MC56F8013 Controller Board User's Manual

Freescale Semiconductor
Order this document by
MC56F8013CB_UM
Rev. 1.0, 9/2005
MC56F8013 Controller Board
Hardware User’s Manual
© Freescale Semiconductor, Inc., 2005. All rights reserved.
Table of Contents
Preface
Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-ix
Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-ix
Notation Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-x
Definitions, Acronyms, and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-xi
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-xii
Chapter 1
Introduction
1.1
1.2
1.3
MC56F8013 Controller Board Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
MC56F8013 Controller Board Configuration Jumpers . . . . . . . . . . . . . . . . . . . . 1-3
MC56F8013 Controller Board Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Chapter 2
Technical Summary
2.1
2.2
2.3
2.4
2.5
2.5.1
2.6
2.7
2.8
2.8.1
2.8.2
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
MC56F8013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
RS-232 Serial Communications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
User LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
JTAG Connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
General Purpose Buttons, Reset button, and Run/Stop Switch . . . . . . . . . . . . . . 2-6
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
UNI-3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
UNI-3 PFC PWM signal (Power Factor Correction) . . . . . . . . . . . . . . . . . . 2-10
UNI-3 BRAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Motor Control PWM Signals and LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Motor Protection Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Back-EMF and Motor Phase Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Quadrature Encoder/Hall-Effect Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Zero-Crossing Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Tacho-Generator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Serial EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Peripheral Expansion Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
Freescale Semiconductor
Table of Contents
iii
MC56F8013 Controller Board Hardware User’s Manual
2.16.1
Encoder Exp. Connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.16.2
Tacho-Dynamo Exp. Connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.16.3
GPIO B Port Expansion Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.16.4
A/D Port Expansion Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.16.5
PWM Port Expansion Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.16.6
SPI Port Expansion Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.17 Test Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-17
2-18
2-18
2-19
2-19
2-20
2-20
Appendix A
MC56F8013 Controller Board
Schematics
Appendix B
MC56F8013 Controller Board
PCB
Appendix C
MC56F8013 Controller Board
Bill of Materials
iv
Table of Contents
Freescale Semiconductor
List of Figures
1-1
Block Diagram of the MC56F8013 Controler Board . . . . . . . . . . . . . . . . 1-2
1-2
MC56F8013 Controller Board Jumper Options . . . . . . . . . . . . . . . . . . . . 1-3
1-3
Connecting the MC56F8013 Controller Board Cables. . . . . . . . . . . . . . . 1-5
2-1
Schematic Diagram of the RS-232 Interface . . . . . . . . . . . . . . . . . . . . . . 2-4
2-2
Schematic Diagram of the User LED connection. . . . . . . . . . . . . . . . . . . 2-5
2-3
Schematic Diagram of the buttons and switch . . . . . . . . . . . . . . . . . . . . . 2-7
2-4
Power supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2-5
Schematic Diagram of the UNI-3 BRAKE connection . . . . . . . . . . . . . 2-10
2-6
PWM Interface and LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2-7
FAULT Protection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
2-8
ADC input selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
2-9
Zero-Crossing/Encoder Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
2-10
Tacho-Generator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
2-11
Serial EEPROM Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
2-12
Typical Analogue Input RC Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
A-1
MC56F8013 and Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
A-2
Serial EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
A-3
Quadrature Encoder or Hall Sensors / Zero Crossing. . . . . . . . . . . . . . . . A-4
A-4
Fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
A-5
Jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
A-6
LEDs and buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
A-7
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8
A-8
RS232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9
A-9
Tachogenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10
A-10
UNI-3 connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11
B-1
TOP copper layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
B-2
BOTTOM copper layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3
Freescale Semiconductor
List of Figures
v
MC56F8013 Controller Board Hardware User’s Manual
B-3
Drill copper map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4
B-4
TOP silk screen layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
B-5
TOP Board view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
vi
List of Figures
Freescale Semiconductor
List of Tables
1-1
MC56F8013 Controller Board Jumper Options . . . . . . . . . . . . . . . . . . . . 1-4
2-1
Serial Interface Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2-2
RS-232 Serial Connector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2-3
JTAG Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2-4
Connection description of the Buttons and Switch. . . . . . . . . . . . . . . . . . 2-7
2-5
UNI-3 Connector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2-6
ADC input source selection (ADC CFG 1) . . . . . . . . . . . . . . . . . . . . . . 2-13
2-7
ADC input source selection (ADC CFG 2) . . . . . . . . . . . . . . . . . . . . . . 2-13
2-8
Zero-Crossing/Encoder input source selection . . . . . . . . . . . . . . . . . . . . 2-15
2-9
Tacho-Generator Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
2-10
Encoder Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
2-11
Tacho-Dynamo Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
2-12
GPIO B Port Connector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
2-13
A/D Port Connector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
2-14
PWM Port Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
2-15
SPI Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Freescale Semiconductor
List of Tables
vii
MC56F8013 Controller Board Hardware User’s Manual
viii
List of Tables
Freescale Semiconductor
Preface
This reference manual describes in detail the hardware on the MC56F8013 Controller
Board. The board has been designed for motor/motion control demos and support specific
customer needs, including the Tachodynamo hardware interface. The power supply,
analogue voltage reference, and the PCB layout have been optimized for an optimum
analogue performance that can not be achieved by standard EVM design, due to
manufacturing restrictions and compromises.
Audience
This document is intended for application developers who are creating software for
devices using the Freescale Semiconductor part, MC56F8013.
Organization
This manual is organized into two chapters and three appendixes.
•
Chapter 1, Introduction - provides an overview of the Board and its features.
•
Chapter 2, Technical Summary - describes in detail the MC56F8013 Controller
Board hardware.
•
Appendix A, MC56F8013 Controller Board Schematics - contains the
schematics of the MC56F8013 Controller Board.
•
Appendix B, MC56F8013 Controller Board PCB - contains details on the
MC56F8013 Printed Circuit Board (PCB)
•
Appendix C, MC56F8013 Controller Board Bill of Materials - provides a list of the
materials used on the MC56F8013 Controller Board.
Freescale Semiconductor
ix
MC56F8013 Controller Board Hardware User’s Manual
Notation Conventions
This document uses the following conventions:
Term or Value
x
Symbol
Examples
Active High Signals
(Logic One)
No special symbol
attached to the signal
name
MOSI
SCLK
Active Low Signals
(Logic Zero)
Noted with an
overbar in text and in
most figures
RESET
SS_B
Hexadecimal Values
Begin with a “$” symbol
$0FF0
$80
Decimal Values
No special symbol
attached to the
number
10
34
Binary Values
Begin with the letter
“b” attached to the
number
b1010
b0011
Numbers
Considered positive
unless specifically
noted as a negative
value
5
-10
Bold
Reference sources,
paths, emphasis
Exceptions
In schematic drawings, Active
Low Signals may be noted by a
slash: /RESET
Voltage is often shown as positive: +3.3V
...see:
http://www.freescale.com/DSP...
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
Definitions, Acronyms, and Abbreviations
Definitions, acronyms, and abbreviations for terms used in this document are defined
below for reference.
A/D
D/A
DSP
EOnCE
Analogue to Digital
Digital to Analogue
Digital Signal Processor
Enhanced On-Chip Emulation; a debug bus and port created by
Freescale Semiconductor to enable a designer to create a low-cost
hardware interface for a professional quality debug environment
GPIO
General Purpose Input and Output Port on Freescale
Semiconductor’s Family of Digital Signal Controllers
IC
Integrated Circuit
JTAG
Joint Test Action Group. A bus protocol/interface used for test and
debug.
LED
Light Emitting Diode
LQFP
Low profile Quad Flat Pack
MPIO
Multi Purpose Input and Output port on Freescale Semiconductor’s
family of Digital Signal Controllers; shares package pins with other
peripherals on the chip and can function as a GPIO
TM
OnCE
On-Chip Emulation, a debug bus and port created by Freescale
Semiconductor to enable designers to create a low-cost hardware
interface for a professional quality debug environment.
PCB
Printed Circuit Board
PLL
Phase Locked Loop
PWM
Pulse Width Modulation
Quadrature Timer Peripheral of the MC56F801x family containing four 16-bit
timers/counters with flexible architecture. See user’s manual for
details.
Quadrature EncoderSensor for the measurement of position and speed based on optical
principles
RAM
Random Access Memory
R/C
Resistor/Capacitor Network
ROM
Read-Only Memory
SCI
Serial Communications Interface
SPI
Serial Peripheral Interface Port on Freescale Semiconductor’s
Microcontrollers
UART
Universal Asynchronous Receiver/Transmitter
Freescale Semiconductor
xi
MC56F8013 Controller Board Hardware User’s Manual
References
The following sources were referenced to produce this manual:
[1] DSP56800E 16-bit DSP Core Reference Manual, Freescale Semiconductor
[2] MC56F801x Family User’s Manual, Freescale Semiconductor
[3] MC56F8013 Digital Signal Processor Technical Data, Freescale Semiconductor
xii
Freescale Semiconductor
Chapter 1
Introduction
The MC56F8013 Controller Board is used to demonstrate the abilities of the MC56F8013
based on an optimized PCB and power supply design, and to provide a hardware tool
allowing the development of applications that use the MC56F8013.
The MC56F8013 Controller Board is an evaluation module type of board that includes a
MC56F8013 part, encoder interface, tachogenerator interface, communication options,
digital and analogue power supplies, and peripheral expansion connectors. The expansion
connectors are for signal monitoring and user feature expandability. Test pads are
provided for monitoring critical signals and voltage levels.
The MC56F8013 Controller Board is designed for the following purposes:
•
Allow new users to become familiar with the features of the MC56F801x
architecture.
•
Serve as a platform for real-time software development. The tool suite enables the
user to develop and simulate routines, download the software to on-chip memory,
run it, and debug using a debugger via the JTAG/OnCETM port. The breakpoint
features of the OnCE port enable the user to easily specify complex break
conditions and to execute user-developed software at full-speed, until the break
conditions are satisfied. The ability to examine and modify all user accessible
registers, memory, and peripherals through the OnCE port greatly facilitates the
task of the developer.
•
Serve as a platform for hardware development. The hardware platform enables the
user to connect external hardware modules. The OnCE port's unobtrusive design
means that all of the memory on the Digital Signal Controller chip is available to
the user.
Freescale Semiconductor
Introduction
1-1
MC56F8013 Controller Board Hardware User’s Manual
1.1 MC56F8013 Controller Board Architecture
The MC56F8013 Controller Board facilitates the evaluation of various features present in
the MC56F8013. The MC56F8013 Controller Board can be used to develop real-time
software and hardware products based on the MC56F8013. The MC56F8013 Controller
Board provides the features necessary for a user to write and debug software, demonstrate
the functionality of that software, and interface with the customer's application-specific
device(s). The MC56F8013 Controller Board is flexible enough to allow a user to fully
exploit the MC56F8013's features to optimize the performance of their product, as shown
in Figure 1-1.
MC56F8013
JTAG
Header
JTAG / OnCE /
GPIO PD
ADC
HEADER
PWM
HEADER
PWM LEDs
B2, B4, B5, B6
UNI-3
expansion
connector
PWM / GPIO PA
ADC / GPIO PC
Protection
Logic
FAULT 0 / GPIO PA6
RESET / GPIO PA7
GPIO PB
UNI-3
expansion
connector
+3.3V Analogue
Power Supply
+3.3V Digital
Power Supply
B0, B1, B3
B6
User LED
B4, B5, B6
Encoder
Interface
B4
Tacho-Generator Interface
B6, B7
RS 232
Interface
B0, B1
EEPROM
Interface
VDDA ADC
VDD IO
+5V Power
Supply
+12V Power
Supply
Buttons &
Switch
GPIO PB
HEADER
SPI
HEADER
SCI
HEADER
Figure 1-1. Block Diagram of the MC56F8013 Controler Board
1-2
Introduction
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
1.2 MC56F8013 Controller Board Configuration Jumpers
Jumper groups and zero Ohm resistors1, shown in Figure 1-2, are used to configure
various features on the MC56F8013 Controller Board.
4
0
1 2 3
0
R2, R1
RS-232 Enable
7
8
9
J10
6
JP5
1
2
3
4
7
8
9
9 8 7
1
2
3
2
1 2
1
1
J18 J16
J9
2
6
JP4
4
6
3 2 1
JP3
1 2
4 3 2 1
JP1
1
2
3
J11
2 1
J21
1 2
3 2 1
J15
J14
1 2
J8
J20
2 1
J17
Figure 1-2. MC56F8013 Controller Board Jumper Options
1. Zero Ohm resistors are used instead of standard jumpers to minimize distortion of analogue signals and
to achieve high signal-to-noise ratio.
Freescale Semiconductor
Introduction
1-3
MC56F8013 Controller Board Hardware User’s Manual
Table 1-1. MC56F8013 Controller Board Jumper Options
#
JP1
Selector
SCI
R1, R2
JP3
Function
Connections
Configure RxD (GPIO PB6) as Encoder INDEX / UNI-3 BEMFZCC input
open
Configure RxD (GPIO PB6) as User LED / UNI-3 BRAKE output
1-2
Full-duplex Serial mode
2-3
Single wire Serial communication mode (TxD as serial I/O)
3-4
RS 232 interface disabled
R1, R2 absent
RS 232 interface enabled
R1, R2 present
Q-Encoder / Hall-Effect interface selected (PHASEA, PHASEB, INDEX)
Encoder /
UNI-3 BEMFZCx Zero-Crossing signals selected (BEMFZCA, BEMFZCB, BEMFZCC)
PHAIS/BEMFA / PHAIS / BEMFA measurement selected
V_IN
V_IN measurement selected
JP4
PHBIS/BEMFB / PHBIS / BEMFB measurement selected
I_IN
I_IN measurement selected
1-2
2-3
4-5
5-6
7-8
Phase A current measurement selected
1-2
Phase A back EMF measurement selected
2-3
Phase B current measurement selected
4-5
Phase B back EMF measurement selected
5-6
Phase C current measurement selected
7-8
Phase C back EMF measurement selected
8-9
PHBIS / BEMFB
PHCIS / BEMFC
J8
START Switch
Disable1
J9
PFC PWM
Disable1
J10
USER LED /
UNI-3 BRAKE
J11
TACHO / TEMP
J14
1-4
2-3, 5-6, 8-9
PHCIS/BEMFC / PHCIS / BEMFC measurement selected
TEMP
TEMP measurement selected
PHAIS / BEMFA
JP5
1-2, 4-5, 7-8
8-9
START Switch connected to GPIO PB3 (MOSI / T3)
closed
UNI-3 PFC PWM connected to GPIO PB2 (MISO / T2)
closed
USER LED output selected
1-2
UNI-3 BRAKE output selected
2-3
UNI-3 TEMP -> ANA2 measurement selected
1-2
TACHO -> ANA2 measurement selected
2-3
Tacho dynamo Tacho Dynamo input -> TACHO analogue output (ANA2)
measurement Tacho Dynamo input -> digital output (GPIO PB4)
1-2
Introduction
2-3
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
Table 1-1. MC56F8013 Controller Board Jumper Options
#
Selector
J15
Function
Connections
Tacho generator
Tacho generator digital output enabled (GPIO PB4)
output enable
closed
J16
UNI-3 +5V
CB digital power supply from UNI-3 +5V
closed
J18
UNI-3 +15V
CB analogue power supply from UNI-3 +15V
closed
J17
WP
J20
J21
1.
Serial EEPROM memory is write protected
open
Serial EEPROM memory is write unprotected
closed
SCL
Serial EEPROM memory SCL input connected to GPIO PB0 / SCLK /
SCL
closed
SDA
Serial EEPROM memory SDA I/O connected to GPIO PB1 / SS / SDA
closed
Note: JP8 & JP9 have the name with the ‘Disable’ printed on the board. These signals are enabled when
jumpers are closed, disabled when open!
1.3 MC56F8013 Controller Board Connections
An interconnection diagram is shown in Figure 1-3 for connecting the PC and the external
12V DC power supply to the MC56F8013 Controller Board.
PC-compatible
Computer
Parallel Extension
Cable
Parallel
Command
Converter*
MC56F8013CB
JTAG
Power
Connect cable
to Parallel/Printer port
External with 2.1mm,
12V
receptacle
Power connector
* use of optoisolated PCC is recommended for high voltage applications
Figure 1-3. Connecting the MC56F8013 Controller Board Cables
When optoisolation is needed in the development environment to isolate the computer
from the motor driver board and the Controller Board, use the optoisolated parallel
command converter (ECOPTINL) instead of the non-isolated parallel command converter
(DSPCOMMPARALLEL). In addition, command converters with ISA, PCI, USB, and
ETHERNET interfaces are available.
Freescale Semiconductor
Introduction
1-5
MC56F8013 Controller Board Hardware User’s Manual
Perform the following steps to connect the MC56F8013 Controller Board cables:
1. Connect the parallel extension cable to the Parallel port of the host computer.
2. Connect the other end of the parallel extension cable to the Parallel Command
Converter, shown in Figure 1-3, and connect it to the JTAG header on the
MC56F8013 Controller Board. Please make sure that pin 1 on the Command
Converter is aligned with pin 1 on the Controller Board. This provides the
connection which allows the host computer to control the board.
3. Connect the 2.1mm output power plug from the external power supply into the
Power Jack, shown in Figure 1-3, on the MC56F8013 Controller Board.
4. Apply power to the external power supply. The green Power-On LED will
illuminate when power is correctly applied.
1-6
Introduction
Freescale Semiconductor
Chapter 2
Technical Summary
The MC56F8013 Controller Board is designed as a versatile development card, for
developing real-time software and hardware products to support a new generation of
applications in servo and motor control, SMPS, modems, and digital cameras. The power
of the 16/32-bit MC56F8013 Digital Signal controller, combined with the
Hall-Effect/Quadrature Encoder interface, Tacho-generator interface for digital/analogue
sensing, motor BEMF zero crossing interface, motor over-current logic and motor
over-voltage logic, makes the MC56F8013 Controller Board ideal for developing and
implementing many motor controlling algorithms, as well as for learning the architecture
and instruction set of the MC56F8013 processor.
The main features of the MC56F8013 Controller Board include:
•
MC56F8013 16/32-bit +3.3V Digital Signal Processor operating at 32MHz
•
Joint Test Action Group (JTAG) port interface connector for an external debug
Host Target Interface
•
RS-232 interface with galvanic isolation for easy connection to a host computer or
PC Master development tool
•
Connector to allow the user to attach their own SPI / GPIO compatible peripheral
•
Connector to allow the user to attach their own SCI / GPIO compatible peripheral
•
Connector to allow the user to attach their own PWM compatible peripheral
•
Connector to allow the user to attach their own ADC compatible peripheral
•
Connector to allow the user to attach their own GPIO Port B compatible peripheral
•
On-board power regulation from an external 12V DC supplied power input
•
Light Emitting Diode (LED) power indicator
•
Six on-board PWM monitoring LEDs
•
One on-board PWM Fault monitoring LED
•
One on-board general purpose User LED
Freescale Semiconductor
Technical Summary
2-1
MC56F8013 Controller Board Hardware User’s Manual
•
UNI-3 Motor interface
— Over-Voltage sensing
— Over-Current sensing
— Phase Current sensing
— Back-EMF sensing
— Temperature sensing
— Zero Crossing detection
— Pulse Width Modulation
— BRAKE, PFC PWM signals
2-2
•
Encoder/Hall-Effect interface
•
Tacho dynamo interface
•
Manual RESET/General purpose push-button on GPIO PA7
•
General purpose push-button for UP on GPIO PB0
•
General purpose push-button for DOWN on GPIO PB1
•
General purpose toggle switch for RUN/STOP control on GPIO PB3 via J8
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
2.1 MC56F8013
The MC56F8013 Controller Board uses a Freescale Semiconductor part,
MC56F8013VFAE, designated as U1 on the board and in the schematics. This part will
operate at a maximum speed of 32MHz. A full description of the MC56F8013, including
functionality and user information, is provided in the following documents:
•
MC56F8013 Technical Data Sheet, (MC56F8013/D): Provides features list and
specifications including signal descriptions, electrical and timing specifications,
pin descriptions, device specific peripheral information, and package descriptions.
•
MC56F8013 User’s Manual, (MC56F8013UM/D): Provides an overview
description of the Digital Signal Controller and detailed information about the
on-chip components, including the memory and I/O maps, peripheral functionality,
and control/status register descriptions for each subsystem.
•
DSP56800E 16-bit DSP Core Reference Manual, (DSP56800ERM/D): Provides a
detailed description of the processor core, including internal status and control
registers, and a detailed description of the family instruction set.
Refer to these documents for detailed information about chip functionality and operation.
They can be found on this URL:
www.freescale.com/dsp
Freescale Semiconductor
Technical Summary
2-3
MC56F8013 Controller Board Hardware User’s Manual
2.2 RS-232 Serial Communications
The MC56F8013 Controller Board provides an RS-232 interface by the use of an RS-232
level converter circuitry, referred to in the RS-232 schematic diagram in Figure 2-1. The
RS-232 level converter transitions the SCI UART’s +3.3V signal levels to RS-232
compatible signal levels and connects to the host’s serial port via the DB9F connector.
The pinout of the RS232 connector is listed in Table 2-2. To enable proper working of the
serial interface, the zero Ohm link resistors R1 and R2 must be present on the Controller
Board and jumper JP1 must be set correctly. For full-duplex mode, the JP1 jumper has to
be set to position 2-3, for single wire operation, the JP1 jumper has to be set to position
3-4, then the RxD pin on the MC56F8013 controller is not used for the serial
communication and can be used as a general purpose input/output pin (GPIO PB6). When
full-duplex serial communication mode is selected, the JP3 jumper selection of Encoder
INDEX / UNI-3 BEMFZCC signals must be disconnected to avoid hazardous states, as
shown in Figure 2-1. Table 2-1 shows the jumper setting for two operating modes of
serial interface.
RS-232
Level Interface
MC56F8013
GPIO PB7 / TxD
GPIO PB6 / RxD
R2
JP1
4
3
2
1
x
x
TxD0
R1
RxD0
Galvanic
Isolation
2
5
8
1
3
6
2
7
3
x
x
USER LED/UNI-3 BRAKE
JP3
1
8
4
9
5
RS-232
ENCODER INDEX
J6
UNI-3 BEMFZCC
4
6
7
9
Figure 2-1. Schematic Diagram of the RS-232 Interface
Table 2-1. Serial Interface Operating Modes
JP1
2-4
Operating Mode
2-3
Full-duplex mode, uses RxD as input and TxD as output on
MC56F8013
3-4
Single wire mode, uses only TxD as I/O for serial communication on
MC56F8013, RxD can be used as General Purpose I/O (GPIO PB6)
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
.
Table 2-2. RS-232 Serial Connector Description
J6
Pin #
Signal
Pin #
Signal
1
NC
6
NC
2
RxD
7
RTS
3
TxD
8
NC
4
DTR
9
NC
5
GND
2.3 Clock Source
The MC56F8013 uses its internal 8.00MHz relaxation oscillator and internal PLL to
multiply the input frequency to achieve its 32MHz maximum operating frequency.
2.4 User LED
One on-board Light-Emitting green colour Diode (LED) D8 is provided to be controlled
by the user’s program. This diode is accessible via GPIO PB6 port (RxD), when jumpers
JP1 and J10 are both set to position 1-2. Setting GPIO PB6 (RxD) to a Logic One value
will turn on the User LED. When using the User LED, the JP3 jumper selection of
Encoder INDEX / UNI-3 BEMFZCC signals must be disconnected to avoid hazardous
states, as shown in Figure 2-2.
MC56F8013
GPIO PB6 / RxD
JP1
4
3
2
1
+3.3V
R1
RxD0
USER LED/UNI-3 BRAKE
JP3
2
5
8
1
3
J10
2
1
User LED
GREEN LED
3
ENCODER INDEX
UNI-3 BEMFZCC
UNI-3 BRAKE
4
6
7
9
Figure 2-2. Schematic Diagram of the User LED connection
Freescale Semiconductor
Technical Summary
2-5
MC56F8013 Controller Board Hardware User’s Manual
2.5 Debug Support
The MC56F8013 Controller Board has a JTAG interface connector for external Target
Interface support.
2.5.1 JTAG Connector
The JTAG connector on the MC56F8013 Controller Board allows the connection of an
external Host Target Interface for downloading programs and working with the
MC56F8013’s registers. This connector is used to communicate with an external Host
Target Interface passing information and data back and forth to a host processor running a
debugger program. Table 2-3 shows the pin-out for this connector.
Table 2-3. JTAG Connector Description
J4
Pin #
Signal
Pin #
Signal
1
TDI
2
GND
3
TDO
4
GND
5
TCK
6
GND
7
NC
8
NC
9
RESET
10
TMS
11
+3.3V
12
NC
13
/DE
14
NC
2.6 General Purpose Buttons, Reset button, and Run/Stop
Switch
Three on-board push-button switches and one toggle switch are provided for the user’s
program control. Two push-buttons (UP, Down) are directly connected to the Port B GPIO
signals PB0 (UP/SW2) and PB1 (DOWN/SW3). One push-button (RESET/SW1) is
provided for setting the MC56F8013 RESET input pin to logic level Low. This pin can
also be configured as Port A GPIO PA7. A Run/Stop toggle switch is connected to GPIO
signal PB3 through the J8 jumper, which has to be closed, see table Table 2-4 for the
signal description. Note that signals from the UP and DOWN buttons are shared with the
Serial EEPROM memory signals (GPIO PB0 / SCL and GPIO PB1 / SDA). The Serial
EEPROM memory communication should be disabled by opening the jumpers J20 and
J21, as shown in Figure 2-3. Button UP and switch RUN/STOP are connected to the
2-6
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
controller’s input pins, which are shared with the SPI (Serial Peripheral Interface) header.
While using SPI communication, jumper J8 should be opened and button UP should not
be used.
J20
SCL
(Serial EEPROM)
1 2
+3.3V
MC56F8013
UP
+3.3V
RESET
PB0/SCLK/SCL
RESET/PA7
+3.3V
+3.3V
DOWN
PB1/SS/SDA
J8
START/STOP
1 2
PB3/MOSI/T3
J21
SDA
(Serial EEPROM)
1 2
Figure 2-3. Schematic Diagram of the buttons and switch
Table 2-4. Connection description of the Buttons and Switch
SWITCH
SIGNAL
RESET (SW1)
RESET / GPIO PA7
UP (SW2)
GPIO PB0 / SCLK / SCL
DOWN (SW3)
GPIO PB1 / SS / SDA
RUN/STOP (SW4)
GPIO PB3 / MOSI / T3 (jumper J8 is closed)
2.7 Power Supply
The main power supply input 12V DC to the MC56F8013 Controller Board is through a
2.1mm coax power jack. Less than 12V is required by the Controller Board, with the
remaining current available to the user via the on board connectors. The MC56F8013
Controller Board provides +3.3V DC voltage regulation for the Digital Signal Controller
and supporting logic. Power applied to the MC56F8013 Controller Board is indicated by a
Freescale Semiconductor
Technical Summary
2-7
MC56F8013 Controller Board Hardware User’s Manual
Power-On LED. The Controller Board can also be powered from the UNI-3 interface by
closing the J16 and J18 jumpers, as shown in Figure 2-4.
TP6
J16
UNI-3 digital
+5V supply
1 2
TP9
External
power input
supply +12V
UNI-3
analogue
supply +15V
+5V supply
Digital
power
supply
TP12
J18
1 2
+3.3V supply
+3.3VA supply
Analogue power supply
Figure 2-4. Power supply
2-8
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
2.8 UNI-3 Interface
Motor control signals from a family of motor driver boards can be connected to the board
via the UNI-3 connector/interface. The UNI-3 connector/interface contains all of the
signals needed to drive and control the motor drive boards. These signals are connected to
differing groups of the Digital Signal Controller’s input and output ports: A/D, TIMER,
and PWM. Refer to Table 2-5 for the pin out of the UNI-3 connector.
Table 2-5. UNI-3 Connector Description
J1
Pin #
Signal
Pin #
Signal
1
PWM0
2
NC
3
PWM1
4
NC
5
PWM2
6
NC
7
PWM3
8
NC
9
PWM4
10
NC
11
PWM5
12
GND
13
GND
14
+5.0V DC
15
+5.0V DC
16
NC
17
Analogue GND
18
Analogue GND
19
Analogue +15V DC
20
NC
21
Motor DC Bus Voltage Sense
22
Motor DC Bus Current Sense
23
Motor Phase A Current Sense
24
Motor Phase B Current Sense
25
Motor Phase C Current Sense
26
Motor Drive Temperature Sense
27
NC
28
NC
29
Motor Drive Brake Control
30
NC
31
PFC PWM
32
Input AC Current Sense1
33
AC Line Input Voltage1
34
Zero Cross A
35
Zero Cross B
36
Zero Cross C
37
NC
38
Back-EMF Phase A Sense
39
Back-EMF Phase B Sense
40
Back-EMF Phase C Sense
1.
NOTE: Pins 32 & 33 are direct PFC control signals modified from standard
UNI-3 specifications!
Freescale Semiconductor
Technical Summary
2-9
MC56F8013 Controller Board Hardware User’s Manual
2.8.1 UNI-3 PFC PWM signal (Power Factor Correction)
The PFC PWM signal (Power Factor Correction) is used to additionally control the power
stage. This signal is connected to the MC56F8013 controller’s pin GPIO PB2 / MISO / T2
through the J9 jumper (PFC PWM Disable).
2.8.2 UNI-3 BRAKE
The brake signal is accessible via GPIO PB6 port (RxD), when jumper JP1 is set to
position 1-2 and jumper J10 is set to position 2-3. When using the BRAKE signal, the JP3
jumper selection of Encoder INDEX / UNI-3 BEMFZCC signals must be disconnected to
avoid hazardous states, as shown in Figure 2-2.
MC56F8013
GPIO PB6 / RxD
JP1
4
3
2
1
+3.3V
R1
RxD0
J10
USER LED/UNI-3 BRAKE
1
JP3
2
5
8
1
3
2
User LED
GREEN LED
3
ENCODER INDEX
UNI-3 BEMFZCC
4
UNI-3 BRAKE
6
7
9
Figure 2-5. Schematic Diagram of the UNI-3 BRAKE connection
2.9 Motor Control PWM Signals and LEDs
The MC56F8013 controller has one dedicated PWM unit. This unit contains six PWM
outputs and two Fault input lines, and a further two Fault input lines are shared by two
PWM outputs. PWM output group lines are connected to the UNI-3 interface connector,
and to a set of six PWM LEDs via inverting buffers. The buffers are used to isolate and
drive the Digital Signal Controller’s PWM outputs to the PWM LEDs. The PWM LEDs
indicate the status of the PWM group signals, as shown in Figure 2-6. One Fault LED is
provided to easily monitor the fault states which depend on the voltage states of the
UNI-3’s Motor DC Bus Voltage Sense and Motor DC Bus Current Sense inputs.
2-10
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
MC56F8013
UNI-3
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
D2
D4
D5
D6
D7
PWM0
YELLOW LED
PWM1
YELLOW LED
PWM2
YELLOW LED
PWM3
YELLOW LED
PWM4
BUFFER
D9
+3.3V
YELLOW LED
YELLOW LED
PWM5
Figure 2-6. PWM Interface and LEDs
2.10 Motor Protection Logic
The MC56F8013 Controller board contains a UNI-3 connector that interfaces with various
motor drive boards. The Digital Signal Controller can sense error conditions generated by
the motor power stage boards via signals on the UNI-3 connector. The motor driver
board’s DC Bus Voltage and DC Bus Current are sensed on the power stage board. The
conditioned signals are transferred to the MC56F8013 Controller board via the UNI-3
connector. DC Bus Voltage and DC Bus Current analogue input signals are compared to a
limit set by trimpots. If the input analogue signals are greater than the limit set by the
trimpot, a Digital Signal Controller digital voltage compatible +3.3V DC fault signal is
generated. The UNI-3 DC Bus Over-Voltage and DC Bus Over-Current signals are
connected to the Digital Signal Controller’s PWM fault input 0, as shown in Figure 2-7.
Freescale Semiconductor
Technical Summary
2-11
MC56F8013 Controller Board Hardware User’s Manual
DC Over Voltage
R29
+3.3VA
+5.0V
TP3
TP2
+
UNI-3 DCBV
–
LM393
+3.3V
DC Over Current
R32
+3.3VA
+5.0V
TP5
TP4
UNI-3 DCBI
RED LED
D1
+
–
FAULT 0
LM393
Figure 2-7. FAULT Protection Circuit
The DC-bus over-voltage and DC-bus over-current threshold levels can be adjusted by the
trim-pots R29 and R32. Make sure there are no faults when exercising the on-chip PWM
modules.
2.11 Back-EMF and Motor Phase Current Sensing
The UNI-3 connector supplies Back-EMF and Motor Phase Current signals from the three
phases of a motor attached to the motor drive unit. The Back-EMF signals on the UNI-3
connectors are derived from a resistor divider network contained in the motor drive unit.
These resistors scale down the attached motor’s Back-EMF voltages to a 0 to +3.3V level.
The Motor Phase Current signals are derived from current sense resistors. A jumper block
JP5 (ADC CFG 1) provides the selection between each group of these signals, which will
be monitored by the Digital Signal Controller A/D, as shown in Table 2-6. Jumper block
JP4 (ADC CFG 2) has to be set to positions1-2, 4-5, and 7-8, see Table 2-7. When jumper
block JP4 is set to positions 2-3, 5-6, and 8-9, then the V_IN, I_IN, and TEMP inputs
measurement are selected, see Figure 2-8 for details. The temperature input TEMP can
also be connected to ANA2_RC input by setting jumper J11 to position 1-2.
2-12
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
ADC CFG 1
JP5
1
UNI-3 PHAIS
UNI-3 BEMFA
3
4
UNI-3 PHBIS
UNI-3 BEMFB
6
7
UNI-3 PHCIS
UNI-3 BEMFC
9
2
ADC CFG 2
JP4
PHAIS / BEMFA
1
UNI-3 V_IN
5
8
PHBIS / BEMFB
3
4
UNI-3 I_IN
PHCIS / BEMFC
6
7
UNI-3 TEMP
9
1
TACHO
3
2
ANB0_RC
5
ANB1_RC
8
ANB2_RC
2
ANA2_RC
J11
TACHO / TEMP
Figure 2-8. ADC input selection
Table 2-6. ADC input source selection (ADC CFG 1)
Selector
PHAIS / BEMFA
PHBIS / BEMFB
PHCIS / BEMFC
Function
JP5
Phase A current measurement selected
1-2
Phase A back EMF measurement selected
2-3
Phase B current measurement selected
4-5
Phase B back EMF measurement selected
5-6
Phase C current measurement selected
7-8
Phase C back EMF measurement selected
8-9
Table 2-7. ADC input source selection (ADC CFG 2)
Selector
PHAIS/BEMFA / V_IN
PHBIS/BEMFB / I_IN
PHCIS/BEMFC / TEMP
Freescale Semiconductor
Function
JP4
PHAIS / BEMFA measurement selected
1-2
V_IN measurement selected
2-3
PHBIS / BEMFB measurement selected
4-5
I_IN measurement selected
5-6
PHCIS / BEMFC measurement selected
7-8
TEMP measurement selected
8-9
Technical Summary
A/D Input
ANB0_RC
ANB1_RC
ANB2_RC
2-13
MC56F8013 Controller Board Hardware User’s Manual
2.12 Quadrature Encoder/Hall-Effect Interfaces
The MC56F8013 Controller Board contains a Quadrature Encoder/Hall-Effect interface
connected to the Digital Signal Controller’s Quad Decoder input ports (Timer channel 0, 1
inputs) and RxD/GPIO PB6 input. The circuit is designed to accept +3.3V to +5.0V
encoder or Hall-Effect sensor inputs. Input noise filtering is supplied on the input path for
the Quadrature Encoder/Hall-Effect interface, along with additional noise reduction
circuitry inside the Digital Signal Controller. Figure 2-9 contains the encoder interface.
Table 2-8 shows the setting of jumper block JP3 to select between the Quadrature
Encoder/Hall-Effect signals or Zero-Crossing signals.
2.13 Zero-Crossing Detection
An attached UNI-3 motor drive board contains logic that can send out pulses when the
phase voltage of an attached 3-phase motor crosses zero. The motor drive board circuits
generate a 0 to +3.3V DC pulse via voltage comparators. The resulting pulse signals are
sent to a jumper block JP3 shared with the Encoder/Hall-Effect interface. The jumper
block allows the selection of either Zero-Crossing signals or Quadrature
Encoder/Hall-Effect signals, as shown in Table 2-8. When in operation, the Digital Signal
Controller will only monitor one set of signals, Encoder/Hall-Effect or Zero-Crossing.
Figure 2-9 contains the Zero-Crossing and Encoder/Hall circuits.
J15
1 2
Tacho-generator Digital Output
UNI-3 BEMFZCA
UNI-3 BEMFZCB
UNI-3 BEMFZCC
MC56F8013
JP3
9
+5.0V
FILTER
PHASEA
FILTER
PHASEB
FILTER
INDEX
J7
7
6
1
2
3
4
5
6
PIN 1:
PIN 2:
PIN 3:
PIN 4:
PIN 5:
PIN 6:
4
3
TP1
+5.0V
GROUND
PHASE A
PHASE B
INDEX
HOME
FILTER
1
8
GPIO PB4 / T0
5
GPIO PB5 / T1
2
GPIO PB6 / RxD
JP1
R1
RxD0
USER LED/UNI-3 BRAKE
4
3
2
1
Figure 2-9. Zero-Crossing/Encoder Interfaces
2-14
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
Note that INDEX / BEMFZCC signal from the JP3 jumper is shared with the RxD signal
from JP1 and PHASEA / BEMFZCA signal is shared with the Tacho-generator Digital
Output from J15. To avoid hazardous states the JP1 and J15 should be disconnected.
Table 2-8. Zero-Crossing/Encoder input source selection
Selector
INDEX / BEMFZCC
PHASE B / BEMFZCB
PHASE A / BEMFZCA
Function
JP3
Encoder INDEX input selected
1-2
Phase C back EMF zero-cross input selected
2-3
Encoder PHASE B input selected
4-5
Phase B back EMF zero-cross input selected
5-6
Encoder PHASE A input selected
7-8
Phase A back EMF zero-cross input selected
8-9
GPIO PB6 / RxD
GPIO PB5 / T1
GPIO PB4 / T0
2.14 Tacho-Generator Interface
The MC56F8013 Controller board contains a Tacho-generator interface for
digital/analogue sensing with the external Tacho-Dynamo input. Input noise filtering is
supplied on the input path then the signal passes through the voltage limiter to avoid
damaging the following electrical circuitry. The signal then can be passed through jumper
J14 to the ADC analogue input ANA2 for analogue sensing if the jumper is in position
1-2, or to the comparator with hysteresis for digital sensing if the jumper is in position 2-3,
as shown in Figure 2-10.
5
Threshold Level Setting
R54
8
6
7
9
JP3
+3.3VA
ENCODER PHASEA
UNI-3 BEMFZCA
+5.0V
Tacho Dynamo
J13
1
2
LIMITER
FILTER
J14
2
J15
1 2
–
3
+
LM393
Digital Output
GPIO PB4
1
TP13
TACHO / TEMP
TACHO
UNI-3 TEMP
J11
3
1
2
Analogue Output
ANA2_RC
Figure 2-10. Tacho-Generator Interface
Freescale Semiconductor
Technical Summary
2-15
MC56F8013 Controller Board Hardware User’s Manual
When digital sensing has been selected, the output of the comparator to GPIO port PB4
has to be enabled by closing jumper J15. Table 2-9 shows the proper jumper setting when
using the tacho-generator interface. The R54 trimpot serves to adjust the working point of
the comparator. Note that Tacho-generator Digital Output signal from the J15 jumper is
shared with the Encoder PHASEA / BEMFZCA signal from JP3. To avoid hazardous
states, JP3 should be disconnected.
Table 2-9. Tacho-Generator Operating Modes
J14
J15
J11
Operating Mode
Output to
1-2
-
2-3
Analogue Sensing
ANA2_RC
2-3
closed
-
Digital Sensing
GPIO PB4
2.15 Serial EEPROM
The MC56F8013 Controller board contains a Serial EEPROM interface for 64 kbit
memory (24LC64 or 24AA64) which can be optionally added (package pin number 3 - A2
must be additionally connected to GND). The memory is supplied by a 3.3V power supply
and uses two communication lines to communicate with the MC56F8013 Controller, SCL
connected to GPIO PB0 (GPIO PB0/SCLK/SCL) through jumper J20, and SDA
connected to GPIO PB1 (GPIO PB1/SS/SDA) through jumper J21, as shown in
Figure 2-11.
+3.3V
UP
+3.3V
MC56F8013
24LC64 (24AA64)
J20
SCL
WP
1
J17
2
J17
Open
Closed
Protection
Protected
1 2
PB0/SCLK/SCL
J21
SDA
1 2
PB1/SS/SDA
+3.3V
A0 A1 A2
DOWN
Unprotected
Figure 2-11. Serial EEPROM Interface
2-16
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
The memory can be write protected or unprotected by using the J17 jumper. If J17 is open,
the memory is write protected, WRITE operations are inhibited, but read operations are
not affected. When jumper J17 is closed, WRITE operations are allowed. Note that the
Serial EEPROM memory interface signals are shared with signals from the UP and
DOWN buttons, which can not be used while using Serial memory. The SCL signal is also
shared with the SPI (Serial Peripheral Interface), and so SPI communication can not be
used while using Serial memory.
2.16 Peripheral Expansion Connectors
The MC56F8013 Controller Board contains a group of Peripheral Expansion Connectors
used to gain access to the resources of the MC56F8013. The following signal groups have
Expansion Connectors:
•
Encoder
•
Tacho-Dynamo Input
•
GPIO B Port
•
A/D Input Port
•
PWM Port
•
SPI Port
2.16.1 Encoder Exp. Connector
The Quadrature Encoder interface port is attached to this expansion connector. Refer to
Table 2-10 for connection information.
Table 2-10. Encoder Connector Description
J7
Freescale Semiconductor
Pin #
Signal
1
+5V
2
GND
3
PHASE A / T0
4
PHASE B / T1
5
INDEX / RxD
6
HOME
Technical Summary
2-17
MC56F8013 Controller Board Hardware User’s Manual
2.16.2 Tacho-Dynamo Exp. Connector
The Tacho-Generator interface includes the Tacho-Dynamo input expansion connector, as
shown in Table 2-11.
Table 2-11. Tacho-Dynamo Connector Description
J13
Pin #
Signal
1
Tacho dynamo Input 1
2
Tacho dynamo Input 2
2.16.3 GPIO B Port Expansion Connector
The GPIO B port attached to this connector is an MPIO port. The General Purpose I/O
port B pins are shared with a Serial Peripheral Interface, Serial Communications Interface,
Timer I/O, I2C, and PWM FAULT 3 input. Refer to Table 2-12 for connection
information.
Table 2-12. GPIO B Port Connector Description
J2
2-18
Pin #
Signal
Pin #
Signal
1
PB0 / SCLK / SCL
2
PB1 / SS_B / SDA
3
PB2 / MISO / T2
4
PB3 / MOSI / T3
5
PB4 / T0 / CLK0
6
PB5 / T1 / FAULT3
7
PB6 / RxD / SDA / CLKIN
8
BP7 / TxD / SCL
9
+3.3V
10
GND
Technical Summary
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
2.16.4 A/D Port Expansion Connector
The 6-channel Analogue to Digital conversion port is attached to this connector. Refer to
Table 2-13 for connection information. There is an RC network on each of the Analogue
Port input signals; reference Figure 2-12.
Table 2-13. A/D Port Connector Description
J5
Pin #
Signal
Pin #
Signal
1
+3.3V
2
GNDA
3
UNI-3 DCBV
4
UNI-3 DCBI
5
ANA2_RC
6
ANB0_RC
7
ANB1_RC
8
ANB2_RC
9
+3.3V
10
GNDA
100 ohm
Analogue Input (ANxx_RC)
To Analogue Port (ANxx)
2.2nF
Figure 2-12. Typical Analogue Input RC Filter
2.16.5 PWM Port Expansion Connector
The PWM port is attached to this connector. Refer to Table 2-14 for connection
information.
Table 2-14. PWM Port Connector Description
J3
Freescale Semiconductor
Pin #
Signal
Pin #
Signal
1
PWM0
2
PWM1
3
PWM2
4
PWM3
5
PWM4
6
PWM5
7
GND
8
FAULT0
9
GND
10
+3.3V
Technical Summary
2-19
MC56F8013 Controller Board Hardware User’s Manual
2.16.6 SPI Port Expansion Connector
The Serial Peripheral Interface is an MPIO port attached to the GPIO B expansion
connector. The connector pins can be configured as a Serial Peripheral Interface or as a
General Purpose I/O port. Refer to Table 2-15 for connection information.
Table 2-15. SPI Connector Description
J19
Pin #
Signal
1
GND
2
SCLK
3
MISO
4
MOSI
2.17 Test Points
The MC56F8013 Controller Board has 13 test pins. The four test pins are located near the
corners of the board and provides a GND signal (digital ground) for easy oscilloscope
attachment.
2-20
Technical Summary
Freescale Semiconductor
Appendix A
MC56F8013 Controller Board
Schematics
Freescale Semiconductor
MC56F8013 Controller Board Schematics
A-1
MC56F8013 Controller Board Schematics
TMS
GND
R xD
+3.3V
1
2
4
6
8
10
12
14
SCLK
MISO
GPIOB4
2
R1
0
1
2
4
6
8
10
RxD
4
3
2
1
SPI
1
3
5
7
9
11
13
HDR 4X1
J19
GPIOB
HDR 5X2
J2
R2
0
JTAG
J4
1
3
5
7
9
2
/DE
/RESE T
TDI
TDO
TCK
GND
MOS I
MISO
SCLK
GND
/SS_B
MOS I
GPIOB5
TxD
TxD
1
2
3
4
+3.3V
SCI
JP1
HDR 4X1
USER LED/UNI-3 BRAKE
30
32
14
31
TxD
TDI
TDO
TCK
TMS
1
3
5
7
9
2
4
6
8
10
2
4
6
8
10
HDR 5X2
J5
HDR 5X2
J3
MC56F80 13VFAE
RESET/PA7/VPP
TDI/PD0
TDO/P D1
TCK/PD2
TMS/P D3
VSS_IO0
VSS_IO1
VCAP1
VDD_IO
VDDA_ ADC
VSSA_ADC
ADC
GNDA
GNDA
UNI-3_DCBI
ANB0_RC
ANB2_RC
PWM
+3.3V
PWM1
PWM3
PWM5
FAULT0
PB0/SCLK/SCL
PB1/SS/SDA
PB2/M ISO/T2
PB3/M OSI/T3
PB4/T0 /CLKO
PB5/T1 /FAULT3
PB6/RXD/SDA/CLKIN
PB7/TXD/SCL
PA0/PWM0
ANA0 /PC0
PA1/PWM1
ANA1 /PC1
PA2/PWM2
ANA2 /VREFH/PC2
PA3/PWM3
PA4/PWM4 /FAULT1/T2 ANB0/PC4
PA5/PWM5 /FAULT2/T3 ANB1/PC5
PA6/FAULT0
ANB2/VREFL/PC6
1
+3.3VA
UNI-3_DCBV
3
ANA2 _RC 5
ANB1_RC 7
9
+3.3VA
GND
PWM0
PWM2
PWM4
15
21
2
17
16
19
4
1
3
29
28
23
24
22
20
18
13
27
25
26
8
9
5
6
7
12
11
10
GND
+ C9
4.4uF
50V
+3.3V
GNDA
C10
100 nF
GNDA
GNDA
GNDA
GNDA
GNDA
C12
2.2nF
ANB2
C11
2.2nF
ANB1
C8
2.2nF
ANB0
C7
2.2nF
ANA2
C6
2.2nF
ANA1
C5
2.2nF
ANA0
GNDA
2
2
2
2
2
2
R8
100
R7
100
R6
100
R5
100
R4
100
R3
100
1
1
1
1
1
1
ANB2_RC
ANB1_RC
ANB0_RC
ANA2_RC
UNI-3_DCBI
UNI-3_DCBV
Place filters as close to the DSP chip as possible
+3.3VA
ANB0
ANB1
ANB2
ANA0
ANA1
ANA2
Figure A-1. MC56F8013 and Headers
1
TCK 2
R12 47k
1
1
2
R10 47k
1
TMS 2
R11 47k
/DE
TDO 2
R9 47k
+3.3V
/RESE T
SCLK
/SS_B
MISO
MOS I
GPIOB4
GPIOB5
RxD
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
FAUL T0
U1
1
2
RxD0 TxD0
1
2
1
2
1
2
1
2
1
2
1
2
1
2
A-2
Freescale Semiconductor
GND
MC56F8013 Controller Board Schematics
R13
47k
GND
SCLK
1
2
A0
A1
WP
SCL
U3
AT24C64
1
2
7
6
GND
NC
SDA
+3.3V
3
5
Figure A-2. Serial EEPROM
J17
HDR 2X1
WP
1
2
+3.3V
1
2
SCL
8
VCC
GND
4
J20
HDR 2X1
J21
HDR 2X1
SDA
2
1
Freescale Semiconductor
A-3
/SS_B
1
2
3
4
5
6
EN CODER 0
J7
+5V
GND
+5V
1
+5V
2
1
+5V
2
1
+5V
2
1
2
R 27
24
R 23
24
R 19
24
R 15
24
2
2
2
GN D
2
GN D
GN D
C16
470pF
C15
470pF
C14
470pF
GND
C13
470pF
1
1
1
1
R17
1.8K
2
2
1
2
1
R25
1.8K
R 28
1.8K
2
UNI-3_BEMFZ CC
R 24
1.8K
UNI-3_BEMFZ CB
R 20
1.8K
R21
1.8K
2
UNI-3_BEMFZ CA
1
R 16
1.8K
2
2
1
TP1
1
3
4
6
7
9
JP3
2
5
8
TH /JUMPER S_3_CH
Figure A-3. Quadrature Encoder or Hall Sensors / Zero Crossing
1
R26
1K
1
R22
1K
1
R18
1K
1
R14
1K
1
2
1
2
1
2
1
MC56F8013 Controller Board Schematics
2
A-4
Freescale Semiconductor
RxD
GPIOB5
GPIOB4
Timer channel 1
Timer channel 0
UNI-3_DCBI
UNI-3_DCBV
TP4
1
R34
15K
GNDA
R30
15K
2
C18
360pF
3
TP3
1
C17
100nF
2
R29
10K
TP2
GNDA
1
1
2
Over Voltage
2
R32
10K
GNDA
C20
360pF
C19
100nF
1
2
1
TP5
3
Over Current
GNDA
2
1
+
-
+
6
5
R35
1M
+3.3VA
3
2
2
+5V
2
GND
U4B
LM393M
7
1
U4A
LM393M
Figure A-4. Fault protection
1
R31
1M
+3.3VA
8
4
1
1
1
2
1
MC56F8013 Controller Board Schematics
2
FAULT
D1
RED
R33
270
+3.3V
1
2
1
1
2
4.7k
R63
Q1
GND
BC847
1
+3.3V
1
2
Freescale Semiconductor
A-5
R62
10k
FAULT0
J9
HDR 2X1
PFC PWM DISABLE
MISO
MOSI
UNI-3 BRAKE
USER LED
J10
HDR 3X1
UNI-3 BEMFC
UNI-3 PHCIS
UNI-3 BEMFB
UNI-3 PHBIS
UNI-3 BEMFA
UNI-3 PHAIS
TACHO
UNI-3 TEMP
UNI-3 TEMP
UNI-3_PHCIS/UNI-3_BEMFC
UNI-3 I_IN
UNI-3_PHBIS/UNI-3_BEMFB
UNI-3 V_IN
8
5
2
TH/JUMPERS_3_CH
JP4
J11
HDR 3X1
TACHO/TEMP
9
7
6
4
3
1
8
5
2
TH/JUMPERS_3_CH
JP5
ADC CFG 2
9
7
6
4
3
1
ADC CFG 1
ANA2_RC
ANB2_RC
ANB1_RC
ANB0_RC
UNI-3_PHCIS/UNI-3_BEMFC
UNI-3_PHBIS/UNI-3_BEMFB
UNI-3_PHAIS/UNI-3_BEMFA
ANALOG CHANNELS CONFIGURATION
UNI-3_PHAIS/UNI-3_BEMFA
Figure A-5. Jumpers
USER LED/UNI-3 BRAKE
USER LED / UNI-3 BRAKE SELECT
UNI-3 PFC_PWM
START SWITCH
J8
HDR 2X1
START SWITCH DISABLE
1
2
1
2
1
2
3
MC56F8013 Controller Board Schematics
1
2
3
A-6
Freescale Semiconductor
GND
GND
1
2
GND
1
2
GND
1
2
3
4
SW4
3
1
3
4
3
4
RUN/STOP
2
DOWN
SW3
UP
SW2
2
+3.3V
+3.3V
+3.3V
R37
4.7K
RE SE T
SW1
1
1k8
R 48
R 46
4k7
1k8
R 45
R 43
4k7
1k8
R 41
R 40
4k7
+3.3V
MC56F8013 Controller Board Schematics
2
4.7k
R51
Q2
GND
BC847
1
+3.3V
GND
U SE R LE D
D8
GREEN
R49
270
R38
270
D3
GREEN
PWM5
PWM4
PWM3
PWM2
PWM1
PWM0
Figure A-6. LEDs and buttons
USER LED
START SWITCH
/SS_B
SCLK
/RESET
Po we r ON
+5V
1
2
1
2
Freescale Semiconductor
A-7
13
11
9
5
3
1
74HC04D
U5F
74HC04D
U5E
74HC04D
U5D
74HC04D
U5C
74HC04D
U5B
GND
12
10
8
6
4
GND
74HC04D
U5A
VCC
2
+3.3V
14
7
1
1
1
1
1
1
R50
270
R47
270
R44
270
R42
270
R39
270
R36
270
2
2
2
2
2
2
D9
Y ELLOW
PW M5
D7
Y ELLOW
PW M4
D6
Y ELLOW
PW M3
D5
Y ELLOW
PW M2
D4
Y ELLOW
PW M1
D2
Y ELLOW
PW M0
+3.3V
+3.3V
+3.3V
+3.3V
+3.3V
+3.3V
U NI-3 +15VA
PWR_JAC K
GND
1
3
2
+ C36
330uF
16V
GND
GN DA
GROUND CONNECTION
INDUCTOR
L3
1
2
D 17
1N4448
GN DA
D 16
1N4448
D15
1N4448
2
C24
330uF
16V
GND
GND
+ C37
2.2uF
50V
+5V
1
VIN
C38
100nF
GND
2
GND
VOUT
U6
TL78005CKTE
D10
1N 4448
Encoder
C 25
100nF
INDUCTOR
L2
1
2
GN D
D13
1N4448
+
GND
1
1
GN D
GNDA
C35
100nF
GN D
C23
100nF
D12
FR1M
+ C22
47uF
6.3V
1
2
J12
1
2
1
3
GND
C39
100nF
+3.3V
GN D
+ C27
47uF
6.3V
GND
GNDA
C41
100nF
GND A
+ C31
47uF
6.3V
+5V
GNDA
U7
GND
VOUT
LM393
GNDA
+5V
1
3
2
GND
VOUT
C47
100nF
2
GND
GND
GN DA
+ C33
47uF
6.3V
+ C28
47uF
6.3V
74HC04
C44
100nF
+3.3V
MC33269DT_3.3
GND
VIN
U8
D14
1N4448
MC33269DT_3.3
GN D
VIN
C42
100nF
C32
100nF
GND
1
3
D 11
1N4448
Figure A-7. Power Supply
C40
100nF
+5V
C29
100nF
10V
GND
DSP56F8013 +3.3VA
C26
100nF
10V
TP6
1
1
2
1
2
2
1
2
1
2
INDUCTOR
L1
2
1
2
C21
100nF
1
2
1
2
1
2
1
2
1
2
1
1
2
UNI-3 +5V
1
2
GN D
GN D
C48
100nF
10V
+3.3V AT24C64
GNDA
C34
100nF
TP12
+3.3VA
+3.3V
C30
100nF
TP9
GN D
GN D
1
1
2
1
2
1
2
1
2
1
2
1
2
1
1
2
1
1
2
1
MC56F8013 Controller Board Schematics
2
GND
TP10
GND
TP7
TP8
TP11
1
1
A-8
Freescale Semiconductor
5
9
4
8
3
7
2
6
1
TXD
RTS
RXD
DTR
GND
J6
CON/CANNON9
RS232
D20
1N4448
1
2
MC56F8013 Controller Board Schematics
2
1
2
C1 2.2uF/35V
1
1k
R64
3
2
1 2
2
4
3
160
R65
GND
U22
SFH6106
4
Isolation Barrier
1
U21
SFH6106
Figure A-8. RS232
R67
4.7k
D19
1N4448
1N4448
D21
1
RxD0
TxD0
+3.3V
R66
1k
+3.3V
1
2
Freescale Semiconductor
+
A-9
MC56F8013 Controller Board Schematics
R60
560k
C45
0,1uF
1
R56
1k
2
C46
0,022uF
1
2
+3.3VA
J14
HDR 3X1
GNDA
D18
HSMS-2802
GNDA
R61
10k
1
2
R54
4k7
R52
7k5
+3.3VA
1
2
TACHO
R57
2k2
2
GND
Figure A-9. Tachogenerator
3
1
2
GNDA
R59
82k
R55
82k
TP13
1
J13
Tacho Dy namo
1
2
3
+3.3VA
2
1
1
2
1
2
1
2
1
2
3
+
-
+
2
-
5
+5V
8
1
7
R53
100k
U9B
LM393M
1
U9A
LM393M
GND
4
3
1
1
2
2
R58
10k
+3.3V
1
2
6
J15
HDR 2X1
1
2
A-10
Freescale Semiconductor
GPIOB4
UNI-3 +15VA
UNI-3 +5V
J16
HDR 2X1
J18
HDR 2X1
1
2
1
2
Freescale Semiconductor
MC56F8013 Controller Board Schematics
A-11
GNDA
GND
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
Figure A-10. UNI-3 connector
UNI-3 BEMFB
UNI-3 BRAKE
UNI-3 PFC_PWM
UNI-3 V_IN
UNI-3_BEMFZCB
UNI-3_DCBV
UNI-3 PHAIS
UNI-3 PHCIS
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
J1
UNI-3
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
UNI-3_BEMFZCA
UNI-3_BEMFZCC
GNDA
GND
UNI-3 BEMFA
UNI-3 BEMFC
UNI-3 I_IN
UNI-3_DCBI
UNI-3 PHBIS
UNI-3 TEMP
A-12
MC56F8013 Controller Board Schematics
Freescale Semiconductor
Appendix B
MC56F8013 Controller Board
PCB
Freescale Semiconductor
MC56F8013 Controller Board PCB
B-1
MC56F8013 Controller Board Hardware User’s Manual
Figure B-1. TOP copper layer
B-2
MC56F8013 Controller Board PCB
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
Figure B-2. BOTTOM copper layer
Freescale Semiconductor
MC56F8013 Controller Board PCB
B-3
MC56F8013 Controller Board Hardware User’s Manual
Figure B-3. Drill copper map
B-4
MC56F8013 Controller Board PCB
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
Figure B-4. TOP silk screen layer
Freescale Semiconductor
MC56F8013 Controller Board PCB
B-5
MC56F8013 Controller Board Hardware User’s Manual
Figure B-5. TOP Board view
B-6
MC56F8013 Controller Board PCB
Freescale Semiconductor
Appendix C
MC56F8013 Controller Board
Bill of Materials
Item
Qty
Description
Reference Designators
Part #/ Value
Capacitors
1
1
SMD, Polarized, Aluminim, size B,
35V
C1
2.2uF/35V
2
6
SMD, Ceramic, size 0805
C5,C6,C7,C8,C11,C12
2.2nF
3
1
SMD, Polarized, Aluminim, size B,
50 V
C9
4.4uF/50V
4
20
SMD, Ceramic, size 0805
C10,C17,C19,C21,C23,C25,
C26,C29,C30,C32,C34,C35,
C38,C39,C40,C41,C42,C44,
C47,C48
100nF
5
4
SMD, Ceramic, size 0805
C13,C14,C15,C16
470pF
6
2
SMD, Ceramic, size 0805
C18,C20
360pF
7
4
SMD, Polarized, Aluminim,
size C, 6.3V
C22,C27,C28,C33
47uF/6.3V
8
2
SMD, Polarized, Aluminim, size G,
16V
C24,C36
330uF/16V
9
1
SMD, Polarized, Aluminim, size B,
50V
C37
2.2uF/50V
10
1
SMD, Ceramic, size 1812
C45
0,1uF
11
1
SMD, Ceramic, size 1210
C46
0,022uF
12
1
SMD, Polarized, Aluminim, size C,
16V
C31
22uF/16V
Diodes / LED
13
1
SMD, size 0805
D1
RED
14
6
SMD, size 0805
D2,D4,D5,D6,D7,D9
YELLOW
Freescale Semiconductor
MC56F8013 Controller Board Bill of Materials
C-1
MC56F8013 Controller Board Hardware User’s Manual
Item
Qty
Description
Reference Designators
Part #/ Value
15
2
SMD, size 0805
D3,D8
GREEN
16
10
SMD, minimelf
D10,D11,D13,D14,D15,D16,
D17,D19,D20,D21
1N4448
17
1
SMD, MELF
D12
SM4007
18
1
SMD, SOT-23
D18
HSMS-2802
Connectors / Jumpers
19
2
Header 4X1, 2.54mm
JP1,J19
HDR 4X1
20
3
Header 3X1, 2.54mm
JP3,JP4,JP5
TH/JUMPERS_3_CH
21
1
MLW40G
J1
UNI-3
22
3
Header 5X2, 2.54mm
J2,J3,J5
HDR 5X2
23
1
Header 7X2, 2.54mm
J4
JTAG
24
1
CAN9 Z 90
J6
CON/CANNON9
25
1
PSH02 - 06P
J7
ENCODER 0
26
8
Header 2X1, 2.54mm
J8,J9,J15,J16,J17,J18,J20,J21
HDR 2X1
27
3
Header 3X1, 2.54mm
J10,J11,J14
HDR 3X1
28
1
NAZ 2.1 VP
J12
PWR_JACK
29
1
ARK500/2
J13
Tacho Dynamo
30
13
Header 1X1, 2.54mm
TP1,TP2,TP3,TP4,TP5,
TP6,TP7,TP8,TP9,TP10,
TP11,TP12,TP13
TEST POINT
Inductors
31
3
Multicomp MCAB 035060-33
L1,L2,L3
INDUCTOR
Transistors
32
2
SMD, SOT23
Q1,Q2
BC847
Resistors / Potentiometers/ Trimmers
C-2
33
2
SMD, size 0805
R1,R2
0
34
6
SMD, size 0805
R3,R4,R5,R6,R7,R8
100
35
5
SMD, size 0805
R9,R10,R11,R12,R13
47k
36
7
SMD, size 0805
R14,R18,R22,R26,R56
1k
37
4
SMD, size 0805
R15,R19,R23,R27
24
38
7
SMD, size 0805
R16,R17,R20,R21,R24,
R25,R28
1.8K
MC56F8013 Controller Board Bill of Materials
Freescale Semiconductor
MC56F8013 Controller Board Hardware User’s Manual
Item
Qty
Description
Reference Designators
Part #/ Value
39
3
SMD, size 0805
R58,R61,R62
10k
40
2
Trimmer
R29,R32
10k
41
2
SMD, size 0805
R30,R34
15K
42
2
SMD, size 0805
R31,R35
1M
43
9
SMD, size 0805
R33,R36,R38,R39,R42,
R44,R47,R49,R50
270
44
7
SMD, size 0805
R40,R43,R46,R37,R51,
R66,R67
4k7
45
1
Trimmer
R54
4k7
46
3
SMD, size 0805
R41,R45,R48
1k8
47
1
SMD, size 0805
R52
7k5
48
1
SMD, size 0805
R53
100k
49
2
SMD, size 0805
R55,R59
82k
50
1
SMD, size 0805
R57
2k2
51
1
SMD, size 0805
R60
560k
52
1
SMD, size 0805
R65
360
53
1
SMD, size 0805
R63
62k
54
1
SMD, size 0805
R64
560
Switches / Pushbuttons
55
1
KSC221J
SW1
RESET
56
1
KSC221J
SW2
UP
57
1
KSC221J
SW3
DOWN
58
1
EZK - MS244LC
SW4
RUN/STOP
Integrated Circuits
59
1
Freescale Semiconductor
Hybrid Controller
U1
MC56F8013VFAE
60
0
no pop
U3
AT24LC64 / 24AA64
61
2
LM393M, SMD, SOIC8
U4,U9
LM393M
62
1
74HC04D, SMD, SOIC14
U5
74HC04D
63
1
MC7805CD2T,SMD, D2PAK
U6
MC7805CD2T
64
2
MC33269DT_3.3, SMD, DPAK
U7,U8
MC33269DT_3.3
65
2
SFH6106, Optocoupler, SMD
U21,U22
SFH6106
Freescale Semiconductor
MC56F8013 Controller Board Bill of Materials
C-3
MC56F8013 Controller Board Hardware User’s Manual
C-4
MC56F8013 Controller Board Bill of Materials
Freescale Semiconductor
WCD Sample Book Template
Freescale Semiconductor
-1
How to Reach Us:
Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts.
Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.
Rev. 1.0, 9/2005
<st-bold>