4
Analog port input current
Analog input voltage
-
AN00 to AN14
AN00 to AN14
Reference voltage
-
AVRH
AVSS
4.5
2.7
-
5
AVRH
AVCC
AVCC
ns
kΩ
AVRH =
2.7 V to 5.5 V
AVCC ≥ 4.5V
AVCC ≥ 4.5V
AVCC < 4.5V
AVCC ≥ 4.5V
AVCC < 4.5V
A/D 1 unit operation
When A/D stop
A/D 1unit operation
AVRH=5.5 V
When A/D stop
AVCC ≥ 4.5 V
AVCC < 4.5 V
LSB
μA
V
V
Tcck < 50 ns
Tcck ≥ 50 ns
*1: The conversion time is the value of sampling time (Ts) + compare time (Tc).
The condition of the minimum conversion time is when the value of sampling time: 150 ns, the value of compare time: 350 ns
4
(AVCC ≥ 4.5 V). Ensure that it satisfies the value of sampling time (Ts) and compare clock cycle (Tcck). For setting* of sampling
time and compare clock cycle, see CHAPTER 1-1: A/D Converter in FM4 Family Peripheral Manual Analog macro part
(002-04860). The register setting of the A/D Converter is reflected by the peripheral clock timing. The sampling and compare
clock are set at Base clock (HCLK).
*2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1).
*3: The compare time (Tc) is the value of (Equation 2).
*4: The register setting of the A/D Converter is reflected by the timing of the APB bus clock. The sampling clock and compare clock
are set in base clock (HCLK). About the APB bus number which the A/D Converter is connected to, see 8. Block Diagram in this
data sheet.
Document Number: 002-04930 Rev.*A
Page 101 of 124
MB9B360L Series
Rext
AN00 to AN14
Analog input pin
Comparator
RAIN
Analog signal
source
CAIN
(Equation 1) Ts ≥ (RAIN + Rext ) × CAIN × 9
Ts:
Sampling time
RAIN:
Input resistance of A/D = 1.2 kΩ at 4.5 V < AVCC < 5.5 V
Input resistance of A/D = 1.8 kΩ at 2.7 V < AVCC < 4.5 V
CAIN:
Input capacity of A/D = 10 pF at 2.7 V < AVCC < 5.5 V
Rext:
Output impedance of external circuit
(Equation 2) Tc = Tcck × 14
Tc:
Compare time
Tcck:
Compare clock cycle
Document Number: 002-04930 Rev.*A
Page 102 of 124
MB9B360L Series
Definition of 12-bit A/D Converter Terms
• Resolution:
• Integral Nonlinearity:
Analog variation that is recognized by an A/D converter.
Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001)
and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion
characteristics.
• Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by
1 LSB.
Integral Nonlinearity
Differential Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
Actual conversion
characteristics
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actually-measured
value)
0x003
0x002
(Actuallymeasured
value)
Digital output
Digital output
0xFFD
0xN
Ideal characteristics
V(N+1)T
0x(N-1)
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVss
Actual conversion characteristics
AVRH
AVss
AVRH
Analog input
Integral Nonlinearity of digital output N =
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
Differential Nonlinearity of digital output N =
1LSB =
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
N:
A/D converter digital output value.
VZT:
Voltage at which the digital output changes from 0x000 to 0x001.
VFST:
Voltage at which the digital output changes from 0xFFE to 0xFFF.
VNT:
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-04930 Rev.*A
Page 103 of 124
MB9B360L Series
12.6 12-bit D/A Converter
Electrical Characteristics for the D/A Converter
(VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = 0V)
Parameter
Symbol
Resolution
Integral Nonlinearity*
Differential Nonlinearity*
INL
DNL
Output voltage offset
VOFF
Analog output impedance
RO
Power supply current*
IDDA
IDSA
Pin Name
DAx
AVCC
Value
Typ
Min
Unit
Max
Remarks
-16
-0.98
-20.0
3.10
2.0
260
400
3.80
330
519
12
+16
+1.5
10.0
+1.4
4.50
410
620
bit
LSB
LSB
mV
mV
kΩ
MΩ
μA
μA
When setting 0x000
When setting 0xFFF
D/A operation
When D/A stop
D/A 1unit operation AVCC=3.3 V
D/A 1unit operation AVCC=5.0 V
-
-
14
μA
When D/A stop
*: During no load
Document Number: 002-04930 Rev.*A
Page 104 of 124
MB9B360L Series
12.7 USB Characteristics
(VCC = 2.7V to 5.5V, USBVCC = 3.0V to 3.6V, VSS = 0V)
Parameter
Input
character
-istics
Output
character
-istics
Symbol
Pin Name
Value
Conditions
Min
Max
Unit
Remarks
Input H level voltage
VIH
-
2.0
USBVCC + 0.3
V
*1
Input L level voltage
VIL
-
VSS - 0.3
0.8
V
*1
VDI
-
0.2
-
V
*2
VCM
-
0.8
2.5
V
*2
2.8
3.6
V
*3
0.0
0.3
V
*3
1.3
4
4
2.0
20
20
V
ns
ns
*4
*5
*5
Differential input
sensitivity
Different common mode
range
Output "H" level voltage
VOH
Output "L" level voltage
VOL
Crossover voltage
Rising time
Falling time
Rising/falling time
matching
Output impedance
Rising time
Falling time
Rising/falling time
matching
VCRS
tFR
tFF
External pull-down
resistance = 15 kΩ
External pull-up
resistance = 1.5 kΩ
Full-Speed
Full-Speed
tFRFM
Full-Speed
90
111.11
%
*5
ZDRV
tLR
tLF
Full-Speed
Low-Speed
Low-Speed
28
75
75
44
300
300
Ω
ns
ns
*6
*7
*7
tLRFM
Low-Speed
80
125
%
*7
UDP0,UDM0
*1: The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V, VIH (Min) = 2.0 V
(TTL input standard).
There are some hysteresises to lower noise sensitivity.
Minimum differential input
sensitivity [V]
*2: Use differential-Receiver to receive USB differential data signal.
Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local
ground reference level.
Above voltage range is the common mode input voltage range.
Common mode input voltage [V]
Document Number: 002-04930 Rev.*A
Page 105 of 124
MB9B360L Series
*3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to the
VSS and 1.5 kΩ load) at High-State (VOH).
*4: The cross voltage of the external differential output signal (D + /D −) of USB I/O buffer is within 1.3 V to 2.0 V.
VCRS specified range
*5: They indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission.
Rising time
Document Number: 002-04930 Rev.*A
Falling time
Page 106 of 124
MB9B360L Series
*6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode).
USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor (Rs)
addition is defined in order to satisfy the above definition and keep balance.
When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) Series resistor Rs.
28Ω to 44Ω Equiv. Imped.
28Ω to 44Ω Equiv. Imped.
Mount it as external resistance.
Rs series resistor 25 Ω to 30 Ω
Series resistor of 27 Ω (recommendation value) must be added.
And, use "resistance with an uncertainty of 5% by E24 sequence".
*7: They indicate rising time (Trise) and falling time (Tfall) of the low-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
Rising time
Falling time
See Low-Speed Load (Compliance Load) for conditions of external load.
Document Number: 002-04930 Rev.*A
Page 107 of 124
MB9B360L Series
Low-Speed Load (Upstream Port Load) - Reference 1
CL = 50pF to 150pF
CL = 50pF to 150pF
Low-Speed Load (Downstream Port Load) - Reference 2
CL =200pF to
600pF
CL =200pF to
600pF
Low-Speed Load (Compliance Load)
CL = 200pF to 450pF
CL = 200pF to 450pF
Document Number: 002-04930 Rev.*A
Page 108 of 124
MB9B360L Series
12.8 Low-Voltage Detection Characteristics
12.8.1 Low-Voltage Detection Reset
Parameter
Detected voltage
Released voltage
Symbol
Conditions
VDL
VDH
-
Value
Typ
Min
2.25
2.30
2.45
2.50
Unit
Max
2.65
2.70
V
V
Remarks
When voltage drops
When voltage rises
12.8.2 Interrupt of Low-Voltage Detection
Parameter
Symbol
Detected voltage
Released voltage
Detected voltage
VDL
VDH
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
LVD stabilization wait time
TLVDW
Value
Conditions
SVHI = 00111
SVHI = 00100
SVHI = 01100
SVHI = 01111
SVHI = 01110
SVHI = 01001
SVHI = 01000
SVHI = 11000
-
Min
Typ
Unit
Max
Remarks
2.58
2.67
2.76
2.8
2.9
3.0
3.02
3.13
3.24
V
V
V
When voltage drops
When voltage rises
When voltage drops
2.85
3.1
3.34
V
When voltage rises
2.94
3.2
3.45
V
When voltage drops
3.04
3.3
3.56
V
When voltage rises
3.31
3.6
3.88
V
When voltage drops
3.40
3.7
3.99
V
When voltage rises
3.40
3.7
3.99
V
When voltage drops
3.50
3.8
4.10
V
When voltage rises
3.68
4.0
4.32
V
When voltage drops
3.77
4.1
4.42
V
When voltage rises
3.77
4.1
4.42
V
When voltage drops
3.86
4.2
4.53
V
When voltage rises
3.86
4.2
4.53
V
When voltage drops
3.96
4.3
4.64
V
When voltage rises
-
-
4480×
tCYCP*
μs
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-04930 Rev.*A
Page 109 of 124
MB9B360L Series
12.9 MainFlash Memory Write/Erase Characteristics
(VCC = 2.7V to 5.5V)
Value
Parameter
Sector erase
time
Half word
(16-bit)
write time
Large Sector
Small Sector
Write cycles
< 100 times
Write cycles >
100 times
Chip erase time
Min
-
Typ
Max
0.7
3.7
0.3
1.1
Unit
Remarks
s
Includes write time prior to internal erase
μs
Not including system-level overhead time
s
Includes write time prior to internal erase
100
-
12
200
-
8.0
38.4
Write cycles and data hold time
Erase/Write cycles (cycle)
Data hold time (year)
1,000
20 *
10,000
10 *
100,000
5*
*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result
into average temperature value at +85°C).
12.10 WorkFlash Memory Write/Erase Characteristics
(VCC = 2.7V to 5.5V)
Parameter
Min
Value
Typ
Max
Unit
Remarks
Sector erase time
-
0.3
1.5
s
Includes write time prior to internal erase
Half word (16-bit)
write time
-
20
200
μs
Not including system-level overhead time
Chip erase time
-
1.2
6
s
Includes write time prior to internal erase
Write cycles and data hold time
Erase/Write cycles (cycle)
Data hold time (year)
1,000
20 *
10,000
10 *
100,000
5*
*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature acceleration test result
into average temperature value at +85°C).
Document Number: 002-04930 Rev.*A
Page 110 of 124
MB9B360L Series
12.11 Standby Recovery Time
12.11.1 Recovery cause: Interrupt/WKUP
The time from recovery cause reception of the internal circuit to the program operation start is shown.
Recovery Count Time
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Value
Symbol
Typ
Max*
Unit
μs
Sleep mode
HCLK×1
High-speed CR Timer mode
Main Timer mode
PLL Timer mode
40
80
μs
Low-speed CR timer mode
450
900
μs
Sub timer mode
881
1136
μs
270
581
μs
240
480
308
667
μs
308
667
μs
RTC mode
stop mode
(High-speed CR /Main/PLL run mode
return)
RTC mode
stop mode
(Low-speed CR/sub run mode return)
Deep standby RTC mode with RAM
retention
Deep standby stop mode with RAM
retention
Ticnt
Remarks
without RAM
retention
with RAM
retention
*: The maximum value depends on the built-in CR accuracy.
Example of Standby Recovery Operation (when in External Interrupt Recovery*)
Ext.INT
Interrupt factor
accept
Active
Ticnt
CPU
Operation
Interrupt factor
clear by CPU
Start
*: External interrupt is set to detecting fall edge.
Document Number: 002-04930 Rev.*A
Page 111 of 124
MB9B360L Series
Example of Standby Recovery Operation (when in Internal Resource Interrupt Recovery*)
Internal
Resource INT
Interrupt factor
accept
Active
Ticnt
CPU
Operation
Interrupt factor
clear by CPU
Start
*: Depending on the standby mode, interrupt from the internal resource is not included in the recovery cause.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See CHAPTER 6: Low Power Consumption Mode and Operations of Standby Modes in FM4 Family Peripheral Manual Main
part (002-04856).
−
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption
mode transition. See CHAPTER 6: Low Power Consumption Mode in FM4 Family Peripheral Manual Main part (002-04856).
Document Number: 002-04930 Rev.*A
Page 112 of 124
MB9B360L Series
12.11.2 Recovery Cause: Reset
The time from reset release to the program operation start is shown.
Recovery Count Time
(VCC = 2.7V to 5.5V, VSS = 0V)
Parameter
Symbol
Value
Typ
Max*
Unit
Sleep mode
116
266
μs
High-speed CR timer mode
Main timer mode
PLL timer mode
116
266
μs
Low-speed CR timer mode
258
567
μs
258
567
μs
308
667
μs
Sub timer mode
Trcnt
RTC mode
Stop mode
Deep standby RTC mode with RAM retention
Deep standby stop mode with RAM retention
μs
308
667
μs
Remarks
without RAM
retention
with RAM
retention
*: The maximum value depends on the built-in CR accuracy.
Example of Standby Recovery Operation (when in INITX Recovery)
INITX
Internal RST
RST Active
Release
Trcnt
CPU
Operation
Document Number: 002-04930 Rev.*A
Start
Page 113 of 124
MB9B360L Series
Example of Standby Recovery Operation (when in Internal Resource Reset Recovery*)
Internal
Resource RST
Internal RST
RST Active
Release
Trcnt
CPU
Operation
Start
*: Depending on the standby mode, the reset issue from the internal resource is not included in the recovery cause.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See CHAPTER 6: Low Power Consumption Mode and Operations of Standby Modes in FM4 Family Peripheral Manual Main
part (002-04856).
−
The time during the power-on reset/low-voltage detection reset is excluded to the recovery source. See (6) Power-on Reset
Timing in 12.4 AC Characteristics in 12. Electrical Characteristics for the detail on the time during the power-on
reset/low-voltage detection reset.
−
When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is
necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
−
The internal resource reset means the watchdog reset and the CSV reset.
Document Number: 002-04930 Rev.*A
Page 114 of 124
MB9B360L Series
13. Ordering Information
Part number
Package
MB9BF364LPMC1
MB9BF365LPMC1
Plastic・LQFP (0.5mm pitch), 64 pin
(FPT-64P-M38)
MB9BF366LPMC1
MB9BF364LPMC
MB9BF365LPMC
Plastic・LQFP (0.65mm pitch), 64 pin
(FPT-64P-M39)
MB9BF366LPMC
MB9BF364KPMC
MB9BF365KPMC
Plastic・LQFP (0.5mm pitch), 48 pin
(FPT-48P-M49)
MB9BF366KPMC
MB9BF364LQN
MB9BF365LQN
Plastic・QFN (0.5mm pitch), 64 pin
(LCC-64P-M24)
MB9BF366LQN
MB9BF364KQN
MB9BF365KQN
Plastic・QFN (0.5mm pitch), 48 pin
(LCC-48P-M73)
MB9BF366KQN
Document Number: 002-04930 Rev.*A
Page 115 of 124
MB9B360L Series
14. Package Dimensions
64-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
10.00 mm × 10.00 mm
Lead shape
Gullwing
Lead bend
direction
Normal bend
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
0.32 g
(FPT-64P-M38)
64-pin plastic LQFP
(FPT-64P-M38)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
12.00±0.20(.472±.008)SQ
*10.00±0.10(.394±.004)SQ
48
0.145 ± 0.055
(.006 ± .002)
33
49
Details of "A" part
32
+0.20
0.08(.003)
1.50 –0.10
(Mounting height)
.059 +.008
–.004
0.25(.010)
0~8°
INDEX
64
1
0.22±0.05
(.009±.002)
0.08(.003)
2010 FUJITSU SEMICONDUCTOR LIMITED F64038S-c-1-2
Document Number: 002-04930 Rev.*A
0.10 ± 0.10
(.004±.004)
(Stand off)
"A"
16
0.50(.020)
C
0.50±0.20
(.020±.008)
0.60 ± 0.15
(.024±.006)
17
M
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Page 116 of 124
MB9B360L Series
Document Number: 002-04930 Rev.*A
Page 117 of 124
MB9B360L Series
64-pin plastic QFN
Lead pitch
0.50 mm
Package width ×
package length
9.00 mm × 9.00 mm
Sealing method
Plastic mold
Mounting height
0.90 mm MAX
Weight
-
(LCC-64P-M24)
64-pin plastic QFN
(LCC-64P-M24)
9.00±0.10
(.354±.004)
6.00±0.10
(.236±.004)
9.00±0.10
(.354±.004)
0.25±0.05
(.010±.002)
6.00±0.10
(.236±.004)
INDEX AREA
0.45 (.018)
1PIN ID
(0.20R (.008R))
0.85±0.05
(.033±.002)
0.05 (.002) MAX
C
0.40±0.05
(.016±.002)
(0.20 (.008))
2011 FUJITSU SEMICONDUCTOR LIMITED HMbC64-24Sc-2-1
Document Number: 002-04930 Rev.*A
0.50 (.020)
(TYP)
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Page 118 of 124
MB9B360L Series
48-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
7.00 mm × 7.00 mm
Lead shape
Gullwing
Lead bend
direction
Normal bend
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
0.17 g
(FPT-48P-M49)
48-pin plastic LQFP
(FPT-48P-M49)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
9.00 ± 0.20(.354 ± .008)SQ
*7.00± 0.10(.276 ± .004)SQ
36
0.145± 0.055
(.006 ± .002)
25
37
24
0.08(.003)
Details of "A" part
+0.20
1.50 –0.10 (Mounting height)
+.008
.059 –.004
INDEX
48
13
"A"
0°~8°
1
0.50(.020)
C
12
0.22 ± 0.05
(.008 ± .002)
0.08(.003)
2010 FUJITSU SEMICONDUCTOR LIMITED HMbF48-49Sc-1-2
Document Number: 002-04930 Rev.*A
0.10 ± 0.10
(.004 ± .004)
(Stand off)
0.25(.010)
M
0.60 ± 0.15
(.024 ± .006)
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Page 119 of 124
MB9B360L Series
Document Number: 002-04930 Rev.*A
Page 120 of 124
MB9B360L Series
15. Major Changes
Spansion Publication Number: DS709-00007
Page
Section
-
-
Change Results
Preliminary → Data Sheet
■FEATURES
[USB function]
Added the following description :
・The size of each endpoint is according to the follows.
- Endpoint 0, 2 to 5 : 64bytes
- Endpoint 1 : 256bytes
■I/O CIRCUIT TYPE
31 to 34
Added the following description to Remarks of Type F, G, I, L, M, N :
When this pin is used as an I2C pin, the digital output P-ch transistor is
always off
35 to 36
Added the following description to Remarks of Type O, P, Q:
For I/O setting, refer to VBAT Domain in the PERIPHERAL MANUAL
3
43
■HANDLING DEVICES
lHandling when using debug pins
Added new section
44
■BLOCK DIAGRAM
Revised the block diagram
■ELECTRICAL CHARACTERISTICS
2. Recommended Operating Conditions
Added the note to “AVRH”
57
Revised “Table for package thermal resistance and maximum
permissible power”
Revised “Icc(leakmax)”
58
60 to 65
■ELECTRICAL CHARACTERISTICS
3. DC Characteristics
(1) Current Rating
• Revised the value of TBD
• Added the note to “ICC”
• Added the note to “ICCVBAT”
70
■ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(3) Sub Clock Input Characteristics
Revised the waveform chart :
VCC → VBAT
70
■ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(3) Built-in CR OscillationCharacteristics
• Revised the value of TBD
• Revised the table and the note of “Built-in High-speed CR”
• Revised the table and the note
71
■ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(4-1) Operating Conditions of Main PLL(In the
case of using main clock for input clock of PLL)
(4-2)Operating Conditions of USB PLL(In the case
of using main clock for input clock of PLL)
• Revised the value of TBD
• Revised the table and the note
71
■ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(4-3) Operating Conditions of Main PLL(In the
case of using built-in high-speed CR clock for
input clock of main PLL)
■ELECTRICAL CHARACTERISTICS
5. 12-bit A/D Converter
・Electrical Characteristics for the A/D Converter
• Revised the value of TBD
• Revised the condition of the electrical characteristics table
• Revised the description of "Reference voltage"
■ELECTRICAL CHARACTERISTICS
6. 12-bit D/A Converter
・Electrical Characteristics for the D/A Converter
• Revised the value of TBD
• Revised the condition of the electrical characteristics table
• Revised the remarks of “IDDA”
106
109
Document Number: 002-04930 Rev.*A
Page 121 of 124
MB9B360L Series
Page
Section
Change Results
116
■ELECTRICAL CHARACTERISTICS
11. Standby Recovery Time
(1) Recovery cause: Interrupt/WKUP
• Revised the value of TBD
• Revised the table of Recovery count time
118
■ELECTRICAL CHARACTERISTICS
11. Standby Recovery Time
(2) Recovery cause:Reset
• Revised the value of TBD
• Revised the table of Recovery count time
NOTE: Please see “Document History” about later revised information.
Document Number: 002-04930 Rev.*A
Page 122 of 124
MB9B360L Series
Document History
Document Title: MB9B360L Series 32-Bit ARM® Cortex® - M4F, FM4 Microcontroller
Document Number: 002-04930
Revision
ECN
**
-
Orig. of
Submission
Change
Date
AKIH
12/25/2013
Description of Change
Migrated to Cypress and assigned document number 002-04930.
No change to document contents or format.
*A
5273878
AKIH
Document Number: 002-04930 Rev.*A
05/12/2016
Updated to Cypress format.
Page 123 of 124
MB9B360L Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
Products
®
®
PSoC Solutions
®
ARM Cortex Microcontrollers
Automotive
Clocks & Buffers
Interface
Lighting & Power Control
Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/powerpsoc
cypress.com/memory
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training | Components
Technical Support
cypress.com/go/support
cypress.com/psoc
cypress.com/touch
cypress.com/usb
cypress.com/wireless
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
© Cypress Semiconductor Corporation, 2013-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,
modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any li ability arising out of the application or use of any
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It
is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform
can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress
from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs,
damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-04930 Rev.*A
May 12, 2016
Page 124 of 124