ROHM BA7078AS

BA7078AF/AS
Multimedia ICs
Synchronization signal processor for
high definition displays
BA7078AF/AS
The BA7078AF is a synchronization signal processing LSI chip designed for multiscan high-definition displays. It
generates a synchronization signal and clamp pulse for three types of input signals: separate synchronization, composite
synchronization, and synchronization on video.
!Application
CRT displays
!Features
1) Operates on a single 5V power supply, with low power consumption.
2) Synchronization signal existence and polarity detec-tion output.
3) Adjustable clamp pulse width, allowing for the selec-tion of front or back editing.
4) Vertical synchronization separation is based on hori-zontal frequency tracking, for separation starting at 1H.
5) Minimal attached components.
!Absolute maximum ratings (Ta = 25°C)
Parameter
Symbol
Limits
Unit
VCC
7.0
V
Power supply voltage
∗1
Pd
Power dissipation
∗2
450(BA7078AF)
600(BA7078AS)
°C
−25 to +75
Topr
Operating temperature
mW
°C
−55 to +125
Tstg
Storage temperature
∗1 Reduced by 4.5mW for each increase in Ta of 1°C over 25°C.
∗2 Reduced by 6.0mW for each increase in Ta of 1°C over 25°C.
!Recommended operating conditions (Ta = 25°C)
Parameter
Power supply voltage
Symbol
Min.
Typ.
Max.
Unit
VCC
4.5
5.0
5.5
V
1/12
BA7078AF/AS
Multimedia ICs
!Block diagram
HSCTL
1
C / HSYNC IN
2
VIDEO IN
3
H SYNC DET.
18
POLH
17
EXIH
16
POLV
15
EXIV
SYNC SEPA.
VSEPA
4
VSYNC IN
5
14
Vcc
CVPOL
6
13
HDRV
12
CLAMP
11
VDRV
10
CPWID
HOR. SYNC
CONTROL
V SYNC SEPA.
V SYNC DET.
CVEXI
7
CPSEL
8
GND
9
CLAMP PULSE GEN.
2/12
BA7078AF/AS
Multimedia ICs
!Pin descriptions
Pin No.
Pin name
1
HSCTL
2
C / HSYNC IN
3
VIDEO IN
Functions
HDRV output
Used to select whether to output the VDRV section of the HDRV output
signal.
High : VDRV section of HDRV is output
Low : VDRV section of HDRV is not output
Composite sync / H SYNC
input
Input either the composite synchronization signal or the horizontal
synchronization signal. Input is clamped, and is initiated by capacitor
coupling.
SYNC ON VIDEO input
Inputs the SYNC ON VIDEO signal(green).
Input is sink chip clamped. Input is initiated by capacitor coupling.
4
VSEPA
f-V conversion
Converts the horizontal synchronization signal frequency into a voltage.
The voltage generated is proportional to the frequency of the horizontal
synchronization signal. Attach a 0.56µF capacitor between the ground
pins.
5
VSYNC IN
V SYNC input
Inputs the vertical synchronization signal.
6
CVPOL
Vertical polarity integration
Integrates the vertical synchronization signal polarity detection circuit.
Attach a 1.5µF capacitor between this pin and the ground.
7
CVEXI
Vertical existence integration
Integrates the vertical synchronization signal existence detection circuit.
Attach a 1µF capacitor between this pin and the ground.
Setting the clamp position
Used to set the clamp pulse generation position to either the front or
back edge of HSYNC
High : The front edge is the generation position
Open : Composite / H SYNC IN : The front edge is the generation position
VIDEO IN
: The back edge is the generation position
Low : The back edge is the generation position
8
CPSEL
9
GND
10
CPWID
Setting the clamp pulse width
Sets the clamp pulse width according to the attached time constant.
Attach a resistor between this pin and VCC and, a capacitor between
this pin and GND. When R = 3.9kΩ and C = 100pF, pulse width is
approximately 400 ns. Set the resistor to register an abnormality at 1kΩ.
11
VDRV
VDRV output
Outputs the vertical synchronization signal.
The output signal has positive polarity.
12
CLAMP
Clamp output
Outputs the clamp pulse generated from the vertical synchronization
signal. The output signal has a positive polarity.
13
HDRV
HDRV output
Outputs the clamp pulse generated from the horizontal synchronization
signal. The output signal has positive polarity.
14
VCC
Power supply
15
EXIV
Vertical existence output
Indecates whether the vertical synchronization signal exists.
For the output logic, refer to the separate table.
16
POLV
Vertical polarity output
Indicates the polarity of the vertical synchronization signal.
For the output logic, refer to the separate table.
17
EXIH
Horizontal existence output
Indicates whether the horizontal synchronization signal exists.
For the output logic, refer to the separate table.
18
POLH
Horizontal polarity output
Indicates the polarity of the horizontal synchronization signal.
For the output logic, refer to the separate table.
Ground
−
−
3/12
BA7078AF/AS
Multimedia ICs
!Input / output circuits
HSCTL
VSEPA
C / HSYNC IN
VCC
VCC
VCC
670Ω
60kΩ
200Ω
1kΩ
51kΩ
2pin
4pin
1pin
30kΩ
10µA
CVPOL
VIDEO IN
VSYNC IN
VCC
VCC
VCC
2kΩ
200Ω
5pin
3pin
CVEXI
200Ω
6pin
CPSEL
CPWID
VCC
VCC
VCC
50kΩ
1kΩ
7pin
10pin
8pin
50kΩ
4/12
BA7078AF/AS
Multimedia ICs
GND
VDRV
CLAMP
VCC
VCC
9pin
12pin
11pin
HDRV
POLV
VCC
VCC
VCC
VCC
10kΩ
13pin
EXIH
POLH
EXIV
VCC
10kΩ
17pin
14pin
16pin
15pin
VCC
VCC
10kΩ
10kΩ
18pin
5/12
BA7078AF/AS
Multimedia ICs
!Electrical characteristics (unless otherwise noted, VCC = 5V, Ta = 25°C)
Parameter
Symbol
Min.
Typ.
Max.
Unit
VCC
4.5
5.0
5.5
V
Power supply voltage
ICC
21
30
39
mA
VDRV output voltage "H"
V VDH
4.5
5.0
−
V
VDRV output voltage "L"
V VDL
−
0.2
0.5
V
VDRV output current "L"
I VDL
8
−
−
mA
Quiescent current
Conditions
VDRV rising delay time
trdVD
−
280
450
ns
HDRV output voltage "H"
V HDH
4.5
5.0
−
V
HDRV output voltage "L"
V HDL
−
0.2
0.5
V
HDRV output current "L"
I HDL
8
−
−
mA
HDRV rising delay time (1)
trdHD1
−
65
115
ns
C / HSYNC IN
HDRV rising delay time (2)
trdHD2
−
95
145
ns
VIDEO IN
CLAMP output voltage "H"
V CPH
4.5
5.0
−
V
CLAMP output voltage "L"
V CPL
−
0.2
0.5
V
CLAMP output current "L"
I CPL
8
−
−
mA
CLAMP rising delay time (1)
trdCP1
−
75
125
ns
front edge
CLAMP rising delay time (2)
trdCP2
−
95
145
ns
back edge
Synchronization detection output voltage "H"
V DH
4.5
5.0
−
V
Synchronization detection output voltage "L"
V DL
−
0.2
0.5
V
Synchronization detection output current "L"
I DL
3
−
−
mA
VSYNC IN
Z oD
7
10
13
kΩ
Minimum synchronization separation level
V SMin.
−
−
0.2
VP-P
HSCTL "H" level threshold voltage
V tHSH
2.5
−
−
V
HSCTL "L" level threshold voltage
V tHSL
−
−
1.5
V
CPSEL "H" level threshold voltage
V tCPH
3.8
−
−
V
CPSEL "L" level threshold voltage
V tCPL
−
−
1.2
V
Synchronization detection output impedance
!Synchronization signal detection chart
OUTPUT
INPUT
Composite / HSYNC
H. COMP
(Positive)
H. COMP
(Negative)
No signal
VSYNC
EXIH
EXIV
POLH
POLV
No signal
H
L
L
L
Positive
H
H
L
L
Negative
H
H
L
H
No signal
H
L
H
L
Positive
H
H
H
L
Negative
H
H
H
H
No signal
L
L
L
L
Positive
L
H
L
L
Negative
L
H
L
H
6/12
BA7078AF/AS
Multimedia ICs
!Relationship between INPUT to OUTPUT
OUTPUT
INPUT
Composite / HSYNC
VSYNC
−
−
VIDEO
−
−
−
VDRV
CLAMP
VIDEO
VIDEO
CS
CS
CS
VIDEO
VS
VIDEO
CS
VS
CS
−
−
−
−
−
−
−
CS
CS
CS
−
−
VS
−
−
CS
VS
CS
−
Explanation of symbol
HDRV
VIDEO
− : No Signal
: Signal Input
!Input signal range
Vert. separate sync Hor. separate sync
Parameter
Polarity
Amplitude (Sync) : Vs
Composite sync
Sync on Video
Posi. / Neg.
Posi. / Neg.
Posi. / Neg.
Neg.
1.0 to 5.0VP-P
1.0 to 5.0VP-P
1.0 to 5.0VP-P
0.2 to 0.6VP-P
(Video) : Vv
0 to 2.1VP-P
Vert. sync frequency range : fV
Vert. sync pulse width range : pwV
40 to 200Hz
−
40 to 200Hz
40 to 200Hz
8.0µs to Duty35%
−
∗ 1HMin. to 400µs
∗ 1HMin.
Hor. sync frequency range : fH
−
15k to 200kHz
15k to 200kHz
15k to 200kHz
Hor. sync pulse width range : pwH
−
94ns to Duty35%
94ns to Duty30%
Duty30% Max.
∗ 1H = 1 / fH
!Input signal waveform
Vert. / Hor.separate sync
T=1/f
VS
pw
Duty=pw/T(%)
Composite sync
TH=1/fH
VS
pwV
pwH
Duty=pwH/TH(%)
(ex.pwV=1H)
Sync on Video
VV
VS
pwH
Duty=pwH/TH(%)
pwV
(ex.pwV=1H)
TH=1/fH
7/12
BA7078AF/AS
Multimedia ICs
!Measurement circuit
1
POLH
HSCTL
18
SW18
2
1
V1
V
3
4
A
V
3mA
Oscilloscope
2
SW2
1
EXIH
C / HSYNC IN
17
3
2
SW17
2
1
3
4
4.7µF
4.7µF
V
V2
75Ω
A
V
3mA
Oscilloscope
3
SW3
2
1
VIDEO IN
POLV
16
3
SW16
2
1
3
4
1µF
1µF
V3
75Ω
V
A
V
3mA
Oscilloscope
4
VSEPA
EXIV
15
0.56µF
SW15
2
1
V
3
4
A
V
3mA
Oscilloscope
Vcc 5V
5
SW5
VCC
VSYNC IN
14
A
47µF
0.01µF
2
1
3
4.7µF
75Ω
V5
1MΩ
6
CVPOL
HDRV
13
SW13
1.5µF
3
2
1
V
V
8mA
Oscilloscope
7
CVEXI
CLAMP
12
SW12
1µF
3
2
1
V
V
8mA
Oscilloscope
8
VDRV
CPSEL
11
SW11
3
2
1
V8
V
8mA
V
Oscilloscope
9
CPWID
GND
10
VCC
3.9kΩ
100pF
Fig.1
8/12
BA7078AF/AS
Multimedia ICs
!Conditions for measurement of electrical characteristics
Switch condition
Parameter
2
3
5
11
12
13
15
16
17
18
Quiescent current
1
1
1
1
1
1
1
1
1
1
VDRV output voltage "H"
1
1
3
1
1
1
1
1
1
1
VDRV output voltage "L"
1
1
3
1
1
1
1
1
1
1
VDRV output current "L"
1
1
3
2
1
1
1
1
1
1
VDRV rising delay time
1
1
2
3
1
1
1
1
1
1
HDRV output voltage "H"
3
1
1
1
1
1
1
1
1
1
HDRV output voltage "L"
3
1
1
1
1
1
1
1
1
1
HDRV output current "L"
3
1
1
1
1
2
1
1
1
1
HDRV rising delay time (1)
2
1
1
1
1
3
1
1
1
1
HDRV rising delay time (2)
1
2
1
1
1
3
1
1
1
1
CLAMP output voltage "H"
2
1
1
1
3
1
1
1
1
1
CLAMP output voltage "L"
2
1
1
1
3
1
1
1
1
1
CLAMP output current "L"
3
1
1
1
2
1
1
1
1
1
CLAMP rising delay time (1)
2
1
1
1
3
1
1
1
1
1
CLAMP rising delay time (2)
1
2
1
1
3
1
1
1
1
1
POLH output voltage "H"
2
1
1
1
1
1
1
1
1
1
POLH output voltage "L"
2
1
1
1
1
1
1
1
1
1
POLH output current "L"
3
1
1
1
1
1
1
1
1
2
POLH output impedance
3
1
1
1
1
1
1
1
1
4
EXIH output voltage "H"
2
1
1
1
1
1
1
1
1
1
EXIH output voltage "L"
1
1
1
1
1
1
1
1
1
1
EXIH output current "L"
3
1
1
1
1
1
1
1
2
1
EXIH output impedance
3
1
1
1
1
1
1
1
4
1
POLV output voltage "H"
1
1
2
1
1
1
1
1
1
1
POLV output voltage "L"
1
1
2
1
1
1
1
1
1
1
POLV output current "L"
1
1
3
1
1
1
1
2
1
1
POLV output impedance
1
1
3
1
1
1
1
4
1
1
EXIV output voltage "H"
1
1
2
1
1
1
1
1
1
1
EXIV output voltage "L"
1
1
1
1
1
1
1
1
1
1
EXIV output current "L"
1
1
3
1
1
1
2
1
1
1
EXIV output impedance
1
1
3
1
1
1
4
1
1
1
Minimum synchronization separation level
1
2
1
1
1
3
1
1
1
1
HSCTL "H" level threshold voltage
2
1
2
1
1
3
1
1
1
1
HSCTL "L" level threshold voltage
2
1
2
1
1
3
1
1
1
1
CPSEL "H" level threshold voltage
1
2
1
1
3
3
1
1
1
1
CPSEL "L" level threshold voltage
2
1
1
1
3
3
1
1
1
1
9/12
BA7078AF/AS
Multimedia ICs
!Application example
HSCTL
C / H SYNC IN
1
C1
2
H SYNC DET.
18
POLH
17
EXIST H
16
POLV
15
EXIST V
4.7µF
VIDEO IN
C2
3
SYNC SEPA.
1µF
4
C3
VSYNC IN
0.56µF
0.47µF
C7
HOR. SYNC
CONTROL
14
R2
1MΩ
1.5µF
C5
1µF
OPEN : AUTO
H : Front
L : Back
13
HDRV
12
CLAMP
11
VDRV
V SYNC DET.
7
CPSEL
47µF
0.01µF
6
C4
Vcc 5V
V SYNC SEPA.
5
8
CLAMP PULSE GEN.
Vcc
10
9
R1
C6
3.9kΩ
100pF
Fig.2
10/12
BA7078AF/AS
Multimedia ICs
!Attached components
R:
The resistor for limiting the LED current.
Use the resistor of not less than 1W.
R
RPM-850
LED
C1 : 47µF
Coupling capacitor for C / H SYNC IN
A low capacitance increases the size of the input pin waveform’s sag.
C2 : 1µF
Coupling capacitor for VIDEO IN
A low capacitance increase the size of the input pin waveform’s sag.
C3 : 0.56µF
Conversion capacitor for f-V
A low capacitance increase the size of the ripple of the f-V conversion voltage. A large capacitance is not a
problem, but will delay the reaction speed.
C4 : 1.5 µF
Capacitor for POLH (detection of the vertical synchronization signal’s polarity)
The minimum capacitance is determined as follows:
The internal hysteresis comparator does not react when the duty of minimum frequency synchronization
(fV = 40Hz, T = 25ms) is 50%.
CMin. = 16µ × T [F]
A large capacitance is not a probrem, built will deray the reaction speed.
C5 : 1µF
Capacitor for EXIH (detection of the vertical synchronization signal’s existance)
The minimum capacitance is determined as follows:
The internal hysteresis comparator does not react at the minimum frequency synchronization (fV = 40Hz,
T = 25ms)
CMin. = 16µ × T [F]
A large capacitance is not a problem, but will deray the reaction speed.
C6 : 100pF
Constant for setting the clamp pulse width
C7 : 0.47µF Coupling capacitor for VSYNC IN
A low capacitance increases the size of the input pin waveform’s sag.
R1 : 3.9kΩ
A low resistance results in a narrow clamp pulse width. Set no lower than 1kΩ.
R2 : 1MΩ
Discharge current setting resistor for CLAMP IN
11/12
BA7078AF/AS
Multimedia ICs
90
80
70
60
50
40
30
20
10
VCC=5.0V
0
−50
−25
0
25
50
75
100
TEMPERATURE : Ta(°C)
140
Output position : front edge
120
100
80
60
40
20
Vcc=5.0V
0
−50
100
80
60
40
20
Vcc=5.0V
25
50
75
25
50
75
100
140
120
100
80
60
40
20
Vcc=5.0V
0
−50
−25
100
TEMPERATURE : Ta (°C)
0
25
50
75
100
TEMPERATURE : Ta (°C)
Fig.5 VIDEO IN−HDRV
Rising delay time vs.
temperature
3
260
240
2.5
PIN VOLTAGE : VS (V)
120
PROPAGATION DELAY OF RISE TIME : trdvd (ns)
PROPAGATION DELAY OF RISE TIME : trdcl (ns)
Output position back edge
0
0
160
Fig.4 C / HSYNC IN-CLAMP
Rising delay time vs.
temperature
140
−25
−25
TEMPERATURE : Ta (°C)
Fig.3 C / HSYNC IN-HDRV
Rising delay time vs.
temperature
0
−50
PROPAGATION DELAY OF RISE TIME : trdhd (ns)
100
PROPAGATION DELAY OF RISE TIME : trdcl (ns)
PROPAGATION DELAY OF RISE TIME : trdhd (ms)
!Electrical characteristic curves
220
200
180
160
140
2
1.5
1
0.5
120
100
−50
Fig.6 VIDEO IN-CLAMP
Rising delay time vs.
temperature
VCC=5.0V
VCC=5.0V
−25
0
25
50
75
0
0
100
20 40 60 80 100 120 140 160 180 200
TEMPERATURE : Ta (°C)
HORIZONTAL FREQUENCY : fH (kHz)
Fig.7 VSYNC IN-VDRV
Rising delay time vs.
temperature
Fig.8 VSEPA horizontal
frequency vs.
pin voltage
!External dimensions (Unit : mm)
BA7078AF
BA7078AS
11.2±0.2
19.4 ± 0.3
10
18
10
1
9
0.4±0.1
0.3Min.
0.51Min.
6.5 ± 0.3
1.27
3.95 ± 0.3
9
3.4 ± 0.2
0.11
1.8±0.1
1
0.15±0.1
5.4±0.2
7.8±0.3
18
7.62
0.3 ± 0.1
1.778
0.5 ± 0.1
0 ∼ 15
0.15
SOP18
SDIP18
12/12
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document use silicon as a basic material.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.0