ATMEL ATMEGA128L-8AI

Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
– 133 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers + Peripheral Control Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier
Nonvolatile Program and Data Memories
– 128K Bytes of In-System Reprogrammable Flash
Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– 4K Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
– 4K Bytes Internal SRAM
– Up to 64K Bytes Optional External Memory Space
– Programming Lock for Software Security
– SPI Interface for In-System Programming
JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and
Capture Mode
– Real Time Counter with Separate Oscillator
– Two 8-bit PWM Channels
– 6 PWM Channels with Programmable Resolution from 2 to 16 Bits
– Output Compare Modulator
– 8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
– Byte-oriented Two-wire Serial Interface
– Dual Programmable Serial USARTs
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with On-chip Oscillator
– On-chip Analog Comparator
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,
and Extended Standby
– Software Selectable Clock Frequency
– ATmega103 Compatibility Mode Selected by a Fuse
– Global Pull-up Disable
I/O and Packages
– 53 Programmable I/O Lines
– 64-lead TQFP and 64-pad QFN/MLF
Operating Voltages
– 2.7 - 5.5V for ATmega128L
– 4.5 - 5.5V for ATmega128
Speed Grades
– 0 - 8 MHz for ATmega128L
– 0 - 16 MHz for ATmega128
8-bit
Microcontroller
with 128K Bytes
In-System
Programmable
Flash
ATmega128
ATmega128L
Summary
Rev. 2467OS–AVR–10/06
Figure 1. Pinout ATmega128
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PA3 (AD3)
PA4 (AD4)
PA5 (AD5)
PA6 (AD6)
PA7 (AD7)
PG2(ALE)
PC7 (A15)
PC6 (A14)
PC5 (A13)
PC4 (A12)
PC3 (A11)
PC2 (A10)
PC1 (A9)
PC0 (A8)
PG1(RD)
PG0(WR)
(OC2/OC1C) PB7
TOSC2/PG3
TOSC1/PG4
RESET
VCC
GND
XTAL2
XTAL1
(SCL/INT0) PD0
(SDA/INT1) PD1
(RXD1/INT2) PD2
(TXD1/INT3) PD3
(ICP1) PD4
(XCK1) PD5
(T1) PD6
(T2) PD7
PEN
RXD0/(PDI) PE0
(TXD0/PDO) PE1
(XCK0/AIN0) PE2
(OC3A/AIN1) PE3
(OC3B/INT4) PE4
(OC3C/INT5) PE5
(T3/INT6) PE6
(ICP3/INT7) PE7
(SS) PB0
(SCK) PB1
(MOSI) PB2
(MISO) PB3
(OC0) PB4
(OC1A) PB5
(OC1B) PB6
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
AVCC
GND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
GND
VCC
PA0 (AD0)
PA1 (AD1)
PA2 (AD2)
Pin Configurations
Note:
Overview
2
The Pinout figure applies to both TQFP and MLF packages. The bottom pad under the
QFN/MLF package should be soldered to ground.
The ATmega128 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the ATmega128 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
ATmega128
2467OS–AVR–10/06
ATmega128
Block Diagram
PC0 - PC7
RESET
PA0 - PA7
XTAL1
PF0 - PF7
XTAL2
Figure 2. Block Diagram
VCC
GND
PORTA DRIVERS
PORTF DRIVERS
DATA DIR.
REG. PORTF
DATA REGISTER
PORTF
PORTC DRIVERS
DATA DIR.
REG. PORTA
DATA REGISTER
PORTA
DATA REGISTER
PORTC
DATA DIR.
REG. PORTC
8-BIT DATA BUS
AVCC
CALIB. OSC
INTERNAL
OSCILLATOR
ADC
AGND
AREF
OSCILLATOR
PROGRAM
COUNTER
STACK
POINTER
WATCHDOG
TIMER
ON-CHIP DEBUG
PROGRAM
FLASH
SRAM
MCU CONTROL
REGISTER
BOUNDARYSCAN
INSTRUCTION
REGISTER
JTAG TAP
OSCILLATOR
TIMING AND
CONTROL
TIMER/
COUNTERS
GENERAL
PURPOSE
REGISTERS
X
PEN
PROGRAMMING
LOGIC
INSTRUCTION
DECODER
CONTROL
LINES
Z
INTERRUPT
UNIT
ALU
EEPROM
Y
STATUS
REGISTER
SPI
+
-
ANALOG
COMPARATOR
USART0
DATA REGISTER
PORTE
DATA DIR.
REG. PORTE
PORTE DRIVERS
PE0 - PE7
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
PORTB DRIVERS
PB0 - PB7
USART1
DATA REGISTER
PORTD
TWO-WIRE SERIAL
INTERFACE
DATA DIR.
REG. PORTD
DATA REG.
PORTG
DATA DIR.
REG. PORTG
PORTD DRIVERS
PORTG DRIVERS
PD0 - PD7
PG0 - PG4
3
2467OS–AVR–10/06
The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.
The ATmega128 provides the following features: 128K bytes of In-System Programmable Flash with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM, 53
general purpose I/O lines, 32 general purpose working registers, Real Time Counter
(RTC), four flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte
oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential
input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for
accessing the On-chip Debug system and programming and six software selectable
power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counters, SPI port, and interrupt system to continue functioning. The Powerdown mode saves the register contents but freezes the Oscillator, disabling all other
chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the
rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all
I/O modules except Asynchronous Timer and ADC, to minimize switching noise during
ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while
the rest of the device is sleeping. This allows very fast start-up combined with low power
consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.
The device is manufactured using Atmel’s high-density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed in-system
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega128 is
a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.
The ATmega128 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.
ATmega103 and
ATmega128
Compatibility
4
The ATmega128 is a highly complex microcontroller where the number of I/O locations
supersedes the 64 I/O locations reserved in the AVR instruction set. To ensure backward compatibility with the ATmega103, all I/O locations present in ATmega103 have
the same location in ATmega128. Most additional I/O locations are added in an
Extended I/O space starting from $60 to $FF, (i.e., in the ATmega103 internal RAM
space). These locations can be reached by using LD/LDS/LDD and ST/STS/STD
instructions only, not by using IN and OUT instructions. The relocation of the internal
RAM space may still be a problem for ATmega103 users. Also, the increased number of
interrupt vectors might be a problem if the code uses absolute addresses. To solve
these problems, an ATmega103 compatibility mode can be selected by programming
the fuse M103C. In this mode, none of the functions in the Extended I/O space are in
use, so the internal RAM is located as in ATmega103. Also, the Extended Interrupt vectors are removed.
ATmega128
2467OS–AVR–10/06
ATmega128
The ATmega128 is 100% pin compatible with ATmega103, and can replace the
ATmega103 on current Printed Circuit Boards. The application note “Replacing
ATmega103 by ATmega128” describes what the user should be aware of replacing the
ATmega103 by an ATmega128.
ATmega103 Compatibility
Mode
By programming the M103C fuse, the ATmega128 will be compatible with the
ATmega103 regards to RAM, I/O pins and interrupt vectors as described above. However, some new features in ATmega128 are not available in this compatibility mode,
these features are listed below:
•
One USART instead of two, Asynchronous mode only. Only the eight least
significant bits of the Baud Rate Register is available.
•
One 16 bits Timer/Counter with two compare registers instead of two 16-bit
Timer/Counters with three compare registers.
•
Two-wire serial interface is not supported.
•
Port C is output only.
•
Port G serves alternate functions only (not a general I/O port).
•
Port F serves as digital input only in addition to analog input to the ADC.
•
Boot Loader capabilities is not supported.
•
It is not possible to adjust the frequency of the internal calibrated RC Oscillator.
•
The External Memory Interface can not release any Address pins for general I/O,
neither configure different wait-states to different External Memory Address
sections.
In addition, there are some other minor differences to make it more compatible to
ATmega103:
•
Only EXTRF and PORF exists in MCUCSR.
•
Timed sequence not required for Watchdog Time-out change.
•
External Interrupt pins 3 - 0 serve as level interrupt only.
•
USART has no FIFO buffer, so data overrun comes earlier.
Unused I/O bits in ATmega103 should be written to 0 to ensure same operation in
ATmega128.
Pin Descriptions
VCC
Digital supply voltage.
GND
Ground.
Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port A also serves the functions of various special features of the ATmega128 as listed
on page 72.
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
5
2467OS–AVR–10/06
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATmega128 as listed
on page 73.
Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port C also serves the functions of special features of the ATmega128 as listed on page
76. In ATmega103 compatibility mode, Port C is output only, and the port C pins are not
tri-stated when a reset condition becomes active.
Note:
Port D (PD7..PD0)
The ATmega128 is by default shipped in ATmega103 compatibility mode. Thus, if the
parts are not programmed before they are put on the PCB, PORTC will be output during
first power up, and until the ATmega103 compatibility mode is disabled.
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega128 as listed
on page 77.
Port E (PE7..PE0)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port E also serves the functions of various special features of the ATmega128 as listed
on page 80.
Port F (PF7..PF0)
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a Reset
occurs.
The TDO pin is tri-stated unless TAP states that shift out data are entered.
Port F also serves the functions of the JTAG interface.
In ATmega103 compatibility mode, Port F is an input Port only.
6
ATmega128
2467OS–AVR–10/06
ATmega128
Port G (PG4..PG0)
Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port G output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port G pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port G also serves the functions of various special features.
The port G pins are tri-stated when a reset condition becomes active, even if the clock is
not running.
In ATmega103 compatibility mode, these pins only serves as strobes signals to the
external memory as well as input to the 32 kHz Oscillator, and the pins are initialized to
PG0 = 1, PG1 = 1, and PG2 = 0 asynchronously when a reset condition becomes active,
even if the clock is not running. PG3 and PG4 are oscillator pins.
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table
19 on page 50. Shorter pulses are not guaranteed to generate a reset.
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2
Output from the inverting Oscillator amplifier.
AVCC
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.
AREF
AREF is the analog reference pin for the A/D Converter.
PEN
PEN is a programming enable pin for the SPI Serial Programming mode, and is internally pulled high . By holding this pin low during a Power-on Reset, the device will enter
the SPI Serial Programming mode. PEN has no function during normal operation.
Resources
A comprehensive set of development tools, application notes, and datasheets are available for download on http://www.atmel.com/avr.
7
2467OS–AVR–10/06
Register Summary
8
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
($FF)
Reserved
–
–
–
–
–
–
–
–
..
($9E)
Reserved
–
–
–
–
–
–
–
–
Reserved
–
–
–
–
–
–
–
–
($9D)
UCSR1C
–
UMSEL1
UPM11
UPM10
USBS1
UCSZ11
UCSZ10
UCPOL1
192
($9C)
UDR1
($9B)
UCSR1A
RXC1
TXC1
UDRE1
($9A)
UCSR1B
RXCIE1
TXCIE1
UDRIE1
($99)
UBRR1L
($98)
UBRR1H
–
–
–
–
($97)
Reserved
–
–
–
–
($96)
Reserved
–
–
–
–
–
–
–
–
($95)
($94)
UCSR0C
–
UMSEL0
UPM01
UPM00
USBS0
UCSZ01
UCSZ00
UCPOL0
Reserved
–
–
–
–
–
–
–
–
($93)
Reserved
–
–
–
–
–
–
–
–
($92)
Reserved
–
–
–
–
–
–
–
–
($91)
Reserved
–
–
–
–
–
–
–
–
($90)
UBRR0H
–
–
–
–
($8F)
Reserved
–
–
–
–
–
–
–
–
USART1 I/O Data Register
Page
190
FE1
DOR1
UPE1
U2X1
MPCM1
190
RXEN1
TXEN1
UCSZ12
RXB81
TXB81
191
USART1 Baud Rate Register Low
194
USART1 Baud Rate Register High
–
–
–
194
–
USART0 Baud Rate Register High
192
194
($8E)
Reserved
–
–
–
–
–
–
–
–
($8D)
Reserved
–
–
–
–
–
–
–
–
($8C)
TCCR3C
FOC3A
FOC3B
FOC3C
–
–
–
–
–
137
($8B)
TCCR3A
COM3A1
COM3A0
COM3B1
COM3B0
COM3C1
COM3C0
WGM31
WGM30
133
ICNC3
ICES3
–
WGM33
WGM32
CS32
CS31
CS30
136
($8A)
TCCR3B
($89)
TCNT3H
Timer/Counter3 – Counter Register High Byte
138
($88)
TCNT3L
Timer/Counter3 – Counter Register Low Byte
138
($87)
OCR3AH
Timer/Counter3 – Output Compare Register A High Byte
138
($86)
OCR3AL
Timer/Counter3 – Output Compare Register A Low Byte
138
($85)
OCR3BH
Timer/Counter3 – Output Compare Register B High Byte
139
($84)
OCR3BL
Timer/Counter3 – Output Compare Register B Low Byte
139
($83)
OCR3CH
Timer/Counter3 – Output Compare Register C High Byte
139
($82)
OCR3CL
Timer/Counter3 – Output Compare Register C Low Byte
139
($81)
ICR3H
Timer/Counter3 – Input Capture Register High Byte
139
($80)
($7F)
ICR3L
Timer/Counter3 – Input Capture Register Low Byte
Reserved
–
–
–
–
–
–
139
–
–
($7E)
Reserved
–
–
–
–
–
–
–
–
($7D)
ETIMSK
–
–
TICIE3
OCIE3A
OCIE3B
TOIE3
OCIE3C
OCIE1C
140
($7C)
($7B)
ETIFR
–
–
ICF3
OCF3A
OCF3B
TOV3
OCF3C
OCF1C
141
Reserved
–
–
–
–
–
–
–
–
($7A)
TCCR1C
FOC1A
FOC1B
FOC1C
–
–
–
–
–
($79)
OCR1CH
Timer/Counter1 – Output Compare Register C High Byte
138
($78)
($77)
OCR1CL
Timer/Counter1 – Output Compare Register C Low Byte
138
Reserved
–
–
–
–
–
–
–
–
($76)
Reserved
–
–
–
–
–
–
–
–
($75)
Reserved
–
–
–
–
–
–
–
–
($74)
TWCR
TWINT
TWEA
TWSTA
TWSTO
TWWC
TWEN
–
TWIE
207
($73)
TWDR
($72)
TWAR
TWA6
TWA5
TWA4
TWS7
TWS6
TWS5
Two-wire Serial Interface Data Register
209
TWA3
TWA2
TWA1
TWA0
TWGCE
209
TWS4
TWS3
–
TWPS1
TWPS0
208
($71)
TWSR
($70)
TWBR
Two-wire Serial Interface Bit Rate Register
($6F)
($6E)
OSCCAL
Oscillator Calibration Register
Reserved
137
207
41
–
–
–
–
–
–
–
($6D)
XMCRA
–
SRL2
SRL1
SRL0
SRW01
SRW00
SRW11
($6C)
XMCRB
XMBK
–
–
–
–
XMM2
XMM1
–
31
XMM0
33
($6B)
Reserved
–
–
–
–
–
–
–
–
($6A)
($69)
EICRA
ISC31
ISC30
ISC21
ISC20
ISC11
ISC10
ISC01
ISC00
Reserved
–
–
–
–
–
–
–
–
($68)
SPMCSR
SPMIE
RWWSB
–
RWWSRE
BLBSET
PGWRT
PGERS
SPMEN
($67)
Reserved
–
–
–
–
–
–
–
–
($66)
Reserved
–
–
–
–
–
–
–
–
($65)
PORTG
–
–
–
PORTG4
PORTG3
PORTG2
PORTG1
PORTG0
88
($64)
DDRG
–
–
–
DDG4
DDG3
DDG2
DDG1
DDG0
88
89
280
($63)
PING
–
–
–
PING4
PING3
PING2
PING1
PING0
88
($62)
PORTF
PORTF7
PORTF6
PORTF5
PORTF4
PORTF3
PORTF2
PORTF1
PORTF0
87
ATmega128
2467OS–AVR–10/06
ATmega128
Register Summary (Continued)
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
($61)
DDRF
DDF7
DDF6
DDF5
DDF4
DDF3
DDF2
DDF1
DDF0
88
($60)
Reserved
–
–
–
–
–
–
–
–
$3F ($5F)
SREG
I
T
H
S
V
N
Z
C
11
$3E ($5E)
SPH
SP15
SP14
SP13
SP12
SP11
SP10
SP9
SP8
14
$3D ($5D)
SPL
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
14
$3C ($5C)
XDIV
XDIVEN
XDIV6
XDIV5
XDIV4
XDIV3
XDIV2
XDIV1
XDIV0
43
$3B ($5B)
RAMPZ
–
–
–
–
–
–
–
RAMPZ0
14
$3A ($5A)
EICRB
ISC71
ISC70
ISC61
ISC60
ISC51
ISC50
ISC41
ISC40
90
$39 ($59)
EIMSK
INT7
INT6
INT5
INT4
INT3
INT2
INT1
INT0
91
$38 ($58)
EIFR
INTF7
INTF6
INTF5
INTF4
INTF3
INTF
INTF1
INTF0
91
$37 ($57)
TIMSK
OCIE2
TOIE2
TICIE1
OCIE1A
OCIE1B
TOIE1
OCIE0
TOIE0
108, 140, 160
$36 ($56)
TIFR
OCF2
TOV2
ICF1
OCF1A
OCF1B
TOV1
OCF0
TOV0
108, 141, 160
$35 ($55)
MCUCR
SRE
SRW10
SE
SM1
SM0
SM2
IVSEL
IVCE
31, 44, 63
$34 ($54)
MCUCSR
JTD
–
–
JTRF
WDRF
BORF
EXTRF
PORF
53, 257
$33 ($53)
TCCR0
FOC0
WGM00
COM01
COM00
WGM01
CS02
CS01
CS00
$32 ($52)
TCNT0
$31 ($51)
OCR0
$30 ($50)
ASSR
–
–
–
–
AS0
TCN0UB
OCR0UB
TCR0UB
Timer/Counter0 (8 Bit)
103
105
Timer/Counter0 Output Compare Register
105
106
$2F ($4F)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
COM1C1
COM1C0
WGM11
WGM10
133
$2E ($4E)
TCCR1B
ICNC1
ICES1
–
WGM13
WGM12
CS12
CS11
CS10
136
$2D ($4D)
TCNT1H
Timer/Counter1 – Counter Register High Byte
$2C ($4C)
TCNT1L
Timer/Counter1 – Counter Register Low Byte
138
$2B ($4B)
OCR1AH
Timer/Counter1 – Output Compare Register A High Byte
138
138
$2A ($4A)
OCR1AL
Timer/Counter1 – Output Compare Register A Low Byte
138
$29 ($49)
OCR1BH
Timer/Counter1 – Output Compare Register B High Byte
138
$28 ($48)
OCR1BL
Timer/Counter1 – Output Compare Register B Low Byte
138
$27 ($47)
ICR1H
Timer/Counter1 – Input Capture Register High Byte
139
$26 ($46)
ICR1L
$25 ($45)
TCCR2
Timer/Counter1 – Input Capture Register Low Byte
$24 ($44)
TCNT2
Timer/Counter2 (8 Bit)
$23 ($43)
OCR2
Timer/Counter2 Output Compare Register
$22 ($42)
OCDR
$21 ($41)
$20 ($40)
FOC2
WGM20
COM21
COM20
IDRD/OCDR7
OCDR6
OCDR5
OCDR4
WDTCR
–
–
–
SFIOR
TSM
–
–
–
–
–
WGM21
CS22
139
CS21
CS20
158
160
160
OCDR3
OCDR2
OCDR1
WDCE
WDE
WDP2
WDP1
WDP0
55
–
ACME
PUD
PSR0
PSR321
72, 109, 145, 229
–
OCDR0
EEPROM Address Register High
254
$1F ($3F)
EEARH
$1E ($3E)
EEARL
EEPROM Address Register Low Byte
21
21
$1D ($3D)
EEDR
EEPROM Data Register
22
$1C ($3C)
EECR
–
–
–
–
EERIE
EEMWE
EEWE
EERE
$1B ($3B)
PORTA
PORTA7
PORTA6
PORTA5
PORTA4
PORTA3
PORTA2
PORTA1
PORTA0
22
86
$1A ($3A)
DDRA
DDA7
DDA6
DDA5
DDA4
DDA3
DDA2
DDA1
DDA0
86
$19 ($39)
PINA
PINA7
PINA6
PINA5
PINA4
PINA3
PINA2
PINA1
PINA0
86
$18 ($38)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
86
$17 ($37)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
86
$16 ($36)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
86
$15 ($35)
PORTC
PORTC7
PORTC6
PORTC5
PORTC4
PORTC3
PORTC2
PORTC1
PORTC0
86
$14 ($34)
DDRC
DDC7
DDC6
DDC5
DDC4
DDC3
DDC2
DDC1
DDC0
86
$13 ($33)
PINC
PINC7
PINC6
PINC5
PINC4
PINC3
PINC2
PINC1
PINC0
87
$12 ($32)
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
87
$11 ($31)
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
87
$10 ($30)
PIND
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
87
–
–
–
–
SPI2X
170
MSTR
CPOL
CPHA
SPR1
SPR0
$0F ($2F)
SPDR
$0E ($2E)
SPSR
SPIF
WCOL
–
SPI Data Register
170
$0D ($2D)
SPCR
SPIE
SPE
DORD
$0C ($2C)
UDR0
$0B ($2B)
UCSR0A
RXC0
TXC0
UDRE0
FE0
DOR0
UPE0
U2X0
MPCM0
190
$0A ($2A)
UCSR0B
RXCIE0
TXCIE0
UDRIE0
RXEN0
TXEN0
UCSZ02
RXB80
TXB80
191
$09 ($29)
UBRR0L
$08 ($28)
ACSR
ACD
ACBG
ACO
ACI
ACIE
ACIC
ACIS1
ACIS0
229
$07 ($27)
ADMUX
REFS1
REFS0
ADLAR
MUX4
MUX3
MUX2
MUX1
MUX0
245
$06 ($26)
ADCSRA
ADEN
ADSC
ADFR
ADIF
ADIE
ADPS2
ADPS1
ADPS0
246
$05 ($25)
ADCH
ADC Data Register High Byte
247
$04 ($24)
ADCL
ADC Data Register Low byte
247
$03 ($23)
PORTE
PORTE7
PORTE6
PORTE5
PORTE4
PORTE3
PORTE2
PORTE1
PORTE0
87
$02 ($22)
DDRE
DDE7
DDE6
DDE5
DDE4
DDE3
DDE2
DDE1
DDE0
87
USART0 I/O Data Register
168
190
USART0 Baud Rate Register Low
194
9
2467OS–AVR–10/06
Register Summary (Continued)
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
$01 ($21)
PINE
PINE7
PINE6
PINE5
PINE4
PINE3
PINE2
PINE1
PINE0
87
$00 ($20)
PINF
PINF7
PINF6
PINF5
PINF4
PINF3
PINF2
PINF1
PINF0
88
Notes:
10
Page
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers $00 to $1F only.
ATmega128
2467OS–AVR–10/06
ATmega128
Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
1
COM
Rd
One’s Complement
Rd ← $FF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← $00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • ($FF - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← $FF
None
1
MUL
Rd, Rr
Multiply Unsigned
R1:R0 ← Rd x Rr
Z,C
2
MULS
Rd, Rr
Multiply Signed
R1:R0 ← Rd x Rr
Z,C
2
MULSU
Rd, Rr
Multiply Signed with Unsigned
R1:R0 ← Rd x Rr
Z,C
2
FMUL
Rd, Rr
Fractional Multiply Unsigned
R1:R0 ← (Rd x Rr) <<
1
R1:R0 ← (Rd x Rr) << 1
R1:R0 ← (Rd x Rr) << 1
Z,C
2
Z,C
2
Z,C
2
2
FMULS
Rd, Rr
Fractional Multiply Signed
FMULSU
Rd, Rr
Fractional Multiply Signed with Unsigned
BRANCH INSTRUCTIONS
RJMP
k
IJMP
Relative Jump
PC ← PC + k + 1
None
Indirect Jump to (Z)
PC ← Z
None
2
JMP
k
Direct Jump
PC ← k
None
3
RCALL
k
Relative Subroutine Call
PC ← PC + k + 1
None
3
Indirect Call to (Z)
PC ← Z
None
3
Direct Subroutine Call
PC ← k
None
4
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
4
ICALL
CALL
k
CPSE
Rd,Rr
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
1
1/2/3
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
11
2467OS–AVR–10/06
Instruction Set Summary (Continued)
Mnemonics
Operands
Description
Operation
Flags
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
#Clocks
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
None
1
None
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
LDI
Rd, K
Load Immediate
Rd ← K
None
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
2
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
3
Extended Load Program Memory
R0 ← (RAMPZ:Z)
None
ELPM
Rd, Z
Extended Load Program Memory
Rd ← (RAMPZ:Z)
None
3
ELPM
Rd, Z+
Extended Load Program Memory and Post-Inc
Rd ← (RAMPZ:Z), RAMPZ:Z ← RAMPZ:Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
IN
Rd, P
In Port
Rd ← P
None
1
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
POP
Rd
Pop Register from Stack
Rd ← STACK
None
2
ELPM
SPM
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
12
ATmega128
2467OS–AVR–10/06
ATmega128
Instruction Set Summary (Continued)
Description
Operation
Flags
SEV
Mnemonics
Operands
Set Twos Complement Overflow.
V←1
V
#Clocks
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
1
MCU CONTROL INSTRUCTIONS
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
13
2467OS–AVR–10/06
Ordering Information
Speed (MHz)
8
16
Notes:
Power Supply
2.7 - 5.5V
4.5 - 5.5V
Ordering Code
Package(1)
ATmega128L-8AC
ATmega128L-8MC
64A
64M1
Commercial
(0oC to 70oC)
ATmega128L-8AI
ATmega128L-8AU(2)
ATmega128L-8MI
ATmega128L-8MU(2)
64A
64A
64M1
64M1
Industrial
(-40oC to 85oC)
ATmega128-16AC
ATmega128-16MC
64A
64M1
Commercial
(0oC to 70oC)
ATmega128-16AI
ATmega128-16AU(2)
ATmega128-16MI
ATmega128-16MU(2)
64A
64A
64M1
64M1
Industrial
(-40oC to 85oC)
Operation Range
1. The device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
Package Type
64A
64-lead, 14 x 14 x 1.0 mm, Thin Profile Plastic Quad Flat Package (TQFP)
64M1
64-pad, 9 x 9 x 1.0 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
14
ATmega128
2467OS–AVR–10/06
ATmega128
Packaging Information
64A
PIN 1
B
PIN 1 IDENTIFIER
E1
e
E
D1
D
C
0˚~7˚
A1
A2
A
L
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
Notes:
1. This package conforms to JEDEC reference MS-026, Variation AEB.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum
plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.
MIN
NOM
MAX
A
–
–
1.20
A1
0.05
–
0.15
A2
0.95
1.00
1.05
D
15.75
16.00
16.25
D1
13.90
14.00
14.10
E
15.75
16.00
16.25
E1
13.90
14.00
14.10
B
0.30
–
0.45
C
0.09
–
0.20
L
0.45
–
0.75
e
NOTE
Note 2
Note 2
0.80 TYP
10/5/2001
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)
DRAWING NO.
REV.
64A
B
15
2467OS–AVR–10/06
64M1
D
Marked Pin# 1 ID
E
C
SEATING PLANE
A1
TOP VIEW
A
K
0.08 C
L
Pin #1 Corner
D2
1
2
3
Option A
SIDE VIEW
Pin #1
Triangle
COMMON DIMENSIONS
(Unit of Measure = mm)
E2
Option B
K
Option C
b
e
Pin #1
Chamfer
(C 0.30)
Pin #1
Notch
(0.20 R)
BOTTOM VIEW
Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.
2. Dimension and tolerance conform to ASMEY14.5M-1994.
SYMBOL
MIN
NOM
MAX
A
0.80
0.90
1.00
A1
–
0.02
0.05
b
0.18
0.25
0.30
D
8.90
9.00
9.10
D2
5.20
5.40
5.60
E
8.90
9.00
9.10
E2
5.20
5.40
5.60
e
NOTE
0.50 BSC
L
0.35
0.40
0.45
K
1.25
1.40
1.55
5/25/06
R
16
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
64M1
REV.
G
ATmega128
2467OS–AVR–10/06
ATmega128
Errata
The revision letter in this section refers to the revision of the ATmega128 device.
ATmega128 Rev. M
•
•
•
•
•
First Analog Comparator conversion may be delayed
Interrupts may be lost when writing the timer registers in the asynchronous timer
Stabilizing time needed when changing XDIV Register
Stabilizing time needed when changing OSCCAL Register
IDCODE masks data from TDI input
1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising VCC, the first Analog Comparator conversion will take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator before the first conversion.
2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2
3. Stabilizing time needed when changing XDIV Register
After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.
Problem Fix / Workaround
The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:
1.Clear the I bit in the SREG Register.
2.Set the new pre-scaling factor in XDIV register.
3.Execute 8 NOP instructions
4.Set the I bit in SREG
This will ensure that all subsequent instructions will execute correctly.
Assembly Code Example:
CLI
OUT
; clear global interrupt enable
XDIV, temp
; set new prescale value
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
SEI
; set global interrupt enable
17
2467OS–AVR–10/06
4. Stabilizing time needed when changing OSCCAL Register
After increasing the source clock frequency more than 2% with settings in the OSCCAL register, the device may execute some of the subsequent instructions
incorrectly.
Problem Fix / Workaround
The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.
5. IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.
Problem Fix / Workaround
ATmega128 Rev. L
•
•
•
•
•
–
If ATmega128 is the only device in the scan chain, the problem is not visible.
–
Select the Device ID Register of the ATmega128 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega128 while reading the Device ID Registers of preceding devices of
the boundary scan chain.
–
If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega128 must be the fist device in the chain.
First Analog Comparator conversion may be delayed
Interrupts may be lost when writing the timer registers in the asynchronous timer
Stabilizing time needed when changing XDIV Register
Stabilizing time needed when changing OSCCAL Register
IDCODE masks data from TDI input
1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising VCC, the first Analog Comparator conversion will take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator before the first conversion.
2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2
3. Stabilizing time needed when changing XDIV Register
After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.
18
ATmega128
2467OS–AVR–10/06
ATmega128
Problem Fix / Workaround
The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:
1.Clear the I bit in the SREG Register.
2.Set the new pre-scaling factor in XDIV register.
3.Execute 8 NOP instructions
4.Set the I bit in SREG
This will ensure that all subsequent instructions will execute correctly.
Assembly Code Example:
CLI
OUT
; clear global interrupt enable
XDIV, temp
; set new prescale value
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
SEI
; set global interrupt enable
4. Stabilizing time needed when changing OSCCAL Register
After increasing the source clock frequency more than 2% with settings in the OSCCAL register, the device may execute some of the subsequent instructions
incorrectly.
Problem Fix / Workaround
The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.
5. IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.
Problem Fix / Workaround
–
If ATmega128 is the only device in the scan chain, the problem is not visible.
–
Select the Device ID Register of the ATmega128 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega128 while reading the Device ID Registers of preceding devices of
the boundary scan chain.
–
If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega128 must be the fist device in the chain.
19
2467OS–AVR–10/06
ATmega128 Rev. I
•
•
•
•
•
First Analog Comparator conversion may be delayed
Interrupts may be lost when writing the timer registers in the asynchronous timer
Stabilizing time needed when changing XDIV Register
Stabilizing time needed when changing OSCCAL Register
IDCODE masks data from TDI input
1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising VCC, the first Analog Comparator conversion will take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator before the first conversion.
2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2
3. Stabilizing time needed when changing XDIV Register
After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.
Problem Fix / Workaround
The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:
1.Clear the I bit in the SREG Register.
2.Set the new pre-scaling factor in XDIV register.
3.Execute 8 NOP instructions
4.Set the I bit in SREG
This will ensure that all subsequent instructions will execute correctly.
Assembly Code Example:
CLI
OUT
20
; clear global interrupt enable
XDIV, temp
; set new prescale value
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
SEI
; clear global interrupt enable
ATmega128
2467OS–AVR–10/06
ATmega128
4. Stabilizing time needed when changing OSCCAL Register
After increasing the source clock frequency more than 2% with settings in the OSCCAL register, the device may execute some of the subsequent instructions
incorrectly.
Problem Fix / Workaround
The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.
5. IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.
Problem Fix / Workaround
ATmega128 Rev. H
•
•
•
•
•
–
If ATmega128 is the only device in the scan chain, the problem is not visible.
–
Select the Device ID Register of the ATmega128 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega128 while reading the Device ID Registers of preceding devices of
the boundary scan chain.
–
If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega128 must be the fist device in the chain.
First Analog Comparator conversion may be delayed
Interrupts may be lost when writing the timer registers in the asynchronous timer
Stabilizing time needed when changing XDIV Register
Stabilizing time needed when changing OSCCAL Register
IDCODE masks data from TDI input
1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising VCC, the first Analog Comparator conversion will take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator before the first conversion.
2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2
3. Stabilizing time needed when changing XDIV Register
After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.
21
2467OS–AVR–10/06
Problem Fix / Workaround
The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:
1.Clear the I bit in the SREG Register.
2.Set the new pre-scaling factor in XDIV register.
3.Execute 8 NOP instructions
4.Set the I bit in SREG
This will ensure that all subsequent instructions will execute correctly.
Assembly Code Example:
CLI
OUT
; clear global interrupt enable
XDIV, temp
; set new prescale value
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
SEI
; clear global interrupt enable
4. Stabilizing time needed when changing OSCCAL Register
After increasing the source clock frequency more than 2% with settings in the OSCCAL register, the device may execute some of the subsequent instructions
incorrectly.
Problem Fix / Workaround
The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.
5. IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.
Problem Fix / Workaround
22
–
If ATmega128 is the only device in the scan chain, the problem is not visible.
–
Select the Device ID Register of the ATmega128 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega128 while reading the Device ID Registers of preceding devices of
the boundary scan chain.
–
If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega128 must be the fist device in the chain.
ATmega128
2467OS–AVR–10/06
ATmega128
ATmega128 Rev. G
•
•
•
•
•
First Analog Comparator conversion may be delayed
Interrupts may be lost when writing the timer registers in the asynchronous timer
Stabilizing time needed when changing XDIV Register
Stabilizing time needed when changing OSCCAL Register
IDCODE masks data from TDI input
1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising VCC, the first Analog Comparator conversion will take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator before the first conversion.
2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2
3. Stabilizing time needed when changing XDIV Register
After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.
Problem Fix / Workaround
The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:
1.Clear the I bit in the SREG Register.
2.Set the new pre-scaling factor in XDIV register.
3.Execute 8 NOP instructions
4.Set the I bit in SREG
This will ensure that all subsequent instructions will execute correctly.
Assembly Code Example:
CLI
OUT
; clear global interrupt enable
XDIV, temp
; set new prescale value
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
SEI
; set global interrupt enable
23
2467OS–AVR–10/06
4. Stabilizing time needed when changing OSCCAL Register
After increasing the source clock frequency more than 2% with settings in the OSCCAL register, the device may execute some of the subsequent instructions
incorrectly.
Problem Fix / Workaround
The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.
5. IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.
Problem Fix / Workaround
ATmega128 Rev. F
•
•
•
•
•
–
If ATmega128 is the only device in the scan chain, the problem is not visible.
–
Select the Device ID Register of the ATmega128 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega128 while reading the Device ID Registers of preceding devices of
the boundary scan chain.
–
If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega128 must be the fist device in the chain.
First Analog Comparator conversion may be delayed
Interrupts may be lost when writing the timer registers in the asynchronous timer
Stabilizing time needed when changing XDIV Register
Stabilizing time needed when changing OSCCAL Register
IDCODE masks data from TDI input
1. First Analog Comparator conversion may be delayed
If the device is powered by a slow rising VCC, the first Analog Comparator conversion will take longer than expected on some devices.
Problem Fix/Workaround
When the device has been powered or reset, disable then enable theAnalog Comparator before the first conversion.
2. Interrupts may be lost when writing the timer registers in the asynchronous
timer
If one of the timer registers which is synchronized to the asynchronous timer2 clock
is written in the cycle before a overflow interrupt occurs, the interrupt may be lost.
Problem Fix/Workaround
Always check that the Timer2 Timer/Counter register, TCNT2, does not have the
value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare
Register, OCR2
3. Stabilizing time needed when changing XDIV Register
After increasing the source clock frequency more than 2% with settings in the XDIV
register, the device may execute some of the subsequent instructions incorrectly.
24
ATmega128
2467OS–AVR–10/06
ATmega128
Problem Fix / Workaround
The NOP instruction will always be executed correctly also right after a frequency
change. Thus, the next 8 instructions after the change should be NOP instructions.
To ensure this, follow this procedure:
1.Clear the I bit in the SREG Register.
2.Set the new pre-scaling factor in XDIV register.
3.Execute 8 NOP instructions
4.Set the I bit in SREG
This will ensure that all subsequent instructions will execute correctly.
Assembly Code Example:
CLI
OUT
; clear global interrupt enable
XDIV, temp
; set new prescale value
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
NOP
; no operation
SEI
; set global interrupt enable
4. Stabilizing time needed when changing OSCCAL Register
After increasing the source clock frequency more than 2% with settings in the OSCCAL register, the device may execute some of the subsequent instructions
incorrectly.
Problem Fix / Workaround
The behavior follows errata number 1., and the same Fix / Workaround is applicable
on this errata.
5. IDCODE masks data from TDI input
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices
are replaced by all-ones during Update-DR.
Problem Fix / Workaround
–
If ATmega128 is the only device in the scan chain, the problem is not visible.
–
Select the Device ID Register of the ATmega128 by issuing the IDCODE
instruction or by entering the Test-Logic-Reset state of the TAP controller to
read out the contents of its Device ID Register and possibly data from
succeeding devices of the scan chain. Issue the BYPASS instruction to the
ATmega128 while reading the Device ID Registers of preceding devices of
the boundary scan chain.
–
If the Device IDs of all devices in the boundary scan chain must be captured
simultaneously, the ATmega128 must be the fist device in the chain.
25
2467OS–AVR–10/06
Datasheet Revision
History
Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.
Changes from Rev.
2467N-03/06 to Rev.
2467O-10/06
1. Added note to “Timer/Counter Oscillator” on page 43.
2. Updated “Fast PWM Mode” on page 124.
3. Updated Table 52 on page 104, Table 54 on page 104, Table 59 on page 134,
Table 61 on page 135, Table 64 on page 158, and Table 66 on page 159.
4. Updated “Errata” on page 17.
Changes from Rev.
2467M-11/04 to Rev.
2467N-03/06
1. Updated note for Figure 1 on page 2.
2. Updated “Alternate Functions of Port D” on page 77.
3. Updated “Alternate Functions of Port G” on page 84.
4. Updated “Phase Correct PWM Mode” on page 100.
5. Updated Table 59 on page 134, Table 60 on page 134.
6. Updated “Bit 2 – TOV3: Timer/Counter3, Overflow Flag” on page 142.
7. Updated “Serial Peripheral Interface – SPI” on page 164.
8. Updated Features in “Analog to Digital Converter” on page 232
9. Added note in “Input Channel and Gain Selections” on page 245.
10. Updated “Errata” on page 17.
Changes from Rev.
2467L-05/04 to Rev.
2467M-11/04
1. Removed “analog ground”, replaced by “ground”.
2. Updated Table 11 on page 40, Table 114 on page 288, Table 128 on page 307,
and Table 132 on page 324. Updated Figure 114 on page 240.
3. Added note to “Port C (PC7..PC0)” on page 6.
4. Updated “Ordering Information” on page 14.
Changes from Rev.
2467K-03/04 to Rev.
2467L-05/04
1. Removed “Preliminary” and “TBD” from the datasheet, replaced occurrences
of ICx with ICPx.
2. Updated Table 8 on page 38, Table 19 on page 50, Table 22 on page 56, Table
96 on page 244, Table 126 on page 303, Table 128 on page 307, Table 132 on
page 324, and Table 134 on page 326.
3. Updated “External Memory Interface” on page 26.
4. Updated “Device Identification Register” on page 256.
26
ATmega128
2467OS–AVR–10/06
ATmega128
5. Updated “Electrical Characteristics” on page 322.
6. Updated “ADC Characteristics” on page 328.
7. Updated “ATmega128 Typical Characteristics” on page 336.
8. Updated “Ordering Information” on page 14.
Changes from Rev.
2467J-12/03 to Rev.
2467K-03/04
1. Updated “Errata” on page 17.
Changes from Rev.
2467I-09/03 to Rev.
2467J-12/03
1. Updated “Calibrated Internal RC Oscillator” on page 41.
Changes from Rev.
2467H-02/03 to Rev.
2467I-09/03
1. Updated note in “XTAL Divide Control Register – XDIV” on page 43.
2. Updated “JTAG Interface and On-chip Debug System” on page 48.
3. Updated values for VBOT (BODLEVEL = 1) in Table 19 on page 50.
4. Updated “Test Access Port – TAP” on page 249 regarding JTAGEN.
5. Updated description for the JTD bit on page 258.
6. Added a note regarding JTAGEN fuse to Table 118 on page 291.
7. Updated RPU values in “DC Characteristics” on page 322.
8. Added a proposal for solving problems regarding the JTAG instruction
IDCODE in “Errata” on page 17.
Changes from Rev.
2467G-09/02 to Rev.
2467H-02/03
1. Corrected the names of the two Prescaler bits in the SFIOR Register.
2. Added Chip Erase as a first step under “Programming the Flash” on page 319
and “Programming the EEPROM” on page 320.
3. Removed reference to the “Multipurpose Oscillator” application note and the
“32 kHz Crystal Oscillator” application note, which do not exist.
4. Corrected OCn waveforms in Figure 52 on page 125.
5. Various minor Timer1 corrections.
6. Added information about PWM symmetry for Timer0 and Timer2.
7. Various minor TWI corrections.
8. Added reference to Table 124 on page 294 from both SPI Serial Programming
and Self Programming to inform about the Flash Page size.
27
2467OS–AVR–10/06
9. Added note under “Filling the Temporary Buffer (Page Loading)” on page 283
about writing to the EEPROM during an SPM Page load.
10. Removed ADHSM completely.
11. Added section “EEPROM Write During Power-down Sleep Mode” on page 25.
12. Updated drawings in “Packaging Information” on page 15.
Changes from Rev.
2467F-09/02 to Rev.
2467G-09/02
1. Changed the Endurance on the Flash to 10,000 Write/Erase Cycles.
Changes from Rev.
2467E-04/02 to Rev.
2467F-09/02
1. Added 64-pad QFN/MLF Package and updated “Ordering Information” on
page 14.
2. Added the section “Using all Locations of External Memory Smaller than 64
KB” on page 33.
3. Added the section “Default Clock Source” on page 37.
4. Renamed SPMCR to SPMCSR in entire document.
5. When using external clock there are some limitations regards to change of
frequency. This is descried in “External Clock” on page 42 and Table 131,
“External Clock Drive,” on page 324.
6. Added a sub section regarding OCD-system and power consumption in the
section “Minimizing Power Consumption” on page 47.
7. Corrected typo (WGM-bit setting) for:
“Fast PWM Mode” on page 98 (Timer/Counter0).
“Phase Correct PWM Mode” on page 100 (Timer/Counter0).
“Fast PWM Mode” on page 152 (Timer/Counter2).
“Phase Correct PWM Mode” on page 154 (Timer/Counter2).
8. Corrected Table 81 on page 193 (USART).
9. Corrected Table 102 on page 262 (Boundary-Scan)
10. Updated Vil parameter in “DC Characteristics” on page 322.
Changes from Rev.
2467D-03/02 to Rev.
2467E-04/02
1. Updated the Characterization Data in Section “ATmega128 Typical Characteristics” on page 336.
2. Updated the following tables:
Table 19 on page 50, Table 20 on page 54, Table 68 on page 159, Table 102 on
page 262, and Table 136 on page 328.
3. Updated Description of OSCCAL Calibration Byte.
28
ATmega128
2467OS–AVR–10/06
ATmega128
In the data sheet, it was not explained how to take advantage of the calibration
bytes for 2, 4, and 8 MHz Oscillator selections. This is now added in the following
sections:
Improved description of “Oscillator Calibration Register – OSCCAL” on page 41 and
“Calibration Byte” on page 292.
Changes from Rev.
2467C-02/02 to Rev.
2467D-03/02
1. Added more information about “ATmega103 Compatibility Mode” on page 5.
2. Updated Table 2, “EEPROM Programming Time,” on page 23.
3. Updated typical Start-up Time in Table 7 on page 37, Table 9 and Table 10 on
page 39, Table 12 on page 40, Table 14 on page 41, and Table 16 on page 42.
4. Updated Table 22 on page 56 with typical WDT Time-out.
5. Corrected description of ADSC bit in “ADC Control and Status Register A –
ADCSRA” on page 246.
6. Improved description on how to do a polarity check of the ADC differential
results in “ADC Conversion Result” on page 243.
7. Corrected JTAG version numbers in “JTAG Version Numbers” on page 256.
8. Improved description of addressing during SPM (usage of RAMPZ) on
“Addressing the Flash During Self-Programming” on page 281, “Performing
Page Erase by SPM” on page 283, and “Performing a Page Write” on page
283.
9. Added not regarding OCDEN Fuse below Table 118 on page 291.
10. Updated Programming Figures:
Figure 135 on page 293 and Figure 144 on page 305 are updated to also reflect that
AVCC must be connected during Programming mode. Figure 139 on page 300
added to illustrate how to program the fuses.
11. Added a note regarding usage of the
PROG_PAGEREAD instructions on page 311.
PROG_PAGELOAD
12. Added Calibrated RC Oscillator characterization
“ATmega128 Typical Characteristics” on page 336.
curves
in
and
section
13. Updated “Two-wire Serial Interface” section.
More details regarding use of the TWI Power-down operation and using the TWI as
master with low TWBRR values are added into the data sheet. Added the note at
the end of the “Bit Rate Generator Unit” on page 205. Added the description at the
end of “Address Match Unit” on page 206.
14. Added a note regarding usage of Timer/Counter0 combined with the clock.
See “XTAL Divide Control Register – XDIV” on page 43.
29
2467OS–AVR–10/06
Changes from Rev.
2467B-09/01 to Rev.
2467C-02/02
1. Corrected Description of Alternate Functions of Port G
Corrected description of TOSC1 and TOSC2 in “Alternate Functions of Port G” on
page 84.
2. Added JTAG Version Numbers for rev. F and rev. G
Updated Table 100 on page 256.
3
Added Some Preliminary Test Limits and Characterization Data
Removed some of the TBD's in the following tables and pages:
Table 19 on page 50, Table 20 on page 54, “DC Characteristics” on page 322,
Table 131 on page 324, Table 134 on page 326, and Table 136 on page 328.
4. Corrected “Ordering Information” on page 14.
5. Added some Characterization Data in Section “ATmega128 Typical Characteristics” on page 336.
6. Removed Alternative Algortihm for Leaving JTAG Programming Mode.
See “Leaving Programming Mode” on page 319.
7. Added Description on How to Access the Extended Fuse Byte Through JTAG
Programming Mode.
See “Programming the Fuses” on page 321 and “Reading the Fuses and Lock Bits”
on page 321.
30
ATmega128
2467OS–AVR–10/06
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2006 Atmel Corporation. All rights reserved. ATMEL ®, logo and combinations thereof, Everywhere You Are ®, AVR ®, AVR Studio ®, and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
2467OS–AVR–10/06