MAC7100EVB Users Manual Revision 1.1 November 2004 Note – This users manual is for RE11505F Rev O PCBs MAC7100EVB Users Manual Rev 1.1 November 2004 Revision History: Revision 0.2 1.0 1.1 Date 27 June 2003 18 Sept 2003 12 Nov 2004 Author A. Robertson A. Robertson A. Robertson Comment Initial Release – Prototype PCB Only Changes for RE11505F Rev O Production PCB Changed to Freescale. Updated MAC family table Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Learn More: For more information about Freescale products, please visit www.freescale.com Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc., 2004; All Rights Reserved MAC7100EVBUM/D i MAC7100EVB Users Manual Rev 1.1 November 2004 INDEX 1. INTRODUCTION..................................................................................................................................................... 1 1.1 2. EVB FEATURE LIST............................................................................................................................................ 2 CONFIGURATION .................................................................................................................................................. 3 2.1 POWER SUPPLY CONFIGURATION ....................................................................................................................... 4 2.1.1 Power Supply Input Connectors ................................................................................................................... 4 2.1.2 Power Supply Configuration Jumpers (J41, J42 and J43) ........................................................................... 5 2.1.3 Power Switch (SW4) ..................................................................................................................................... 6 2.1.4 Power Status LED’s and Fuse ...................................................................................................................... 7 2.2 MCU POWER SUPPLY JUMPERS (J15, J19, J21, J22 AND J27)............................................................................. 7 2.3 ADC REFERENCE VOLTAGE SELECT (J7, J8)...................................................................................................... 8 2.4 MCU CLOCK CONTROL (JUMPERS J23, J29, J30 AND J32) ................................................................................. 9 2.4.1 Clock Selection ............................................................................................................................................. 9 2.4.2 PLL Control (J45)....................................................................................................................................... 10 2.5 ABORT SWITCH AND CONTROL (J1, SW3)........................................................................................................ 11 2.6 RESET SWITCH, LEDS AND LVI CONTROL (JUMPERS J10, J11, J12, SW2) ...................................................... 11 2.6.1 Reset LEDs.................................................................................................................................................. 12 2.7 RESET BUFFERING SCHEME .............................................................................................................................. 12 2.8 RESET MODE CONFIGURATION (SW1) ............................................................................................................. 13 2.9 JTAG AND NEXUS CONFIGURATION (J13, J18) ................................................................................................ 14 2.9.1 JTAG Configuration.................................................................................................................................... 15 2.9.2 Nexus Configuration (J14, J20) .................................................................................................................. 15 2.10 EXTERNAL MEMORY CONFIGURATION............................................................................................................. 17 2.10.1 Buffer Control (J26)............................................................................................................................... 17 2.10.2 Chip Select Control (J24)....................................................................................................................... 18 2.10.3 External SRAM Configuration (J35)...................................................................................................... 19 2.10.4 External FLASH Configuration (J31, J33, J34)..................................................................................... 20 2.11 ETHERNET CONTROLLER CONFIGURATION (JUMPERS J36, J37, J38, J39, J40) ................................................. 21 2.12 CAN CONFIGURATION (J2, J3, J4).................................................................................................................... 23 2.13 RS232 CONFIGURATION (J5, J6, J9) ................................................................................................................. 24 2.14 TERMINATION RESISTOR CONTROL (J28) ......................................................................................................... 25 2.15 MCU TA JUMPER (J25).................................................................................................................................... 25 3. DEFAULT JUMPER SUMMARY TABLE ......................................................................................................... 26 4. JUMPER CONFIGURATIONS FOR EVB OPERATING MODE ................................................................... 27 5. USER CONNECTOR DESCRIPTIONS .............................................................................................................. 28 5.1 5.2 5.3 5.4 5.4.1 5.5 5.6 5.7 6. EXPANSION CONNECTORS .............................................................................................................................. 33 6.1 7. PORT A / DATABUS (P12) ................................................................................................................................ 28 PORT B / I2C / SPI (P10) .................................................................................................................................. 28 PORT C / ADDRESS [0..15] (P13)...................................................................................................................... 29 PORT D / ADDRESS [16..21] / CONTROL (P14 AND J44) ................................................................................... 29 PD2 / CLKOUT impedance matching control (J44)................................................................................... 30 PORT E / ADC AND ANALOGUE REFERENCE (P11 AND J17) ............................................................................ 30 PORT F / EMIOS AND USER LED’S (P9, J16).................................................................................................. 31 PORT G / CAN / SCI (P8) ................................................................................................................................. 32 USE OF MCU ADAPTER BOARDS ....................................................................................................................... 34 PROTOTYPE AREA.............................................................................................................................................. 35 APPENDIX A - BILL OF MATERIALS APPENDIX B - SCHEMATICS MAC7100EVBUM/D ii MAC7100EVB Users Manual Rev 1.1 November 2004 Index of Figures and Tables FIGURE 2-1 EVB FUNCTIONAL BLOCKS ........................................................................................................................... 3 FIGURE 2-2 2.1MM POWER CONNECTOR .............................................................................................................................. 4 FIGURE 2-3 2-LEVER POWER CONNECTOR ........................................................................................................................... 4 FIGURE 2-4 PC POWER CONNECTOR .................................................................................................................................... 5 FIGURE 2-5 VDDIO REGULATOR VARIABLE OUTPUT ......................................................................................................... 6 FIGURE 2-6 ADC REFERENCE VOLTAGE SELECTION ........................................................................................................... 8 FIGURE 2-7 EVB CLOCK SELECTION ................................................................................................................................... 9 FIGURE 2-8 PIERCE OSCILLATOR CONFIGURATION ........................................................................................................... 10 FIGURE 2-9 EVB RESET BUFFERING SCHEME .................................................................................................................... 12 FIGURE 2-10 RESET CONFIGURATION (MODE) SWITCH ..................................................................................................... 13 FIGURE 2-11 JTAG CONNECTORS...................................................................................................................................... 15 FIGURE 2-12 EXTERNAL MEMORY SCHEME....................................................................................................................... 17 FIGURE 2-13 CHIP SELECT ROUTING ................................................................................................................................. 18 FIGURE 2-14 ETHERNET CONTROLLER BLOCK DIAGRAM .................................................................................................. 21 FIGURE 2-15 CAN PHYSICAL INTERFACE CONNECTOR ..................................................................................................... 23 FIGURE 2-16 RS232 PHYSICAL INTERFACE CONNECTOR ................................................................................................... 24 FIGURE 5-1 J16 AND USER LED CONTROL ......................................................................................................................... 31 TABLE 1-1 MAC7100 PRODUCT FAMILY ............................................................................................................................ 1 TABLE 1-2 MAC7100 PACKAGE OPTIONS ........................................................................................................................... 1 TABLE 2-1 REGULATOR CONFIGURATION JUMPERS ............................................................................................................. 5 TABLE 2-2 POWER SUPPLY DISTRIBUTION ........................................................................................................................... 6 TABLE 2-3 MCU POWER SUPPLY JUMPERS ......................................................................................................................... 7 TABLE 2-4 CLOCK SOURCE JUMPER SELECTION .................................................................................................................. 9 TABLE 2-5 PLL DISABLE JUMPER ...................................................................................................................................... 10 TABLE 2-6 ABORT ENABLE JUMPER................................................................................................................................... 11 TABLE 2-7 LVI RESISTOR LADDER VALUES ...................................................................................................................... 11 TABLE 2-8 LVI CONTROL JUMPERS ................................................................................................................................... 11 TABLE 2-9 MAC7100 RESET CONFIGURATION ................................................................................................................. 13 TABLE 2-10 JTAG / NEXUS TARGET RESET ROUTING JUMPER J13 ................................................................................. 14 TABLE 2-11 JTAG / NEXUS TCLK TERMINATION J18..................................................................................................... 14 TABLE 2-12 NEXUS CONNECTORS ..................................................................................................................................... 15 TABLE 2-13 EVTI TERMINATION ENABLE JUMPERS J14, J20 ............................................................................................ 16 TABLE 2-14. NEXUS DEBUG CONNECTOR PINOUT ........................................................................................................... 16 TABLE 2-15 EBI BUFFER CONTROL JUMPER J26 ............................................................................................................... 17 TABLE 2-16 CHIP SELECT JUMPER J24............................................................................................................................... 18 TABLE 2-17 SRAM POWER SUPPLY JUMPER J35............................................................................................................... 19 TABLE 2-18 SRAM PIN COMPATIBLE DEVICES ................................................................................................................. 19 TABLE 2-19 FLASH CONTROL JUMPERS ........................................................................................................................... 20 TABLE 2-20 AMD FLASH PIN COMPATIBLE DEVICES ........................................................................................................ 20 TABLE 2-21 ETHERNET CIRCUIT CONTROL JUMPERS ......................................................................................................... 22 TABLE 2-22 CAN CONTROL JUMPERS ............................................................................................................................... 23 TABLE 2-23 RS232 CONTROL JUMPERS ............................................................................................................................. 24 TABLE 2-24 EBI PULLUP RESISTOR CONTROL (J29).......................................................................................................... 25 TABLE 2-25 JUMPER J25 .................................................................................................................................................... 25 TABLE 3-1 DEFAULT JUMPER POSITIONS ........................................................................................................................... 26 TABLE 4-1 CRITICAL JUMPER POSITIONS ........................................................................................................................... 27 TABLE 5-1 CONNECTOR P12 – PORTA / DATABUS ............................................................................................................. 28 TABLE 5-2 CONNECTOR P10 – PORTB / I2C / SPI............................................................................................................... 28 TABLE 5-3 CONNECTOR P13 – PORT C / ADDRESS ............................................................................................................. 29 TABLE 5-4 CONNECTOR P14 – PORT D / ADDRESS / CONTROL .......................................................................................... 29 TABLE 5-5 PD2 / CLKOUT TERMINATION BYPASS JUMPER ............................................................................................. 30 TABLE 5-6 CONNECTOR P11 – PORT E / ADC.................................................................................................................... 30 TABLE 5-7 RV1 CONNECTION JUMPER J17........................................................................................................................ 30 TABLE 5-8 CONNECTOR P9 – PORT F / EMIOS.................................................................................................................. 31 TABLE 5-9 CONNECTOR P8 – PORT G / CAN / SCI ............................................................................................................ 32 TABLE 6-1 EXPANSION CONNECTOR PART NUMBERS ........................................................................................................ 33 TABLE 6-2 EXPANSION CONNECTOR 1 (P5) ....................................................................................................................... 33 TABLE 6-3 EXPANSION CONNECTOR 2 (P19) ..................................................................................................................... 34 MAC7100EVBUM/D iii MAC7100EVB Users Manual Rev 1.1 November 2004 1. Introduction This document details the setup and configuration of the Freescale MAC7100 evaluation board (hereafter referred to as the EVB). The EVB is intended to provide a mechanism for easy customer evaluation of the MAC7100 family of microprocessors and to facilitate hardware and software development. The table below shows the MAC7100 family portfolio (correct at time of writing this document). Table 1-1 MAC7100 Product Family Part Number Flash Size RAM Size Expanded Bus MAC71x6 1MB 48KB Optional MAC71x5 768KB 40KB Optional MAC71x1 512KB 32KB Optional MAC71x4 384KB 20KB Contact Freescale MAC71x2 256KB 16KB Contact Freescale The “x” in the part number field defines the package type and pinout options of the MCU. For information purposes, the package types are detailed below. Table 1-2 MAC7100 Package Options Package Designator 0 1 2 3 4 Package Type 144 LQFP 144 LQFP 112 LQFP 208 MAP BGA 100 LQFP ADC Channels 32 16 16 32 16 External Bus No Yes No Yes No Note that not all packages are available for all devices. The information detailed in the tables above is subject to change. For the latest product information, please consult the MAC7100 website at www.freescale.com/mac7100, or speak to your Freescale representative. The MAC7100 EVB is populated with the MAC7111 MCU. As can be seen from the tables above, this is a 144QFP device with 512Kbytes of Flash and 32Kbytes of SRAM. Should you wish to develop using any of the lower specification devices, this can be achieved by emulating the feature set with the MAC7111 on the EVB. If you are developing with a higher specification device, EVB adapter boards are available for this purpose. For important information on the use of adapter board, please see section 6.1. All of the MAC7100 family members in the same package are pin compatible (eg the MAC7111 is pin compatible to the MAC7115). The EVB is intended for bench / laboratory use and has been designed using normal temperature specified components (+70°C). Throughout this document, active low MCU signals are denoted with an “x” added onto the signal name, eg XCLKSx. MAC7100EVBUM/D Page 1 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 1.1 EVB Feature List The EVB provides the following features: − − − − − − − − − − − − − − − − − − MAC7111 MCU device soldered directly onto the EVB with sufficient room to fit a surface mount Yamaichi IC149-144 series socket if required (solder tabs and polarisation pins are supported). Single external power supply input (7-14V), regulated on board to provide all the necessary EVB voltages. Power may be supplied via a 2.1mm barrel power jack, 2-way Lever style connector or standard PC (Molex style) power supply connector. Flexible on board power supply selection, including the ability to bypass the internal 2.5V MCU regulator if desired. Master power switch. User Reset and Abort pushbutton switches. Configurable Low Voltage Inhibit (LVI) control circuitry to monitor all of the voltages from the EVB regulators. Full reset mode configuration switches. Flexible MCU clock source options allowing clock to be selected from on board crystal circuit, on board oscillator module or external clock source (via BNC connector). Both traditional and loop controlled (amplitude limited) Pierce oscillator configurations are supported for the local crystal circuit. 14 and 20-way JTAG connectors. 38 pin MICTOR (Matched Impedance Connector) NEXUS connectors. Two 120-way expansion connectors to allow connection of a daughter card supporting different MCU variants or additional application specific circuitry. Array of 0.1 inch pitch user connectors, providing direct access to all of the MCU port signals. Up to 128K Bytes of asynchronous SRAM supported on the EVB. Can be configured for use with any MCU chip select. Up to 2M Bytes of asynchronous FLASH supported on the EVB with hardware write protection jumpers. As with the SRAM, this can also be configured for use with any MCU chip select. Two SCI (RS232) physical interface circuits connected to standard PC style DB9 female connectors allowing direct connection to a PC serial port using a standard serial cable. Two Philips PCA82C250T high-speed CAN interface transceivers connected to the MCU CAN channels A and B. Memory mapped full duplex 10/100 Megabit Ethernet controller and RJ45 connector. Small prototyping area consisting of a grid of 0.1 inch spaced through holes with easy access to ground and power supply points. IMPORTANT Before the EVB is used or power is applied, please fully read the following sections on how to correctly configure the board. Failure to correctly configure the board may cause device or EVB damage. MAC7100EVBUM/D Page 2 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2. Configuration This section details the configuration of each of the EVB functional blocks. Throughout this document, all default jumper and switch settings are clearly marked with “(D)” and are shown in blue text. This should allow a more rapid return to the default state of the EVB if required. Note that the default configuration for all 3-pin jumpers is a header fitted between pins 1 and 2. The EVB has been designed with ease of use in mind and, where possible, has been segmented into functional blocks as shown below. Detailed silkscreen legend has been used throughout the board on all switches, jumpers and user connectors. Figure 2-1 EVB Functional Blocks Reset and Abort Serial (SCI) CAN Prototype Area JTAG and NEXUS User Connectors SRAM and FLASH External Clock Power Connectors Power Switch MCU and Expansion Connectors MAC7100EVBUM/D Ethernet Controller Voltage Regulators Page 3 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 The Power supply section is located in the bottom left area of the EVB 2.1 Power Supply Configuration The EVB requires an external supply voltage of 7-14V DC, minimum 1Amp. This is regulated on board using three switching voltage regulators to provide the necessary EVB voltages of 5V, 3.3V and 2.5V. There are three different power supply input connectors on the EVB as described in the following section. 2.1.1 Power Supply Input Connectors 2.1mm Barrel Connector – P23: This connector should be used to connect the supplied wall-plug mains adapter. Note – if a replacement or alternative adapter is used, care must be taken to ensure the 2.1mm plug uses the correct polarisation as shown below: V+ (7-14V) GND Figure 2-2 2.1mm Power Connector 2-Way Lever Connector – P21: This can be used to connect a bare wire lead to the EVB, typically from a laboratory power supply. The polarisation of the connectors is clearly marked on the EVB and care must be taken to ensure this is connected correctly. V+ (7-14V) GND Figure 2-3 2-Lever Power Connector MAC7100EVBUM/D Page 4 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 PC Style Power Connector – P20: PC Power supplies offer an in-expensive source of stable, high current DC power. The EVB is designed to support direct connection of a PC power supply 4-way connector (Molex Style plug that would normally be connected to a PC hard disk or other internal PC hardware). Only the +12V line is used on the EVB and the +5V line is not connected to any EVB circuitry. Typically, the +12V line will be coloured yellow (as shown in the figure below), however the connectors are polarised and can therefore only be connected in the correct orientation. +5V (N/C on EVB) GND GND +12V PC Power Connector PCB Socket P20 Figure 2-4 PC Power Connector Notes: - PC power supplies are designed to be used with a load connected to both the 5V and 12V lines. Without this, the power supply may shut down or not regulate correctly. The load of the EVB is generally sufficient for the +12V line but supplemental loading may be required on the +5V line in order for the 12V line to regulate correctly or indeed for the power supply to power on. - If an ATX style power supply is used, there is an additional requirement in that the “PS_ON” line on the motherboard connector must be grounded in order for the power supply to start. Please see the associated power supply documentation for details. 2.1.2 Power Supply Configuration Jumpers (J41, J42 and J43) The Power supply control jumpers are located adjacent to the respective regulators. As mentioned above, the EVB has three voltage regulators on board: - 2.5V regulator (U18) to supply the MCU Core voltage when the MCU on-chip regulator is disabled. 3.3V regulator (U19) for the EVB peripherals (For example Ethernet Controller). VDDIO regulator (U20) for the MCU I/O supply and EVB peripherals. The 2.5V and 3.3V regulators can be disabled if they are not required. The VDDIO regulator has the option of being used in either a fixed 5V mode configuration or in a variable 3-5V mode. This is intended to support the MAC7100 specification where the peripheral voltage can be varied. Table 2-1 Regulator Configuration Jumpers Jumper J41 (2.5V) J42 (3.3V) J43 (VDDIO) Position 1-2 (D) 2-3 1-2 (D) 2-3 1-2 (D) 2-3 PCB Legend ENABLE DISABLE ENABLE DISABLE 5V VAR Description 2.5V regulator output is Enabled 2.5V regulator output is Disabled 3.3V regulator output is Enabled 3.3V regulator output is Disabled VDDIO regulator is configured as 5.0V fixed mode. VDDIO regulator is configured as 3-5V variable mode controlled by RV2 When the VDDIO regulator is set to variable mode, the output can be varied from approximately 3V to 5V by moving trimming resistor RV2. The following graph gives an indication of the expected VDDIO regulator output voltage against resistor value when used in variable mode. MAC7100EVBUM/D Page 5 of 35 November 2004 960 900 840 780 720 660 600 540 480 420 360 300 180 120 60 240 LM2596 Regulator Output 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 0 Volts MAC7100EVB Users Manual Rev 1.1 Resistance (Var) Figure 2-5 VDDIO Regulator Variable Output Before changing any of the regulator configurations, it is worthwhile carefully considering if any of the EVB components you require will be affected. Table 2-2 details a list of the various EVB components and peripherals affected by each regulator. Table 2-2 Power Supply Distribution Regulator VDDIO (3-5V) Used On Comments MCU VDDA, VDDX and VDDR pins External FLASH and SRAM 5V mode only. Disable if VDDIO < 4.75V * CAN / RS232 physical interface drivers 5V mode only. Disable if VDDIO < 4.75V * Expansion and prototype area connectors Reset control and Abort switch circuits Nexus and JTAG connectors Pullup resistors LED’s and variable resistor on user connectors MCU 2.5V and VDDPLL pins (When VDDR = 0V) Only when MCU on-chip regulator disabled 2.5V External Oscillator Module LVI circuit main power and reset switch Expansion and prototype area connectors Address Data-Bus and control buffers 3.3V Ethernet Controller Ethernet circuit PLD (also controls TGT-TA signal) Expansion and prototype area connectors * If the VDDIO regulator is set to variable mode, these blocks must be disabled if VDDIO < 4.75V 2.1.3 Power Switch (SW4) Slide switch SW4 can be used to isolate the power supply input from the EVB voltage regulators if required. Moving the slide switch to the right (away from connector P21) will turn the EVB on. Moving the slide switch to the left (towards connector P21) will turn the EVB off. MAC7100EVBUM/D Page 6 of 35 MAC7100EVB Users Manual Rev 1.1 2.1.4 November 2004 Power Status LED’s and Fuse When power is applied to the EVB, green power LED’s adjacent to the voltage regulators show the presence of the supply voltages as follows: LED DS10 – Indicates that the 2.5V regulator is enabled and working correctly LED DS11 – Indicates that the 3.3V regulator is enabled and working correctly LED DS12 – Indicates that the VDDIO (3-5V) regulator is working correctly If no LED’s are illuminated when power is applied to the EVB and the Regulator jumpers are set to “enable”, it is possible that either power switch SW4 is in the “OFF” position or that the fuse F1 has blown. This can occur if power is applied to the EVB in reverse-bias where a protection diode ensures that the fuse blows rather than causing damage to the EVB. Replace F1 with a 20mm 1A fast blow fuse. The MCU Power supply jumpers are located to the right of the MCU in a box titled “MCU Supply” 2.2 MCU Power Supply Jumpers (J15, J19, J21, J22 and J27) The MCU power supply lines are grouped together according to function (eg VDDX, VDDA). Each grouping is jumpered to allow isolation from the power supply in order to facilitate current measurement. In addition, these jumpers are used to disable the MCU on-chip 2.5V regulator if required and allow the EVB 2.5V regulator to be used to power the MCU core and PLL circuitry. Table 2-3 MCU Power Supply Jumpers Jumper J19 (ADC) J15 (I/O) J21 (REG) * J22 (2.5V) * J27 (PLL) * Position FITTED (D) REMOVED FITTED (D) REMOVED 1-2 (D) 2-3 FITTED REMOVED (D) FITTED REMOVED (D) Description Connects EVB VDDIO regulator output to MCU VDDA pins MCU VDDA logic is not powered Connects EVB VDDIO regulator output to MCU VDDX pins MCU VDDX logic is not powered Connects EVB VDDIO regulator output to MCU VDDR pins Connects MCU VDDR to GND (required if J22 / J27 fitted) Connects EVB 2.5V regulator output to MCU VDD2.5 pins MCU On Chip regulator powers VDD2.5 Connects EVB 2.5V regulator output to MCU VDDPLL pins MCU On Chip regulator powers VDDPLL CAUTION: * When jumper J21 (REG) is set to position 1-2 (ON), enabling the built in 2.5V MCU regulator, jumpers J22 (2.5V) and J27 (PLL) MUST be removed. The jumper configuration shown in Table 2-3 shows the default state of the EVB where the EVB is configured to use the MCU on-chip 2.5V regulator. In this case, jumpers J22 and J27 are removed and no external 2.5V power is supplied to the MCU. The EVB can be re-configured with the EVB 2.5V regulator powering the MCU core and PLL circuitry in preference to the MCU on-chip regulator. In this configuration, jumper J21 (REG) is moved to position 2-3 (OFF) and jumpers J22 (2.5V) and J27 (PLL) are fitted. MAC7100EVBUM/D Page 7 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.3 ADC Reference Voltage Select (J7, J8) The ADC reference voltage jumpers are located at the top of the EVB in a box titled “ADC REF”. The Analogue to digital converter reference voltages, VRH and VRL can be connected directly to the EVB supply lines (where VRH is connected to VDDIO and VRL to GND) or can be routed to user connector P11, allowing user defined reference voltages to be supplied. Figure 2-6 ADC Reference Voltage Selection Jumper J8 (VRH) J7 (VRL) MAC7100EVBUM/D Position 1-2 (D) 2-3 1-2 (D) 2-3 PCB Legend EVB TGT EVB TGT Description MCU VRH is connected to EVB VDDIO MCU VRH is connected to user connector P11 MCU VRL is connected to EVB analogue GND MCU VRL is connected to user connector P11 Page 8 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 The MCU clock control jumpers are located around the MCU (J29, J30, J45) and above and in the area adjacent to the BNC connector P17 (J32 and J23) 2.4 MCU Clock Control (Jumpers J23, J29, J30 and J32) 2.4.1 Clock Selection The EVB supports three possible MCU clock sources: (1) The local Pierce clock oscillator circuit Y1 (which can be configured in traditional or low power modes). (2) An oscillator module Y2, driving the MCU EXTAL signal. (3) An external clock input to the EVB via BNC connector P17, again driving the MCU EXTAL signal. The selection between these options is controlled using jumpers as shown below: Figure 2-7 EVB Clock Selection 2.5V J23 Oscillator Module (Y2) Y2 PWR 1 J32 1 BNC P17 J29 Y1 Y2 EXTAL From J32 XTAL BNC EXTAL J30 OSC SEL MCU Y1 Local Crystal Circuit (Y1) Jumper J23 (Y2 PWR) J32 (OSC SEL) J29 (EXTAL) J30 (XTAL) Position FITTED REMOVED (D) 1-2 (D) 2-3 1-2 (D) 2-3 FITTED (D) REMOVED PCB Legend Y2 BNC Y1 From J32 XTAL Description Oscillator Module Y2 is powered (enabled) Oscillator Module Y2 is not powered (disabled) External EXTAL routed from Oscillator Module Y2 External EXTAL routed from BNC Connector P17 MCU EXTAL connected to local oscillator circuit MCU EXTAL routed to source defined by J32 MCU XTAL connected to local oscillator circuit XTAL disconnected (External Oscillator configuration) Table 2-4 Clock Source Jumper Selection The default configuration connects the MCU EXTAL and XTAL pins to the local clock oscillator circuit containing Y1. This can be configured as either loop controlled (ALC) Pierce (default) or full swing Pierce, as detailed in Figure 2-8. The reset state of the XCLKSx (External Clock Source) pin determines the type of local oscillator circuit that will be used (see section 2.8). In order to configure the EVB to use an external oscillator source, jumper J29 (EXTAL) is moved to position 2-3 and jumper J30 (XTAL) must be removed. Jumper J32 (OSC SEL) is then used to select the external clock source from either the oscillator module Y2 (J32 in position 1-2) or BNC connector P17 (J32 in position 2-3). If the oscillator module Y2 is to be used, jumper J23 (Y2 PWR) must be fitted. MAC7100EVBUM/D Page 9 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 Caution - When an external oscillator source is used, XCLKSx must be set LOW (as configured for normal Pierce configuration) - see section 2.8. Notes: - The power for oscillator module Y2 is sourced from the EVB 2.5V regulator so this regulator must be enabled if oscillator module Y2 is used. See section 2.1.2 for details - When an external oscillator source is used (Y2 or BNC), only the MCU EXTAL pin is driven. The MCU XTAL pin must be left open circuit by removing jumper J30. When using the BNC connector, care must be taken to ensure the signal amplitude does not exceed 2.5V. To Clock Oscillator / External Clock EXTAL 1 J29 R32 Y1 C74 Rbias R31 XTAL Rs C73 J30 Default Configuration = Loop Controlled Pierce (Rs = 0Ω, RBias = αΩ) For full swing Pierce configuration, please change Rs and RBias according to operating conditions. VSSPLL Figure 2-8 Pierce Oscillator Configuration 2.4.2 PLL Control (J45) If the PLL circuitry is not required, this can be disabled by tying the MCU XFC pin to VDDPLL. Jumper J45 provides this functionality. The table below shows the default configuration with jumper J45 removed, thus enabling the PLL. Table 2-5 PLL Disable Jumper Jumper J45 (PLL-DIS) Position FITTED REMOVED (D) Description MCU PLL Circuitry is disabled (XFC = VDDPLL) MCU PLL Circuitry is enabled Note – If the PLL is disabled, the clock circuitry should be configured to use either the full swing Pierce oscillator configuration or an external clock source. MAC7100EVBUM/D Page 10 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.5 Abort Switch and Control (J1, SW3) The Abort Switch is located at the top left of the EVB in a box titled “ABORT”. An active low, push button ABORT switch (SW3) is provided on the EVB. This is connected to the MCU XIRQx pin via jumper J1 and when pressed, drives the MCU XIRQx signal low, causing an interrupt. Active de-bounce circuitry ensures that a press of the switch issues a clean signal to the MCU, avoiding multiple interrupts. Table 2-6 Abort Enable Jumper Jumper J1 (ABORT) Position FITTED (D) REMOVED Description ABORT switch is connected to MCU XIRQx line (abort switch enabled) ABORT switch is disconnected from MCU XIRQx line (disabled) 2.6 Reset Switch, LEDs and LVI Control (Jumpers J10, J11, J12, SW2) The Reset and LVI circuitry is located at the top left corner of the EVB in areas titled “RESET” and “LVI The EVB incorporates an LVI (Low Voltage Inhibit) device to provide under-voltage protection for all of the EVB voltage regulators. When the regulator voltage(s) drop below a certain threshold level, the LVI will automatically assert the MCU reset line in order to prevent incorrect operation of the MCU or EVB circuitry. The table below shows the LVI reset threshold levels for each power supply line on the EVB. Table 2-7 LVI Resistor Ladder Values Regulator 2.5V 3.3V VDDIO Minimum Voltage Before MCU reset 2.33V 2.9V 4.75V The LVI device is powered from the 2.5V regulator output with additional monitor inputs providing the protection for the 3.3V and VDDIO regulator outputs. Jumpers provide the possibility to disable the LVI protection for the 3.3V or VDDIO regulators if desired. In addition, a jumper is provided to disconnect the LVI reset output so it will NOT assert the MCU reset line. This allows the 2.5V regulator to be disabled without causing an MCU reset. The LVI device also provides a de-bounced input for the EVB reset switch, SW2. Table 2-8 LVI Control Jumpers Jumper J10 (LVI Reset) J11 (VDDIO) J12 (3.3V) Position FITTED (D) REMOVED 1-2 (D) 2-3 1-2 (D) 2-3 PCB Legend ENABLE DISABLE ENABLE DISABLE Description RESET signal from LVI drives the MCU RESETx line LVI is disconnected from MCU RESETx line (disabled) VDDIO regulator output is monitored by LVI VDDIO regulator output is NOT monitored by LVI 3.3V regulator output is monitored by LVI VDDIO regulator output is NOT monitored by LVI Notes: - Failing to set jumper J11 to disabled when using the VDDIO regulator in variable voltage mode will cause the LVI to issue a reset when VDDIO drops below approximately 4.75V - If it is required to disable the 2.5V regulator on the EVB, jumper J10 must be removed to disconnect the LVI and MCU reset lines or the LVI will continually drive the MCU reset line. Note that if the LVI device is depowered or jumper J10 is removed, the reset switch will no longer function. MAC7100EVBUM/D Page 11 of 35 MAC7100EVB Users Manual Rev 1.1 2.6.1 November 2004 Reset LEDs There are two reset LED’s, DS1 (AMBER) and DS13 (RED), placed adjacent to the EVB RESET switch to indicate the RESET status of the EVB and MCU. LED DS13, titled “MCU”, will illuminate if the MCU itself issues a reset. In this condition, LED DS1 will NOT illuminate. LED DS1, titled “USR”, will illuminate when one of the following external hardware devices issues a reset to the MCU: - LVI circuitry (either an under-voltage detection or the reset switch is being pressed) - There is a reset being asserted from the user connectors or from the daughter card (if fitted) - There is a reset being driven from the Nexus or JTAG debug probe. - Note that LED DS13 (MCU) will also illuminate during an external (user) reset! 2.7 Reset Buffering Scheme The MAC7100 family has a single RESETx pin. This pin functions as a dual purpose input / output MCU reset signal. To reduce loading on the MCU reset pin and also allow direct connection of non open-drain reset signals (for example connected to the user or daughter card connectors), a reset-in and reset-out buffering scheme was created as shown in Figure 2-9. There are three possible external sources of reset: - JTAG / NEXUS MCU Reset Daughter card connector or user connector LVI Reset circuitry (including reset switch) These are gated together independently of each other and then converted into an open-drain reset output which is directly connected to the MCU reset pin. Similarly, the MCU Reset pin is buffered to provide a Reset-Out signal which is used to control all devices on the EVB that require a reset input. JTAG/ NEXUS MCU-RSTx TRSTx MCU 1 RESETx J13 TPV13 TGT Resetx LVI / Reset Switch TPV14 Open-Drain Output Reset-In Buffering Buffered Reset-Out Figure 2-9 EVB Reset Buffering Scheme Notes - As can be seen from the figure, there is a jumper J13 on the MCU-Resetx line from the JTAG / NEXUS connectors. For more information on this jumper, please refer to section 2.9. The MCU TRSTx signal cannot be asserted via the external MCU Reset pin so the debug interface TRSTx signal is not routed to the MCU reset circuitry. MAC7100EVBUM/D Page 12 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 The Reset Mode Switch is located on the top edge of the EVB in an area titled “RESET CONFIGURATION”. 2.8 Reset Mode Configuration (SW1) The MAC7100 has 7 external mode pins that are used to configure the operating mode of the device based on their state at MCU reset. The EVB uses a DIP switch (SW1) to set the value of these mode pins which is then actively driven onto the respective MCU pins whilst the MCU reset signal is low. Table 2-9 shows the reset function and MCU pin related to each DIP switch position Table 2-9 MAC7100 Reset Configuration Switch Position 1 Switch Legend MODA MCU Pin PD1 2 MODB PD0 3 XCLKSx PD2 4 PSIZ PA14 5 AUTO-TA PA15 6 NEX_LOC PF0 7 NEX-EN PF1 8 ----- Value Setting 0 (D) 1 ON OFF 0 1 (D) 0 1 (D) 0 1 (D) 0 1 (D) 0 1 (D) 0 1 (D) 0 1 ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF Function Boot Vector taken from normal reset vector (Only if ModeB=0) PBL mode (Data Flash re-mapped to 0x0 and boot vector becomes 1st address of data flash. (Only if ModeB=0) Single Chip Mode Expanded Mode (EIM relocated to 0x0, Boot From EIM) Standard Pierce Oscillator Mode / External Clock Mode Low Power (ALC) Pierce Oscillator Mode (ALC Circuit rqd) EBI is configured with 8-bit Port Size out of reset EBI is configured with 16-bit Port Size out of reset AutoACK is disabled – TA signal MUST be supplied externally AutoACK is enabled – EBI will supply TA signal automatically The Nexus port is mapped to the primary port (PA0..PA6) The Nexus port is mapped to the secondary port (PE0..PE6) * The Nexus module is not present and cannot be enabled The Nexus module is present and debug interface can enable it Spare Spare * See notes in section 2.9 if using this connector. Note – It is important that the MCU pins shown in Table 2-9 are NOT directly tied to ground or VCC at the user connectors as this will conflict with and invalidate the reset configuration data. Switch SW1 is clearly labeled on the EVB with the switch function and also with the position of the switch required to drive logic 1 or 0. When the switches are in the ON position, this corresponds to logic 0. ON 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 MODB XCLKS PSIZ AUTO-TA NEX-LOC NEX-EN 0 MODA 1-MODE-0 The figure below shows the default configuration of the switch. Switch Position for Logic 1 (Turned OFF) Figure 2-10 Reset Configuration (Mode) Switch ON MAC7100EVBUM/D Page 13 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.9 JTAG and Nexus Configuration (J13, J18) The JTAG and NEXUS connectors are located on the left hand edge of the EVB. The EVB has two JTAG connectors supporting both the 14 and 20 pin configurations. There are also two Nexus “mictor” connector footprints, allowing a Nexus probe to be connected to either of the possible multiplexed pin locations for Nexus on the MAC7100 family. There are two generic jumpers associated with both JTAG and Nexus as shown in the tables below. Table 2-10 JTAG / NEXUS Target Reset Routing Jumper J13 Jumper J13 (TRST) Position 1-2 (D) 2-3 PCB Legend BUFFER DIRECT Description TARGET reset signal is buffered to MCU RESET pin TARGET reset signal is connected directly to MCU RESET pin Some JTAG and NEXUS probes have the ability to assert and also monitor the state of the MCU Resetx line. This is not possible when the reset lines are buffered so jumper J13 is included to route the JTAG / NEXUS target reset signal directly to the MCU bi-directional reset pin. In order to use this feature, jumper J13 should be moved to position 2-3. Table 2-11 JTAG / NEXUS TCLK Termination J18 Jumper J18 (TCLK Term) Position 1-2 (D) 2-3 PCB Legend VDDIO GND Description JTAG / NEXUS TCLK signal is pulled to VDDIO via 10KΩ JTAG / NEXUS TCLK signal is pulled to GND via 10KΩ Some JTAG / NEXUS debug manufacturers require that the TCLK signal is pulled high and other require it is pulled low. Jumper J18 allows the user to select between the TCLK signal being pulled high (J18 position 1-2) or Low (J18 position 2-3). Please consult your debug probe manufacturer for details on the correct configuration. MAC7100EVBUM/D Page 14 of 35 MAC7100EVB Users Manual Rev 1.1 2.9.1 November 2004 JTAG Configuration As mentioned above, the EVB supports both 14 and 20-way JTAG connectors. Either connector can be used without having to make any EVB jumper configuration changes. When connecting or removing the JTAG debug interface, power must be removed from both the EVB and the JTAG debug interface. P7 2 4 6 8 10 12 14 SPU 1 TRSTx 3 TDI 5 TM 7 TCLK 9 TDO 11 SPU 13 SPU TRSTx ICERSTx / SRSTx VTref Vsupply P15 VSS VSS VSS VSS VSS ICERSTx VSS VTref TRSTx TDI TM TCLK 1 3 5 7 9 11 TDO 13 SRSTx 15 17 19 2 4 6 8 10 12 14 16 18 20 Vsupply VSS VSS VSS VSS VSS VSS VSS VSS VSS - System Powered UP. Connected to VDDIO via 33Ω Resistor. - Test Reset. Connected to test pin only, NOT to the MCU reset circuitry - Target System Reset. Connected to MCU Reset via Buffer (Jumper J13 Selectable) - Target Reference Voltage. Connected directly to VDDIO - Power Supply for ARM Embedded ICE probe. Connected to VDDIO Figure 2-11 JTAG Connectors 2.9.2 Nexus Configuration (J14, J20) The MAC7100 has a single Nexus 2+ debug module that is multiplexed between two physical locations, PortA and PortE. The EVB also has a connector fitted in both of these port positions. This allows the user to select which port pins may be used in order to support Nexus. Whatever port is configured for Nexus, it is important that you do NOT attempt to use the respective pins for any other purpose! The following table shows the pins used for each Nexus configuration and details the EVB setup. Table 2-12 Nexus Connectors Nexus Port PortA PortE Pins Used by Nexus PA[0..6] PE[0..6] Functionality Lost PortA / Databus [0..6] PortE / ADC [0..6] SW1 “NEX-LOC” LOW (Switch = ON) HIGH (Switch = OFF) EVB Connector Used P6 – “NEXUS1(PA)” P16 – “NEXUS2(PE)” The Nexus module must be made available for use by ensuring that the reset configuration switch (SW7), position 7 “NEX-EN” is high (switch is in OFF position). See section 2.8 for details. Important Configuration Notes: PortA Config When the EVB / MCU is configured to use the primary Nexus port (PortA), the upper byte of the Data bus, Data[8..15], is available for use. On the EVB however, all of the external memories are configured for 16-bit port width and will not function correctly when accessed by an 8-bit port. Therefore, the external memory must be disabled if Nexus is used in the PortA configuration (see section 2.10 for details). PortA[0..6] should not be connected to any other hardware whilst using this port for Nexus. PortE Config When the MCU is configured to use the secondary Nexus port (PortE / ADC), jumper J17 (RV1) must be removed in order to prevent any contention between resistor RV1 and PortE[0]. PortE[0..6] should NOT be connected to any other hardware whilst using this port for Nexus. MAC7100EVBUM/D Page 15 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 When the NEXUS port is enabled, the EVTIx signal must be pulled high to prevent Nexus mode being inadvertently entered. As the Nexus pins are shared with other MCU port functions, these pull-ups must be selectable so they can be disabled when the respective port is not being used for Nexus. Jumpers are provided to enable the EVTIx pullup resistor for each port. Table 2-13 EVTI Termination Enable Jumpers J14, J20 Jumper J14 (EVTI Term Nexus 1) J20 (EVTI Term Nexus 2) Position FITTED REMOVED (D) FITTED REMOVED (D) Description EVTIx Signal for Primary Nexus port (PA) is pulled high EVTIx Signal for Primary Nexus port is not terminated EVTIx Signal for Secondary Nexus port (PA) is pulled high EVTIx Signal for Secondary Nexus port is not terminated The default configuration is NO pullup resistor is enabled. It is up to the user to determine what Nexus port will be used. Note – whenever a Nexus port is not going to be used, the respective EVTIx pullup resistor should be disabled by removing the relevant jumper. The following table details the pinout of the Nexus connector. (UBatt is connected to the main EVB power supply line via a resistor). Table 2-14. NEXUS Debug Connector Pinout Pin No 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 MAC7100EVBUM/D Function Reserved Reserved Vendor I/O-0 Vendor I/O-2 MCU Resetx TDO Vendor I/O-4 TCLK TMS TDI MCU TRSTx Vendor I/O-1 N/C (MDI[3]) N/C (MDI[2]) N/C (MDI[1]) UBATT (VDD IN, 7-12V) UBATT (VDD IN, 7-12V) Tool I/O-0 VSTBY (VDD Core) Pin No 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 Page 16 of 35 Function Reserved Reserved CLKOUT Vendor I/O-3 EVTIx VREF (VDD Core) RDY N/C (MD0[7]) N/C (MDO[6]) N/C (MDO[5]) N/C (MDO[4]) N/C (MDO[3]) N/C (MDO[2]) MDO[1] MDO[0] EVTOx MCK0 N/C (MSEO1) MSEO MAC7100EVB Users Manual Rev 1.1 November 2004 2.10 External Memory Configuration The External Memory section is located in the lower right quarter of the EVB, below the bank of user connectors. The following diagram shows the external memory implementation on the EVB. BUFFERS MCU Data SRAM (64Kx16) 5V VDD FLASH (1Mx16) 5V VDD Address Control Chip Select Jumpers Expansion/ User Connectors Write Protect Jumpers Figure 2-12 External Memory Scheme 2.10.1 Buffer Control (J26) The MAC7111 MCU has a maximum output load capacitance of between 25 and 30pF on the external bus interface signals. In order not to exceed this loading specification on the EVB, all of the EBI signals to the external SRAM and FLASH (and Ethernet controller) are buffered. Note that the signals to the expansion connectors and user connectors remain un-buffered for two reasons: (1) The EBI signals are multiplexed with bi-directional single chip mode peripherals (2) The un-buffered interface provides a “true” MCU interface to the user. Note – If you are interfacing to the EBI via the expansion or user connectors, you must ensure that the loading capacitance on each of the EBI signals does not exceed the specification, bearing in mind that the EVB buffers used on the EBI signals already have an input capacitance of approximately 8pF. When the EVB is used in Single chip mode, the buffers must be disabled otherwise conflicts will occur between single chip functionality and the buffers. This can be achieved by REMOVING jumper J26 as shown in the table below. The default configuration enables the buffers, assuming the board will be used in expanded mode. Table 2-15 EBI Buffer Control Jumper J26 Jumper J26 (VDD-BUFF) MAC7100EVBUM/D Position FITTED (D) REMOVED Description EBI External Memory Buffers are ENABLED EBI Buffers are DISABLED (Required in Single Chip Mode) Page 17 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.10.2 Chip Select Control (J24) The EVB incorporates a flexible chip select routing scheme as shown below, allowing any of the three MAC7111 chip selects to be routed to either the RAM or the FLASH. The way the jumper is configured automatically prevents the same MCU chip select, inadvertently being assigned to both memories. The default configuration is shown. Chip select CS0x is routed to the external EVB FLASH and Chip select CS1x is routed to the external EVB SRAM. To re-configure the chip select mapping, please refer to the table below. CS-ROUTE 1 CS0 4 CS1 CS2 7 FLSH RAM Figure 2-13 Chip Select Routing Table 2-16 Chip Select Jumper J24 Jumper J24 (CS-Route) Position 1-2 (D) 2-3 4-5 5-6 (D) 7-8 8-9 Chip Select CS0x CS1x CS2x Routing FLASH RAM FLASH RAM FLASH RAM Description Chip Select CS0x is routed to the EVB FLASH Chip Select CS0x is routed to the EVB SRAM Chip Select CS1x is routed to the EVB FLASH Chip Select CS1x is routed to the EVB SRAM Chip Select CS2x is routed to the EVB FLASH Chip Select CS2x is routed to the EVB SRAM Note – Care should be taken that the MCU Chip selects chosen for FLASH and RAM are not used elsewhere on any external hardware. The Ethernet controller uses CS2x if enabled (see section 2.11) MAC7100EVBUM/D Page 18 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.10.3 External SRAM Configuration (J35) The EVB is fitted with a single 64Kx16 asynchronous SRAM giving a total memory space of 128Kbytes. This is configured as a 16-bit port and as such, the MCU chip select being used for the SRAM must also be configured as a 16-bit port. The SRAM circuitry supports both 8-bit and 16-bit accesses within the 16-bit port. See section 2.10.2 for details on how to select the desired chip select for SRAM on the EVB. As this EVB provides a reference design platform, 5V SRAM devices were chosen which, in a standalone design, could directly interface to the MCU without the requirement for any buffering. In practice, a 3.3V SRAM device could have been used on the EVB as the buffers provide sufficient drive levels. If the VDDIO regulator voltage drops below 5V when used in variable voltage mode, the SRAM devices MUST be disabled or unpredictable operation will occur. Similarly the SRAM must be disabled when the EVB is used in single chip mode. Jumper J35 provides a mechanism for disabling the SRAM. Table 2-17 SRAM Power Supply Jumper J35 Jumper J35 (VDD-SRAM) Position FITTED (D) REMOVED Description EVB External SRAM is powered (enabled) SRAM is disabled. Requirement if S/C mode or VDDIO Variable Mode Note- The SRAM MUST be disabled if VDDIO is less than 5V or the EVB is used in single chip mode. Table 2-20 details pin compatible 5V asynchronous SRAM devices that may be used on the EVB. Table 2-18 SRAM Pin Compatible Devices Manufacturer Cypress IDT MAC7100EVBUM/D 32K x 16 CYC1020B N/A Page 19 of 35 64K x 16 CYC1021B IDT71016 MAC7100EVB Users Manual Rev 1.1 November 2004 2.10.4 External FLASH Configuration (J31, J33, J34) The EVB is fitted with a single 1Mx16 asynchronous FLASH memory giving a total memory space of 2Mbytes. This is configured as a 16-bit port and, like the SRAM, the MCU chip select assigned for the FLASH must also be configured as a 16-bit port. The FLASH circuitry is only designed to support 16-bit aligned accesses. Any other access types must be avoided as these will result in incorrect data being read or written to the FLASH memory. As with the SRAM, a 5V FLASH device has been chosen for use on the EVB. If the VDDIO regulator voltage drops below 5V when used in variable mode, the FLASH devices MUST be disabled or unpredictable operation will occur. The FLASH must also be disabled when the EVB is used in single chip mode using jumper J33. Two additional jumpers provide a hardware mechanism for write protection. J34 controls read / write for the complete FLASH and J31 provides additional boot block protection (AM29F400B Flash only). By default, the complete FLASH memory block is un-protected. Table 2-19 FLASH Control Jumpers Jumper J33 (VDD-FLASH) Flash Write Enable J31 (BOOT) J34 (ALL) Position FITTED (D) REMOVED Description EVB External FLASH is powered (enabled) FLASH is disabled. Requirement if S/C mode or VDDIO Variable Mode FITTED (D) REMOVED FITTED (D) REMOVED FLASH Boot Block (AM29F400B) is set to read / write FLASH Boot Block (AM29F400B) can only be read Complete FLASH is set to read / write (Boot Block Controlled By J31) Complete FLASH is set to read only Note – In order for the flash boot block to be written on the AM28F400B device, BOTH jumpers J31 and J34 must be fitted. Table 2-20 details pin compatible AMD 5V asynchronous FLASH devices that may be used on the EVB. Table 2-20 AMD Flash Pin Compatible Devices Part Number AM29F160D* AM29F800B AM29F400B Flash Size 16MBit (2M Bytes) 8M Bit (1M Bytes) 4M Bit (512K Bytes) * Fitted by default The AMD flash devices provide an easy in-system programming mechanism allowing the flash to be programmed and erased using commands sent to the flash via the MAC7100 external bus. Many debugger manufacturers provide automated external flash programming functionality, allowing the user to program the flash without having to manually control the programming command sequence. Please consult your debugger manufacturer for details. No additional programming voltage is require to program the external flash however the write enable jumpers J34 (and if applicable J31) must be fitted before programming can take place. MAC7100EVBUM/D Page 20 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.11 Ethernet Controller Configuration (Jumpers J36, J37, J38, J39, J40) The Ethernet controller circuitry is located in the bottom right area of the EVB. The Control jumpers are located in a box titled “ETHERNET” There is a memory mapped Ethernet controller on the EVB, configured as shown in the block diagram below. MAC7111 MCU Control Address BUFFERS GAL22V10 SMSC ETHERNET RJ45 ISOLATION TRANSFORMER Data Figure 2-14 Ethernet Controller Block Diagram The Ethernet controller used on the EVB is an SMSC LAN91C111-NE (Full Duplex, 10/100Mbit) device, configured for asynchronous bus mode in order to be compatible with the MAC7111 external bus. The MAC7111 cannot interface directly to the Ethernet controller as the control signals are generally active high on the Ethernet controller but active low on the MCU. In addition, some of the Ethernet controller signals are generated from multiple MCU signals. The GAL22V10 PLD (programmable logic device) is used to provide this MCU / Ethernet controller interface. The PLD also provides an input from the Target TAx signal, asserting the MCU TAx line whenever the Target TA or Ethernet TA signals are asserted. Note - the Address / Data and Control signals to the Ethernet controller (and PLD) are buffered using the same set of buffers used for the external SRAM and FLASH detailed in section 2.10.1. These buffers must therefore be enabled (and the MCU running in expanded mode) before the Ethernet controller can be used. The Ethernet controller and PLD are powered from the 3.3V EVB supply and as such, the 3.3V regulator must be enabled for the Ethernet controller circuitry to work. There are 5 jumpers associated with the Ethernet circuitry as shown in Table 2-21 below. Jumper J36 is used to apply power to the Ethernet controller. When the MCU is used in single chip mode, or the Ethernet controller is not required, this jumper should be removed. Jumper J37 and J38 are used to connect the MCU IRQx and MCU TAx signals to the PLD. Again, if the Ethernet controller is required, these jumpers must be fitted. Note that the PLD has these pins configured as open-drain output. Jumper J39 is used to apply power to the PLD and jumper J40 is used to connect the MCU chip select CS2 to the PLD which in turn is used to control the Ethernet Controller (as before, both these jumpers must be fitted for the Ethernet controller to function). MAC7100EVBUM/D Page 21 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 Table 2-21 Ethernet Circuit Control Jumpers Jumper J36 (VDD-ENET) J37 (IRQx) J38 (TAx) J39 (VDD-PLD) J40 (CS2x) Position FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED Description Ethernet Controller is powered (enabled) Ethernet Controller is disabled – Requirement in Single Chip mode Ethernet Controller IRQ signal is connected to MCU IRQx line Ethernet Controller IRQ signal is NOT connected to MCU IRQx line Ethernet Controller and Target TA signals connected to MCU TAx line Ethernet Controller and Target TA signals NOT connected to MCU TAx line GAL22V10 is enabled (required if Ethernet controller or target TA required) GAL22V10 is disabled (Target TA or Ethernet controller will not function) MCU Chip Select CS2x is routed to the Ethernet Controller via the GAL22V10 MCU Chip Select CS2x is NOT connected to the Ethernet controller. By default, the Ethernet controller circuit is fully enabled with all the jumpers shown in Table 2-21 fitted. Notes: - Care should be taken to ensure that MCU Chip Select CS2x is not used for any other purpose if the Ethernet controller is used. - The EVB buffers must be enabled in order to use the Ethernet controller. - If the MCU is used in single chip mode, the Ethernet controller should be disabled. MAC7100EVBUM/D Page 22 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.12 CAN Configuration (J2, J3, J4) The CAN section is located at the top right hand edge of the EVB in an area marked “CAN”. The EVB has a Philips PCA82C250T high speed physical CAN interface driver on the MCU CAN-A and CAN-B channels. These are pre-configured for high speed operation by tying Pin8 of each CAN transceiver to ground via a zero ohm resistor. If required, these resistors can be changed to provide slope control mode of operation. See the EVB schematics for details. Each CAN transceiver circuit has its CAN bus signals routed to a standard 0.1” connector at the top edge of the EVB. Connector P1 provides the CAN bus level signal interface for CAN-A and connector P2 for CAN-B. The pinout of these connectors is detailed below. Care should be taken NOT to confuse these connectors with jumper headers! 1 HI LOW GND Figure 2-15 CAN Physical Interface Connector Each of the MCU signals to the CAN transceivers is jumpered, allowing the CAN transceiver to be isolated if that MCU port is not configured or used for CAN operation. There is a 2x2 jumper for each CAN channel as shown in the table below. In addition, there is a global CAN power jumper (J3) which is used to completely remove power from both CAN transceivers. Table 2-22 CAN Control Jumpers Jumper J2 (CAN-A) Posn 1-2 Legend TX J2 (CAN-A) Posn 3-4 RX J4 (CAN-B) Posn 1-2 TX J4 (CAN-B) Posn 3-4 RX J3 (VDD-CAN) Position FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED Description MCU CNTX-A is connected to CAN controller A MCU CNTX-A is NOT routed to CAN controller . MCU CNRX-A is connected to CAN controller A MCU CNRX-A is NOT routed to CAN controller. MCU CNTX-B is connected to CAN controller B MCU CNTX-B is NOT routed to CAN controller . MCU CNRX-B is connected to CAN controller B MCU CNRX-B is NOT routed to CAN controller. Power is applied to both CAN transceivers No power is applied to CAN transceivers The default position is all jumpers fitted, connecting the MCU CAN A and CAN B signals to the CAN physical interface. If the MCU is configured such that a CAN channel is configured as a normal I/O port (eg PortG 4,5 for CAN-A), the respective jumpers must be removed or conflicts will occur. If neither CAN channel is being used, Jumper J3 should be removed to disable both CAN transceivers. Notes: − The Philips CAN devices fitted to the EVB will only function with VDDIO connected to 5V. If the EVB is used in variable VDDIO mode, the CAN devices MUST be disabled using jumper J3. − Care should be taken when fitting jumpers to the 2x2 headers as they can easily be fitted in the incorrect orientation. Jumper headers on J2 and J4 are fitted vertically. MAC7100EVBUM/D Page 23 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.13 RS232 Configuration (J5, J6, J9) The RS232 circuitry is located in the top centre edge of the EVB in an area titled “SCI”. The EVB has a single MAX232CSE RS232 transceiver device, providing RS232 signal translation for the MCU SCI channels A and B. Each of the two RS232 outputs from the MAX232 device is connected to a 9-way female D-Type connector, allowing a direct RS232 connection to a PC or terminal. Connector P3 provides the RS232 level interface for MCU SCI-A and P4 for MCU SCI-B. The pinout of these connectors is detailed below. Note that hardware flow control is not supported on this implementation. Figure 2-16 RS232 Physical Interface Connector As with the CAN circuitry, each of the MCU signals to the RS232 transceiver is jumpered to allow individual isolation if required. There is also a global power jumper J5 controlling the power supply to the RS232 transceiver. This is shown in Table 2-23 below. Table 2-23 RS232 Control Jumpers Jumper J6 (SCI-A) Posn 1-2 Legend TX J6 (SCI-A) Posn 3-4 RX J9 (SCI-B) Posn 1-2 TX J9 (SCI-B) Posn 3-4 RX J5 (VDD-SCI) Position FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED FITTED (D) REMOVED Description MCU TXD-A is routed via MAX232 to P3 MCU TXD-A signal is not connected to MAX232 MCU RXD-A is routed via MAX232 to P3 MCU RXD-A signal is not connected to MAX232 MCU TXD-B is routed via MAX232 to P4 MCU TXD-B signal is not connected to MAX232 MCU RXD-B is routed via MAX232 to P4 MCU RXD-B signal is not connected to MAX232 Power is applied to the MAX232 transceiver No power is applied to the MAX232 transceiver The default configuration is all jumpers fitted, connecting the MCU SCI- A and SCI-B signals to the physical RS232 connectors via the MAX232 device. If the MCU is configured such that SCI channel A or B is set as a normal I/O port, the respective jumpers must be removed from J6 or J9 or conflicts will occur. If neither channel is being used as an SCI, jumper J5 should be removed to disable the MAX232 transceiver device. Notes: − The MAC232 device fitted to the EVB will only function with VDDIO connected to 5V. If the EVB is used in variable VDDIO mode, the MAX232 device MUST be disabled using jumper J5. − Care should be taken when fitting jumpers to the 2x2 headers as they can easily be fitted in the incorrect orientation. Jumper headers on J6 and J9 are fitted vertically. MAC7100EVBUM/D Page 24 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 2.14 Termination Resistor Control (J28) The Termination control jumper is located to the bottom right of the MCU and MCU SUPPLY jumpers. In expanded mode, the MCU EBI control signals must be pulled high. When the EVB is used in single chip mode however, you may require the respective port pins to be left floating with the external pullup resistors disabled. Jumper J28 controls the power to these pullup resistors. When the jumper is removed, the pullup resistors are no longer activated. Table 2-24 EBI Pullup Resistor Control (J29) Jumper J28 (Exp-Mode Term) Position FITTED (D) REMOVED Description EVB EBI signals are pulled high (Expanded Mode) EBI signals are not pulled high (single Chip Mode) The MCU TA jumper is located close to the bottom right hand corner of the MCU. 2.15 MCU TA Jumper (J25) Jumper J25 is used for test purposes only and should remain in position 1-2 for normal operation. Moving this jumper will cause operational issues with the MCU in expanded mode. Table 2-25 Jumper J25 Jumper J25 (TAx) MAC7100EVBUM/D Position 1-2 (D) 2-3 PCB Legend MAC 711 Description MCU TAx signal is connected TEST PURPOSES ONLY – DO NOT USE Page 25 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 3. Default Jumper Summary Table The following table details the DEFAULT jumper configuration of the EVB as explained in detail in section 2. Table 3-1 Default Jumper Positions Jumper J1 (ABORT) J2 (CAN-A) Posn 1-2 Posn 3-4 J3 (VDD-CAN) J4 (CAN-B) Posn 1-2 Posn 3-4 J5 (VDD-SCI) J6 (SCI-A) Posn 1-2 Posn 3-4 J7 (VRL) J8 (VRH) J9 (SCI-B) Posn 1-2 Posn 3-4 J10 (LVI Reset) J11 (VDDIO) J12 (3.3V) J13 (TRST) J14 (EVTI Term Nex1) J15 (I/O) J16 (PF-LED) J17 (RV1) J18 (TCLK Term) J19 (ADC) J20 (EVTI Term Nex2) J21 (REG) J22 (2.5V) J23 (Y2 PWR) J24 (CS-Route) J25 (TAx) J26 (VDD-BUFF) J27 (PLL) J28 (Exp-Mode Term) J29 (EXTAL) J30 (XTAL) J31 (BOOT) J32 (OSC SEL) J33 (VDD-FLASH) J34 (ALL) J35 (VDD-SRAM) J36 (VDD-ENET) J37 (IRQx) J38 (TAx) J39 (VDD-PLD) J40 (CS2x) J41 (2.5V) J42 (3.3V) J43 (VDDIO) J44 (PD2-EN) J45 (PLL-DIS) MAC7100EVBUM/D Position FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) 1-2 (D) 1-2 (D) FITTED (D) FITTED (D) FITTED (D) 1-2 (D) 1-2 (D) 1-2 (D) REMOVED (D) FITTED (D) ALL FITTED (D) FITTED (D) 1-2 (D) FITTED (D) REMOVED (D) 1-2 (D) REMOVED (D) REMOVED (D) 1-2 (D) 5-6 (D) 1-2 (D) FITTED (D) REMOVED (D) FITTED (D) 1-2 (D) FITTED (D) FITTED (D) 1-2 (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) FITTED (D) 1-2 (D) 1-2 (D) 1-2 (D) REMOVED (D) REMOVED (D) PCB Legend TX RX TX RX TX RX EVB EVB TX RX ENABLE ENABLE BUFFER VDDIO CS0 / FLSH CS1 / RAM MAC 711 Y1 Y2 ENABLE ENABLE 5V Description ABORT switch is connected to MCU XIRQ line MCU CNTX-A is connected to CAN controller A MCU CNRX-A is connected to CAN controller A Power is applied to both CAN transceivers MCU CNTX-B is connected to CAN controller B MCU CNRX-B is connected to CAN controller B Power is applied to the MAX232 transceiver MCU TXD-A is routed via MAX232 to P3 MCU RXD-A is routed via MAX232 to P3 MCU VRL is connected to EVB analogue GND MCU VRH is connected to EVB VDDIO MCU TXD-B is routed via MAX232 to P4 MCU RXD-B is routed via MAX232 to P4 RESET signal from LVI drives the MCU RESET line VDDIO regulator output is monitored by LVI 3.3V regulator output is monitored by LVI JTAG Target Reset signal is buffered to MCU RESET pin EVTI Signal for Primary Nexus port is not terminated Connects EVB VDDIO regulator output to MCU VDDX pins Connects PF[8..15] to LED’s DS[2..9] Output from RV1 is applied to MCU PE0 / AN00 pin JTAG / NEXUS TCLK signal is pulled to VDDIO via 10KΩ Connects EVB VDDIO regulator output to MCU VDDA pins EVTI Signal for Secondary Nexus port is not terminated Connects EVB VDDIO regulator output to MCU VDDR pins MCU On Chip regulator powers VDD2.5 Oscillator Module Y1 is not powered (disabled) Chip Select CS0x is routed to the EVB FLASH Chip Select CS1x is routed to the EVB SRAM MCU TAx signal is connected (Do not move this jumper) EBI External Memory Buffers are ENABLED MCU On Chip regulator powers VDDPLL EVB EBI signals are pulled high (Expanded Mode) MCU EXTAL connected to local oscillator circuit MCU XTAL connected to local oscillator circuit External FLASH Boot Block (AM29F400B) set to read / write External EXTAL routed from Oscillator Module EVB External FLASH is powered (enabled) Complete External FLASH is set to read / write EVB External SRAM is powered (enabled) Ethernet Controller is powered (enabled) Ethernet Controller IRQ signal is connected to MCU IRQx line Ethernet Controller and Target TA signals connected to MCU TAx GAL22V10 PLD is enabled MCU Chip Select CS2x is connected to the Ethernet Controller 2.5V regulator output is Enabled 3.3V regulator output is Enabled VDDIO regulator is configured as 5.0V fixed mode. CLKOUT Impedance matching resistor is active MCU PLL Circuitry is enabled Page 26 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 4. Jumper Configurations for EVB Operating Mode This table details specific jumper positioning requirements for various EVB operating configurations / modes. Note - Where “Any” is written in the table, this means the jumper can be configured as required by the user. It does NOT infer that the EVB will function correctly with the jumper in any position. Table 4-1 Critical Jumper Positions Jumper J1 (ABORT) J2 (CAN-A) J3 (VDD-CAN) J4 (CAN-B) J5 (VDD-SCI) J6 (SCI-A) J7 (VRL) J8 (VRH) J9 (SCI-B) J10 (LVI Reset) J11 (VDDIO) J12 (3.3V) J13 (TRST) J14 (EVTI Term Nex1) J15 (I/O) J16 (PF-LED) J17 (RV1) J18 (TCLK Term) J19 (ADC) J20 (EVTI Term Nex2) J21 (REG) J22 (2.5V) J23 (Y2 PWR) J24 (CS-Route) J25 (TAx) J26 (VDD-BUFF) J27 (PLL) J28 (Exp-Mode Term) J29 (EXTAL) J30 (XTAL) J31 (BOOT) J32 (OSC SEL) J33 (VDD-FLASH) J34 (ALL) J35 (VDD-SRAM) J36 (VDD-ENET) J37 (IRQx) J38 (TAx) J39 (VDD-PLD) J40 (CS2x) J41 (2.5V) J42 (3.3V) J43 (VDDIO) J44 (PD2-EN) J45 (PLL-DIS) MAC7100EVBUM/D Single Chip Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any REMOVED 1-2 REMOVED Any REMOVED Any Any Any Any REMOVED Any REMOVED REMOVED REMOVED REMOVED REMOVED REMOVED Any Any Any Any Any Expanded Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any 1-2 Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Page 27 of 35 VDDIO=5v Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any 1-2 Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any Any VDDIO<5v Any REMOVED REMOVED REMOVED REMOVED REMOVED Any Any REMOVED Any 2-3 Any Any Any Any Any Any Any Any Any Any Any Any REMOVED 1-2 Any Any Any Any Any Any Any REMOVED Any REMOVED Any Any Any Any Any Any Any Any Any Any MAC7100EVB Users Manual Rev 1.1 November 2004 5. User Connector Descriptions The User connectors are grouped together in the right hand middle section of the EVB. . This section details the pinout for the user connectors on the EVB. All of the user connectors are located to the right of the MCU and are all 0.1 inch pitch headers. Pins are grouped by Port functionality and the PCB legend clearly shows the single chip port number adjacent to each header pin. 5.1 Port A / DataBus (P12) Table 5-1 Connector P12 – PortA / Databus Pin No 1* 3* 5* 7* 9 11 13 15 17 PCB Legend 0 2 4 6 8 10 12 14 GND Pin Function Pin No PA0 / DATA0 * PA2 / DATA2 * PA4 / DATA4 * PA6 / DATA6 * PA8 / DATA8 PA10 / DATA10 PA12 / DATA12 PA14 / DATA14 / EIMPS GND 2* 4* 6* 8 10 12 14 16 18 PCB Legend 1 3 5 7 9 11 13 15 GND Pin Function PA1 / DATA1 * PA3 / DATA3 * PA5 / DATA5 * PA7 / DATA7 PA9 / DATA9 PA11 / DATA11 PA13 / DATA13 PA15 / DATA15 / EIMACK GND Notes: - If the EVB is used in expanded mode, the only connection to these pins should be for test / measurement equipment or for external bus interface purposes. - * Indicates pin shared with Primary Nexus location. If this Nexus option is used, this pin must NOT be loaded. Nexus tools should ONLY be connected at the appropriate NEXUS Mictor connector, not at this header. - Pins 14 and 15 (MCU Pins PA14, PA15) are used by the EVB reset configuration logic to determine the MCU EIM reset configuration. These pins must NOT be tied to power or ground OR pulled high or low using aggressive pullup / pulldown resistors. 5.2 Port B / I2C / SPI (P10) Table 5-2 Connector P10 – PortB / I2C / SPI Pin No 1 3 5 7 9 11 13 15 17 MAC7100EVBUM/D PCB Legend 0 2 4 6 8 10 12 14 GND Pin Function PB0 / SDA PB2 / SIN-A PB4 / SCK-A PB6 / PCS1-A PB8 / PCSS-A PB10 / PCSS-B PB12 / PCS1-B PB14 / SOUT-B GND Pin No 2 4 6 8 10 12 14 16 18 Page 28 of 35 PCB Legend 1 3 5 7 9 11 13 15 GND Pin Function PB1 / SCK PB3 / SOUT-A PB5 / SS-A PB7 / PCS2-A PB9 / SS-B PB11 / PCS2-B PB13 / SCK-B PB15 / SIN-B GND MAC7100EVB Users Manual Rev 1.1 November 2004 5.3 Port C / Address [0..15] (P13) Table 5-3 Connector P13 – Port C / Address Pin No 1 3 5 7 9 11 13 15 17 PCB Legend 0 2 4 6 8 10 12 14 GND Pin Function PC0 / ADDR0 PC2 / ADDR2 PC4 / ADDR4 PC6 / ADDR6 PC8 / ADDR8 PC10 / ADDR10 PC12 / ADDR12 PC14 / ADDR14 GND Pin No 2 4 6 8 10 12 14 16 18 PCB Legend 1 3 5 7 9 11 13 15 GND Pin Function PC1 / ADDR1 PC3 / ADDR3 PC5 / ADDR5 PC7 / ADDR7 PC9 / ADDR9 PC11 / ADDR11 PC13 / ADDR13 PC15 / ADDR15 GND Note – If the EVB is used in expanded mode, the only connection to these pins should be for test / measurement equipment or for external bus interface purposes 5.4 Port D / Address [16..21] / Control (P14 and J44) Table 5-4 Connector P14 – Port D / Address / Control Pin No 1 3 5 7 9 11 13 15 17 19 21 PCB Legend 0 CLKOUT 4 6 8 10 12 14 RST-IN MCU-TA GND Pin Function Pin No PD0 / BS0x / MODB CLKOUT / XCLKSx PD4 / IRQx PD6 / ADDR17 PD8 / ADDR19 PD10 / ADDR21 PD12 / CS2x PD14 / CS0x Target RESET-INx * MCU TAx ** GND 2 4 6 8 10 12 14 16 18 20 22 PCB Legend 1 3 5 7 9 11 13 15 RST-OUT TGT-TA GND Pin Function PD1 / BS1x / MODA PD3 / XIRQx PD5 / ADDR16 PD7 / ADDR18 PD9 / ADDR20 PD11 / OEx PD13 / CS1x PD15 / RWx MCU Reset-OUTx *2 Target TAx ** GND Notes: - If the EVB is used in expanded mode, the only connection to the ADDRESS / Control pins should be for test / measurement equipment or for external bus interface purposes. Pins 1,2 and 3 (MCU Pins PD0, PD1 and PD2) are used by the EVB reset configuration logic to determine the operating mode of the MCU. These pins must NOT be tied to power or ground OR pulled high or low using aggressive pullup / pulldown resistors. * RST-INx (pin 17) is connected to the Reset Buffering Input. RST-OUTx (Pin 18) is the buffered MCU reset signal. See section 2.7 for details. ** MCU-TAx (Pin 19) is connected directly to the MCU TAx pin. This must be driven with an open-drain output only. TGT-TAx (Pin 20) is connected to the GAL22V10 and provides a non-open drain TA input. For TGT-TAx to function, the GAL22V10 must be configured as described in section 2.11. MAC7100EVBUM/D Page 29 of 35 MAC7100EVB Users Manual Rev 1.1 5.4.1 November 2004 PD2 / CLKOUT impedance matching control (J44) The MCU PD2/CLKOUT line has a series 33Ω resistor close to the MCU for CLKOUT impedance matching. If required, this resistor can be bypassed using jumper J44. The default position of this jumper is shown in the table below, with the jumper removed allowing impedance matching. Table 5-5 PD2 / CLKOUT Termination Bypass Jumper Jumper J44 (PD2-EN) Position FITTED REMOVED (D) Description CLKOUT Impedance matching resistor is bypassed CLKOUT Impedance matching resistor is active 5.5 Port E / ADC and Analogue Reference (P11 and J17) Table 5-6 Connector P11 – Port E / ADC Pin No 1 3 5 7 9 11 13 15 17 19 Notes - PCB Legend 0 2 4 6 8 10 12 14 VRH GND Pin Function PE0 / AN000 * PE2 / AN002 * PE4 / AN004 * PE6 /AN006 * PE8 /AN008 PE10 / AN010 PE12 / AN012 PE14 / AN014 USR-VRH ** GND Pin No 2 4 6 8 10 12 14 16 18 20 PCB Legend 1 3 5 7 9 11 13 15 VRL GND Pin Function PE1 / AN001 * PE3 / AN003 * PE5 / AN005 * PE7 / AN007 PE9 / AN009 PE11 / AN011 PE13 / AN013 PE15 / AN015 USR-VRL ** GND * Pin shared with Secondary Nexus Location. If this Nexus option is used, this pin must NOT be loaded. Nexus tools should ONLY be connected at the appropriate NEXUS Mictor connector, not at this header. ** Pin 17 (VRH) and Pin 18 (VRL) provide a convenient point for the user to input high and low reference voltages for the ADC assuming that the ADC control jumpers are configured appropriately. See section 2.3 for details. To allow easy user evaluation of the ADC and to perform some simple tests, a 2K Ohm variable resistor (RV1) is provided which provides a voltage of between 0V and VDDIO onto ADC channel 0 (PE0). Jumper J17 can be used to disconnect this variable resistor if it is not required (or if PortE is to be used as a normal I/O Port). J11 and RV1 are located adjacent to connector P11. Table 5-7 RV1 Connection Jumper J17 Jumper J17 (RV1) MAC7100EVBUM/D Position FITTED (D) REMOVED Description Output from variable resistor RV1 is applied to MCU PE0 / AN00 pin Output from RV1 is not connected to MCU (disabled) Page 30 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 5.6 Port F / EMIOS And User LED’S (P9, J16) Table 5-8 Connector P9 – Port F / EMIOS Pin No 1 3 5 7 9 11 13 15 17 PCB Legend 0 2 4 6 8 10 12 14 GND Pin Function Pin No PF0 / EMIOS0 / NEX-PS PF2 / EMIOS 2 PF4 / EMIOS 4 PF6 / EMIOS 6 PF8 / EMIOS 8 PF10 / EMIOS 10 PF12 / EMIOS 12 PF14 / EMIOS 14 GND 2 4 6 8 10 12 14 16 18 PCB Legend 1 3 5 7 9 11 13 15 GND Pin Function PF1 / EMIOS 1 / NEX-EN PF3 / EMIOS 3 PF5 / EMIOS 5 PF7 / EMIOS 7 PF9 / EMIOS 9 PF11 / EMIOS 11 PF13 / EMIOS 13 PF15 / EMIOS 15 GND Note - Pins 1 and 2 (MCU Pins PF0 and PF1) are used by the EVB reset configuration logic to determine the operating mode of the MCU. These pins must NOT be tied to power or ground OR pulled high or low using aggressive pullup / pulldown resistors. 8 LED’s are provided to allow test and evaluation. These are connected to the upper byte of Port F (bits [8..15]). A jumper header (J16) is supplied to allow disconnection of these LED’s if not required as shown in the diagram below. By default, all the jumpers are fitted. J16 PF8 DS2 PF9 DS3 PF10 DS4 PF11 DS5 PF12 DS6 PF13 DS7 PF14 DS8 PF15 DS9 PF-LED LED’S Figure 5-1 J16 and User LED control Note – These LED’s are ACTIVE low. A logic 0 must be driven out of the relevant port in order to illuminate the LED. They are connected via a resistor to VDDIO so if VDDIO is lowered (in variable voltage mode), the LED’s will also get correspondingly dimmer. MAC7100EVBUM/D Page 31 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 5.7 Port G / CAN / SCI (P8) Table 5-9 Connector P8 – Port G / CAN / SCI Pin No 1 3 5 7 9 11 13 15 17 PCB Legend 0 2 4 6 8 10 12 14 GND Pin Function PG0 / RXD-B PG2 / RXD-A PG4 / CNTX-A PG6 / CNTX-B PG8 / CNTX-C PG10 / CNTX-D PG12 / RXD-D PG14 / RXD-C GND Pin No 2 4 6 8 10 12 14 16 18 PCB Legend 1 3 5 7 9 11 13 15 GND Pin Function PG1 / TXD-B PG3 / TXD-A PG5 / CNRX-A PG7 / CNRX-B PG9 / CNRX-C PG11 / CNRX-D PG13 / TXD-D PG15 / TXD-C GND Notes: - The signals at connector P8 are MCU-LEVEL. For physical interface for SCI or CAN, please see sections 2.12 and 2.13 - When the Can or SCI physical interfaces are being used, the corresponding MCU level signal on connector P8 MUST be left unconnected or conflicts will occur. MAC7100EVBUM/D Page 32 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 6. Expansion Connectors The Expansion connectors are located above and below the MCU. Two 120-way expansion connectors are fitted to the EVB, allowing connection of an MCU daughter-card or other board providing functionality enhancement. The pinout of these connectors is detailed below for reference. All of the MCU power signals are routed to the expansion connectors after they have passed through the MCU supply isolation jumpers, thus allowing isolation of power supply lines to the daughter-card if required. Note the output from the 3.3V regulator is not jumpered. The part numbers of possible connectors are detailed in Table 6-1 below. Table 6-1 Expansion Connector Part Numbers Connector Location EVB Daughter Card Height 8mm 9mm 13mm Pitch 0.8mm 0.8mm 0.8mm AMP Part Number 179031-5 5-179009-5 5-179010-5 Table 6-2 Expansion Connector 1 (P5) Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 VDD3.3 PC3 / ADDR3 PC2 / ADDR2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 VDDI/O GND PC1 / ADDR1 PC0 / ADDR0 VDDI/O PG6 / CNTX-B PG11 / CNRX-D GND PG9 / CNRX-C PG8 / CNTX-C VDDI/O PG4 / CNTX-A 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 PD7 / ADD18 PE15 / AN15 PE14 / AN14 PE13 / AN13 GND PE11 / AN11 MCU-VRL USR-VRH USR-VRL VDDA GND PE9 / AN09 PE7 / AN07 VDD3.3 PE5 / AN05 PE3 / AN03 GND 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 PD6 / ADD17 GND GND PG7 / CNRX-B VDD3.3 PG10 / CNTX-D GND PG5 / CNRX-A PG3 / TXD-A PG2 / RXD-A PG1 / TXD-B GND PG14 / RXD-C VDD3.3 PA2 / DATA2 PA4 / DATA4 GND TM TDO PD10 / ADD21 GND PD8 / ADD19 GND PG0 / RXD-B PG15 / TXD-C VDDI/O PA0 / DATA0 PA1 / DATA1 GND PA3 / DATA3 PA5 / DATA5 VDDI/O PA6 / DATA6 TCLK GND TDI PD9 / ADD20 VDD2.5 PE0 / AN00 PA8 / DATA8 PA10 / DATA10 GND PD5 / ADDR16 VDD3.3 PC13 / ADDR13 GND GND PE12 / AN12 VDD2.5 PE10 / AN10 MCU-VRH GND VDDA VDDA VDD2.5 PE8 / AN08 PE6 / AN06 GND PE4 / AN04 PE2 / AN02 VDD2.5 PE1 / AN01 PA7 / DATA7 GND PA9 / DATA9 PA11 / DATA11 VDD2.5 PA12 / DATA12 PC15 / ADDR15 GND PC14 / ADDR14 PC12 / ADDR12 GND GND Note: MCU-VRH and MCU-VRL are connected directly to the respective MCU pins. USR-VRH and USR-VRL are routed to pin 3 of the ADC selection jumpers J7 and J8. MAC7100EVBUM/D Page 33 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 Table 6-3 Expansion Connector 2 (P19) Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 VDD3.3 PB0 / SDA PB1 / SCL PB3 / SOUT-A GND PB4 / SCK-A PB6 / PCS1-A 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 VDD2.5 GND PB2 / SIN-A 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 PG12 / RXD-D 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 PG13 / TXD-D GND VDDR VDDR VDDI/O RESET-OUTx VDDPLL GND PB8 / PCS5-A PF14 / EMIOS14 GND PC4 / ADDR4 VDD3.3 PC6 / ADDR6 PC7 / ADDR7 GND PF10 / EMIOS10 PF7 / EMIOS7 PF6 / EMIOS6 GND PF3 / EMIOS3 PF1 / EMIOS1 VDD3.3 PC8 / ADDR8 PC10 / ADDR10 GND PC11 / ADDR11 VDD2.5 PB5 / PCS0-A PB7 / PCS2-A GND PF15 / EMIOS15 PF13 / EMIOS13 VDD2.5 MTS12/PF12 PC5 / ADDR5 GND PF11 / EMIOS11 VDD2.5 PF9 / EMIOS9 PF8 / EMIOS8 GND PF5 / EMIOS5 PF4 / EMIOS4 VDD2.5 PF2 / EMIOS2 PF0 / EMIOS0 GND PC9 / ADDR9 TGT-RESETx VDDI/O MCU-RESETx VDDR VDDR GND VDDPLL VDDPLL EXT-EXTAL PA15 / DATA15 GND PA14 / DATA14 PD11 / OEx PD1 / BS1x GND PB10 / PCS5-B PB11 / PCS2-B VDD3.3 PB13 / SCK-B GND TA PD3 / XIRQx VDD3.3 PD4 / IRQx PD14 / CS0x GND GND VDDI/O PA13 / DATA13 PD12 / CS2x GND PD0 / BS0x PB9 / PCS0-B VDDI/O PB12 / PCS1-B GND PB14 / SOUT-B PB15 / SIN-B VDDI/O CLKOUT TGT-TAx GND PD13 / CS1x PD15 / RW GND GND 6.1 Use of MCU adapter boards If the EVB is to be used with an MCU adapter board, in order to provide support for packages other than 144QFP, there are a few points that you need to bear in mind when using the EVB in this configuration. (1) The 144 QFP MCU on the EVB must not be fitted if an MCU adapter board is to be used. Otherwise, both MCU’s will be addressing the same peripherals and external bus (if used). This will result in probable damage to the EVB and MCUs. (2) The local clock circuitry on the EVB will not be used by the MCU adapter board (Pierce crystal oscillator circuit and PLL loop filter) as this will be implemented on the adapter board. Therefore, EVB jumpers J2, J3 and J4 will have no function. (3) Jumper J44 on the EVB is unused as Clkout impedance matching must be carried out as close to the MCU pin as possible. All other jumpers and EVB configuration / features remain unchanged. Note – The exact functionality of the EVB when used with an MCU adapter board will also depend on the functionality available on the MCU fitted to the adapter board. Many of these devices will not have an external bus for example. MAC7100EVBUM/D Page 34 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 7. Prototype Area The prototype area is located in the top right section of the EVB. A small prototyping area is included on the EVB, consisting of a 0.1” grid array. Power from all three regulators and ground pins are available at the bottom of the prototype area and are clearly marked. Note the power supply lines to the prototype area are connected directly to the regulator outputs and not connected to the jumpered MCU supply. MAC7100EVBUM/D Page 35 of 35 MAC7100EVB Users Manual Rev 1.1 November 2004 Appendix A - Bill Of Materials Part Number Item Qty Ref Des Value Function 0 1 N/A PCB RE11505F Rev O Bare Printed Circuit Board, Revision O RE11505F Rev O 1 1 C33 1000uF Aluminium electrolytic Capacitor, 50V Panasonic ECA-1VM102 AVX CM316X7R105K16AT 2 5 C8 C11 C34 C35 C36 1.0uF SMD Capacitor, 10V 1206 X7R 3 3 C44 C58 C60 0.22uF X7R SMD Capacitor, 16V 0805 X7R C0805X7R160-224KNE 4 1 C19 68uF TANT SMD Capacitor, 25V AVX TAJE686K025R 5 1 C32 0.01uF SMD Capacitor, 25V 0805 BC 0805B103K500BT 6 40 0.1uF / 0.1uF X7R SMD Capacitor, 25V 0805 X7R AVX 08055C104KAT2A 7 1 C1 C4 C5 C7 C9 C10 C15 C17 C22 C25 C27 C28 C29 C30 C31 C37 C38 C78 C79 C89 C40 C42 C45 C50 C67 C68 C71C55 C56 C62 C65 C66 C69 C70 C82 C84 C86 C88 C91 C92 C73 C74 10pf SMD Capacitor, 25V COG 0805 C0805COG500-100JNE 8 6 C39 C41 C46 C47 C61 C49 470pF SMD Capacitor, 50V 0805 COG C0805COG500-471KNE 9 1 C48 4.7nF SMD Capacitor, 50V 0805 COG C0805X7R160-472KNE 10 24 1nF SMD Capacitor, 50V COG 0805 AVX 08051C102KAT2A 11 1 C2 C3 C6 C18 C26 C43 C57 C72 C75 C76 C77 C23 C51 C52 C53 C54 C63 C64 C80 C81 C83 C85 C87 C90 C59 1nF X7R SMD Capacitor, 50V X7R 0805 12 3 C20 C21 C24 SMD Capacitor, AVX Tant, Low ESR AVX TPSE337K010R0100 13 4 C12 C13 C14 C16 330uF AVX SMD 47pF - NO_FIT 14 4 D1 D2 D3 D4 MBRS340T3 SMD Diode, Schottky Power On Semi MBRS340T3 15 1 DS1 SMD YELLOW LED SMD LED Kingbright AA3528SYC DO NOT INSTALL 16 1 DS13 SMD RED LED SMD LED Kingbright AA3528EC 17 8 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 SMD YELLOW LED SMD LED Infineon HSMY-C650 18 3 DS10 DS11 DS12 SMD GREEN LED SMD LED Kingbright AA3528SGC 19 1 F1 Fuse, 1a, 250v, Fuse, 5 x 20 mm, glass Little Fuse 0216005.H 20 1 F1 Bussmann HTC-15M Through Hole Fusemount (5mm Fuse) Keystone 4527 21 1 FB1 FERRITE BEAD SMD Ferrite Bead Murata BLM31AJ601SN1L 22 19 J1 J3 J5 J10 J15 J17 J19 J26 J28 J30 J31 J33 J34 J35 J36 J37 J38 J39 J40 JUMPER 2 (Default FITTED) Through Hole, 0.1 inch header (1x2) Sullins PZC02SAAN 23 7 J14 J20 J22 J23 J27 J44 J45 JUMPER 2 (Default REMOVED) Through Hole, 0.1 inch header (1x2) Sullins PZC02SAAN 24 13 J7 J8 J11 J12 J13 J18 J21 J25 J29 J32 J41 J42 J43 JUMPER 3 Through Hole, 0.1 inch header (1x3) Sullins PZC03SAAN 25 4 J2 J4 J6 J9 JUMPER 2x2 Through Hole, 0.1 inch header (2x2) Sullins PZC02DAAN MAC7100EVBUM/D Page A-1 MAC7100EVB Users Manual Rev 1.1 November 2004 26 1 J24 JUMPER 3x3 Through Hole, 0.1 inch header (3x3) Sullins PZC0 Series 27 1 J16 JUMPER 8x2 Through Hole, 0.1 inch header (8x2) Sullins PZC08DAAN 28 29 4 1 L1 L2 L3 L4 P11 25uH HEADER 10x2 Through hole Inductor, 500V ferrite core Through Hole, 0.1 inch header (10x2) Seimens EPCOS B82111-B-C024 Sullins PZC10DAAN 30 1 P14 HEADER 11x2 Through Hole, 0.1 inch header (11x2) Sullins PZC11DAAN 31 1 P15 Walled HEADER 10x2 Through Hole walled, 0.1 inch header (10x2) 3M 2520-6002UB 32 1 P17 CONNECTOR BNC-RA Through Hole Pwr Connector, BNC 50 OHM AMP 415046-1 33 1 P20 AMP PC PWR Connector Through Hole Pwr Connector, PC Style AMP 350211-1 34 1 P21 PWR 2SV-02 Through Hole Pwr Connector, 2-way Lever Buchanan 2SV-02 35 1 P22 RJ45_LED Through Hole, RJ45 Ethernet Connector Amphenol RJHS-5381 36 1 P23 PWR Switchcraft RAPC722 Through Hole Pwr Connector, 2.1mm Jack Switchcraft RAPC722 37 2 P3 P4 CONNECTOR DB9 Through Hole Connector, DB9 RS232 female AMP 788796-1 38 2 P5 P19 AMP 120-way SMT Connector SMD Connector, 120-way 0.8mm pitch plug AMP 179031-5 39 2 P6 P16 HEADER 19x2 MICTOR SMT Connector, MICTOR Style (M38C) AMP 767054-1 40 1 P7 Walled HEADER 7x2 Through Hole walled, 0.1 inch header (7x2) 3M 2514-6002UB 41 5 P8 P9 P10 P12 P13 HEADER 9x2 Through Hole, 0.1 inch header (9x2) Sullins PZC09DAAN 42 2 P1 P2 HEADER 3x1 Through Hole, 0.1 inch header (3x1) Sullins PZC03SAAN 43 1 P18 HEADER 8x1 Through Hole, 0.1 inch header (8x1) Sullins PZC08SAAN 44 1 R22 1K2 SMD Resistor, 0805 5% Panasonic, Philips or AVX 45 1 R25 150R SMD Resistor, 0805 5% Panasonic, Philips or AVX 46 1 R26 270R SMD Resistor, 0805 5% Panasonic, Philips or AVX 47 1 R28 5K SMD Resistor, 0805 5% Panasonic, Philips or AVX 48 3 R3 R27 R35 560R SMD Resistor, 0805 5% Panasonic, Philips or AVX 49 4 R4 R6 R8 R12 33R SMD Resistor, 0805 5% Panasonic, Philips or AVX 50 14 R5 R7 R10 R11 R14 R15 R18 R34 R9 R13 R17 R23 R30 R33 10K SMD Resistor, 0805 5% Panasonic, Philips or AVX 51 3 R1 R2 R29 R31 0R SMD Resistor, 0805 5% Panasonic, Philips or AVX 52 2 R16 R20 100R SMD Resistor, 0805 5% Panasonic, Philips or AVX 53 3 R21 R19 R24 1K SMD Resistor, 0805 5% Panasonic, Philips or AVX 54 1 R32 NO Fit SMD Resistor, 0805 5% 55 56 8 1 RN1 RN2 RN3 RN6 RN7 RN8 RN10 RN12 RN11 10K Net 75R Net SMD Resistor Network (x4), 1206 5% SMD Resistor Network (x4), 1206 5% Panasonic, Philips or AVX Panasonic, Philips or AVX 57 2 RN4 RN5 560R Net SMD Resistor Network (x4), 1206 5% Panasonic, Philips or AVX 58 1 RN9 4K7 Net SMD Resistor Network (x4), 1206 5% Panasonic, Philips or AVX 59 1 RP1 330R 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX MAC7100EVBUM/D Page A-2 MAC7100EVB Users Manual Rev 1.1 60 1 November 2004 RP10 11K 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX 61 2 RP16 RP17 49.9R 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX 62 3 RP2 RP3 RP15 1K2 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX 63 1 RP4 180R 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX 64 1 RP5 15R 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX 65 3 RP6 RP13 RP14 470R 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX 66 1 RP7 270R 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX 67 4 RP8 RP9 RP11 RP12 24.9R 1% SMD Precision Resistor, 0805 1% Panasonic, Philips or AVX 68 1 RV1 2K Var Through Hole trimmer, XICON 9mm snap-in Alpha/Xicon 317-2090-2K 69 1 RV2 1K Var Trimmer SMD SMD Trimmer, 3mm cermet type CTS 303UC102E 70 1 SW1 SWITCH SPST, 8 Posn SMD Switch, SPST Series 219 DIP CTS Corp 219-8LPST 71 1 SW2 SWITCH C&K PUSH RED SMD Switch, Momentary push button RED C&K KS11R23CQD 72 1 SW3 SWITCH C&K PUSH BLK SMD Switch, Momentary push button BLACK C&K KS11R22CQD 73 1 SW4 SWITCH SPDT SLIDE Through Hole Switch, SPDT Slide CW Industries G107-0513 74 1 T1 HALO TG110-S050N5 SMD Filter, Ethernet isolation transformer Halo TG110-S050N2 75 11 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 HEADER 1-TP SMD Test point Keystone 5015 76 2 U1 U2 PCA82C250T SMD IC, Can Transceiver, S08 Package Philips PCA82C250TD 77 2 U12 U13 MC74LCX16244 SMD IC, 16 bit buffer driver On Semi MC74LCX16244DT 78 2 U18 U20 LM2596S-ADJ National Semi LM2596S-ADJ 79 1 U19 LM2596S-3.3 SMD Switching Voltage Regulator (Variable Output) SMD Switching Voltage Regulator (3.3V Output) 80 1 U4 MAX232CSE SMD IC, Maxim RS232 Level Shifter Maxim MAX232CSE 81 1 U10 MC74LCX16245 SMD IC, 16 bit bi-directional buffer On Semi MC74LCX16245DT 82 1 U11 NC7SZ57 Fairchild NC7SZ57P6X 83 1 U14 AM29F160D FLASH SMD IC, TinyLogic Configurable 2-Input Logic Gate SMD FLASH, 2MByte Standard pinout, 5V 84 1 U15 (64Kx16) SRAM SMD SRAM, 128KByte 5V Cypress CY7C1021B-12ZC 85 1 U16 ispGAL22V10AV-5LJC PLCC IC, PAL22V10 3.3V GAL, ISP Lattice ispGAL22V10AV-5LJC 86 1 XU16-1 940-99-028-17-400000 SMD Socket, 28-ld PLCC Mil-Max 940-99-028-17-400000 87 1 U17 SMSC LAN91C111-NE SMD IC, Ethernet transceiver, 10/100 SMSC LAN91C111-NE 88 1 U9 MAC7111 144QFP Freescale MAC7111 QFP MCU 89 1 U3 MAX6343-S Maxim MAX6343SUT-T Micrel MC74AC08-D 90 1 U5 MAX6703-Z SMD IC,Low Voltage Monitor (Active Sw Debounce) SMD IC,Low Voltage Monitor Device 91 1 U6 MC74AC08-D SMD IC, Quad 2-Input AND gates MAC7100EVBUM/D Page A-3 National Semi LM2596S-3.3 AMD Am29F160D B75EC Maxim MAX6703ZKA-T MAC7100EVB Users Manual Rev 1.1 November 2004 92 1 U7, U8 MC74AC125-D SMD IC, Quad Buffer with 3-State Outputs Micrel MC74AC125-D 93 1 Y1 8MHz XTAL, HC-49S Fox FOXS080-20 94 1 Y2 8MHZ OSC Module Through Hole Crystal Oscillator, HC-49 Low Profile Through Hole Oscillator Module, DIP14 Epson SG-8002DC-PCB-ND 95 1 Y3 25MHz OSC Module Through Hole Oscillator Module, DIP14 Pletronics P1145-HCV-25MHZ SJ-5518 Black self adhesive rubber feet 3M SJ5518-9-ND STC02SYAN Jumper Shunts, 2 pin Sullins STC02SYAN Misc Items 96 8 97 50 All default jumper headers fitted MAC7100EVBUM/D Page A-4 MAC7100EVB Users Manual Rev 1.1 November 2004 Appendix B - EVB Schematics MAC7100EVBUM/D Page B-1 MAC7100 Evaluation Board Table Of Contents: POWER SUPPLY MAC7111 144 PIN MCU CLOCK AND PLL CIRCUITRY RESET GENERATION, CONTROL AND MODE SELECTION JTAG AND NEXUS CONNECTORS EBI BUFFERS 1 - DATABUS EBI BUFFERS 2 - ADDRESS AND CONTROL EXTERNAL MEMORY ETHERNET 1 - SMSC ETHERNET CONTROLLER ETHERNET 2 - MCU / ETHERNET INTERFACE AND RJ45 CAN AND SCI PHYSICAL INTERFACE EXPANSION CONNECTORS (DAUGHTERCARD) USER CONNECTORS TERMINATION RESISTORS SHEET 2 SHEET 3 SHEET 4 SHEET 5 SHEET 6 SHEET 7 SHEET 8 SHEET 9 SHEET 10 SHEET 11 SHEET 12 SHEET 13 SHEET 14 SHEET 15 Revision Information Rev Date 0.1 28 March 03 0.2 04 April 03 0.3 22 April 03 0.4 30 April 03 1.0 1.1 1.2 25 July 03 12 Sept 03 12 Nov 04 Designer A. Robertson A. Robertson A. Robertson A. Robertson Comments Provisional release Incorporates review changes - Release to PCB layout Mod's to incorporate changes to MCU reset config Remove PD2 Jumper and pull VSSTest to ground A. Robertson A. Robertson A. Robertson Changes for PCB RevB Changes to Productionise EVB (PCB RevO) Name Change to Freescale Semiconductor Notes: - Resistor networks are donated RNx. All resistor networks are SMD 1206 style package. Note: - High precision resistors (1%) are denoted RPx and are SMD 0805 - Variable resistors are denoted RVx - All other resistors are SMD 0805 style unless otherwise stated - All decoupling caps less than 0.1uF are COG SMD 0805 unless otherwise stated - All decoupling caps greater than 0.1uF are X7R SMD 0805 unless otherwise stated - All connectors are denoted Px - All jumpers are denoted Jx - Jumper default positions are shown in the schematics. For 3 way jumpers, default is always posn 1-2 - All Switches are denoted SWx - All test points are denoted TPx These schematics are provided for reference purposes only. As such, Freescale (Launched by Motorola) does not make any warranty, implied or otherwise, as to the suitability of circuit design or component selection (type or value) used in these schematics for hardware design using the Freescale MAC7xxx family of Microprocessors. Customers using any part of these schematics as a basis for hardware design, do so at their own risk and Freescale does not assume any liability for such a hardware design. - All unpopulated test points (vias) are denoted as TPVx User notes are given throughtout the schematics. Specific PCB LAYOUT notes are detailed in ITALICS Freescale TECD Applications - East Kilbride Title Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 1 of 15 POWER SUPPLY 7 to 14 Volt Power Supply Input POWER SWITCH SW4 P23 2.1mm Barrel Connector POWER-IN 3 2 1 Switchcraft RAPC712 R20 100R (Nexus Connector Power Monitor) 1 4 2 3 RP5 RP13 Augat 25V-02 GND GND GND ~ON/OFF 0.1uF GND 4 FB L2 2 C20 D2 RP14 470R 1% 1 + MBRS340T3 2 +12V 1 GND#2 2 GND#3 3 +5V 4 1 3,13 2 VDDIO (Peripherals ETC) VDDIO 3,13 VDDR (On Chip Regulator) VDDR 3,13 1 0.1uF 2 GND P3_3V R27 560R VDDR jumper MUST be in posn 2-3 when VDDCORE or VDDPLL jumpers are fitted. GND P2_5V R26 270R R25 150R P2_5V LM2596S-3.3 P3_3V J22 J42 TP6 TP7 4 3 D4 C21 + 1 2 0.1uF TP11 POWER LED's 2 VDDCore (When NOT using Reg) VDDCore 3,13 2 VDDPLL (Clock and PLL) VDDPLL 3,4,13 MCU-VRH 3,13 USR-VRH 13,14 MCU-VRL 3,13 USR-VRL 13,14 J27 1 FB 1 25uH MBRS340T3 1 GND 2 TP5 1 1 C30 TP4 ~ON/OFF L3 2 330uF AVX SMD 5 3 VOUT TAB DS10 VIN 6 DS11 1 GND DS12 2 2 2 3.3V TP3 VDDA J21 C25 Note - 2.5V regulator output required for reset switch to operate GND PVDDIO U19 TP2 VDDA (ADC Supply) 3 AMP 350210-1 TP1 2 25uH J15 P20 PC PSU Connector 1 1 C28 GND 5 3 VOUT TAB J41 1000uF GND 68uF TANT VIN 2 J19 P2_5V 15R 1% 470R 1% 6 1nF + C33 1 3 1 0.1uF + C19 LM2596S-ADJ 2.5V 2 C26 D1 U18 VMain-In 25uH 330uF AVX SMD C27 L1 VFused MBRS340T3 2 6 MCU Supply Jumpers VSwitched 1 VDD-UNREG PVDDIO F1 P21 2 Lever Connector VDD-UNREG 5 1 C29 0.1uF GND Reference Points ADC Control Current approx 5mA 1 1 1 1 1 1 1 1 ALL LED's GREEN SMD GND PVDDIO J8 GND 1 2 3.0V to 5.0V FERRITE BEAD 1 GND AGND 5 Voltage Regulator Reference Points ~ON/OFF 2 4 FB RV2 J43 1 0.1uF R22 1K2 2 3 PVDDIO PT6 PT11 PT16 PT1 PT7 PT12 PT17 PT2 PT8 PT13 PT18 PT3 PT9 PT14 PT19 PT4 PT10 PT15 PT20 PT5 D3 3 PVDDIO C24 + J7 C22 1 MBRS340T3 0.1uF AGND 3 MCU-VRL 2 (MCU And Expansion Connectors) USR-VRL (From User Connectors) RP6 470R 1% Freescale TECD Applications - East Kilbride Title Protoype Area Reference Points MCU-VRH (MCU And Expansion Connectors) USR-VRH (From User Connectors) 25uH 3 P3_3V 270R 1% L4 2 P2_5V 1K2 1% 1 C31 VOUT RP7 1K Var Trimmer SMD GROUND Links TP10 VIN 3 TP9 1 RP15 330uF AVX SMD TP8 LM2596S-ADJ 1 2 1 1 1 U20 2 FB1 TAB P3_3V GND P2_5V 6 PVDDIO GND GND Jumper Posn 1-2 for 5.0V Fixed, Posn 2-3 for Variable Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 2 of 15 VDDCore (2.5V) VDDR (5V) NEXUS Port EXTAL XTAL MCU-XFC 58 XFC J-MCU-TAx 79 TA Jumper Posn 1-2 for normal operation. 2 3 TEST R29 62 TEST 59 1 VSSPLL J25 MCU-TAx 0R 57 50 64 87 124 14 55_VSSR 60 61 112 112_VSSA 4 MCU-XFC MCU-EXTAL MCU-XTAL 55 4 MCU-EXTAL 4 MCU-XTAL TM TCLK TDO TDI 13_VSSX 49_VSSX 63_VSSX 86_VSSX 125_VSSX TM TCLK TDO TDI 131 130 129 128 141 142 143 144 1 2 7 8 3 4 5 6 51 52 139 140 PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG11 PG12 PG13 PG14 PG15 PF[0..15] 15 16 17 18 19 20 21 22 23 72 73 74 75 76 77 78 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 PG[0..15] 110 111 MCU-VRH MCU-VRL PB0 / SDA PB1 / SCL PB2 / SIN-A PB3 / SOUT-A PB4 / SCK-A PB5 / PCS0-A / SS-A PB6 / PCS1-A PB7 / PCS2-A PB8 / PCS5-A / PCSS-A PB9 / PCS0-B / SS-B / MODC PB10 / PCS5-B / PCSS-B PB11 / PCS2-B PB12 / PCS1-B PB13 / SCK-B PB14 / SOUT-B PB15 / SIN-B 13 49 63 86 125 TM TCLK TDO TDI 54 54_VSS2.5 126 126_VSS2.5 MCU-RSTx 5,6,13 MCU-RSTx 11,13,14,15 MCU-TAx 50_VDDX 64_VDDX 87_VDDX 124_VDDX 14_VDDX RESET VDDA 48 56_VDDR PD0 / MODB / BWE0x PD1 / MODA / BWE1x PD2 / CLKOUT PD3 / XIRQx PD4 / IRQx PD11 / OEx PD12 / CS2x PD13 / CS1x PD14 / CS0x PD15 / RWx MCU-BWE0x MCU-BWE1x MCU-CLK MCU-XIRQx MCU-IRQx MCU-OEx MCU-CS2x MCU-CS1x MCU-CS0x MCU-RWx MCU-BWE0x MCU-BWE1x MCU-CLK MCU-XIRQx MCU-IRQx MCU-OEx MCU-CS2x MCU-CS1x MCU-CS0x MCU-RWx PG0 / RXD-B PG1 / TXD-B PG2 / RXD-A PG3 / TXD-A PG4 / CNTX-A PG5 / CNRX-A PG6 / CNTX-B PG7 / CNRX-B PG8 / CNTX-C PG9 / CNRX-C PG10 / CNTX-D PG11 / CNRX-D PG12 / RXD-D PG13 / TXD-D PG14 / RXD-C PG15 / TXD-C GND GND C47 C41 C72 C57 6,13,14,15 PF[0..15] 5,13,14 PG[0..15] 12,13,14 GND C37 C38 0.1uF 0.1uF AGND SMD socket can be fitted by user if required - YAMAICHI IC149-144 PE[0..15] Local Decoupling PB[0..15] VRH VRL GND TPV2 C46 1nF 70 71 80 81 82 68 69 83 84 85 MAC7111 2,13 0.1uF X7R PA0 / DATA0 / MCK0 PA1 / DATA1 / EVTO PA2 / DATA2 / EVTI PA3 / DATA3 / MDO_0 PA4 / DATA4 / MDO_1 PA5 / DATA5 / MSEO PA6 / DATA6 / RDY PA7 / DATA7 PA8 / DATA8 PA9 / DATA9 PA10 / DATA10 PA11 / DATA11 PA12 / DATA12 PA13 / DATA13 PA14 / DATA14 PA15 / DATA15 PE[0..15] VDDIO C71 1nF 138 137 136 135 134 133 132 98 97 96 95 94 93 67 66 65 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 C42 0.1uF X7R DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 DATA7 DATA8 DATA9 DATA10 DATA11 DATA12 DATA13 DATA14 DATA15 PF0 / EMIOS0 PF1 / EMIOS1 PF2 / EMIOS2 PF3 / EMIOS3 PF4 / EMIOS4 PF5 / EMIOS5 PF6 / EMIOS6 PF7 / EMIOS7 PF8 / EMIOS8 PF9 / EMIOS9 PF10 / EMIOS10 PF11 / EMIOS11 PF12 / EMIOS12 PF13 / EMIOS13 PF14 / EMIOS14 PF15 / EMIOS15 43 42 41 40 39 38 37 36 35 34 33 32 27 26 25 24 C67 470pF PD5 / ADDR16 PD6 / ADDR17 PD7 / ADDR18 PD8 / ADDR19 PD9 / ADDR20 PD10 / ADDR21 DATA[0..15] 5,6,7,13,14,15 DATA[0..15] 6,13,15 6,13,15 6,13,15 6,13,15 92 119 120 121 122 123 ADDR[0..21] 8,13,14 ADDR[0..21] 5,8,13,14,15 5,8,13,14,15 4 5,13,14,15 11,13,14,15 7,8,13,14,15 8,13,14,15 8,13,14,15 8,13,14,15 7,8,13,14,15 ADDR16 ADDR17 ADDR18 ADDR19 ADDR20 ADDR21 C45 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 0.1uF X7R Local Decoupling C50 99 100 101 102 103 104 105 106 107 108 113 114 115 116 117 118 PE0 / AN00 / MCK0 PE1 / AN01 / EVTO PE2 / AN02 / EVTI PE3 / AN03 / MDO_0 PE4 / AN04 / MDO_1 PE5 / AN05 / MSEO PE6 / AN06 / RDY PE7 / AN07 PE8 / AN08 PE9 / AN09 PE10 / AN10 PE11 / AN11 PE12 / AN12 PE13 / AN13 PE14 / AN14 PE15 / AN15 470pF GND PC0 / ADDR0 PC1 / ADDR1 PC2 / ADDR2 PC3 / ADDR3 PC4 / ADDR4 PC5 / ADDR5 PC6 / ADDR6 PC7 / ADDR7 PC8 / ADDR8 PC9 / ADDR9 PC10 / ADDR10 PC11 / ADDR11 PC12 / ADDR12 PC13 / ADDR13 PC14 / ADDR14 PC15 / ADDR15 470pF 470pF GND 9 10 11 12 28 29 30 31 44 45 46 47 88 89 90 91 NEXUS Port 1nF GND C75 1nF C61 0.1uF X7R C43 ADDR0 ADDR1 ADDR2 ADDR3 ADDR4 ADDR5 ADDR6 ADDR7 ADDR8 ADDR9 ADDR10 ADDR11 ADDR12 ADDR13 ADDR14 ADDR15 0.1uF X7R C68 0.22uF X7R 0.22uF X7R C39 C60 470pF 1nF X7R GND 0.1uF X7R 0.22uF X7R C59 C44 (5V) 0.1uF X7R C40 109 VDDIO U9 C58 MAC7111 144 PIN MCU ENSURE there is suffient room around 144QFP footprint for SMD socket to be fitted. VDDPLL 2,13 VDDR (5V) 53 127 2,13 VDDCore (2.5V) VDDA 56 2,13 VDDA VDDPLL 53_VDD2.5 127_VDD2.5 2,4,13 VDDPLL AGND PB[0..15] 13,14 MCU-VRH MCU-VRL 2,13 2,13 Freescale TECD Applications - East Kilbride Title Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 3 of 15 CLOCK AND PLL CIRCUITRY R8 33R MCU-CLK (FROM MCU) Place resistor as close as possible to MCU CLKOUT pin MCU-CLK 1 2 MCU-CLKOUT J23 R9 10K Y2 1 OE 4 7 VCC 14 GND OUT2 11 GND2 OUT1 8 MCU-CLKOUT 5,6,8,13,14 MCU-XFC 3 VDDPLL 2,3,13 EXT-EXTAL 13 MCU-EXTAL (MCU Crystal Input) MCU-EXTAL 3 MCU-XTAL (MCU Crystal Output) MCU-XTAL 3 R28 5K J45 2 Note - External 2.5V regulator MUST be enabled when using oscillator module C49 470pF 1 FIT Jumper to DISABLE PLL (Cs) Oscillator Module (14 Pin DIL socket) 0.1uF 1 (Cp) C15 (Ro) 2 MCU-XFC P2_5V 3 J44 C48 4.7nF VDDPLL PLL Loop Filter Place as close as possible to device XFC pin 8MHZ OSC MODULE EXT-EXTAL (To Expansion Connectors) GND J32 OSC-MOD 1 J29 2 EXT-EXTAL 3 EXTAL_BNC 3 2 C74 R16 10pF 1 100R 2 1 GND Y1 8MHz XTAL RB R32 NO FIT 1 BNC style Connector P17 CONNECTOR BNC-RA 2 R31 C73 J30 0R 10pF 1 2 RS GND Loop Controlled Pierce Oscillator Circuit (Default) For Full Swing Pierce change RB and RS according to desired operating conditions. REMOVE jumper when driving EXTAL from Oscilaltor Module or External Source Crystal circuit ground must NOT be directly connected to ground plane but routed via VSSPLL pin to VSSR and then connected to ground Freescale TECD Applications - East Kilbride Title Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 4 of 15 RESET GENERATION, CONTROL AND MODE SELECTION PVDDIO Tri-State Buffered RESET signal to MCU (Reset-IN) PVDDIO USR RESET LED R3 2 U6A JTAG-RSTx TPV14 JTAG-RSTx 1 SPARE-RSTx 2 560R 3 VDD = PVDDIO VSS = GND TGT-RSTx 9 LVI-RSTx 10 0.1uF 0.1uF AC08 / AC125 Decoupling Caps U6B GND VDD = PVDDIO VSS = GND 5 U6C (From Expansion Conn / User Connectors) TGT-RSTx 1 4 MC74AC08-D 13,14 C9 SMD AMBER LED 6 1 6 (From JTAG / NEXUS) C10 DS1 MCU-RSTx U7A MCU-RSTx 3,6,13 RST-OUTx 9,11,13,14 MCU-BWE1x 3,8,13,14,15 MCU-BWE0x 3,8,13,14,15 MC74AC08-D 8 VDD = PVDDIO VSS = GND 2 VDD=PVDDIO VSS=GND PVDDIO 3 MCU RESET LED R35 GND MC74AC08-D DS13 MC74AC125-D 2 2 560R 1 SMD RED LED PVDDIO J10 RN3 U6D JTAG-RSTx 1 SPARE-RSTx 3 TGT-RSTx 5 LVI-RSTx 7 MCU-RSTx 2 4 6 8 12 VDD = PVDDIO VSS = GND 13 RST-OUTx 11 Buffered RESET-OUT MC74AC08-D 1 10K Net RST-OUTx 4 PVDDIO RN1 P2_5V 1 3 5 7 0.1uF U5 RSTOUTx 7 RESET_SW 1 WDO WDI 8 6 VCC J12 3 2 J11 4 RST_IN1 GND 5 16 15 14 13 12 11 10 9 MODEA MODEB XCLKS EBI-PSZ AUTO-TA NEXUS-LOC NEXUS-EN SWITCH CTS 219-8 3 GND 2 (PD1/MODA/BWE1x) MCU-BWE1x 9 (PD0/MODB/BWE0x) MCU-BWE0x U7C VDD=PVDDIO VSS=GND 8 MC74AC125-D XCLKS GND 12 U7D VDD=PVDDIO VSS=GND 11 MCU-CLKOUT MCU-CLKOUT 4,6,8,13,14 (PD2/CLKOUT/XCLKS) TPV1 RST_IN2 GND MC74AC125-D MAX6703-Z 1 (Note - VDDIO LVI monitoring must be disabled when VDDIO is set to less than 5.0V) 2.33V Threshold LVI IF RST-INX < 0.62V, Reset Asserted Voltage Vout (RST_IN) RP1 330R 1% 6 MC74AC125-D SW1 1 2 3 4 5 6 7 8 SW2 SWITCH C&K PUSH RED Jumper Posn 2-3, Monitor disabled 3 RP4 180R 1% U7B VDD=PVDDIO VSS=GND 3.3V 5.0V 0.71V 0.65V GND PVDDIO RN2 1 3 5 7 2 4 6 8 EBI-PSZ AUTO-TA NEXUS-LOC NEXUS-EN EBI-PSZ 2 DATA[0..15] U8A VDD=PVDDIO VSS=GND 3 MC74AC125-D LVI Circuit AUTO-TA 5 U8B VDD=PVDDIO VSS=GND 6 DATA[0..15] 3,6,7,13,14,15 DATA14 10K Net 4 1 5 10 2 RP2 1K2 1% MODEA 10K Net GND RP3 1K2 1% MCU-RSTx MODEA MODEB XCLKS 2 4 6 8 13 C7 1 PVDDIO P3_3V DATA15 Note - AC08 / AC125 Devices operate from 2V to 6V VCC so are suitable for use with variable VDDIO PVDDIO MC74AC125-D VCC C1 3 PFI 2 GND J1 RSTOUTx 6 PFO 4 RESET_SW 5 1 2 NEXUS-LOC 9 SW3 SWITCH C&K PUSH BLK GND 8 PF[0..15] 3,13,14 PF0 MC74AC125-D GND De-Bounced ABORT Switch RESET Configuration (Mode Selection) 3,13,14,15 MCU-XIRQx PF[0..15] U8C VDD=PVDDIO VSS=GND 13 0.1uF MAX6343-S 10 U3 1 MCU-XIRQx XIRQ (Highest Priority Interrupt) NEXUS-EN 12 Freescale TECD Applications - East Kilbride U8D VDD=PVDDIO VSS=GND 11 MC74AC125-D PF1 Title Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 5 of 15 Layout Note - Place CAPS as close as possible to each connector. Do NOT fit caps at board assembly. C13 C14 C12 C16 PVDDIO (VTref) JTAG-TRSTx TDI TM TCLK (RTCLK) TDO JTAG-JRSTx (DBGRQ) (DBGACK) (All Caps 47pF) GND JTAG TRST Signal NOT connected to MCU reset as there is NO external control of TRST on MAC7100 TPV13 3,13,15 3,13,15 3,13,15 3,13,15 1 3 5 7 9 11 13 15 17 19 (Vsupply) 2 4 6 8 10 12 14 16 18 20 GND Multi-ICE JTAG Connector GND P7 SPU1 JTAG-TRSTx TDI TM TCLK TDO JTAG-TRSTx TDI TM TCLK TDO PVDDIO 2 VDD-UNREG JTAG AND NEXUS CONNECTORS PVDDIO P15 VDD-UNREG (Filtered main power supply line, 7-12V) R6 33R R4 33R 1 3 5 7 9 11 SPU13 13 2 4 6 8 10 12 14 JTAG-JRSTx Embedded-ICE JTAG Connector GND VDD-UNREG J13 5 JTAG-RSTx JTAG-RSTx (To RESET-IN Buffer) PVDDIO 1 2 3,5,13 MCU-RSTx MCU-RSTx (Direct to MCU-Reset pin) JTAG-JRSTx 3 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 MCU-CLKOUT (Vendor IO-3) (EVTI) DATA2 VREF (RDY) DATA6 (MDO[7]) (MDO[6]) (MDO[5]) (MDO[4]) (MDO[3]) (MDO[2]) (MDO[1]) DATA4 (MDO[0]) DATA3 (EVTO) DATA1 (MCK0) DATA0 (MSEO[1]) (MSEO[0]) DATA5 MCU-CLKOUT 4,5,8,13,14 Nexus Option 1 (Shared With PortA / DataBus) DATA[0..15] C1 C2 C3 C4 C5 (Vendor I/O 0) (Vendor I/O 2) JTAG-JRSTx TDO (Vendor I/O 4) TCLK TM TDI JTAG-TRSTx (Vendor I/O 1) (Tool I/O 3) (Tool I/O 2) (Tool I/O 1) UBATT UBATT (Tool I/O 0) VALTREF NEXUS Conenctor (MICTOR) Jumper allows JTAG RESET to be routed via buffers or to be directly connected to the MCU RESETx bi-directional pin (for debug hardware that can monitor the state of the target reset). VREF P6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 DATA[0..15] 3,5,7,13,14,15 PE[0..15] 3,13,14,15 GND P16 - Windsor Nexus implementation only uses two MDO channels. NEXUS Conenctor (MICTOR) Notes: (Vendor I/O 0) (Vendor I/O 2) JTAG-JRSTx TDO (Vendor I/O 4) TCLK TM TDI JTAG-TRSTx (Vendor I/O 1) (Tool I/O 3) (Tool I/O 2) (Tool I/O 1) UBATT UBATT (Tool I/O 0) VALTREF 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 - For Speed, JTAG and NEXUS use UNBUFFERED MCU signals PE[0..15] MCU-CLKOUT (Vendor IO-3) (EVTI) PE2 VREF (RDY) PE6 (MDO[7]) (MDO[6]) (MDO[5]) (MDO[4]) (MDO[3]) (MDO[2]) (MDO[1]) PE4 (MDO[0]) PE3 (EVTO) PE1 (MCK0) PE0 (MSEO[1]) (MSEO[0]) PE5 Nexus Option 2 (Shared With PortE / ADC0..6) Freescale TECD Applications - East Kilbride C1 C2 C3 C4 C5 Title GND Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 6 of 15 EBI BUFFERS 1 - DATABUS 2 P3_3V J26 1 Global Buffer Power Jumper. Buffers MUST be disabled when EVB is used in Single Chip Mode 8 VDD-BUFFER VDD-BUFFER (To Address Bus Buffers) C70 C69 C52 C51 0.1uF 0.1uF 1nF 1nF GND U10 DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 DATA7 DATA8 DATA9 DATA10 DATA11 DATA12 DATA13 DATA14 DATA15 2 3 5 6 8 9 11 12 13 14 16 17 19 20 22 23 A0 B0 A1 B1 A2 B2 A3 B3 T/nRx=0 B4 B-------->A A4 A5 B5 A6 B6 A7 B7 T/nRx=1 B8 B<--------A A8 B9 A9 A10 B10 B11 A11 A12 B12 B13 A13 B14 A14 B15 A15 47 46 44 43 41 40 38 37 36 35 33 32 30 29 27 26 MCU-RWx 1 24 T/nR1 T/nR2 OE1x OE2x 48 25 BDATA[0..15] 9,10 BDATA0 BDATA1 BDATA2 BDATA3 BDATA4 BDATA5 BDATA6 BDATA7 BDATA8 BDATA9 BDATA10 BDATA11 BDATA12 BDATA13 BDATA14 BDATA15 4 10 15 21 28 34 39 45 GND-4 GND-10 GND-15 GND-21 GND-28 GND-34 GND-39 GND-45 MC74LCX16245 3,8,13,14,15 MCU-RWx BDATA[0..15] (To / From Buffers) 7 18 31 42 DATA[0..15] (To / From MCU) 7-VCC 18-VCC 31-VCC 42-VCC 3,5,6,13,14,15 DATA[0..15] GND (XNOR Input B) U11 3,8,13,14,15 MCU-OEx MCU-OEx (XNOR Input A) 1 I1 2 GND 3 I0 I2 6 VCC 5 VDD-BUFFER Y 4 XNOR-OUT Fairchild NC7SZ57 C62 0.1uF GND GND MCU-RWx 0 (Write) 0 (Write) 1 (Read) 1 (Read) 0 1 0 1 MCU-OEx (Data In) (Data Out) (Data In) (Data Out) 1 0 0 1 BUFFER-OEx (INVALID State) (Outputs Active) (Outputs Active) (INVALID State) Fairchild NC7SZ57 Configurable Logic Confgured as XNOR Gate. Tpd approx 3ns Freescale TECD Applications - East Kilbride Title Note - Signal Naming Convention. All Buffered signals start with B (eg BDATA for Buffered Data) Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 7 of 15 EBI BUFFERS 2 - ADDRESS AND CONTROL 7 VDD-BUFFER VDD-BUFFER C65 C66 C56 C55 C63 C64 C53 C54 0.1uF 0.1uF 0.1uF 0.1uF 1nF 1nF 1nF 1nF VDD-BUFFER U12 ADDR0 ADDR1 ADDR2 ADDR3 ADDR4 ADDR5 ADDR6 ADDR7 ADDR8 ADDR9 ADDR10 ADDR11 ADDR12 ADDR13 ADDR14 ADDR15 47 46 44 43 41 40 38 37 36 35 33 32 30 29 27 26 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 48 25 OE2x OE3x 42-VCC 31-VCC 18-VCC 7-VCC ADDR[0..21] O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 2 3 5 6 8 9 11 12 13 14 16 17 19 20 22 23 OE1x OE4x 1 24 BADDR[0..21] 9,10 BMCU-RWx BMCU-BWE0x BMCU-BWE1x BMCU-OEx BMCU-CS0x BMCU-CS1x BMCU-CS2x 9,11 9 9 9 9 9 9,11 BADDR0 BADDR1 BADDR2 BADDR3 BADDR4 BADDR5 BADDR6 BADDR7 BADDR8 BADDR9 BADDR10 BADDR11 BADDR12 BADDR13 BADDR14 BADDR15 BADDR0 and BADDR21 not used in Memory but pinned out for debug purposes. BADDR0 R10 10K GND BADDR21 45 39 34 28 21 15 10 4 GND BADDR[0..21] MC74LCX16244 GND-45 GND-39 GND-34 GND-28 GND-21 GND-15 GND-10 GND-4 3,13,14 ADDR[0..21] 42 31 18 7 GND R11 10K GND GND U13 MCU-RWx MCU-BWE0x MCU-BWE1x MCU-OEx MCU-CS0x MCU-CS1x MCU-CS2x 4,5,6,13,14 MCU-CLKOUT MCU-RWx MCU-BWE0x MCU-BWE1x MCU-OEx MCU-CS0x MCU-CS1x MCU-CS2x MCU-CLKOUT 48 25 GND D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 OE2x OE3x O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 2 3 5 6 8 9 11 12 13 14 16 17 19 20 22 23 OE1x OE4x 1 24 BADDR16 BADDR17 BADDR18 BADDR19 BADDR20 BADDR21 BMCU-RWx BMCU-BWE0x BMCU-BWE1x BMCU-OEx BMCU-CS0x BMCU-CS1x BMCU-CS2x B-CLKOUT BMCU-CLKOUT R12 GND BMCU-CLKOUT 11 33R Place resistor as close as possible to Buffer 45 39 34 28 21 15 10 4 3,7,13,14,15 3,5,13,14,15 3,5,13,14,15 3,7,13,14,15 3,13,14,15 3,13,14,15 3,13,14,15 47 46 44 43 41 40 38 37 36 35 33 32 30 29 27 26 MC74LCX16244 GND-45 GND-39 GND-34 GND-28 GND-21 GND-15 GND-10 GND-4 ADDR16 ADDR17 ADDR18 ADDR19 ADDR20 ADDR21 42-VCC 31-VCC 18-VCC 7-VCC 42 31 18 7 VDD-BUFFER Freescale TECD Applications - East Kilbride GND Buffer OEx=0, Drive Input Dx to output Ox Title Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 8 of 15 EXTERNAL MEMORY BDATA[0..15] 7,10 BDATA[0..15] BADDR[0..21] 8,10 BADDR[0..21] PVDDIO J33 U14 2 FLASH-VCC 1 C17 0.1uF C18 1nF BOOT Block Write Enable WP=0, Boot sector protected (AM29F400B ONLY) 1 2 J31 R13 10K GND General WRITE Enable R17 5,11,13,14 RST-OUTx 8 BMCU-OEx BMCU_RWx VCC BADDR1 BADDR2 BADDR3 BADDR4 BADDR5 BADDR6 BADDR7 BADDR8 BADDR9 BADDR10 BADDR11 BADDR12 BADDR13 BADDR14 BADDR15 BADDR16 BADDR17 BADDR18 BADDR19 BADDR20 25 24 23 22 21 20 19 18 8 7 6 5 4 3 2 1 48 17 16 9 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 FLASH-WPx FLASH-RWx 47 14 11 BYTE WP WE RST-OUTx BMCU_OEx 12 28 RST OE FLASH-CSx 26 CE 10K J34 8,11 BMCU-RWx R30 10K (BYTE=1 FOR 16-BIT MODE) GND 37 1 2 RST-OUTx BMCU-OEx BMCU_RWx FLASH D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 / A-1 29 31 33 35 38 40 42 44 30 32 34 36 39 41 43 45 RY/BY 15 GND_27 GND_46 27 46 BDATA0 BDATA1 BDATA2 BDATA3 BDATA4 BDATA5 BDATA6 BDATA7 BDATA8 BDATA9 BDATA10 BDATA11 BDATA12 BDATA13 BDATA14 BDATA15 PIN COMPATIBLE FLASH AMD AM29F400B (512K Bytes) AMD AM29F800B (1M Byte) AMD AM29F160D (2M Bytes) AM29F160D FLASH GND U15 1 SRAM-VCC 2 C78 C79 0.1uF 0.1uF C76 1nF 1nF GND R33 10K J24 8 BMCU-CS0x 8 BMCU-CS1x 8,11 BMCU-CS2x BMCU-CS0x 2 BMCU-CS1x 5 BMCU-CS2x 8 1 3 4 6 7 9 11 33 VCC VCC BADDR1 BADDR2 BADDR3 BADDR4 BADDR5 BADDR6 BADDR7 BADDR8 BADDR9 BADDR10 BADDR11 BADDR12 BADDR13 BADDR14 BADDR15 BADDR16 5 4 3 2 1 44 43 42 27 26 25 24 21 20 19 18 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 BMCU-OEx BMCU_RWx 41 17 SRAM-CSx 6 C77 FLASH-CSx SRAM-CSx SRAM D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 7 8 9 10 13 14 15 16 29 30 31 32 35 36 37 38 BDATA0 BDATA1 BDATA2 BDATA3 BDATA4 BDATA5 BDATA6 BDATA7 BDATA8 BDATA9 BDATA10 BDATA11 BDATA12 BDATA13 BDATA14 BDATA15 OE* WE* BLE* BHE* 39 40 BMCU-BWE0x BMCU-BWE1x CS* GND GND 34 12 BLE J35 BHE PVDDIO CY7C10211B (64Kx16) SRAM GND 8 BMCU-BWE1x 8 BMCU-BWE0x PIN COMPATIBLE SRAM's Cypress CYC1020B (32K * 16) Cypress CYC1021B (64K * 16) IDT71016 (64K * 16) BWEx Encoding BWE0x = D[0..7] BWE1x = D[8..15] BMCU-BWE1x BMCU-BWE0x Freescale TECD Applications - East Kilbride Title Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 9 of 15 ETHERNET 1 - SMSC ETHERNET CONTROLLER C91 C90 C88 C87 C84 C81 0.1uF 1nF 0.1uF 1nF 0.1uF 1nF 0.1uF 1nF 0.1uF 1nF GND U17 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 BDATA8 BDATA9 BDATA10 BDATA11 BDATA12 BDATA13 BDATA14 BDATA15 107 106 105 104 102 101 100 99 D0 D1 D2 D3 D4 D5 D6 D7 MCU - D8..D15 Ethernet Controller - D0..D7 BDATA0 BDATA1 BDATA2 BDATA3 BDATA4 BDATA5 BDATA6 BDATA7 76 75 74 73 71 70 69 68 D8 D9 D10 D11 D12 D13 D14 D15 66 65 64 63 61 60 59 58 D16 D17 D18 D19 D20 D21 D22 D23 56 55 54 53 51 50 49 48 D24 D25 D26 D27 D28 D29 D30 D31 94 95 96 97 nBE0 nBE1 nBE2 nBE3 BDATA[0..15] 7,9 BDATA[0..15] P_ENET C89 0.1uF R23 10K Y3 1 OE VCC 14 4 GND OUT2 11 7 GND2 OUT1 8 P_ENET 25MHz SMD OSC MODULE (Pull Low) SMSC-RESET 30 RESET (Pull (Pull (Pull (Pull SMSC-nRD SMSC-nWR SMSC-ARDY SMSC-INTR0 31 32 38 29 nRD nWR ARDY INTR0 SMSC-RBIAS 12 RBIAS High) High) High) Low) P_ENET RN12 1 3 5 7 2 4 6 8 R21 1K (NC) RP10 11K 1% 41 XTAL2 XTAL1 AEN ENEEP 6 EESK EECS EEDO EEDI IOS0 IOS1 IOS2 9 10 7 8 3 4 5 (NC) (NC) (NC) (NC) (NC) (NC) (NC) X25OUT TXEN100 CRS100 RX_DV RX_ER COL100 47 111 119 125 126 112 (NC) (NC) (NC) (NC) (NC) (NC) TXD0 TXD1 TXD2 TXD3 116 115 114 113 (NC) (NC) (NC) (NC) TX25 RX25 109 118 (NC) (NC) RXD0 RXD1 RXD2 RXD3 124 123 122 121 (NC) (NC) (NC) (NC) MDI MDO MCLK 25 26 27 (NC) (NC) (NC) 2 (NC) LBK 21 (NC) nRDYRTN nLEDV 46 45 SMSC-nRDYRTN(PULL HIGH) (NC) 11 11 SMSC-TPOSMSC-TPO+ 11 11 SMSC-nLEDB SMSC-nLEDA 11 11 (Serial EEPROM Disabled) GND P_ENET nSRDY LCLK 43 42 (NC) SMSC-LCLK nVLBUS nLNK 40 20 (NC) (NC) nADS W/nR nCYCLE nDATACS 37 36 35 34 (PULL LOW) SMSC-nADS (PULL HIGH) SMSC-WnR SMSC-nCYCLE (PULL HIGH) (NC) nCNTRL 28 (NC) 1 3 5 7 (PULL HIGH) 2 4 6 8 10K Net R18 10K GND P_ENET Freescale TECD Applications - East Kilbride 10K Net Title GND GND 23 22 SMSC-TPISMSC-TPI+ RN10 GND-24 GND-39 GND-52 GND-57 GND-67 GND-72 GND-93 GND-103 GND-108 GND-117 SMSC-nRD SMSC-nWR SMSC-ARDY SMSC-INTR0 SMSC-XTAL1 128 127 nLEDB nLEDA SMSC-nLEDB SMSC-nLEDA nCSOUT GND 11 SMSC-RESET 11 11 11 11 SMSC LAN91C111-NE 24 39 52 57 67 72 93 103 108 117 GND 15 14 SMSC-TPOSMSC-TPO+ MSB Most Signficant Bytes: SMSC-TPISMSC-TPI+ TPOTPO+ BADDR[0..21] 8,9 BADDR[0..21] 18 17 TPITPI+ Serial EEPROM BADDR1 BADDR2 BADDR3 BADDR4 BADDR5 BADDR6 BADDR7 BADDR8 BADDR9 BADDR10 BADDR11 BADDR12 BADDR13 BADDR14 BADDR15 1-VDD 33-VDD 44-VDD 62-VDD 77-VDD 98-VDD 110-VDD 120-VDD C85 11 16 C86 11-AVDD 16-AVDD 2 C83 AGND-13 AGND-19 1 C92 1 33 44 62 77 98 110 120 P_ENET J36 13 19 P3_3V GND Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 10 of 15 ETHERNET 2 - MCU / ETHERNET INTERFACE AND RJ45 J37 3,13,14,15 MCU-IRQx MCU-IRQx 1 MCU-TAx 1 2 MCU-JIRQx IRQx and TAx outputs from PLD are Open Drain J38 3,13,14,15 MCU-TAx P3_3V 2 MCU-JTAx J39 2 VDD-22V10 1 C80 8,9 BMCU-CS2x 8,9 BMCU-RWx 13,14 TGT-TAx BMCU-CS2x 1 BMCU-RWx TGT-TAx 2 (From Expansion Connectors) RN9 PVDDIO P18 1 3 5 7 2 4 6 8 4K7 Net 1 2 3 4 5 6 7 8 28 U16 GND J40 2 3 4 5 6 MAC-I5 7 TPV11 MAC-I6 9 TPV12 SMSC-INTR0 10 SMSC-ARDY 11 MAC-I9 12 TPV10 MAC-I10 13 TPV9 MAC-I11 16 TPV8 ISP-TDO ISP-TDI 22 15 8 1 ISP-MODE CP/I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 TDO TDI MODE TCLK VCC (Reset From MCU) I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8 I/O9 27 26 25 24 23 21 20 19 18 17 MCU-TAx MCU-JIRQx SMSC-RESET MAC-IO3 MAC-IO4 MAC-IO5 SMSC-nRD SMSC-nWR MAC-IO8 MAC-IO9 ISP-TCLK SMSC-RESET 10 SMSC-nRD SMSC-nWR 10 10 SMSC-ARDY SMSC-INTR0 10 10 TPV3 TPV4 TPV5 TPV6 TPV7 ispGAL22LV10-5LJ Note - 22v10 has INTERNAL pullups so unused signals do not require termination. VSS BMCU-CLKOUT RST-OUTx 14 8 BMCU-CLKOUT 5,9,13,14 RST-OUTx C82 0.1uF 1nF R34 10K GND SMSC-ARDY SMSC-INTR0 GND MACH ISP Header (Pin5 Removed for Polorisation) P_ENET P_ENET Ethernet / MCU Signal Translation P_ENET P_ENET R19 SMSC-TPOSMSC-TPO+ 10 RP9 24.9R 1% RP12 24.9R 1% 14 3 15 2 16 1 HALO TG110-S050N5 RN11 C23 1nF 1 3 5 7 2 4 6 8 8 7 6 5 4 3 2 1 R24 1K P22 RJ45_LED 8 7 6 5 4 3 2 1 11 11 SMSC-nLEDA 9 9 SMSC-nLEDB 14 10 SMSC-TPO10 SMSC-TPO+ RP11 24.9R 1% 13 10 SMSC-TPI10 SMSC-TPI+ SMSC-TPISMSC-TPI+ 6 14 RP8 24.9R 1% 7 11 10 RP17 49.9R 1% 8 13 RP16 49.9R 1% 9 10 1K 12 C32 0.01uF 12 T1 75R Net NGND NGND 10 SMSC-nLEDB 10 SMSC-nLEDA SMSC-nLEDB SMSC-nLEDA Freescale TECD Applications - East Kilbride Title Isolation Transformer and RJ45 connector Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 11 of 15 CAN AND SCI PHYSICAL INTERFACE PVDDIO J5 2 RS232-VCC 1 C6 1nF + C34 1.0uF + C1+ V+ 2 C2+ 4 1 6 2 7 3 8 4 9 5 RS232_JTXD-A RS232_4 RS232_JRXD-A PG[0..15] C35 + + C36 1.0uF 1.0uF RS232_3 3 C1- C2- 5 RS232_5 CONNECTOR DB9 J6 PG3 PG2 (TXD-A) (RXD-A) GND 1 3 MCU-JTXD-A MCU-JRXD-A 2 4 11 12 T1IN R1OUT T1OUT R1IN 14 13 T2IN R2OUT T2OUT R2IN 7 8 V- 6 P4 1 3 MCU-JTXD-B MCU-JRXD-B 2 4 10 9 GND (TXD-B) (RXD-B) 1 6 2 7 3 8 4 9 5 RS232_JTXD-B J9 PG1 PG0 Default State = Jumpers FITTED 15 MAX232CSE RS232_JRXD-B C11 + 3,13,14 PG[0..15] VCC GND 1 P3 16 U4 RS232_1 C8 1.0uF Note - If a MAX232A device is used, the 5 polorised 1uF caps can be reduced to 0.1uF TERMINAL PORT 9-WAY D-TYPE (Female) CONNECTOR DB9 GND 1.0uF GND PVDDIO J3 2 CAN-VCC 1 C2 C3 C4 C5 1nF 1nF 0.1uF 0.1uF (Note - Can and RS232 Transceivers MUST be powered down if VDDIO < 5.0V) GND U1 3 VCC MCU-JCNTX-A MCU-JCNRX-A 1 4 TXD RXD CANA-RS 8 2 J2 PG4 PG5 (CNTX-A) (CNRX-A) 1 3 2 4 R1 0R Rs GND VREF 5 CANH CANL 7 6 P1 CANA-CANH CANA-CANL 1 2 3 PCA82C250T GND GND GND Default State = Jumpers FITTED U2 3 VCC MCU-JCNTX-B MCU-JCNRX-B 1 4 TXD RXD CANB-RS 8 2 J4 PG6 PG7 (CNTX-B) (CNRX-B) 1 3 2 4 R2 0R Rs GND VREF 5 CANH CANL 7 6 P2 CANB-CANH CANB-CANL 1 2 3 PCA82C250T GND GND Freescale TECD Applications - East Kilbride GND Title Rs = 0 Ohms for High Speed Operation. Replace with non zero resistor to enable slope control. Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 12 of 15 3,12,14 PG[0..15] 2,3 VDDIO 2,3 VDDCore PE[0..15] PB[0..15] PG[0..15] VDDIO VDDCore P3_3V ADDR3 ADDR2 (PC3) (PC2) (NC) GND PG7 (CNRX-B) (NC) 3.3 PG10 (CNTX-D) (NC) GND PG5 PG3 PG2 PG1 (CNRX-A) (TXD-A) (RXD-A) (TXD-B) (NC) GND PG14 (RXD-C) (NC) 3.3 DATA2 DATA4 (PA2) (PA4) GND (NC) TM TDO (NC) ADDR21 (PD10) GND ADDR19 ADDR18 PE15 PE14 PE13 (PD8) (PD7) (AN15) (AN14) (AN13) PE11 (AN11) GND 2,3 2,14 2,14 2,3 MCU-VRL USR-VRH USR-VRL VDDA MCU-VRL USR-VRH USR-VRL VDDA (AN09) PE9 (AN07) PE7 GND 3.3 Address / Data and Control signals to Expansion Connectors are NOT buffered as these are mux'd with ports for single chip operation PE5 PE3 (AN05) (AN03) GND (NC) (AN00) PE0 (NC) DATA8 (PA8) DATA10 (PA10) GND (NC) ADDR16 (PD5) 3.3 (NC) ADDR13 (PC13) GND GND 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 3,5,6,7,14,15 DATA[0..15] 2,3 MCU-VRH 3,6,15 TDI 3,6,15 TCLK TGT-RSTx MCU-RSTx 5,14 3,5,6 VDDR 2,3 RST-OUTx VDDPLL 5,9,11,14 2,3,4 MCU-CS2x MCU-BWE0x 3,8,14,15 3,5,8,14,15 ADDR[0..21] GND (5V) (2.5V) P19 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 3.3 I/O GND (PC1) (PC0) ADDR1 ADDR0 (SDA) (SCL) (SOUT-A) PB0 PB1 PB3 GND I/O (CNTX-B) (CNRX-D) PG6 PG11 PB4 PB6 GND (CNRX-C) (CNTX-C) PG9 PG8 PB8 PF14 (SCK-A) (PCS1-A) (NC) (PCS5-A) (EMIOS14) GND I/O (CNTX-A) (NC) (NC) (PC4) PG4 ADDR4 3.3 GND (RXD-B) (TXD-C) PG0 PG15 (PC6) (PC7) ADDR6 ADDR7 GND I/O (PA0) (PA1) DATA0 DATA1 GND (PA3) (PA5) DATA3 DATA5 PF10 PF7 PF6 (EMIOS10) (NC) (EMIOS7) (EMIOS6) (NC) GND I/O (PA6) DATA6 (PD9) TCLK TDI ADDR20 GND PF3 PF1 (EMIOS3) (EMIOS1) 3.3 ADDR8 ADDR10 (PC8) (PC10) GND 2.5 (NC) (PD6) ADDR17 ADDR11 PG12 (NC) (AN12) PE12 VDDR GND (PC11) (RXD-D) (NC) GND 2.5 (AN10) (NC) PE10 MCU-VRH GND VDDA (Connected to net VDDA , Pin 79) VDDPLL EXT-EXTAL (PA15) DATA15 GND 2.5 (AN08) (AN06) PE8 PE6 (AN04) (AN02) PE4 PE2 (PA14) (PD11) (NC) (NC) MCU-BWE1x (PD1) (AN01) (PA7) PE1 DATA7 PB10 PB11 (PCS5-B) (PCS2-B) (PA9) (PA11) DATA9 DATA11 PB13 (SCK-B) (NC) GND DATA14 MCU-OEx GND 2.5 3.3 GND GND 2.5 (PA12) (PC15) DATA12 ADDR15 MCU-TAx MCU-XIRQx (PD3) 3.3 GND (PC14) (PC12) ADDR14 ADDR12 MCU-IRQx (PD4) MCU-CS0x (PD14) GND GND GND GND AMP 120way SMT Connector 3,8,14 ADDR[0..21] 3,14 P3_3V P5 3,6,15 TM 3,6,15 TDO 3,5,14 PB[0..15] PG[0..15] (5V) (2.5V) VDDIO VDDCore 3.3 Expansion Connector POWER lines are connected to JUMPERED power supply lines to allow current measurement / supply isolation on daughtercard PF[0..15] Conenctor 1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 2.5 GND (SIN-A) (NC) PB2 (PCS0-A) (PCS2-A) PB5 PB7 2.5 GND (EMIOS15) PF15 (EMIOS13) PF13 2.5 (EMIOS12) PF12 (PC5) ADDR5 GND (NC) (EMIOS11) PF11 2.5 (EMIOS9) (EMIOS8) PF9 PF8 (EMIOS5) (EMIOS4) PF5 PF4 (EMIOS2) (EMIOS0) PF2 PF0 ADDR9 GND 2.5 GND (PC9) TGT-RSTx MCU-RSTx I/O (TXD-D) PG13 GND VDDR I/O RST-OUTx VDDPLL GND I/O (NC) (NC) (PA13) DATA13 GND (PD12) (PD0) MCU-CS2x MCU-BWE0x (PCS0-B) PB9 (NC) (PCS1-B) PB12 (SOUT-B) (SIN-B) PB14 PB15 (PD2) MCU-CLKOUT TGT-TAx (PD13) (PD15) MCU-CS1x MCU-RWx EXPANSION CONNECTORS (DAUGHTERCARD) PF[0..15] 3,6,14,15 PE[0..15] I/O GND I/O MCU-CLKOUT 4,5,6,8,14 TGT-TAx 11,14 GND GND GND MCU-CS1x MCU-RWx 3,8,14,15 3,7,8,14,15 MCU-CS0x MCU-IRQx MCU-XIRQx MCU-TAx MCU-BWE1x MCU-OEx EXT-EXTAL 3,8,14,15 3,11,14,15 3,5,14,15 3,11,14,15 3,5,8,14,15 3,7,8,14,15 4 AMP 120way SMT Connector GND DATA[0..15] GND ADDR[0..21] Conenctor 2 GND DATA[0..15] MCU-CS0x MCU-IRQx MCU-XIRQx MCU-TAx MCU-BWE1x MCU-OEx EXT-EXTAL MCU-VRH TDI TCLK CONNECTORS MUST BE PLACED IN ACCORDANCE WITH PCB SPECIFICATION Freescale TECD Applications - East Kilbride Title AMP Connector Part number 179031-5 (8mm high, 0.8mm pitch 120way) Suitable Mating connector - AMP 5-179009-5 (9mm high) or 5-179010-5 (13mm high) Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 13 of 15 USER CONNECTORS DATA[0..15] 3,5,6,7,13,15 DATA[0..15] PE[0..15] PE[0..15] 3,6,13,15 USR-VRL 2,13 USR-VRH 2,13 PF[0..15] 3,5,13 P12 DATA0 DATA2 DATA4 DATA6 DATA8 DATA10 DATA12 DATA14 (PA0) (PA2) (PA4) (PA6) (PA8) (PA10) (PA12) (PA14) 1 3 5 7 9 11 13 15 17 2 4 6 8 10 12 14 16 18 GND (PA1) (PA3) (PA5) (PA7) (PA9) (PA11) (PA13) (PA15) DATA1 DATA3 DATA5 DATA7 DATA9 DATA11 DATA13 DATA15 P11 PE0 (AN00) PE2 (AN02) PE4 (AN04) PE6 (AN06) PE8 (AN08) PE10 (AN10) PE12 (AN12) PE14 (AN14) USR-VRH 1 3 5 7 9 11 13 15 17 19 GND (AN01) (AN03) (AN05) (AN07) (AN09) (AN11) (AN13) (AN15) 2 4 6 8 10 12 14 16 18 20 GND PE1 PE3 PE5 PE7 PE9 PE11 PE13 PE15 USR-VRL GND PB[0..15] 3,13 PB[0..15] P10 (SDA) (SIN-A) (SCK-A) (PCS1-A) (PCS5-A) (PCS5-B) (PCS1-B) (SOUT-B) 1 3 5 7 9 11 13 15 17 2 4 6 8 10 12 14 16 18 GND (SCL) (SOUT-A) (PCSO-A) (PCS2-A) (PCS0-B) (PCS2-B) (SCK-B) (SIN-B) PB1 PB3 PB5 PB7 PB9 PB11 PB13 PB15 PVDDIO Simple POT to allow easy evaluation of ADC Mouser 317-2090-2K RV1 2K Var 3 1 J17 PE0 1 GND 2 PB0 PB2 PB4 PB6 PB8 PB10 PB12 PB14 2 GND PF[0..15] ADDR[0..21] 3,8,13 ADDR[0..21] P13 ADDR0 ADDR2 ADDR4 ADDR6 ADDR8 ADDR10 ADDR12 ADDR14 (PC0) (PC2) (PC4) (PC6) (PC8) (PC10) (PC12) (PC14) 1 3 5 7 9 11 13 15 17 2 4 6 8 10 12 14 16 18 GND 3,5,13,15 3,5,8,13,15 3,5,8,13,15 4,5,6,8,13 3,11,13,15 MCU-XIRQx MCU-BWE1x MCU-BWE0x MCU-CLKOUT MCU-IRQx MCU-CS2x MCU-CS0x TGT-RSTx MCU-TAx MCU-CS2x MCU-CS0x TGT-RSTx MCU-TAx TGT-TAx RST-OUTx MCU-RWx MCU-CS1x MCU-OEx TGT-TAx RST-OUTx MCU-RWx MCU-CS1x MCU-OEx P9 PF0 PF2 PF4 PF6 PF8 PF10 PF12 PF14 (EMIOS0) 1 (EMIOS2) 3 (EMIOS4) 5 (EMIOS6) 7 (EMIOS8) 9 (EMIOS10) 11 (EMIOS12) 13 (EMIOS14) 15 17 2 4 6 8 10 12 14 16 18 (EMIOS1) (EMIOS3) (EMIOS5) (EMIOS7) (EMIOS9) (EMIOS11) (EMIOS13) (EMIOS15) PF1 PF3 PF5 PF7 PF9 PF11 PF13 PF15 LEDs ACTIVE LOW DS2 1 DS3 2 DS4 1 GND 2 DS5 GND 1 (PD0) (PD4) (PD6) (PD8) (PD10) (PD12) (PD14) (Target RESET-IN) 1 3 5 7 9 11 13 15 17 19 21 PVDDIO 2 1 RN4 RPF8 RPF9 RPF10 RPF11 1 3 5 7 2 2 4 6 8 10 12 14 16 18 20 22 (PD1) (PD3) (PD5) (PD7) (PD9) (PD11) (PD13) (PD15) MCU-BWE1x MCU-XIRQx ADDR16 ADDR18 ADDR20 MCU-OEx MCU-CS1x MCU-RWx RST-OUTx TGT-TAx 1 J16 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16 LPF8 LPF9 LPF10 LPF11 LPF12 LPF13 LPF14 LPF15 2 DS7 1 2 DS8 1 2 2 4 6 8 560R Net DS6 P14 GND 11,13 5,9,11,13 3,7,8,13,15 3,8,13,15 3,7,8,13,15 ADDR1 ADDR3 ADDR5 ADDR7 ADDR9 ADDR11 ADDR13 ADDR15 GND MCU-XIRQx MCU-BWE1x MCU-BWE0x MCU-CLKOUT MCU-IRQx ADDR17 ADDR19 ADDR21 3,8,13,15 3,8,13,15 5,13 3,11,13,15 (PC1) (PC3) (PC5) (PC7) (PC9) (PC11) (PC13) (PC15) RN5 RPF12 RPF13 RPF14 RPF15 1 3 5 7 2 4 6 8 560R Net DS9 1 2 ALL LEDS SMD YELLOW Default State = Jumpers FITTED GND PG[0..15] PG[0..15] (Buffered MCU Reset-OUT) 3,12,13 P8 PG0 PG2 PG4 PG6 PG8 PG10 PG12 PG14 (RXD-B) (RXD-A) (CNTX-A) (CNTX-B) (CNTX-C) (CNTX-D) (RXD-D) (RXD-C) GND 1 3 5 7 9 11 13 15 17 2 4 6 8 10 12 14 16 18 (TXD-B) (TXD-A) (CNRX-A) (CNRX-B) (CNRX-C) (CNRX-D) (TXD-D) (TXD-C) PG1 PG3 PG5 PG7 PG9 PG11 PG13 PG15 Freescale TECD Applications - East Kilbride GND NOTE: All Connectors are 0.1" through-hole headers Title Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 14 of 15 TERMINATION RESISTORS 2 PVDDIO For Single Chip mode operation, need to isolate pullup resistors from pins that are mux'd with single chip functions (eg Port D) J28 FM4 1 1 Fiducial Mark FM3 RN7 3,5,8,13,14 3,5,8,13,14 3,5,13,14 3,11,13,14 MCU-BWE0x MCU-BWE1x MCU-XIRQx MCU-IRQx MCU-BWE0x MCU-BWE1x MCU-XIRQx MCU-IRQx 1 3 5 7 FM7 FM8 1 FM1 2 4 6 8 1 1 Fiducial Mark FM2 1 1 Fiducial Mark 1 1 Fiducial Mark 1 Fiducial Mark FM5 1 1 Fiducial Mark 1 FM6 1 1 Fiducial Mark 1 1 Fiducial Mark 10K Net RN8 3,7,8,13,14 3,8,13,14 3,8,13,14 3,8,13,14 MCU-OEx MCU-CS0x MCU-CS1x MCU-CS2x MCU-OEx MCU-CS0x MCU-CS1x MCU-CS2x 1 3 5 7 MCU-RWx R15 10K MCU-TAx R14 10K TDI TM TCLK TDO 1 3 5 7 2 4 6 8 10K Net 3,7,8,13,14 MCU-RWx 3,11,13,14 MCU-TAx RN6 3,6,13 3,6,13 3,6,13 3,6,13 TDI TM TCLK TDO J18 10K Net 2 4 6 8 1 2 3 JTAG PORT GND Pullups always active 3,5,6,7,13,14 DATA[0..15] DATA[0..15] DATA2 3,6,13,14 PE[0..15] R5 J14 10K 1 Nexus EVTI Pullup Enable PE[0..15] PE2 R7 10K 2 J20 1 2 Freescale TECD Applications - East Kilbride All RESET Pullup Resistors are shown on Reset Circuitry page Title Size B Date: MAC7100 Evaluation Board Document Number Drawing 63A11505S Rev 1.2 (MAC7100 EVB) Friday, November 12, 2004 Sheet 15 of 15