

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Component - Clock (Cy_Clock) V1.50 Datasheet.pdf

		
				 PSoC® Creator™ Component Data Sheet
Clock
1.50
Features

Quickly define new clocks

Refer to system or design-wide clocks

Configure the clock frequency tolerance
General Description
The Clock component provides two key features: it provides the means to create local clocks,
and it provides the means to connect designs to system and design-wide clocks. All clocks are
shown in the Design-Wide Resources (DWR) Clock Editor. For more information, refer to the
PSoC Creator Help, Clock Editor section.
Clocks may be defined in a variety of ways, for example:

as a frequency with an automatically selected source clock

as a frequency with a user-selected source clock

as a divider and user-selected source clock
If a desired frequency is specified, PSoC Creator will automatically select a divider that yields the
most accurate resulting frequency. If allowed, PSoC Creator will also examine all system and
design-wide clocks and select a source and divider pair that yields the most accurate resulting
frequency.
Appearance
The color of the Clock component waveform symbol will change based on the clock's Domain
(as shown in the DWR Clock Editor), as follows:

Digital – the waveform color is the same as a digital wire, with a black outline

Analog – the waveform color is the same as an analog wire, with a black outline

Indeterminate – the waveform color is white, with no outline
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-62890 Rev. *C
Revised November 1, 2011
Clock
PSoC® Creator™ Component Data Sheet
Input/Output Connections
This section describes the various input and output connections for the Clock. An asterisk (*) in
the list of I/Os indicates that the I/O may be hidden on the symbol under the conditions listed in
the description of that I/O.
clock – output
Clocks have a standard output terminal that provides access to the clock signal.
digital domain – output *
If enabled, this optional output provides access to the digital domain output from an analog clock.
Enable this output via the option on the Advanced tab of the Configure dialog.
Component Parameters
Drag a Clock onto your design and double-click it to open the Configure dialog.
Note For any local clock you add to your design, the DWR Clock Editor contains a "Start on
Reset" option, which is enabled by default. In some cases, such as to reduce power
consumption, you may wish to control the clock programmatically. In such cases, deselect the
"Start on Reset" option, and insert the Clock_Start() function in your code. Refer to the API
section, as well as the Clock Editor section of the PSoC Creator Help, for more details.
Page 2 of 18
Document Number: 001-62890 Rev. *C
PSoC® Creator™ Component Data Sheet
Clock
Configure Clock Tab
The Configure Clock tab contains the Clock Type and Source parameters. Based on your
selections, this tab will contain various other parameters as shown in the following figures:
Figure 1 Clock Type: New / Source: <Auto>
Figure 2 Clock Type: New / Source: Specific Clock
Document Number: 001-62890 Rev. *C
Page 3 of 18
Clock
PSoC® Creator™ Component Data Sheet
Figure 3 Clock Type: Existing
The following sections describe the Clock component parameters:
Clock Type
There are two clock types: New and Existing. For new clocks, you can specify a clock Source to
use or allow PSoC Creator to choose by selecting <Auto>. If you select <Auto>, you can also
enter a specific Frequency and optional Tolerance. If you specify a Source, you can either
specify a Frequency or choose a Divider. For existing clocks, you can only select the clock
Source.
For different configurations, the clock symbol displays differently on the schematic, as shown in
the following examples.
Clock components configured as "New" consume clock resources in the device and have APIs
generated for them. Clock components configured as "Existing" to a system or design-wide clock
do not consume any physical resources on the device and no APIs are generated for them.
Instead, they use the selected system or design-wide clock.
Source
Select <Auto> (default) if PSoC Creator should automatically locate an available source clock
that, when divided down, provides the most accurate resulting frequency. Clocks with a source of
<Auto> may only enter a desired frequency. A tolerance may also optionally be provided.
Page 4 of 18
Document Number: 001-62890 Rev. *C
PSoC® Creator™ Component Data Sheet
Clock
Select a system or design-wide clock from the list provided to force PSoC Creator to use that
clock as the source.
Frequency
Enter the desired frequency and units (default = 24 MHz). PSoC Creator will then calculate the
divider that will create a clock signal that is as close as possible to the desired frequency.
Tolerance
If <Auto> is selected as the clock source, you can enter the desired tolerance values for the
clock (default is +/- 5%). PSoC Creator will ensure that the accuracy of the resulting clock falls
within the given tolerance range or produce a warning if the desired clock is not achievable.
Clock tolerances are specified as a percentage. (Note Entering ppm will cause the value entered
to be converted to the corresponding percent value.) If there is no desired tolerance range, then
the check box next to the tolerance can be unchecked and no warning will be generated for this
clock.
Divider
If you choose a specific Source Clock, you can enter an explicit value for the Divider.
Otherwise, if you leave the Source Clock set to <Auto>, the Divider option is not available
(default).
If you do select the Divider option, then the Frequency option is not available.
Advanced Tab
The Advanced tab contains two parameters.
Document Number: 001-62890 Rev. *C
Page 5 of 18
Clock
PSoC® Creator™ Component Data Sheet
Enable Digital Domain Output
If checked (default = unchecked), this option adds a terminal for the version of the analog clock
that uses the main digital sync clock as the resync clock. If used, this clock is forced into the
analog domain; however, the newly added terminal is in the digital domain.
Sync with MASTER_CLK
If checked (default = checked) the clock is synchronized with the MASTER clock; otherwise, the
clock is unsynchronized.
Placement and Resources
Resource usage varies based on configuration and connectivity.

Clock components configured as "Existing" do not consume any resource on the chip.

Clock components configured as "New" consume a single clock resource. PSoC Creator
automatically discovers whether the clock connects to digital or analog peripherals and
consumes a digital clock or analog clock resource as necessary.
API Memory
(Bytes)
Digital Blocks
Analog Block
Datapaths
Macro
cells
Status
Registers
Control
Registers
Counter7
Flash
RAM
Pins (per
External I/O)
N/A
N/A
N/A
N/A
N/A
N/A
698
0
N/A
Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.
By default, PSoC Creator assigns the instance name "Clock_1" to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
"Clock".
Note Local clocks configured with Clock Type "Existing" on the Configure dialog will not have
any APIs generated.
Page 6 of 18
Document Number: 001-62890 Rev. *C
PSoC® Creator™ Component Data Sheet
Function
Clock
Description
Clock_Start
Enables the clock.
Clock_Stop
Disables the clock.
Clock_StopBlock
Disables the clock and waits until the clock is disabled.
Clock_StandbyPower
Selects the power for standby (Alternate Active) operation mode.
Clock_SetDivider
Sets the divider of the clock and restarts the clock divider immediately.
Clock_SetDividerRegister
Sets the divider of the clock and optionally restarts the clock divider immediately.
Clock_SetDividerValue
Sets the divider of the clock and restarts the clock divider immediately.
Clock_GetDividerRegister
Gets the clock divider register value.
Clock_SetMode
Sets flags that control the operating mode of the clock.
Clock_SetModeRegister
Sets flags that control the operating mode of the clock.
Clock_GetModeRegister
Gets the clock mode register value.
Clock_ClearModeRegister
Clears flags that control the operating mode of the clock.
Clock_SetSource
Sets the source of the clock.
Clock_SetSourceRegister
Sets the source of the clock.
Clock_GetSourceRegister
Gets the source of the clock.
Clock_SetPhase
Sets the phase delay of the analog clock (only generated for analog clocks).
Clock_SetPhaseRegister
Sets the phase delay of the analog clock (only generated for analog clocks).
Clock_SetPhaseValue
Sets the phase delay of the analog clock (only generated for analog clocks).
Clock_GetPhaseRegister
Gets the phase delay of the analog clock (only generated for analog clocks).
void Clock_Start(void)
Description:
Starts the clock.
Note On startup, clocks may already be running if the “Start on Reset” option is enabled in the
DWR Clock Editor.
Parameters:
void.
Return Value:
void.
Side Effects:
The clock is enabled.
Document Number: 001-62890 Rev. *C
Page 7 of 18
Clock
PSoC® Creator™ Component Data Sheet
void Clock_Stop(void)
Description:
Stops the clock and returns immediately. This API does not require the source clock to be
running but may return before the hardware is actually disabled. If the settings of the clock are
changed after calling this function, the clock may glitch when it is started. To avoid the clock
glitch, use the Clock_StopBlock() function.
Parameters:
void.
Return Value:
void.
Side Effects:
The clock is disabled. The output will be logic 0.
void Clock_StopBlock(void)
Description:
Stops the clock and waits for the hardware to actually be disabled before returning. This
ensures that the clock is never truncated (high part of the cycle will terminate before the clock
is disabled and the API returns). Note that the source clock must be running or this API will
never return as a stopped clock cannot be disabled.
Parameters:
void.
Return Value:
void.
Side Effects:
The clock is disabled. The output will be logic 0.
Note The Clock_StopBlock() API is not supported on PSoC3 ES2 and PSoC5 ES1, and will not be generated.
void Clock_StandbyPower(uint8 state)
Description:
Selects the power for standby (Alternate Active) operation mode.
Parameters:
uint8 state: 0 to disable clock during Alternate Active mode, nonzero to enable.
Return Value:
void.
Side Effects:
None
void Clock_SetDivider(uint16 clkDivider)
Description:
Modifies the clock divider, and thus, the frequency. When the clock divider register is set to
zero or changed from zero, the clock will be temporarily disabled in order to change a mode
bit. If the clock is enabled when Clock_SetDivider() is called, then the source clock must be
running. The current clock cycle will be truncated and the new divide value will take effect
immediately.
Parameters:
uint16 clkDivider: Divider register value (0-65,535). This value is NOT the divider; the clock
hardware divides by clkDivider plus one. For example, to divide the clock by 2, this parameter
should be set to 1.
Return Value:
void.
Side Effects:
None
Page 8 of 18
Document Number: 001-62890 Rev. *C
PSoC® Creator™ Component Data Sheet
Clock
void Clock_SetDividerRegister(uint16 clkDivider, uint8 reset)
Description:
Modifies the clock divider, and thus, the frequency. When the clock divider register is set to
zero or changed from zero, the clock will be temporarily disabled in order to change a mode
bit. If the clock is enabled when Clock_SetDivider() is called, then the source clock must be
running.
Parameters:
uint16 clkDivider: Divider register value (0-65,535). This value is NOT the divider; the clock
hardware divides by clkDivider plus one. For example, to divide the clock by 2, this parameter
should be set to 1.
uint8 reset: If nonzero, restarts the clock divider; the current clock cycle will be truncated and
the new divide value will take effect immediately. If zero, the new divide value will take effect
at the end of the current clock cycle.
Return Value:
void.
Side Effects:
None
void Clock_SetDividerValue(uint16 clkDivider)
Description:
Modifies the clock divider, and thus, the frequency. When the clock divider register is set to
zero or changed from zero, the clock will be temporarily disabled in order to change the SSS
mode bit. If the clock is enabled when Clock_SetDivider() is called, then the source clock must
be running. The current clock cycle will be truncated and the new divide value will take effect
immediately.
Parameters:
uint16 clkDivider: Divide value (1-65535) or zero. If clkDivider is zero, the clock will be divided
by 65,536.
The difference between this and Clock_SetDivider() is you do not have to consider the +1
factor.
Return Value:
void.
Side Effects:
None
uint16 Clock_GetDividerRegister(void)
Description:
Gets the clock divider register value.
Parameters:
void.
Return Value:
Divide value of the clock minus 1. For example, if the clock is set to divide by 2, the return
value will be 1.
Side Effects:
None
Document Number: 001-62890 Rev. *C
Page 9 of 18
Clock
PSoC® Creator™ Component Data Sheet
void Clock_SetMode(uint8 clkMode)
Description:
Sets flags that control the operating mode of the clock. This function only changes flags from 0
to 1; flags that are already 1 will remain unchanged. To clear flags, use the
Clock_ClearModeRegister() function. The clock must be disabled before changing the mode.
Parameters:
uint8 clkMode: Bit mask containing the bits to set. For PSoC 3 and PSoC 5, clkMode should
be a set of the following optional bits or'ed together:
 CYCLK_EARLY: Enable early phase mode. Rising edge of output clock will occur
when the divider counter reaches half of the divide value.
 CYCLK_DUTY: Enable 50% duty cycle output. When enabled, the output clock is
asserted for approximately half of its period. When disabled, the output clock is
asserted for one period of the source clock.
 CYCLK_SYNC: Enable output synchronization to master clock. This should be
enabled for all synchronous clocks.
See the Technical Reference Manual for details about setting the mode of the clock.
Specifically, see the CLKDIST.DCFG.CFG2 register.
Return Value:
void.
Side Effects:
None
void Clock_SetModeRegister(uint8 clkMode)
Description:
Same as Clock_SetMode(). Sets flags that control the operating mode of the clock. This
function only changes flags from 0 to 1; flags that are already 1 will remain unchanged. To
clear flags, use the Clock_ClearModeRegister() function. The clock must be disabled before
changing the mode.
Parameters:
uint8 clkMode: Bit mask containing the bits to set. It should be a set of the following optional
bits ORed together:
 CYCLK_EARLY: Enable early phase mode. Rising edge of output clock will occur
when the divider counter reaches half of the divide value.
 CYCLK_DUTY: Enable 50% duty cycle output. When enabled, the output clock is
asserted for approximately half of its period. When disabled, the output clock is
asserted for one period of the source clock.
 CYCLK_SYNC: Enable output synchronization to master clock. This should be
enabled for all synchronous clocks.
See the Technical Reference Manual for details about setting the mode of the clock.
Specifically, see the CLKDIST.DCFG.CFG2 register.
Return Value:
void.
Side Effects:
None
Page 10 of 18
Document Number: 001-62890 Rev. *C
PSoC® Creator™ Component Data Sheet
Clock
uint8 Clock_GetModeRegister(void)
Description:
Gets the clock mode register value.
Parameters:
Void.
Return Value:
Bit mask representing the enabled mode bits. See the Clock_SetModeRegister() and
Clock_ClearMode() Register descriptions for details about the mode bits..
Side Effects:
None
void Clock_ClearModeRegister(uint8 clkMode)
Description:
Clears flags that control the operating mode of the clock. This function only changes flags from
1 to 0; flags that are already 0 will remain unchanged. To clear flags, use the
Clock_ClearModeRegister() function. The clock must be disabled before changing the mode.
Parameters:
uint8 clkMode: Bit mask containing the bits to clear. It should be a set of the following optional
bits ORed together:
 CYCLK_EARLY: Enable early phase mode. Rising edge of output clock will occur
when the divider counter reaches half of the divide value.
 CYCLK_DUTY: Enable 50% duty cycle output. When enabled, the output clock is
asserted for approximately half of its period. When disabled, the output clock is
asserted for one period of the source clock.
 CYCLK_SYNC: Enable output synchronization to master clock. This should be
enabled for all synchronous clocks.
See the Technical Reference Manual for details about setting the mode of the clock.
Specifically, see the CLKDIST.DCFG.CFG2 register.
Return Value:
void.
Side Effects:
None
void Clock_SetSource(uint8 clkSource)
Description:
Sets the input source of the clock. The clock must be disabled before changing the source.
The old and new clock sources must be running.
Parameters:
uint8 clkSource: It should be one of the following input sources:
 CYCLK_SRC_SEL_SYNC_DIG: Phase-delayed master clock.
 CYCLK_SRC_SEL_IMO: Internal main oscillator.
 CYCLK_SRC_SEL_XTALM: 4-33 MHz external crystal oscillator.
 CYCLK_SRC_SEL_ILO: Internal low-speed oscillator.
 CYCLK_SRC_SEL_PLL: Phase locked loop output.
 CYCLK_SRC_SEL_XTALK: 32.768 kHz external crystal oscillator.
 CYCLK_SRC_SEL_DSI_G: DSI global input signal.
 CYCLK_SRC_SEL_DSI_D: DSI digital input signal.
 CYCLK_SRC_SEL_DSI_A: DSI analog input signal.
See the Technical Reference Manual for details on clock sources.
Return Value:
void.
Side Effects:
None
Document Number: 001-62890 Rev. *C
Page 11 of 18
Clock
PSoC® Creator™ Component Data Sheet
void Clock_SetSourceRegister(uint8 clkSource)
Description:
Same as Clock_SetSource(). Sets the input source of the clock. The clock must be disabled
before changing the source. The old and new clock sources must be running.
Parameters:
uint8 clkSource: It should be one of the following input sources:
 CYCLK_SRC_SEL_SYNC_DIG: Phase-delayed master clock.
 CYCLK_SRC_SEL_IMO: Internal main oscillator.
 CYCLK_SRC_SEL_XTALM: 4-33 MHz external crystal oscillator.
 CYCLK_SRC_SEL_ILO: Internal low-speed oscillator.
 CYCLK_SRC_SEL_PLL: Phase locked loop output.
 CYCLK_SRC_SEL_XTALK: 32.768 kHz external crystal oscillator.
 CYCLK_SRC_SEL_DSI_G: DSI global input signal.
 CYCLK_SRC_SEL_DSI_D/CYCLK_SRC_SEL_DSI_A: DSI input signal.
See the Technical Reference Manual for details on clock sources.
Return Value:
void.
Side Effects:
None
uint8 Clock_GetSource(void)
Description:
Gets the input source of the clock.
Parameters:
void.
Return Value:
The input source of the clock. See Clock_SetSourceRegister() for details.
Side Effects:
None
Page 12 of 18
Document Number: 001-62890 Rev. *C
PSoC® Creator™ Component Data Sheet
Clock
void Clock_SetPhase(uint8 clkPhase)
Description:
Parameters:
Return Value:
Side Effects:
Sets phase delay of the analog clock. This function is only available for analog clocks. The
clock must be disabled before changing the phase delay to avoid glitches.
uint8 clkPhase: Amount to delay the phase of the clock, in 1.0 ns increments. clkPhase must
be from 1 to 11 inclusive. Other values, including 0, disable the clock.
clkPhase value
PSoC 3 ES2 and earlier
PSoC 3 ES3 and later, PSoC 5
0
Clock disabled
Clock disabled
1
2.5 ns
0.0 ns
2
3.5 ns
1.0 ns
3
4.5 ns
2.0 ns
4
5.5 ns
3.0 ns
5
6.5 ns
4.0 ns
6
7.5 ns
5.0 ns
7
8.5 ns
6.0 ns
8
9.5 ns
7.0 ns
9
10.5 ns
8.0 ns
10
11.5 ns
9.0 ns
11
12.5 ns
10.0 ns
12-15
Clock disabled
Clock disabled
void.
None
Document Number: 001-62890 Rev. *C
Page 13 of 18
Clock
PSoC® Creator™ Component Data Sheet
void Clock_SetPhaseRegister(uint8 clkPhase)
Description:
Parameters:
Return Value:
Side Effects:
Page 14 of 18
Same as Clock_SetPhase(). Sets phase delay of the analog clock. This function is only
available for analog clocks. The clock must be disabled before changing the phase delay to
avoid glitches.
uint8 clkPhase: Amount to delay the phase of the clock, in 1.0 ns increments. clkPhase must
be from 1 to 11 inclusive. Other values, including 0, disable the clock.
clkPhase value
PSoC 3 ES2 and earlier
PSoC 3 ES3 and later, PSoC 5
0
Clock disabled
Clock disabled
1
2.5 ns
0.0 ns
2
3.5 ns
1.0 ns
3
4.5 ns
2.0 ns
4
5.5 ns
3.0 ns
5
6.5 ns
4.0 ns
6
7.5 ns
5.0 ns
7
8.5 ns
6.0 ns
8
9.5 ns
7.0 ns
9
10.5 ns
8.0 ns
10
11.5 ns
9.0 ns
11
12.5 ns
10.0 ns
12-15
Clock disabled
Clock disabled
void.
None
Document Number: 001-62890 Rev. *C
PSoC® Creator™ Component Data Sheet
Clock
void Clock_SetPhaseValue(uint8 clkPhase)
Description:
Sets phase delay of the analog clock. This function is only available for analog clocks. The
clock must be disabled before changing the phase delay to avoid glitches. Same as
Clock_SetPhase(), except Clock_SetPhaseValue() adds one to the value and then calls
Clock_SetPhaseRegister() with it.
Parameters:
uint8 clkPhase: Amount to delay the phase of the clock, in 1.0 ns increments. clkPhase must
be from 0 to 10 inclusive. Other values disable the clock.
clkPhase value
PSoC 3 ES2 and earlier
PSoC 3 ES3 and later, PSoC 5
0
2.5 ns
0.0 ns
1
3.5 ns
1.0 ns
2
4.5 ns
2.0 ns
3
5.5 ns
3.0 ns
4
6.5 ns
4.0 ns
5
7.5 ns
5.0 ns
6
8.5 ns
6.0 ns
7
9.5 ns
7.0 ns
8
10.5 ns
8.0 ns
9
11.5 ns
9.0 ns
10
12.5 ns
10.0 ns
11-15
Clock disabled
Clock disabled
Return Value:
void.
Side Effects:
None
uint8 Clock_GetPhaseRegister(void)
Description:
Gets the phase delay of the analog clock. This function is only available for analog clocks.
Parameters:
void.
Return Value:
Phase of the analog clock in nanoseconds. See Clock_SetPhaseRegister() for details.
Side Effects:
None
Sample Firmware Source Code
PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.
Document Number: 001-62890 Rev. *C
Page 15 of 18
Clock
PSoC® Creator™ Component Data Sheet
Known Problems
The cy_clock v1.50 component for PSoC 5 should not be used with the
Clock_SetDividerRegister() function. This function has a known problem when used with this
silicon. If this function is needed, the component should be updated to the latest component
version.
Component Changes
This section lists the major changes in the component from the previous version.
Version
Description of Changes
1.50.b
Added Known Problems section to
datasheet
1.50.a
Added note to Clock_StopBlock() in
datasheet to note lack of silicon support
Reason for Changes / Impact
Minor datasheet edits and updates
1.50
Added Clock_StopBlock() API
This function stops the clock and waits for it to be
disabled. This is necessary to prevent glitches when
changing settings and restarting a clock.
Added Clock_GetPhaseRegister() API
(analog only)
Allows the firmware to read the current phase value.
Added Clock_SetPhaseValue() API (analog
only)
This macro wraps Clock_SetPhaseRegister() and
automatically adds 1 to the phase value to provide a
more intuitive interface.
Renamed Clock_SetPhase() to
Clock_SetPhaseRegister() (analog only)
For consistency with other names. For compatibility,
SetPhase is provided as a macro and has the same
effect as Clock_SetPhaseRegister().
Added Clock_GetSourceRegister() API
Allows the firmware to read the current clock source.
Renamed Clock_SetSource() to
Clock_SetSourceRegister()
For consistency with other names. For compatibility,
SetSource is provided as a macro and has the same
effect as Clock_SetSourceRegister().
Added Clock_GetModeRegister() API
Allows the firmware to read the current mode flags.
Added Clock_SetModeRegister() API
This function replaces Clock_SetMode(). For
compatibility, SetMode is provided as a macro and has
the same effect as Clock_SetModeRegister().
Clock_SetModeRegister() only changes mode flags from
0 to 1. This prevents unintended clearing of other mode
bits such as SYNC.
Added Clock_ClearModeRegister() API
This function is similar to Clock_SetModeRegister(), but
only changes mode flags from 1 to 0.
Added Clock_GetDividerRegister() API
Allows the firmware to read the current divider value.
Page 16 of 18
Document Number: 001-62890 Rev. *C
PSoC® Creator™ Component Data Sheet
Version
1.0a
Description of Changes
Clock
Reason for Changes / Impact
Added Clock_SetDividerRegister() API
The Clock_SetDivider() API unconditionally resets the
clock divider. Clock_SetDividerRegister() allows the
firmware author to control whether the divider is reset.
Added Clock_SetDividerValue() API
This macro wraps Clock_SetDividerRegister() and
automatically subtracts 1 from the divider to provide a
more intuitive interface.
Set SSS in Clock_SetDividerRegister()
When dividing by 1 (divide value of 0), the SSS bit must
be set to bypass the divider. The
Clock_SetDividerRegister() function will automatically
set/clear SSS, temporarily disabling the clock if
necessary.
Changed register definitions
Updated to match component coding guidelines.
Corrected Clock_SetDivider() API
documentation
The Clock_SetDivider() API documentation stated that
the clkDivider parameter should be the divide value + 1.
This should have been the divide value - 1. The
documentation incorrectly stated that 0 was an invalid
value for clkDivider.
Changed "Synch with Bus" to "Sync with
Master" and associated tooltip on the
Configure dialog.
Updated to match how the device works. This was just a
cosmetic change.
Added parameter to enable the digital
domain output from the analog clock.
A signal is available from analog clocks in the hardware
that was not previously exposed on the component.
Added `=ReentrantKeil($INSTANCE_NAME
. "_...")` to the following functions:
void Clock_Start()
void Clock_Stop()
void Clock_StopBlock()
void Clock_StandbyPower()
void Clock_SetDividerRegister()
uint16 Clock_GetDividerRegister()
void Clock_SetModeRegister()
void Clock_ClearModeRegister()
uint8 Clock_GetModeRegister()
void Clock_SetSourceRegister()
uint8 Clock_GetSourceRegister()
void Clock_SetPhaseRegister()
uint8 Clock_GetPhaseRegister()
Allows users to make these APIs reentrant if reentrancy
is desired.
Move CYCLK_ constants to
cydevice.h/cydevice_trm.h.
The CYCLK_ constants for the mode and source are
now generated from the selected device’s register map.
This allows the clock component to be independent of
device-specific register values. The cydevice.h file is
already included from the clock header, so no user code
changes should be necessary.
Add description of CYCLK_ constants in the
data sheet.
The parameter descriptions for the Clock_SetMode()
and Clock_SetSource() APIs now contain a description
of each value.
Document Number: 001-62890 Rev. *C
Page 17 of 18
Clock
PSoC® Creator™ Component Data Sheet
© Cypress Semiconductor Corporation, 2010-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC® Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in lifesupport systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Page 18 of 18
Document Number: 001-62890 Rev. *C

				

 Open as PDF

 	Similar pages
	

										Component - Clock (Cy_Clock) V1.60 Datasheet.pdf

	

										Component - Clock (Cy_Clock) V1.70 Datasheet.pdf

	

										Component - Clock (Cy_Clock) V2.0 Datasheet.pdf

	

										Component - Clock (Cy_Clock) V1.60 Datasheet (Japanese).pdf

	

										Component - Clock (Cy_Clock) V2.10 Datasheet.pdf

	

										Component - Clock (Cy_Clock) V2.20 Datasheet.pdf

	

										Component - Clock (Cy_Clock) V2.0 Datasheet (Chinese).pdf

	

										Component - Clock (Cy_Clock) V1.50 Datasheet (Chinese).pdf

	

										Component - Clock (Cy_Clock) V2.10 Datasheet (Chinese).pdf

	

										Component - Clock (Cy_Clock) V1.50 Datasheet (Japanese).pdf

	

										Component - Boost Converter (BoostConv) V1.50 Datasheet.pdf

	

										TI CC2564RVMR

	

										Product Specification Revision 0.3

	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA (Japanese).pdf

	

										PDF Data Sheet Rev. A

	

										Product Specification Revision 0.2

	

										AN61102 PSoC 3 and PSoC 5LP ADC Data Buffering Using DMA.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

