74AUP1G14 Low-power Schmitt-trigger inverter Rev. 01 — 20 July 2005 Product data sheet 1. General description The 74AUP1G14 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families. This device ensures a very low static and dynamic power consumption across the entire VCC range from 0.8 V to 3.6 V. This device is fully specified for partial Power-down applications using IOFF. The IOFF circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. The 74AUP1G14 provides a single inverting Schmitt-trigger which accepts standard input signals. It is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V(th)LH and the negative voltage V(th)HL is defined as the input hysteresis voltage Vhys. 2. Features ■ Wide supply voltage range from 0.8 V to 3.6 V ■ High noise immunity ■ ESD protection: ◆ HBM JESD22-A114-C exceeds 2000 V ◆ MM JESD22-A115-A exceeds 200 V ◆ CDM JESD22-C101-C exceeds 1000 V ■ Low static power consumption; ICC = 0.9 µA (maximum) ■ Latch-up performance exceeds 100 mA per JESD 78 Class II ■ Inputs accept voltages up to 3.6 V ■ Low noise overshoot and undershoot < 10 % of VCC ■ IOFF circuitry provides partial Power-down mode operation ■ Multiple package options ■ Specified from −40 °C to +85 °C and −40 °C to +125 °C 3. Applications ■ Wave and pulse shaper ■ Astable multivibrator ■ Monostable multivibrator 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 4. Quick reference data Table 1: Quick reference data GND = 0 V; Tamb = 25 °C; tr = tf ≤ 3 ns. Symbol Parameter tPHL, tPLH propagation delay A to Y Conditions Min Typ Max Unit CL = 5 pF; RL = 1 MΩ; VCC = 0.8 V - 20.3 - ns CL = 5 pF; RL = 1 MΩ; VCC = 1.1 V to 1.3 V 3.0 5.9 11.7 ns CL = 5 pF; RL = 1 MΩ; VCC = 1.4 V to 1.6 V 2.6 4.3 7.6 ns CL = 5 pF; RL = 1 MΩ; VCC = 1.65 V to 1.95 V 2.2 3.7 6.2 ns CL = 5 pF; RL = 1 MΩ; VCC = 2.3 V to 2.7 V 2.0 3.1 4.8 ns CL = 5 pF; RL = 1 MΩ; VCC = 3.0 V to 3.6 V 1.9 2.8 4.0 ns input capacitance Ci power dissipation capacitance CPD - 0.8 - pF VCC = 1.8 V; f = 10 MHz [1] [2] - 4.6 - pF VCC = 3.3 V; f = 10 MHz [1] [2] - 6.1 - pF [1] CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; Σ(CL × VCC2 × fo) = sum of the outputs. [2] The condition is VI = GND to VCC. 5. Ordering information Table 2: Ordering information Type number Package Temperature range Name Description Version 74AUP1G14GW −40 °C to +125 °C TSSOP5 plastic thin shrink small outline package; 5 leads; body width 1.25 mm SOT353-1 74AUP1G14GM −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads; SOT886 6 terminals; body 1 × 1.45 × 0.5 mm 6. Marking Table 3: Marking Type number Marking code 74AUP1G14GW pF 74AUP1G14GM pF 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 2 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 7. Functional diagram A 2 Y 4 2 4 mna023 mna024 Fig 1. Logic symbol Fig 2. IEC logic symbol A Y mna025 Fig 3. Logic diagram 8. Pinning information 8.1 Pinning 14 n.c. 1 A 2 GND 3 5 n.c. 1 6 VCC A 2 5 n.c. GND 3 4 Y VCC 14 4 Y 001aab656 Transparent top view 001aab655 Fig 4. Pin configuration SOT353-1 (TSSOP5) Fig 5. Pin configuration SOT886 (XSON6) 8.2 Pin description Table 4: Symbol Pin description Pin Description TSSOP5 XSON6 n.c. 1 1 not connected A 2 2 data input A GND 3 3 ground (0 V) Y 4 4 data output Y n.c. - 5 not connected VCC 5 6 supply voltage 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 3 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 9. Functional description 9.1 Function table Table 5: Function table [1] Input Output A Y L H H L [1] H = HIGH voltage level; L = LOW voltage level. 10. Limiting values Table 6: Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions VCC supply voltage IIK input clamping current VI input voltage IOK output clamping current VO > VCC or VO < 0 V VO output voltage active mode Power-down mode Max Unit −0.5 +4.6 V - −50 mA −0.5 +4.6 V - ±50 mA [1] −0.5 VCC + 0.5 V [1] −0.5 +4.6 V - ±20 mA VI < 0 V [1] IO output current ICC quiescent supply current - +50 mA IGND ground current - −50 mA Tstg storage temperature −65 +150 °C - 250 mW Ptot total power dissipation VO = 0 V to VCC Tamb = −40 °C to +125 °C [2] [1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] For TSSOP5 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K. For XSON6 packages: above 45 °C the value of Ptot derates linearly with 2.4 mW/K. 9397 750 14676 Product data sheet Min © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 4 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 11. Recommended operating conditions Table 7: Recommended operating conditions Symbol Parameter Conditions Min Max Unit VCC supply voltage 0.8 3.6 V VI input voltage 0 3.6 V VO output voltage Tamb active mode 0 VCC V Power-down mode; VCC = 0 V 0 3.6 V −40 +125 °C ambient temperature 12. Static characteristics Table 8: Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max Unit IO = −20 µA; VCC = 0.8 V to 3.6 V VCC − 0.1 - - V Tamb = 25 °C VOH VOL HIGH-state output voltage LOW-state output voltage VI = VIH or VIL IO = −1.1 mA; VCC = 1.1 V 0.75 × VCC - - V IO = −1.7 mA; VCC = 1.4 V 1.11 - - V IO = −1.9 mA; VCC = 1.65 V 1.32 - - V IO = −2.3 mA; VCC = 2.3 V 2.05 - - V IO = −3.1 mA; VCC = 2.3 V 1.9 - - V IO = −2.7 mA; VCC = 3.0 V 2.72 - - V IO = −4.0 mA; VCC = 3.0 V 2.6 - - V VI = VIH or VIL IO = 20 µA; VCC = 0.8 V to 3.6 V - - 0.1 V IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V IO = 1.7 mA; VCC = 1.4 V - - 0.31 V IO = 1.9 mA; VCC = 1.65 V - - 0.31 V IO = 2.3 mA; VCC = 2.3 V - - 0.31 V IO = 3.1 mA; VCC = 2.3 V - - 0.44 V IO = 2.7 mA; VCC = 3.0 V - - 0.31 V IO = 4.0 mA; VCC = 3.0 V - - 0.44 V ILI input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.1 µA IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.2 µA ∆IOFF additional power-off leakage VI or VO = 0 V to 3.6 V; current VCC = 0 V to 0.2 V - - ±0.2 µA ICC quiescent supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 0.5 µA ∆ICC additional quiescent supply current VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V - - 40 µA Ci input capacitance VI = GND or VCC; VCC = 0 V to 3.6 V - 0.8 - pF Co output capacitance VO = GND; VCC = 0 V - 1.7 - pF 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 5 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter Table 8: Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max Unit Tamb = −40 °C to +85 °C VOH VOL HIGH-state output voltage LOW-state output voltage VI = VIH or VIL IO = −20 µA; VCC = 0.8 V to 3.6 V VCC − 0.1 - - V IO = −1.1 mA; VCC = 1.1 V 0.7 × VCC - - V IO = −1.7 mA; VCC = 1.4 V 1.03 - - V IO = −1.9 mA; VCC = 1.65 V 1.30 - - V IO = −2.3 mA; VCC = 2.3 V 1.97 - - V IO = −3.1 mA; VCC = 2.3 V 1.85 - - V IO = −2.7 mA; VCC = 3.0 V 2.67 - - V IO = −4.0 mA; VCC = 3.0 V 2.55 - - V IO = 20 µA; VCC = 0.8 V to 3.6 V - - 0.1 V IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V IO = 1.7 mA; VCC = 1.4 V - - 0.37 V VI = VIH or VIL IO = 1.9 mA; VCC = 1.65 V - - 0.35 V IO = 2.3 mA; VCC = 2.3 V - - 0.33 V IO = 3.1 mA; VCC = 2.3 V - - 0.45 V IO = 2.7 mA; VCC = 3.0 V - - 0.33 V - - 0.45 V ILI input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V IO = 4.0 mA; VCC = 3.0 V - - ±0.5 µA IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.5 µA ∆IOFF additional power-off leakage VI or VO = 0 V to 3.6 V; current VCC = 0 V to 0.2 V - - ±0.6 µA ICC quiescent supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 0.9 µA ∆ICC additional quiescent supply current VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V - - 50 µA Tamb = −40 °C to +125 °C VOH HIGH-state output voltage VI = VIH or VIL IO = −20 µA; VCC = 0.8 V to 3.6 V VCC − 0.11 - - V IO = −1.1 mA; VCC = 1.1 V 0.6 × VCC - - V IO = −1.7 mA; VCC = 1.4 V 0.93 - - V IO = −1.9 mA; VCC = 1.65 V 1.17 - - V IO = −2.3 mA; VCC = 2.3 V 1.77 - - V IO = −3.1 mA; VCC = 2.3 V 1.67 - - V IO = −2.7 mA; VCC = 3.0 V 2.40 - - V IO = −4.0 mA; VCC = 3.0 V 2.30 - - V 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 6 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter Table 8: Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions VOL VI = VIH or VIL LOW-state output voltage Min Typ Max Unit IO = 20 µA; VCC = 0.8 V to 3.6 V - - 0.11 V IO = 1.1 mA; VCC = 1.1 V - - 0.33 × VCC V IO = 1.7 mA; VCC = 1.4 V - - 0.41 V IO = 1.9 mA; VCC = 1.65 V - - 0.39 V IO = 2.3 mA; VCC = 2.3 V - - 0.36 V IO = 3.1 mA; VCC = 2.3 V - - 0.50 V IO = 2.7 mA; VCC = 3.0 V - - 0.36 V IO = 4.0 mA; VCC = 3.0 V - - 0.50 V ±0.75 µA ILI input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - VI or VO = 0 V to 3.6 V; VCC = 0 V IOFF power-off leakage current - - ±0.75 µA ∆IOFF additional power-off leakage VI or VO = 0 V to 3.6 V; current VCC = 0 V to 0.2 V - - ±0.75 µA ICC quiescent supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 1.4 µA ∆ICC additional quiescent supply current VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V - - 75 µA 13. Dynamic characteristics Table 9: Dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7 Symbol Parameter Conditions Min Typ VCC = 0.8 V - VCC = 1.1 V to 1.3 V [1] Max Unit 20.3 - ns 3.0 5.9 11.7 ns VCC = 1.4 V to 1.6 V 2.6 4.3 7.6 ns VCC = 1.65 V to 1.95 V 2.2 3.7 6.2 ns VCC = 2.3 V to 2.7 V 2.0 3.1 4.8 ns VCC = 3.0 V to 3.6 V 1.9 2.8 4.0 ns VCC = 0.8 V - 23.9 - ns VCC = 1.1 V to 1.3 V 3.5 6.7 13.4 ns VCC = 1.4 V to 1.6 V 3.0 5.0 8.7 ns VCC = 1.65 V to 1.95 V 2.7 4.3 7.0 ns VCC = 2.3 V to 2.7 V 2.4 3.6 5.5 ns VCC = 3.0 V to 3.6 V 2.4 3.4 4.6 ns Tamb = 25 °C; CL = 5 pF tPHL, tPLH propagation delay A to Y see Figure 6 Tamb = 25 °C; CL = 10 pF tPHL, tPLH propagation delay A to Y see Figure 6 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 7 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter Table 9: Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7 Symbol Parameter Conditions Min Typ [1] Max Unit Tamb = 25 °C; CL = 15 pF tPHL, tPLH propagation delay A to Y see Figure 6 VCC = 0.8 V - 27.3 - ns VCC = 1.1 V to 1.3 V 3.9 7.5 14.0 ns VCC = 1.4 V to 1.6 V 3.3 5.5 9.7 ns VCC = 1.65 V to 1.95 V 3.0 4.7 7.9 ns VCC = 2.3 V to 2.7 V 2.8 4.1 5.9 ns VCC = 3.0 V to 3.6 V 2.7 3.8 5.0 ns Tamb = 25 °C; CL = 30 pF tPHL, tPLH propagation delay A to Y see Figure 6 VCC = 0.8 V - 37.7 - ns VCC = 1.1 V to 1.3 V 5.1 9.8 17.8 ns VCC = 1.4 V to 1.6 V 4.3 7.1 12.3 ns VCC = 1.65 V to 1.95 V 3.9 6.0 10.1 ns VCC = 2.3 V to 2.7 V 3.6 5.2 7.4 ns VCC = 3.0 V to 3.6 V 3.5 4.9 6.3 ns VCC = 0.8 V - 3.4 - pF VCC = 1.1 V to 1.3 V - 3.9 - pF VCC = 1.4 V to 1.6 V - 4.2 - pF VCC = 1.65 V to 1.95 V - 4.6 - pF VCC = 2.3 V to 2.7 V - 5.4 - pF VCC = 3.0 V to 3.6 V - 6.1 - pF Tamb = 25 °C power dissipation capacitance f = 10 MHz CPD [1] All typical values are measured at nominal VCC. [2] CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; Σ(CL × VCC2 × fo) = sum of the outputs. [3] The condition is VI = GND to VCC. 9397 750 14676 Product data sheet [2] [3] © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 8 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter Table 10: Dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7 Symbol Parameter −40 °C to +85 °C Conditions −40 °C to +125 °C Unit Min Max Min Max VCC = 1.1 V to 1.3 V 2.2 13.6 2.2 15.0 ns VCC = 1.4 V to 1.6 V 1.8 8.9 1.8 9.8 ns VCC = 1.65 V to 1.95 V 1.9 7.3 1.9 8.1 ns VCC = 2.3 V to 2.7 V 1.7 5.9 1.7 6.5 ns VCC = 3.0 V to 3.6 V 1.7 4.9 1.7 5.4 ns VCC = 1.1 V to 1.3 V 2.5 15.8 2.5 17.4 ns VCC = 1.4 V to 1.6 V 2.2 10.3 2.2 11.4 ns CL = 5 pF tPHL, tPLH propagation delay A to Y see Figure 6 CL = 10 pF tPHL, tPLH propagation delay A to Y see Figure 6 VCC = 1.65 V to 1.95 V 2.3 8.4 2.3 9.3 ns VCC = 2.3 V to 2.7 V 2.1 6.8 2.1 7.5 ns VCC = 3.0 V to 3.6 V 2.1 5.6 2.1 6.2 ns VCC = 1.1 V to 1.3 V 2.8 17.3 2.8 19.1 ns VCC = 1.4 V to 1.6 V 2.9 11.5 2.9 12.7 ns VCC = 1.65 V to 1.95 V 2.6 9.4 2.6 10.4 ns VCC = 2.3 V to 2.7 V 2.5 7.4 2.5 8.2 ns VCC = 3.0 V to 3.6 V 2.4 6.1 2.4 6.8 ns CL = 15 pF tPHL, tPLH propagation delay A to Y see Figure 6 CL = 30 pF tPHL, tPLH propagation delay A to Y see Figure 6 VCC = 1.1 V to 1.3 V 4.5 20.5 4.5 22.6 ns VCC = 1.4 V to 1.6 V 3.8 14.7 3.8 16.2 ns VCC = 1.65 V to 1.95 V 3.4 12.0 3.4 13.2 ns VCC = 2.3 V to 2.7 V 3.3 8.8 3.3 9.7 ns VCC = 3.0 V to 3.6 V 3.2 7.3 3.2 8.1 ns 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 9 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 14. Waveforms VI VM A input GND t PHL t PLH VOH VM Y output VOL mna640 Measurement points are given in Table 11. Logic levels: VOL and VOH are typical output voltage drop that occur with the output load. Fig 6. The data input (A) to output (Y) propagation delays Table 11: Measurement points Supply voltage Output Input VCC VM VM VI tr = tf 0.8 V to 3.6 V 0.5 × VCC 0.5 × VCC VCC ≤ 3.0 ns VCC VEXT 5 kΩ PULSE GENERATOR VI VO DUT RT CL RL 001aac521 Test data is given in Table 12. Definitions for test circuit: RL = Load resistor CL = Load capacitance including jig and probe capacitance RT = Termination resistance should be equal to the output impedance Zo of the pulse generator Fig 7. Load circuitry for switching times Table 12: Test data Supply voltage Load VCC CL 0.8 V to 3.6 V 5 pF, 10 pF, 5 kΩ or 1 MΩ open 15 pF and 30 pF [1] VEXT RL [1] tPZH, tPHZ tPZL, tPLZ GND 2 × VCC For measuring enable and disable times RL = 5 kΩ, for measuring propagation delays, setup and hold times and pulse width RL = 1 MΩ. 9397 750 14676 Product data sheet tPLH, tPHL © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 10 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 15. Transfer characteristics Table 13: Transfer characteristics Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 7 Symbol Parameter Conditions Min Typ Max Unit 0.30 - 0.60 V VCC = 1.1 V 0.53 - 0.90 V VCC = 1.4 V 0.74 - 1.11 V VCC = 1.65 V 0.91 - 1.29 V VCC = 2.3 V 1.37 - 1.77 V VCC = 3.0 V 1.88 - 2.29 V Tamb = 25 °C V(th)LH V(th)HL Vhys positive-going see Figure 8 and Figure 9 threshold voltage VCC = 0.8 V negative-going see Figure 8 and Figure 9 threshold voltage VCC = 0.8 V hysteresis voltage (V(th)LH − V(th)HL) 0.10 - 0.60 V VCC = 1.1 V 0.26 - 0.65 V VCC = 1.4 V 0.39 - 0.75 V VCC = 1.65 V 0.47 - 0.84 V VCC = 2.3 V 0.69 - 1.04 V VCC = 3.0 V 0.88 - 1.24 V VCC = 0.8 V 0.07 - 0.50 V VCC = 1.1 V 0.08 - 0.46 V VCC = 1.4 V 0.18 - 0.56 V VCC = 1.65 V 0.27 - 0.66 V VCC = 2.3 V 0.53 - 0.92 V VCC = 3.0 V 0.79 - 1.31 V see Figure 8, Figure 9, Figure 10 and Figure 11 Tamb = −40 °C to +85 °C V(th)LH V(th)HL positive-going see Figure 8 and Figure 9 threshold voltage VCC = 0.8 V 0.30 - 0.60 V VCC = 1.1 V 0.53 - 0.90 V VCC = 1.4 V 0.74 - 1.11 V VCC = 1.65 V 0.91 - 1.29 V VCC = 2.3 V 1.37 - 1.77 V VCC = 3.0 V 1.88 - 2.29 V 0.10 - 0.60 V VCC = 1.1 V 0.26 - 0.65 V VCC = 1.4 V 0.39 - 0.75 V VCC = 1.65 V 0.47 - 0.84 V VCC = 2.3 V 0.69 - 1.04 V VCC = 3.0 V 0.88 - 1.24 V negative-going see Figure 8 and Figure 9 threshold voltage VCC = 0.8 V 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 11 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter Table 13: Transfer characteristics …continued Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 7 Symbol Parameter Conditions Min Typ Max Unit Vhys hysteresis voltage (V(th)LH − V(th)HL) see Figure 8, Figure 9, Figure 10 and Figure 11 VCC = 0.8 V 0.07 - 0.50 V VCC = 1.1 V 0.08 - 0.46 V VCC = 1.4 V 0.18 - 0.56 V VCC = 1.65 V 0.27 - 0.66 V VCC = 2.3 V 0.53 - 0.92 V VCC = 3.0 V 0.79 - 1.31 V Tamb = −40 °C to +125 °C V(th)LH V(th)HL Vhys positive-going see Figure 8 and Figure 9 threshold voltage VCC = 0.8 V 0.30 - 0.62 V VCC = 1.1 V 0.53 - 0.92 V VCC = 1.4 V 0.74 - 1.13 V VCC = 1.65 V 0.91 - 1.31 V VCC = 2.3 V 1.37 - 1.80 V VCC = 3.0 V 1.88 - 2.32 V 0.10 - 0.60 V VCC = 1.1 V 0.26 - 0.65 V VCC = 1.4 V 0.39 - 0.75 V VCC = 1.65 V 0.47 - 0.84 V VCC = 2.3 V 0.69 - 1.04 V VCC = 3.0 V 0.88 - 1.24 V VCC = 0.8 V 0.07 - 0.50 V VCC = 1.1 V 0.08 - 0.46 V VCC = 1.4 V 0.18 - 0.56 V VCC = 1.65 V 0.27 - 0.66 V VCC = 2.3 V 0.53 - 0.92 V VCC = 3.0 V 0.79 - 1.31 V negative-going see Figure 8 and Figure 9 threshold voltage VCC = 0.8 V hysteresis voltage (V(th)LH − V(th)HL) see Figure 8, Figure 9, Figure 10 and Figure 11 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 12 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 16. Waveforms transfer characteristics VI VO V(th)LH Vhys V(th)HL VO mna208 VI Vhys V(th)HL V(th)LH V(th)LH and V(th)HL limits at 70 % and 20 %. mna207 Fig 8. Transfer characteristic Fig 9. Definition of V(th)LH, V(th)HL and Vhys 001aad025 1.2 ICC (mA) 0.8 0.4 0 0 0.4 0.8 1.2 1.6 2.0 VI (V) Fig 10. Typical transfer characteristics; VCC = 1.8 V 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 13 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 001aad026 4 ICC (mA) 3 2 1 0 0 1 2 3 VI (V) Fig 11. Typical transfer characteristics; VCC = 3.0 V 17. Application information The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula: Pad = fi × (tr × ICC(AV) + tf × ICC(AV)) × VCC where: Pad = additional power dissipation (µW); fi = input frequency (MHz); tr = input rise time (ns); 10 % to 90 %; tf = input fall time (ns); 90 % to 10 %; ICC(AV) = average additional supply current (µA). Average ICC differs with positive or negative input transitions, as shown in Figure 12. An example of a relaxation circuit using the 74AUP1G14 is shown in Figure 13. 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 14 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 001aad027 1.2 (1) ICC (mA) 0.8 0.4 (2) 0 0.8 1.8 2.8 3.8 VCC (V) (1) Positive-going edge. (2) Negative-going edge. Fig 12. Average ICC as a function of VCC R C mna035 1 1 f = --- ≈ ----------------T a × RC Average values for variable a are given in Table 14. Fig 13. Relaxation oscillator Table 14: Variable values Supply voltage Variable a 1.1 V 1.28 1.5 V 1.22 1.8 V 1.24 2.8 V 1.34 3.3 V 1.45 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 15 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 18. Package outline TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm E D SOT353-1 A X c y HE v M A Z 5 4 A2 A (A3) A1 θ 1 Lp 3 L e w M bp detail X e1 0 1.5 3 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D(1) E(1) e e1 HE L Lp v w y Z(1) θ mm 1.1 0.1 0 1.0 0.8 0.15 0.30 0.15 0.25 0.08 2.25 1.85 1.35 1.15 0.65 1.3 2.25 2.0 0.425 0.46 0.21 0.3 0.1 0.1 0.60 0.15 7° 0° Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. OUTLINE VERSION SOT353-1 REFERENCES IEC JEDEC JEITA MO-203 SC-88A EUROPEAN PROJECTION ISSUE DATE 00-09-01 03-02-19 Fig 14. Package outline SOT353-1 (TSSOP5) 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 16 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm SOT886 b 1 2 3 4× (2) L L1 e 6 5 e1 4 e1 6× A (2) A1 D E terminal 1 index area 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A (1) max A1 max b D E e e1 L L1 mm 0.5 0.04 0.25 0.17 1.5 1.4 1.05 0.95 0.6 0.5 0.35 0.27 0.40 0.32 Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. OUTLINE VERSION SOT886 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 04-07-15 04-07-22 MO-252 Fig 15. Package outline SOT886 (XSON6) 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 17 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 19. Abbreviations Table 15: Abbreviations Acronym Description CMOS Complementary Metal Oxide Semiconductor TTL Transistor Transistor Logic HBM Human Body Model ESD ElectroStatic Discharge MM Machine Model CDM Charged Device Model 20. Revision history Table 16: Revision history Document ID Release date Data sheet status Change notice Doc. number Supersedes 74AUP1G14_1 20050720 Product data sheet - 9397 750 14676 - 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 18 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 21. Data sheet status Level Data sheet status [1] Product status [2] [3] Definition I Objective data Development This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. II Preliminary data Qualification This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. III Product data Production This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). [1] Please consult the most recently issued data sheet before initiating or completing a design. [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. 22. Definitions customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 24. Trademarks 23. Disclaimers Notice — All referenced brands, product names, service names and trademarks are the property of their respective owners. Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors 25. Contact information For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: [email protected] 9397 750 14676 Product data sheet © Koninklijke Philips Electronics N.V. 2005. All rights reserved. Rev. 01 — 20 July 2005 19 of 20 74AUP1G14 Philips Semiconductors Low-power Schmitt-trigger inverter 26. Contents 1 2 3 4 5 6 7 8 8.1 8.2 9 9.1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Quick reference data . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Functional description . . . . . . . . . . . . . . . . . . . 4 Function table . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended operating conditions. . . . . . . . 5 Static characteristics. . . . . . . . . . . . . . . . . . . . . 5 Dynamic characteristics . . . . . . . . . . . . . . . . . . 7 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Transfer characteristics. . . . . . . . . . . . . . . . . . 11 Waveforms transfer characteristics . . . . . . . . 13 Application information. . . . . . . . . . . . . . . . . . 14 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 18 Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 19 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Contact information . . . . . . . . . . . . . . . . . . . . 19 © Koninklijke Philips Electronics N.V. 2005 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Date of release: 20 July 2005 Document number: 9397 750 14676 Published in The Netherlands