Freescale Semiconductor Order this document by MC56F8013CB_UM Rev. 1.0, 9/2005 MC56F8013 Controller Board Hardware User’s Manual © Freescale Semiconductor, Inc., 2005. All rights reserved. Table of Contents Preface Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-ix Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-ix Notation Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-x Definitions, Acronyms, and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-xi References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-xii Chapter 1 Introduction 1.1 1.2 1.3 MC56F8013 Controller Board Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 MC56F8013 Controller Board Configuration Jumpers . . . . . . . . . . . . . . . . . . . . 1-3 MC56F8013 Controller Board Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 Chapter 2 Technical Summary 2.1 2.2 2.3 2.4 2.5 2.5.1 2.6 2.7 2.8 2.8.1 2.8.2 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 MC56F8013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 RS-232 Serial Communications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 User LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 JTAG Connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 General Purpose Buttons, Reset button, and Run/Stop Switch . . . . . . . . . . . . . . 2-6 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 UNI-3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 UNI-3 PFC PWM signal (Power Factor Correction) . . . . . . . . . . . . . . . . . . 2-10 UNI-3 BRAKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 Motor Control PWM Signals and LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 Motor Protection Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Back-EMF and Motor Phase Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 Quadrature Encoder/Hall-Effect Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Zero-Crossing Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Tacho-Generator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 Serial EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Peripheral Expansion Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 Freescale Semiconductor Table of Contents iii MC56F8013 Controller Board Hardware User’s Manual 2.16.1 Encoder Exp. Connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16.2 Tacho-Dynamo Exp. Connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16.3 GPIO B Port Expansion Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16.4 A/D Port Expansion Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16.5 PWM Port Expansion Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.16.6 SPI Port Expansion Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.17 Test Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2-18 2-18 2-19 2-19 2-20 2-20 Appendix A MC56F8013 Controller Board Schematics Appendix B MC56F8013 Controller Board PCB Appendix C MC56F8013 Controller Board Bill of Materials iv Table of Contents Freescale Semiconductor List of Figures 1-1 Block Diagram of the MC56F8013 Controler Board . . . . . . . . . . . . . . . . 1-2 1-2 MC56F8013 Controller Board Jumper Options . . . . . . . . . . . . . . . . . . . . 1-3 1-3 Connecting the MC56F8013 Controller Board Cables. . . . . . . . . . . . . . . 1-5 2-1 Schematic Diagram of the RS-232 Interface . . . . . . . . . . . . . . . . . . . . . . 2-4 2-2 Schematic Diagram of the User LED connection. . . . . . . . . . . . . . . . . . . 2-5 2-3 Schematic Diagram of the buttons and switch . . . . . . . . . . . . . . . . . . . . . 2-7 2-4 Power supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 2-5 Schematic Diagram of the UNI-3 BRAKE connection . . . . . . . . . . . . . 2-10 2-6 PWM Interface and LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 2-7 FAULT Protection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 2-8 ADC input selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 2-9 Zero-Crossing/Encoder Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 2-10 Tacho-Generator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 2-11 Serial EEPROM Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 2-12 Typical Analogue Input RC Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 A-1 MC56F8013 and Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 A-2 Serial EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3 A-3 Quadrature Encoder or Hall Sensors / Zero Crossing. . . . . . . . . . . . . . . . A-4 A-4 Fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 A-5 Jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6 A-6 LEDs and buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 A-7 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8 A-8 RS232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9 A-9 Tachogenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10 A-10 UNI-3 connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11 B-1 TOP copper layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 B-2 BOTTOM copper layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3 Freescale Semiconductor List of Figures v MC56F8013 Controller Board Hardware User’s Manual B-3 Drill copper map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4 B-4 TOP silk screen layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 B-5 TOP Board view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6 vi List of Figures Freescale Semiconductor List of Tables 1-1 MC56F8013 Controller Board Jumper Options . . . . . . . . . . . . . . . . . . . . 1-4 2-1 Serial Interface Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 2-2 RS-232 Serial Connector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 2-3 JTAG Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 2-4 Connection description of the Buttons and Switch. . . . . . . . . . . . . . . . . . 2-7 2-5 UNI-3 Connector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 2-6 ADC input source selection (ADC CFG 1) . . . . . . . . . . . . . . . . . . . . . . 2-13 2-7 ADC input source selection (ADC CFG 2) . . . . . . . . . . . . . . . . . . . . . . 2-13 2-8 Zero-Crossing/Encoder input source selection . . . . . . . . . . . . . . . . . . . . 2-15 2-9 Tacho-Generator Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 2-10 Encoder Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2-11 Tacho-Dynamo Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 2-12 GPIO B Port Connector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 2-13 A/D Port Connector Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 2-14 PWM Port Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 2-15 SPI Connector Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 Freescale Semiconductor List of Tables vii MC56F8013 Controller Board Hardware User’s Manual viii List of Tables Freescale Semiconductor Preface This reference manual describes in detail the hardware on the MC56F8013 Controller Board. The board has been designed for motor/motion control demos and support specific customer needs, including the Tachodynamo hardware interface. The power supply, analogue voltage reference, and the PCB layout have been optimized for an optimum analogue performance that can not be achieved by standard EVM design, due to manufacturing restrictions and compromises. Audience This document is intended for application developers who are creating software for devices using the Freescale Semiconductor part, MC56F8013. Organization This manual is organized into two chapters and three appendixes. • Chapter 1, Introduction - provides an overview of the Board and its features. • Chapter 2, Technical Summary - describes in detail the MC56F8013 Controller Board hardware. • Appendix A, MC56F8013 Controller Board Schematics - contains the schematics of the MC56F8013 Controller Board. • Appendix B, MC56F8013 Controller Board PCB - contains details on the MC56F8013 Printed Circuit Board (PCB) • Appendix C, MC56F8013 Controller Board Bill of Materials - provides a list of the materials used on the MC56F8013 Controller Board. Freescale Semiconductor ix MC56F8013 Controller Board Hardware User’s Manual Notation Conventions This document uses the following conventions: Term or Value x Symbol Examples Active High Signals (Logic One) No special symbol attached to the signal name MOSI SCLK Active Low Signals (Logic Zero) Noted with an overbar in text and in most figures RESET SS_B Hexadecimal Values Begin with a “$” symbol $0FF0 $80 Decimal Values No special symbol attached to the number 10 34 Binary Values Begin with the letter “b” attached to the number b1010 b0011 Numbers Considered positive unless specifically noted as a negative value 5 -10 Bold Reference sources, paths, emphasis Exceptions In schematic drawings, Active Low Signals may be noted by a slash: /RESET Voltage is often shown as positive: +3.3V ...see: http://www.freescale.com/DSP... Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual Definitions, Acronyms, and Abbreviations Definitions, acronyms, and abbreviations for terms used in this document are defined below for reference. A/D D/A DSP EOnCE Analogue to Digital Digital to Analogue Digital Signal Processor Enhanced On-Chip Emulation; a debug bus and port created by Freescale Semiconductor to enable a designer to create a low-cost hardware interface for a professional quality debug environment GPIO General Purpose Input and Output Port on Freescale Semiconductor’s Family of Digital Signal Controllers IC Integrated Circuit JTAG Joint Test Action Group. A bus protocol/interface used for test and debug. LED Light Emitting Diode LQFP Low profile Quad Flat Pack MPIO Multi Purpose Input and Output port on Freescale Semiconductor’s family of Digital Signal Controllers; shares package pins with other peripherals on the chip and can function as a GPIO TM OnCE On-Chip Emulation, a debug bus and port created by Freescale Semiconductor to enable designers to create a low-cost hardware interface for a professional quality debug environment. PCB Printed Circuit Board PLL Phase Locked Loop PWM Pulse Width Modulation Quadrature Timer Peripheral of the MC56F801x family containing four 16-bit timers/counters with flexible architecture. See user’s manual for details. Quadrature EncoderSensor for the measurement of position and speed based on optical principles RAM Random Access Memory R/C Resistor/Capacitor Network ROM Read-Only Memory SCI Serial Communications Interface SPI Serial Peripheral Interface Port on Freescale Semiconductor’s Microcontrollers UART Universal Asynchronous Receiver/Transmitter Freescale Semiconductor xi MC56F8013 Controller Board Hardware User’s Manual References The following sources were referenced to produce this manual: [1] DSP56800E 16-bit DSP Core Reference Manual, Freescale Semiconductor [2] MC56F801x Family User’s Manual, Freescale Semiconductor [3] MC56F8013 Digital Signal Processor Technical Data, Freescale Semiconductor xii Freescale Semiconductor Chapter 1 Introduction The MC56F8013 Controller Board is used to demonstrate the abilities of the MC56F8013 based on an optimized PCB and power supply design, and to provide a hardware tool allowing the development of applications that use the MC56F8013. The MC56F8013 Controller Board is an evaluation module type of board that includes a MC56F8013 part, encoder interface, tachogenerator interface, communication options, digital and analogue power supplies, and peripheral expansion connectors. The expansion connectors are for signal monitoring and user feature expandability. Test pads are provided for monitoring critical signals and voltage levels. The MC56F8013 Controller Board is designed for the following purposes: • Allow new users to become familiar with the features of the MC56F801x architecture. • Serve as a platform for real-time software development. The tool suite enables the user to develop and simulate routines, download the software to on-chip memory, run it, and debug using a debugger via the JTAG/OnCETM port. The breakpoint features of the OnCE port enable the user to easily specify complex break conditions and to execute user-developed software at full-speed, until the break conditions are satisfied. The ability to examine and modify all user accessible registers, memory, and peripherals through the OnCE port greatly facilitates the task of the developer. • Serve as a platform for hardware development. The hardware platform enables the user to connect external hardware modules. The OnCE port's unobtrusive design means that all of the memory on the Digital Signal Controller chip is available to the user. Freescale Semiconductor Introduction 1-1 MC56F8013 Controller Board Hardware User’s Manual 1.1 MC56F8013 Controller Board Architecture The MC56F8013 Controller Board facilitates the evaluation of various features present in the MC56F8013. The MC56F8013 Controller Board can be used to develop real-time software and hardware products based on the MC56F8013. The MC56F8013 Controller Board provides the features necessary for a user to write and debug software, demonstrate the functionality of that software, and interface with the customer's application-specific device(s). The MC56F8013 Controller Board is flexible enough to allow a user to fully exploit the MC56F8013's features to optimize the performance of their product, as shown in Figure 1-1. MC56F8013 JTAG Header JTAG / OnCE / GPIO PD ADC HEADER PWM HEADER PWM LEDs B2, B4, B5, B6 UNI-3 expansion connector PWM / GPIO PA ADC / GPIO PC Protection Logic FAULT 0 / GPIO PA6 RESET / GPIO PA7 GPIO PB UNI-3 expansion connector +3.3V Analogue Power Supply +3.3V Digital Power Supply B0, B1, B3 B6 User LED B4, B5, B6 Encoder Interface B4 Tacho-Generator Interface B6, B7 RS 232 Interface B0, B1 EEPROM Interface VDDA ADC VDD IO +5V Power Supply +12V Power Supply Buttons & Switch GPIO PB HEADER SPI HEADER SCI HEADER Figure 1-1. Block Diagram of the MC56F8013 Controler Board 1-2 Introduction Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual 1.2 MC56F8013 Controller Board Configuration Jumpers Jumper groups and zero Ohm resistors1, shown in Figure 1-2, are used to configure various features on the MC56F8013 Controller Board. 4 0 1 2 3 0 R2, R1 RS-232 Enable 7 8 9 J10 6 JP5 1 2 3 4 7 8 9 9 8 7 1 2 3 2 1 2 1 1 J18 J16 J9 2 6 JP4 4 6 3 2 1 JP3 1 2 4 3 2 1 JP1 1 2 3 J11 2 1 J21 1 2 3 2 1 J15 J14 1 2 J8 J20 2 1 J17 Figure 1-2. MC56F8013 Controller Board Jumper Options 1. Zero Ohm resistors are used instead of standard jumpers to minimize distortion of analogue signals and to achieve high signal-to-noise ratio. Freescale Semiconductor Introduction 1-3 MC56F8013 Controller Board Hardware User’s Manual Table 1-1. MC56F8013 Controller Board Jumper Options # JP1 Selector SCI R1, R2 JP3 Function Connections Configure RxD (GPIO PB6) as Encoder INDEX / UNI-3 BEMFZCC input open Configure RxD (GPIO PB6) as User LED / UNI-3 BRAKE output 1-2 Full-duplex Serial mode 2-3 Single wire Serial communication mode (TxD as serial I/O) 3-4 RS 232 interface disabled R1, R2 absent RS 232 interface enabled R1, R2 present Q-Encoder / Hall-Effect interface selected (PHASEA, PHASEB, INDEX) Encoder / UNI-3 BEMFZCx Zero-Crossing signals selected (BEMFZCA, BEMFZCB, BEMFZCC) PHAIS/BEMFA / PHAIS / BEMFA measurement selected V_IN V_IN measurement selected JP4 PHBIS/BEMFB / PHBIS / BEMFB measurement selected I_IN I_IN measurement selected 1-2 2-3 4-5 5-6 7-8 Phase A current measurement selected 1-2 Phase A back EMF measurement selected 2-3 Phase B current measurement selected 4-5 Phase B back EMF measurement selected 5-6 Phase C current measurement selected 7-8 Phase C back EMF measurement selected 8-9 PHBIS / BEMFB PHCIS / BEMFC J8 START Switch Disable1 J9 PFC PWM Disable1 J10 USER LED / UNI-3 BRAKE J11 TACHO / TEMP J14 1-4 2-3, 5-6, 8-9 PHCIS/BEMFC / PHCIS / BEMFC measurement selected TEMP TEMP measurement selected PHAIS / BEMFA JP5 1-2, 4-5, 7-8 8-9 START Switch connected to GPIO PB3 (MOSI / T3) closed UNI-3 PFC PWM connected to GPIO PB2 (MISO / T2) closed USER LED output selected 1-2 UNI-3 BRAKE output selected 2-3 UNI-3 TEMP -> ANA2 measurement selected 1-2 TACHO -> ANA2 measurement selected 2-3 Tacho dynamo Tacho Dynamo input -> TACHO analogue output (ANA2) measurement Tacho Dynamo input -> digital output (GPIO PB4) 1-2 Introduction 2-3 Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual Table 1-1. MC56F8013 Controller Board Jumper Options # Selector J15 Function Connections Tacho generator Tacho generator digital output enabled (GPIO PB4) output enable closed J16 UNI-3 +5V CB digital power supply from UNI-3 +5V closed J18 UNI-3 +15V CB analogue power supply from UNI-3 +15V closed J17 WP J20 J21 1. Serial EEPROM memory is write protected open Serial EEPROM memory is write unprotected closed SCL Serial EEPROM memory SCL input connected to GPIO PB0 / SCLK / SCL closed SDA Serial EEPROM memory SDA I/O connected to GPIO PB1 / SS / SDA closed Note: JP8 & JP9 have the name with the ‘Disable’ printed on the board. These signals are enabled when jumpers are closed, disabled when open! 1.3 MC56F8013 Controller Board Connections An interconnection diagram is shown in Figure 1-3 for connecting the PC and the external 12V DC power supply to the MC56F8013 Controller Board. PC-compatible Computer Parallel Extension Cable Parallel Command Converter* MC56F8013CB JTAG Power Connect cable to Parallel/Printer port External with 2.1mm, 12V receptacle Power connector * use of optoisolated PCC is recommended for high voltage applications Figure 1-3. Connecting the MC56F8013 Controller Board Cables When optoisolation is needed in the development environment to isolate the computer from the motor driver board and the Controller Board, use the optoisolated parallel command converter (ECOPTINL) instead of the non-isolated parallel command converter (DSPCOMMPARALLEL). In addition, command converters with ISA, PCI, USB, and ETHERNET interfaces are available. Freescale Semiconductor Introduction 1-5 MC56F8013 Controller Board Hardware User’s Manual Perform the following steps to connect the MC56F8013 Controller Board cables: 1. Connect the parallel extension cable to the Parallel port of the host computer. 2. Connect the other end of the parallel extension cable to the Parallel Command Converter, shown in Figure 1-3, and connect it to the JTAG header on the MC56F8013 Controller Board. Please make sure that pin 1 on the Command Converter is aligned with pin 1 on the Controller Board. This provides the connection which allows the host computer to control the board. 3. Connect the 2.1mm output power plug from the external power supply into the Power Jack, shown in Figure 1-3, on the MC56F8013 Controller Board. 4. Apply power to the external power supply. The green Power-On LED will illuminate when power is correctly applied. 1-6 Introduction Freescale Semiconductor Chapter 2 Technical Summary The MC56F8013 Controller Board is designed as a versatile development card, for developing real-time software and hardware products to support a new generation of applications in servo and motor control, SMPS, modems, and digital cameras. The power of the 16/32-bit MC56F8013 Digital Signal controller, combined with the Hall-Effect/Quadrature Encoder interface, Tacho-generator interface for digital/analogue sensing, motor BEMF zero crossing interface, motor over-current logic and motor over-voltage logic, makes the MC56F8013 Controller Board ideal for developing and implementing many motor controlling algorithms, as well as for learning the architecture and instruction set of the MC56F8013 processor. The main features of the MC56F8013 Controller Board include: • MC56F8013 16/32-bit +3.3V Digital Signal Processor operating at 32MHz • Joint Test Action Group (JTAG) port interface connector for an external debug Host Target Interface • RS-232 interface with galvanic isolation for easy connection to a host computer or PC Master development tool • Connector to allow the user to attach their own SPI / GPIO compatible peripheral • Connector to allow the user to attach their own SCI / GPIO compatible peripheral • Connector to allow the user to attach their own PWM compatible peripheral • Connector to allow the user to attach their own ADC compatible peripheral • Connector to allow the user to attach their own GPIO Port B compatible peripheral • On-board power regulation from an external 12V DC supplied power input • Light Emitting Diode (LED) power indicator • Six on-board PWM monitoring LEDs • One on-board PWM Fault monitoring LED • One on-board general purpose User LED Freescale Semiconductor Technical Summary 2-1 MC56F8013 Controller Board Hardware User’s Manual • UNI-3 Motor interface — Over-Voltage sensing — Over-Current sensing — Phase Current sensing — Back-EMF sensing — Temperature sensing — Zero Crossing detection — Pulse Width Modulation — BRAKE, PFC PWM signals 2-2 • Encoder/Hall-Effect interface • Tacho dynamo interface • Manual RESET/General purpose push-button on GPIO PA7 • General purpose push-button for UP on GPIO PB0 • General purpose push-button for DOWN on GPIO PB1 • General purpose toggle switch for RUN/STOP control on GPIO PB3 via J8 Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual 2.1 MC56F8013 The MC56F8013 Controller Board uses a Freescale Semiconductor part, MC56F8013VFAE, designated as U1 on the board and in the schematics. This part will operate at a maximum speed of 32MHz. A full description of the MC56F8013, including functionality and user information, is provided in the following documents: • MC56F8013 Technical Data Sheet, (MC56F8013/D): Provides features list and specifications including signal descriptions, electrical and timing specifications, pin descriptions, device specific peripheral information, and package descriptions. • MC56F8013 User’s Manual, (MC56F8013UM/D): Provides an overview description of the Digital Signal Controller and detailed information about the on-chip components, including the memory and I/O maps, peripheral functionality, and control/status register descriptions for each subsystem. • DSP56800E 16-bit DSP Core Reference Manual, (DSP56800ERM/D): Provides a detailed description of the processor core, including internal status and control registers, and a detailed description of the family instruction set. Refer to these documents for detailed information about chip functionality and operation. They can be found on this URL: www.freescale.com/dsp Freescale Semiconductor Technical Summary 2-3 MC56F8013 Controller Board Hardware User’s Manual 2.2 RS-232 Serial Communications The MC56F8013 Controller Board provides an RS-232 interface by the use of an RS-232 level converter circuitry, referred to in the RS-232 schematic diagram in Figure 2-1. The RS-232 level converter transitions the SCI UART’s +3.3V signal levels to RS-232 compatible signal levels and connects to the host’s serial port via the DB9F connector. The pinout of the RS232 connector is listed in Table 2-2. To enable proper working of the serial interface, the zero Ohm link resistors R1 and R2 must be present on the Controller Board and jumper JP1 must be set correctly. For full-duplex mode, the JP1 jumper has to be set to position 2-3, for single wire operation, the JP1 jumper has to be set to position 3-4, then the RxD pin on the MC56F8013 controller is not used for the serial communication and can be used as a general purpose input/output pin (GPIO PB6). When full-duplex serial communication mode is selected, the JP3 jumper selection of Encoder INDEX / UNI-3 BEMFZCC signals must be disconnected to avoid hazardous states, as shown in Figure 2-1. Table 2-1 shows the jumper setting for two operating modes of serial interface. RS-232 Level Interface MC56F8013 GPIO PB7 / TxD GPIO PB6 / RxD R2 JP1 4 3 2 1 x x TxD0 R1 RxD0 Galvanic Isolation 2 5 8 1 3 6 2 7 3 x x USER LED/UNI-3 BRAKE JP3 1 8 4 9 5 RS-232 ENCODER INDEX J6 UNI-3 BEMFZCC 4 6 7 9 Figure 2-1. Schematic Diagram of the RS-232 Interface Table 2-1. Serial Interface Operating Modes JP1 2-4 Operating Mode 2-3 Full-duplex mode, uses RxD as input and TxD as output on MC56F8013 3-4 Single wire mode, uses only TxD as I/O for serial communication on MC56F8013, RxD can be used as General Purpose I/O (GPIO PB6) Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual . Table 2-2. RS-232 Serial Connector Description J6 Pin # Signal Pin # Signal 1 NC 6 NC 2 RxD 7 RTS 3 TxD 8 NC 4 DTR 9 NC 5 GND 2.3 Clock Source The MC56F8013 uses its internal 8.00MHz relaxation oscillator and internal PLL to multiply the input frequency to achieve its 32MHz maximum operating frequency. 2.4 User LED One on-board Light-Emitting green colour Diode (LED) D8 is provided to be controlled by the user’s program. This diode is accessible via GPIO PB6 port (RxD), when jumpers JP1 and J10 are both set to position 1-2. Setting GPIO PB6 (RxD) to a Logic One value will turn on the User LED. When using the User LED, the JP3 jumper selection of Encoder INDEX / UNI-3 BEMFZCC signals must be disconnected to avoid hazardous states, as shown in Figure 2-2. MC56F8013 GPIO PB6 / RxD JP1 4 3 2 1 +3.3V R1 RxD0 USER LED/UNI-3 BRAKE JP3 2 5 8 1 3 J10 2 1 User LED GREEN LED 3 ENCODER INDEX UNI-3 BEMFZCC UNI-3 BRAKE 4 6 7 9 Figure 2-2. Schematic Diagram of the User LED connection Freescale Semiconductor Technical Summary 2-5 MC56F8013 Controller Board Hardware User’s Manual 2.5 Debug Support The MC56F8013 Controller Board has a JTAG interface connector for external Target Interface support. 2.5.1 JTAG Connector The JTAG connector on the MC56F8013 Controller Board allows the connection of an external Host Target Interface for downloading programs and working with the MC56F8013’s registers. This connector is used to communicate with an external Host Target Interface passing information and data back and forth to a host processor running a debugger program. Table 2-3 shows the pin-out for this connector. Table 2-3. JTAG Connector Description J4 Pin # Signal Pin # Signal 1 TDI 2 GND 3 TDO 4 GND 5 TCK 6 GND 7 NC 8 NC 9 RESET 10 TMS 11 +3.3V 12 NC 13 /DE 14 NC 2.6 General Purpose Buttons, Reset button, and Run/Stop Switch Three on-board push-button switches and one toggle switch are provided for the user’s program control. Two push-buttons (UP, Down) are directly connected to the Port B GPIO signals PB0 (UP/SW2) and PB1 (DOWN/SW3). One push-button (RESET/SW1) is provided for setting the MC56F8013 RESET input pin to logic level Low. This pin can also be configured as Port A GPIO PA7. A Run/Stop toggle switch is connected to GPIO signal PB3 through the J8 jumper, which has to be closed, see table Table 2-4 for the signal description. Note that signals from the UP and DOWN buttons are shared with the Serial EEPROM memory signals (GPIO PB0 / SCL and GPIO PB1 / SDA). The Serial EEPROM memory communication should be disabled by opening the jumpers J20 and J21, as shown in Figure 2-3. Button UP and switch RUN/STOP are connected to the 2-6 Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual controller’s input pins, which are shared with the SPI (Serial Peripheral Interface) header. While using SPI communication, jumper J8 should be opened and button UP should not be used. J20 SCL (Serial EEPROM) 1 2 +3.3V MC56F8013 UP +3.3V RESET PB0/SCLK/SCL RESET/PA7 +3.3V +3.3V DOWN PB1/SS/SDA J8 START/STOP 1 2 PB3/MOSI/T3 J21 SDA (Serial EEPROM) 1 2 Figure 2-3. Schematic Diagram of the buttons and switch Table 2-4. Connection description of the Buttons and Switch SWITCH SIGNAL RESET (SW1) RESET / GPIO PA7 UP (SW2) GPIO PB0 / SCLK / SCL DOWN (SW3) GPIO PB1 / SS / SDA RUN/STOP (SW4) GPIO PB3 / MOSI / T3 (jumper J8 is closed) 2.7 Power Supply The main power supply input 12V DC to the MC56F8013 Controller Board is through a 2.1mm coax power jack. Less than 12V is required by the Controller Board, with the remaining current available to the user via the on board connectors. The MC56F8013 Controller Board provides +3.3V DC voltage regulation for the Digital Signal Controller and supporting logic. Power applied to the MC56F8013 Controller Board is indicated by a Freescale Semiconductor Technical Summary 2-7 MC56F8013 Controller Board Hardware User’s Manual Power-On LED. The Controller Board can also be powered from the UNI-3 interface by closing the J16 and J18 jumpers, as shown in Figure 2-4. TP6 J16 UNI-3 digital +5V supply 1 2 TP9 External power input supply +12V UNI-3 analogue supply +15V +5V supply Digital power supply TP12 J18 1 2 +3.3V supply +3.3VA supply Analogue power supply Figure 2-4. Power supply 2-8 Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual 2.8 UNI-3 Interface Motor control signals from a family of motor driver boards can be connected to the board via the UNI-3 connector/interface. The UNI-3 connector/interface contains all of the signals needed to drive and control the motor drive boards. These signals are connected to differing groups of the Digital Signal Controller’s input and output ports: A/D, TIMER, and PWM. Refer to Table 2-5 for the pin out of the UNI-3 connector. Table 2-5. UNI-3 Connector Description J1 Pin # Signal Pin # Signal 1 PWM0 2 NC 3 PWM1 4 NC 5 PWM2 6 NC 7 PWM3 8 NC 9 PWM4 10 NC 11 PWM5 12 GND 13 GND 14 +5.0V DC 15 +5.0V DC 16 NC 17 Analogue GND 18 Analogue GND 19 Analogue +15V DC 20 NC 21 Motor DC Bus Voltage Sense 22 Motor DC Bus Current Sense 23 Motor Phase A Current Sense 24 Motor Phase B Current Sense 25 Motor Phase C Current Sense 26 Motor Drive Temperature Sense 27 NC 28 NC 29 Motor Drive Brake Control 30 NC 31 PFC PWM 32 Input AC Current Sense1 33 AC Line Input Voltage1 34 Zero Cross A 35 Zero Cross B 36 Zero Cross C 37 NC 38 Back-EMF Phase A Sense 39 Back-EMF Phase B Sense 40 Back-EMF Phase C Sense 1. NOTE: Pins 32 & 33 are direct PFC control signals modified from standard UNI-3 specifications! Freescale Semiconductor Technical Summary 2-9 MC56F8013 Controller Board Hardware User’s Manual 2.8.1 UNI-3 PFC PWM signal (Power Factor Correction) The PFC PWM signal (Power Factor Correction) is used to additionally control the power stage. This signal is connected to the MC56F8013 controller’s pin GPIO PB2 / MISO / T2 through the J9 jumper (PFC PWM Disable). 2.8.2 UNI-3 BRAKE The brake signal is accessible via GPIO PB6 port (RxD), when jumper JP1 is set to position 1-2 and jumper J10 is set to position 2-3. When using the BRAKE signal, the JP3 jumper selection of Encoder INDEX / UNI-3 BEMFZCC signals must be disconnected to avoid hazardous states, as shown in Figure 2-2. MC56F8013 GPIO PB6 / RxD JP1 4 3 2 1 +3.3V R1 RxD0 J10 USER LED/UNI-3 BRAKE 1 JP3 2 5 8 1 3 2 User LED GREEN LED 3 ENCODER INDEX UNI-3 BEMFZCC 4 UNI-3 BRAKE 6 7 9 Figure 2-5. Schematic Diagram of the UNI-3 BRAKE connection 2.9 Motor Control PWM Signals and LEDs The MC56F8013 controller has one dedicated PWM unit. This unit contains six PWM outputs and two Fault input lines, and a further two Fault input lines are shared by two PWM outputs. PWM output group lines are connected to the UNI-3 interface connector, and to a set of six PWM LEDs via inverting buffers. The buffers are used to isolate and drive the Digital Signal Controller’s PWM outputs to the PWM LEDs. The PWM LEDs indicate the status of the PWM group signals, as shown in Figure 2-6. One Fault LED is provided to easily monitor the fault states which depend on the voltage states of the UNI-3’s Motor DC Bus Voltage Sense and Motor DC Bus Current Sense inputs. 2-10 Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual MC56F8013 UNI-3 PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 D2 D4 D5 D6 D7 PWM0 YELLOW LED PWM1 YELLOW LED PWM2 YELLOW LED PWM3 YELLOW LED PWM4 BUFFER D9 +3.3V YELLOW LED YELLOW LED PWM5 Figure 2-6. PWM Interface and LEDs 2.10 Motor Protection Logic The MC56F8013 Controller board contains a UNI-3 connector that interfaces with various motor drive boards. The Digital Signal Controller can sense error conditions generated by the motor power stage boards via signals on the UNI-3 connector. The motor driver board’s DC Bus Voltage and DC Bus Current are sensed on the power stage board. The conditioned signals are transferred to the MC56F8013 Controller board via the UNI-3 connector. DC Bus Voltage and DC Bus Current analogue input signals are compared to a limit set by trimpots. If the input analogue signals are greater than the limit set by the trimpot, a Digital Signal Controller digital voltage compatible +3.3V DC fault signal is generated. The UNI-3 DC Bus Over-Voltage and DC Bus Over-Current signals are connected to the Digital Signal Controller’s PWM fault input 0, as shown in Figure 2-7. Freescale Semiconductor Technical Summary 2-11 MC56F8013 Controller Board Hardware User’s Manual DC Over Voltage R29 +3.3VA +5.0V TP3 TP2 + UNI-3 DCBV – LM393 +3.3V DC Over Current R32 +3.3VA +5.0V TP5 TP4 UNI-3 DCBI RED LED D1 + – FAULT 0 LM393 Figure 2-7. FAULT Protection Circuit The DC-bus over-voltage and DC-bus over-current threshold levels can be adjusted by the trim-pots R29 and R32. Make sure there are no faults when exercising the on-chip PWM modules. 2.11 Back-EMF and Motor Phase Current Sensing The UNI-3 connector supplies Back-EMF and Motor Phase Current signals from the three phases of a motor attached to the motor drive unit. The Back-EMF signals on the UNI-3 connectors are derived from a resistor divider network contained in the motor drive unit. These resistors scale down the attached motor’s Back-EMF voltages to a 0 to +3.3V level. The Motor Phase Current signals are derived from current sense resistors. A jumper block JP5 (ADC CFG 1) provides the selection between each group of these signals, which will be monitored by the Digital Signal Controller A/D, as shown in Table 2-6. Jumper block JP4 (ADC CFG 2) has to be set to positions1-2, 4-5, and 7-8, see Table 2-7. When jumper block JP4 is set to positions 2-3, 5-6, and 8-9, then the V_IN, I_IN, and TEMP inputs measurement are selected, see Figure 2-8 for details. The temperature input TEMP can also be connected to ANA2_RC input by setting jumper J11 to position 1-2. 2-12 Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual ADC CFG 1 JP5 1 UNI-3 PHAIS UNI-3 BEMFA 3 4 UNI-3 PHBIS UNI-3 BEMFB 6 7 UNI-3 PHCIS UNI-3 BEMFC 9 2 ADC CFG 2 JP4 PHAIS / BEMFA 1 UNI-3 V_IN 5 8 PHBIS / BEMFB 3 4 UNI-3 I_IN PHCIS / BEMFC 6 7 UNI-3 TEMP 9 1 TACHO 3 2 ANB0_RC 5 ANB1_RC 8 ANB2_RC 2 ANA2_RC J11 TACHO / TEMP Figure 2-8. ADC input selection Table 2-6. ADC input source selection (ADC CFG 1) Selector PHAIS / BEMFA PHBIS / BEMFB PHCIS / BEMFC Function JP5 Phase A current measurement selected 1-2 Phase A back EMF measurement selected 2-3 Phase B current measurement selected 4-5 Phase B back EMF measurement selected 5-6 Phase C current measurement selected 7-8 Phase C back EMF measurement selected 8-9 Table 2-7. ADC input source selection (ADC CFG 2) Selector PHAIS/BEMFA / V_IN PHBIS/BEMFB / I_IN PHCIS/BEMFC / TEMP Freescale Semiconductor Function JP4 PHAIS / BEMFA measurement selected 1-2 V_IN measurement selected 2-3 PHBIS / BEMFB measurement selected 4-5 I_IN measurement selected 5-6 PHCIS / BEMFC measurement selected 7-8 TEMP measurement selected 8-9 Technical Summary A/D Input ANB0_RC ANB1_RC ANB2_RC 2-13 MC56F8013 Controller Board Hardware User’s Manual 2.12 Quadrature Encoder/Hall-Effect Interfaces The MC56F8013 Controller Board contains a Quadrature Encoder/Hall-Effect interface connected to the Digital Signal Controller’s Quad Decoder input ports (Timer channel 0, 1 inputs) and RxD/GPIO PB6 input. The circuit is designed to accept +3.3V to +5.0V encoder or Hall-Effect sensor inputs. Input noise filtering is supplied on the input path for the Quadrature Encoder/Hall-Effect interface, along with additional noise reduction circuitry inside the Digital Signal Controller. Figure 2-9 contains the encoder interface. Table 2-8 shows the setting of jumper block JP3 to select between the Quadrature Encoder/Hall-Effect signals or Zero-Crossing signals. 2.13 Zero-Crossing Detection An attached UNI-3 motor drive board contains logic that can send out pulses when the phase voltage of an attached 3-phase motor crosses zero. The motor drive board circuits generate a 0 to +3.3V DC pulse via voltage comparators. The resulting pulse signals are sent to a jumper block JP3 shared with the Encoder/Hall-Effect interface. The jumper block allows the selection of either Zero-Crossing signals or Quadrature Encoder/Hall-Effect signals, as shown in Table 2-8. When in operation, the Digital Signal Controller will only monitor one set of signals, Encoder/Hall-Effect or Zero-Crossing. Figure 2-9 contains the Zero-Crossing and Encoder/Hall circuits. J15 1 2 Tacho-generator Digital Output UNI-3 BEMFZCA UNI-3 BEMFZCB UNI-3 BEMFZCC MC56F8013 JP3 9 +5.0V FILTER PHASEA FILTER PHASEB FILTER INDEX J7 7 6 1 2 3 4 5 6 PIN 1: PIN 2: PIN 3: PIN 4: PIN 5: PIN 6: 4 3 TP1 +5.0V GROUND PHASE A PHASE B INDEX HOME FILTER 1 8 GPIO PB4 / T0 5 GPIO PB5 / T1 2 GPIO PB6 / RxD JP1 R1 RxD0 USER LED/UNI-3 BRAKE 4 3 2 1 Figure 2-9. Zero-Crossing/Encoder Interfaces 2-14 Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual Note that INDEX / BEMFZCC signal from the JP3 jumper is shared with the RxD signal from JP1 and PHASEA / BEMFZCA signal is shared with the Tacho-generator Digital Output from J15. To avoid hazardous states the JP1 and J15 should be disconnected. Table 2-8. Zero-Crossing/Encoder input source selection Selector INDEX / BEMFZCC PHASE B / BEMFZCB PHASE A / BEMFZCA Function JP3 Encoder INDEX input selected 1-2 Phase C back EMF zero-cross input selected 2-3 Encoder PHASE B input selected 4-5 Phase B back EMF zero-cross input selected 5-6 Encoder PHASE A input selected 7-8 Phase A back EMF zero-cross input selected 8-9 GPIO PB6 / RxD GPIO PB5 / T1 GPIO PB4 / T0 2.14 Tacho-Generator Interface The MC56F8013 Controller board contains a Tacho-generator interface for digital/analogue sensing with the external Tacho-Dynamo input. Input noise filtering is supplied on the input path then the signal passes through the voltage limiter to avoid damaging the following electrical circuitry. The signal then can be passed through jumper J14 to the ADC analogue input ANA2 for analogue sensing if the jumper is in position 1-2, or to the comparator with hysteresis for digital sensing if the jumper is in position 2-3, as shown in Figure 2-10. 5 Threshold Level Setting R54 8 6 7 9 JP3 +3.3VA ENCODER PHASEA UNI-3 BEMFZCA +5.0V Tacho Dynamo J13 1 2 LIMITER FILTER J14 2 J15 1 2 – 3 + LM393 Digital Output GPIO PB4 1 TP13 TACHO / TEMP TACHO UNI-3 TEMP J11 3 1 2 Analogue Output ANA2_RC Figure 2-10. Tacho-Generator Interface Freescale Semiconductor Technical Summary 2-15 MC56F8013 Controller Board Hardware User’s Manual When digital sensing has been selected, the output of the comparator to GPIO port PB4 has to be enabled by closing jumper J15. Table 2-9 shows the proper jumper setting when using the tacho-generator interface. The R54 trimpot serves to adjust the working point of the comparator. Note that Tacho-generator Digital Output signal from the J15 jumper is shared with the Encoder PHASEA / BEMFZCA signal from JP3. To avoid hazardous states, JP3 should be disconnected. Table 2-9. Tacho-Generator Operating Modes J14 J15 J11 Operating Mode Output to 1-2 - 2-3 Analogue Sensing ANA2_RC 2-3 closed - Digital Sensing GPIO PB4 2.15 Serial EEPROM The MC56F8013 Controller board contains a Serial EEPROM interface for 64 kbit memory (24LC64 or 24AA64) which can be optionally added (package pin number 3 - A2 must be additionally connected to GND). The memory is supplied by a 3.3V power supply and uses two communication lines to communicate with the MC56F8013 Controller, SCL connected to GPIO PB0 (GPIO PB0/SCLK/SCL) through jumper J20, and SDA connected to GPIO PB1 (GPIO PB1/SS/SDA) through jumper J21, as shown in Figure 2-11. +3.3V UP +3.3V MC56F8013 24LC64 (24AA64) J20 SCL WP 1 J17 2 J17 Open Closed Protection Protected 1 2 PB0/SCLK/SCL J21 SDA 1 2 PB1/SS/SDA +3.3V A0 A1 A2 DOWN Unprotected Figure 2-11. Serial EEPROM Interface 2-16 Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual The memory can be write protected or unprotected by using the J17 jumper. If J17 is open, the memory is write protected, WRITE operations are inhibited, but read operations are not affected. When jumper J17 is closed, WRITE operations are allowed. Note that the Serial EEPROM memory interface signals are shared with signals from the UP and DOWN buttons, which can not be used while using Serial memory. The SCL signal is also shared with the SPI (Serial Peripheral Interface), and so SPI communication can not be used while using Serial memory. 2.16 Peripheral Expansion Connectors The MC56F8013 Controller Board contains a group of Peripheral Expansion Connectors used to gain access to the resources of the MC56F8013. The following signal groups have Expansion Connectors: • Encoder • Tacho-Dynamo Input • GPIO B Port • A/D Input Port • PWM Port • SPI Port 2.16.1 Encoder Exp. Connector The Quadrature Encoder interface port is attached to this expansion connector. Refer to Table 2-10 for connection information. Table 2-10. Encoder Connector Description J7 Freescale Semiconductor Pin # Signal 1 +5V 2 GND 3 PHASE A / T0 4 PHASE B / T1 5 INDEX / RxD 6 HOME Technical Summary 2-17 MC56F8013 Controller Board Hardware User’s Manual 2.16.2 Tacho-Dynamo Exp. Connector The Tacho-Generator interface includes the Tacho-Dynamo input expansion connector, as shown in Table 2-11. Table 2-11. Tacho-Dynamo Connector Description J13 Pin # Signal 1 Tacho dynamo Input 1 2 Tacho dynamo Input 2 2.16.3 GPIO B Port Expansion Connector The GPIO B port attached to this connector is an MPIO port. The General Purpose I/O port B pins are shared with a Serial Peripheral Interface, Serial Communications Interface, Timer I/O, I2C, and PWM FAULT 3 input. Refer to Table 2-12 for connection information. Table 2-12. GPIO B Port Connector Description J2 2-18 Pin # Signal Pin # Signal 1 PB0 / SCLK / SCL 2 PB1 / SS_B / SDA 3 PB2 / MISO / T2 4 PB3 / MOSI / T3 5 PB4 / T0 / CLK0 6 PB5 / T1 / FAULT3 7 PB6 / RxD / SDA / CLKIN 8 BP7 / TxD / SCL 9 +3.3V 10 GND Technical Summary Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual 2.16.4 A/D Port Expansion Connector The 6-channel Analogue to Digital conversion port is attached to this connector. Refer to Table 2-13 for connection information. There is an RC network on each of the Analogue Port input signals; reference Figure 2-12. Table 2-13. A/D Port Connector Description J5 Pin # Signal Pin # Signal 1 +3.3V 2 GNDA 3 UNI-3 DCBV 4 UNI-3 DCBI 5 ANA2_RC 6 ANB0_RC 7 ANB1_RC 8 ANB2_RC 9 +3.3V 10 GNDA 100 ohm Analogue Input (ANxx_RC) To Analogue Port (ANxx) 2.2nF Figure 2-12. Typical Analogue Input RC Filter 2.16.5 PWM Port Expansion Connector The PWM port is attached to this connector. Refer to Table 2-14 for connection information. Table 2-14. PWM Port Connector Description J3 Freescale Semiconductor Pin # Signal Pin # Signal 1 PWM0 2 PWM1 3 PWM2 4 PWM3 5 PWM4 6 PWM5 7 GND 8 FAULT0 9 GND 10 +3.3V Technical Summary 2-19 MC56F8013 Controller Board Hardware User’s Manual 2.16.6 SPI Port Expansion Connector The Serial Peripheral Interface is an MPIO port attached to the GPIO B expansion connector. The connector pins can be configured as a Serial Peripheral Interface or as a General Purpose I/O port. Refer to Table 2-15 for connection information. Table 2-15. SPI Connector Description J19 Pin # Signal 1 GND 2 SCLK 3 MISO 4 MOSI 2.17 Test Points The MC56F8013 Controller Board has 13 test pins. The four test pins are located near the corners of the board and provides a GND signal (digital ground) for easy oscilloscope attachment. 2-20 Technical Summary Freescale Semiconductor Appendix A MC56F8013 Controller Board Schematics Freescale Semiconductor MC56F8013 Controller Board Schematics A-1 MC56F8013 Controller Board Schematics TMS GND R xD +3.3V 1 2 4 6 8 10 12 14 SCLK MISO GPIOB4 2 R1 0 1 2 4 6 8 10 RxD 4 3 2 1 SPI 1 3 5 7 9 11 13 HDR 4X1 J19 GPIOB HDR 5X2 J2 R2 0 JTAG J4 1 3 5 7 9 2 /DE /RESE T TDI TDO TCK GND MOS I MISO SCLK GND /SS_B MOS I GPIOB5 TxD TxD 1 2 3 4 +3.3V SCI JP1 HDR 4X1 USER LED/UNI-3 BRAKE 30 32 14 31 TxD TDI TDO TCK TMS 1 3 5 7 9 2 4 6 8 10 2 4 6 8 10 HDR 5X2 J5 HDR 5X2 J3 MC56F80 13VFAE RESET/PA7/VPP TDI/PD0 TDO/P D1 TCK/PD2 TMS/P D3 VSS_IO0 VSS_IO1 VCAP1 VDD_IO VDDA_ ADC VSSA_ADC ADC GNDA GNDA UNI-3_DCBI ANB0_RC ANB2_RC PWM +3.3V PWM1 PWM3 PWM5 FAULT0 PB0/SCLK/SCL PB1/SS/SDA PB2/M ISO/T2 PB3/M OSI/T3 PB4/T0 /CLKO PB5/T1 /FAULT3 PB6/RXD/SDA/CLKIN PB7/TXD/SCL PA0/PWM0 ANA0 /PC0 PA1/PWM1 ANA1 /PC1 PA2/PWM2 ANA2 /VREFH/PC2 PA3/PWM3 PA4/PWM4 /FAULT1/T2 ANB0/PC4 PA5/PWM5 /FAULT2/T3 ANB1/PC5 PA6/FAULT0 ANB2/VREFL/PC6 1 +3.3VA UNI-3_DCBV 3 ANA2 _RC 5 ANB1_RC 7 9 +3.3VA GND PWM0 PWM2 PWM4 15 21 2 17 16 19 4 1 3 29 28 23 24 22 20 18 13 27 25 26 8 9 5 6 7 12 11 10 GND + C9 4.4uF 50V +3.3V GNDA C10 100 nF GNDA GNDA GNDA GNDA GNDA C12 2.2nF ANB2 C11 2.2nF ANB1 C8 2.2nF ANB0 C7 2.2nF ANA2 C6 2.2nF ANA1 C5 2.2nF ANA0 GNDA 2 2 2 2 2 2 R8 100 R7 100 R6 100 R5 100 R4 100 R3 100 1 1 1 1 1 1 ANB2_RC ANB1_RC ANB0_RC ANA2_RC UNI-3_DCBI UNI-3_DCBV Place filters as close to the DSP chip as possible +3.3VA ANB0 ANB1 ANB2 ANA0 ANA1 ANA2 Figure A-1. MC56F8013 and Headers 1 TCK 2 R12 47k 1 1 2 R10 47k 1 TMS 2 R11 47k /DE TDO 2 R9 47k +3.3V /RESE T SCLK /SS_B MISO MOS I GPIOB4 GPIOB5 RxD PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 FAUL T0 U1 1 2 RxD0 TxD0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 A-2 Freescale Semiconductor GND MC56F8013 Controller Board Schematics R13 47k GND SCLK 1 2 A0 A1 WP SCL U3 AT24C64 1 2 7 6 GND NC SDA +3.3V 3 5 Figure A-2. Serial EEPROM J17 HDR 2X1 WP 1 2 +3.3V 1 2 SCL 8 VCC GND 4 J20 HDR 2X1 J21 HDR 2X1 SDA 2 1 Freescale Semiconductor A-3 /SS_B 1 2 3 4 5 6 EN CODER 0 J7 +5V GND +5V 1 +5V 2 1 +5V 2 1 +5V 2 1 2 R 27 24 R 23 24 R 19 24 R 15 24 2 2 2 GN D 2 GN D GN D C16 470pF C15 470pF C14 470pF GND C13 470pF 1 1 1 1 R17 1.8K 2 2 1 2 1 R25 1.8K R 28 1.8K 2 UNI-3_BEMFZ CC R 24 1.8K UNI-3_BEMFZ CB R 20 1.8K R21 1.8K 2 UNI-3_BEMFZ CA 1 R 16 1.8K 2 2 1 TP1 1 3 4 6 7 9 JP3 2 5 8 TH /JUMPER S_3_CH Figure A-3. Quadrature Encoder or Hall Sensors / Zero Crossing 1 R26 1K 1 R22 1K 1 R18 1K 1 R14 1K 1 2 1 2 1 2 1 MC56F8013 Controller Board Schematics 2 A-4 Freescale Semiconductor RxD GPIOB5 GPIOB4 Timer channel 1 Timer channel 0 UNI-3_DCBI UNI-3_DCBV TP4 1 R34 15K GNDA R30 15K 2 C18 360pF 3 TP3 1 C17 100nF 2 R29 10K TP2 GNDA 1 1 2 Over Voltage 2 R32 10K GNDA C20 360pF C19 100nF 1 2 1 TP5 3 Over Current GNDA 2 1 + - + 6 5 R35 1M +3.3VA 3 2 2 +5V 2 GND U4B LM393M 7 1 U4A LM393M Figure A-4. Fault protection 1 R31 1M +3.3VA 8 4 1 1 1 2 1 MC56F8013 Controller Board Schematics 2 FAULT D1 RED R33 270 +3.3V 1 2 1 1 2 4.7k R63 Q1 GND BC847 1 +3.3V 1 2 Freescale Semiconductor A-5 R62 10k FAULT0 J9 HDR 2X1 PFC PWM DISABLE MISO MOSI UNI-3 BRAKE USER LED J10 HDR 3X1 UNI-3 BEMFC UNI-3 PHCIS UNI-3 BEMFB UNI-3 PHBIS UNI-3 BEMFA UNI-3 PHAIS TACHO UNI-3 TEMP UNI-3 TEMP UNI-3_PHCIS/UNI-3_BEMFC UNI-3 I_IN UNI-3_PHBIS/UNI-3_BEMFB UNI-3 V_IN 8 5 2 TH/JUMPERS_3_CH JP4 J11 HDR 3X1 TACHO/TEMP 9 7 6 4 3 1 8 5 2 TH/JUMPERS_3_CH JP5 ADC CFG 2 9 7 6 4 3 1 ADC CFG 1 ANA2_RC ANB2_RC ANB1_RC ANB0_RC UNI-3_PHCIS/UNI-3_BEMFC UNI-3_PHBIS/UNI-3_BEMFB UNI-3_PHAIS/UNI-3_BEMFA ANALOG CHANNELS CONFIGURATION UNI-3_PHAIS/UNI-3_BEMFA Figure A-5. Jumpers USER LED/UNI-3 BRAKE USER LED / UNI-3 BRAKE SELECT UNI-3 PFC_PWM START SWITCH J8 HDR 2X1 START SWITCH DISABLE 1 2 1 2 1 2 3 MC56F8013 Controller Board Schematics 1 2 3 A-6 Freescale Semiconductor GND GND 1 2 GND 1 2 GND 1 2 3 4 SW4 3 1 3 4 3 4 RUN/STOP 2 DOWN SW3 UP SW2 2 +3.3V +3.3V +3.3V R37 4.7K RE SE T SW1 1 1k8 R 48 R 46 4k7 1k8 R 45 R 43 4k7 1k8 R 41 R 40 4k7 +3.3V MC56F8013 Controller Board Schematics 2 4.7k R51 Q2 GND BC847 1 +3.3V GND U SE R LE D D8 GREEN R49 270 R38 270 D3 GREEN PWM5 PWM4 PWM3 PWM2 PWM1 PWM0 Figure A-6. LEDs and buttons USER LED START SWITCH /SS_B SCLK /RESET Po we r ON +5V 1 2 1 2 Freescale Semiconductor A-7 13 11 9 5 3 1 74HC04D U5F 74HC04D U5E 74HC04D U5D 74HC04D U5C 74HC04D U5B GND 12 10 8 6 4 GND 74HC04D U5A VCC 2 +3.3V 14 7 1 1 1 1 1 1 R50 270 R47 270 R44 270 R42 270 R39 270 R36 270 2 2 2 2 2 2 D9 Y ELLOW PW M5 D7 Y ELLOW PW M4 D6 Y ELLOW PW M3 D5 Y ELLOW PW M2 D4 Y ELLOW PW M1 D2 Y ELLOW PW M0 +3.3V +3.3V +3.3V +3.3V +3.3V +3.3V U NI-3 +15VA PWR_JAC K GND 1 3 2 + C36 330uF 16V GND GN DA GROUND CONNECTION INDUCTOR L3 1 2 D 17 1N4448 GN DA D 16 1N4448 D15 1N4448 2 C24 330uF 16V GND GND + C37 2.2uF 50V +5V 1 VIN C38 100nF GND 2 GND VOUT U6 TL78005CKTE D10 1N 4448 Encoder C 25 100nF INDUCTOR L2 1 2 GN D D13 1N4448 + GND 1 1 GN D GNDA C35 100nF GN D C23 100nF D12 FR1M + C22 47uF 6.3V 1 2 J12 1 2 1 3 GND C39 100nF +3.3V GN D + C27 47uF 6.3V GND GNDA C41 100nF GND A + C31 47uF 6.3V +5V GNDA U7 GND VOUT LM393 GNDA +5V 1 3 2 GND VOUT C47 100nF 2 GND GND GN DA + C33 47uF 6.3V + C28 47uF 6.3V 74HC04 C44 100nF +3.3V MC33269DT_3.3 GND VIN U8 D14 1N4448 MC33269DT_3.3 GN D VIN C42 100nF C32 100nF GND 1 3 D 11 1N4448 Figure A-7. Power Supply C40 100nF +5V C29 100nF 10V GND DSP56F8013 +3.3VA C26 100nF 10V TP6 1 1 2 1 2 2 1 2 1 2 INDUCTOR L1 2 1 2 C21 100nF 1 2 1 2 1 2 1 2 1 2 1 1 2 UNI-3 +5V 1 2 GN D GN D C48 100nF 10V +3.3V AT24C64 GNDA C34 100nF TP12 +3.3VA +3.3V C30 100nF TP9 GN D GN D 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 MC56F8013 Controller Board Schematics 2 GND TP10 GND TP7 TP8 TP11 1 1 A-8 Freescale Semiconductor 5 9 4 8 3 7 2 6 1 TXD RTS RXD DTR GND J6 CON/CANNON9 RS232 D20 1N4448 1 2 MC56F8013 Controller Board Schematics 2 1 2 C1 2.2uF/35V 1 1k R64 3 2 1 2 2 4 3 160 R65 GND U22 SFH6106 4 Isolation Barrier 1 U21 SFH6106 Figure A-8. RS232 R67 4.7k D19 1N4448 1N4448 D21 1 RxD0 TxD0 +3.3V R66 1k +3.3V 1 2 Freescale Semiconductor + A-9 MC56F8013 Controller Board Schematics R60 560k C45 0,1uF 1 R56 1k 2 C46 0,022uF 1 2 +3.3VA J14 HDR 3X1 GNDA D18 HSMS-2802 GNDA R61 10k 1 2 R54 4k7 R52 7k5 +3.3VA 1 2 TACHO R57 2k2 2 GND Figure A-9. Tachogenerator 3 1 2 GNDA R59 82k R55 82k TP13 1 J13 Tacho Dy namo 1 2 3 +3.3VA 2 1 1 2 1 2 1 2 1 2 3 + - + 2 - 5 +5V 8 1 7 R53 100k U9B LM393M 1 U9A LM393M GND 4 3 1 1 2 2 R58 10k +3.3V 1 2 6 J15 HDR 2X1 1 2 A-10 Freescale Semiconductor GPIOB4 UNI-3 +15VA UNI-3 +5V J16 HDR 2X1 J18 HDR 2X1 1 2 1 2 Freescale Semiconductor MC56F8013 Controller Board Schematics A-11 GNDA GND 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Figure A-10. UNI-3 connector UNI-3 BEMFB UNI-3 BRAKE UNI-3 PFC_PWM UNI-3 V_IN UNI-3_BEMFZCB UNI-3_DCBV UNI-3 PHAIS UNI-3 PHCIS PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 J1 UNI-3 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 UNI-3_BEMFZCA UNI-3_BEMFZCC GNDA GND UNI-3 BEMFA UNI-3 BEMFC UNI-3 I_IN UNI-3_DCBI UNI-3 PHBIS UNI-3 TEMP A-12 MC56F8013 Controller Board Schematics Freescale Semiconductor Appendix B MC56F8013 Controller Board PCB Freescale Semiconductor MC56F8013 Controller Board PCB B-1 MC56F8013 Controller Board Hardware User’s Manual Figure B-1. TOP copper layer B-2 MC56F8013 Controller Board PCB Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual Figure B-2. BOTTOM copper layer Freescale Semiconductor MC56F8013 Controller Board PCB B-3 MC56F8013 Controller Board Hardware User’s Manual Figure B-3. Drill copper map B-4 MC56F8013 Controller Board PCB Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual Figure B-4. TOP silk screen layer Freescale Semiconductor MC56F8013 Controller Board PCB B-5 MC56F8013 Controller Board Hardware User’s Manual Figure B-5. TOP Board view B-6 MC56F8013 Controller Board PCB Freescale Semiconductor Appendix C MC56F8013 Controller Board Bill of Materials Item Qty Description Reference Designators Part #/ Value Capacitors 1 1 SMD, Polarized, Aluminim, size B, 35V C1 2.2uF/35V 2 6 SMD, Ceramic, size 0805 C5,C6,C7,C8,C11,C12 2.2nF 3 1 SMD, Polarized, Aluminim, size B, 50 V C9 4.4uF/50V 4 20 SMD, Ceramic, size 0805 C10,C17,C19,C21,C23,C25, C26,C29,C30,C32,C34,C35, C38,C39,C40,C41,C42,C44, C47,C48 100nF 5 4 SMD, Ceramic, size 0805 C13,C14,C15,C16 470pF 6 2 SMD, Ceramic, size 0805 C18,C20 360pF 7 4 SMD, Polarized, Aluminim, size C, 6.3V C22,C27,C28,C33 47uF/6.3V 8 2 SMD, Polarized, Aluminim, size G, 16V C24,C36 330uF/16V 9 1 SMD, Polarized, Aluminim, size B, 50V C37 2.2uF/50V 10 1 SMD, Ceramic, size 1812 C45 0,1uF 11 1 SMD, Ceramic, size 1210 C46 0,022uF 12 1 SMD, Polarized, Aluminim, size C, 16V C31 22uF/16V Diodes / LED 13 1 SMD, size 0805 D1 RED 14 6 SMD, size 0805 D2,D4,D5,D6,D7,D9 YELLOW Freescale Semiconductor MC56F8013 Controller Board Bill of Materials C-1 MC56F8013 Controller Board Hardware User’s Manual Item Qty Description Reference Designators Part #/ Value 15 2 SMD, size 0805 D3,D8 GREEN 16 10 SMD, minimelf D10,D11,D13,D14,D15,D16, D17,D19,D20,D21 1N4448 17 1 SMD, MELF D12 SM4007 18 1 SMD, SOT-23 D18 HSMS-2802 Connectors / Jumpers 19 2 Header 4X1, 2.54mm JP1,J19 HDR 4X1 20 3 Header 3X1, 2.54mm JP3,JP4,JP5 TH/JUMPERS_3_CH 21 1 MLW40G J1 UNI-3 22 3 Header 5X2, 2.54mm J2,J3,J5 HDR 5X2 23 1 Header 7X2, 2.54mm J4 JTAG 24 1 CAN9 Z 90 J6 CON/CANNON9 25 1 PSH02 - 06P J7 ENCODER 0 26 8 Header 2X1, 2.54mm J8,J9,J15,J16,J17,J18,J20,J21 HDR 2X1 27 3 Header 3X1, 2.54mm J10,J11,J14 HDR 3X1 28 1 NAZ 2.1 VP J12 PWR_JACK 29 1 ARK500/2 J13 Tacho Dynamo 30 13 Header 1X1, 2.54mm TP1,TP2,TP3,TP4,TP5, TP6,TP7,TP8,TP9,TP10, TP11,TP12,TP13 TEST POINT Inductors 31 3 Multicomp MCAB 035060-33 L1,L2,L3 INDUCTOR Transistors 32 2 SMD, SOT23 Q1,Q2 BC847 Resistors / Potentiometers/ Trimmers C-2 33 2 SMD, size 0805 R1,R2 0 34 6 SMD, size 0805 R3,R4,R5,R6,R7,R8 100 35 5 SMD, size 0805 R9,R10,R11,R12,R13 47k 36 7 SMD, size 0805 R14,R18,R22,R26,R56 1k 37 4 SMD, size 0805 R15,R19,R23,R27 24 38 7 SMD, size 0805 R16,R17,R20,R21,R24, R25,R28 1.8K MC56F8013 Controller Board Bill of Materials Freescale Semiconductor MC56F8013 Controller Board Hardware User’s Manual Item Qty Description Reference Designators Part #/ Value 39 3 SMD, size 0805 R58,R61,R62 10k 40 2 Trimmer R29,R32 10k 41 2 SMD, size 0805 R30,R34 15K 42 2 SMD, size 0805 R31,R35 1M 43 9 SMD, size 0805 R33,R36,R38,R39,R42, R44,R47,R49,R50 270 44 7 SMD, size 0805 R40,R43,R46,R37,R51, R66,R67 4k7 45 1 Trimmer R54 4k7 46 3 SMD, size 0805 R41,R45,R48 1k8 47 1 SMD, size 0805 R52 7k5 48 1 SMD, size 0805 R53 100k 49 2 SMD, size 0805 R55,R59 82k 50 1 SMD, size 0805 R57 2k2 51 1 SMD, size 0805 R60 560k 52 1 SMD, size 0805 R65 360 53 1 SMD, size 0805 R63 62k 54 1 SMD, size 0805 R64 560 Switches / Pushbuttons 55 1 KSC221J SW1 RESET 56 1 KSC221J SW2 UP 57 1 KSC221J SW3 DOWN 58 1 EZK - MS244LC SW4 RUN/STOP Integrated Circuits 59 1 Freescale Semiconductor Hybrid Controller U1 MC56F8013VFAE 60 0 no pop U3 AT24LC64 / 24AA64 61 2 LM393M, SMD, SOIC8 U4,U9 LM393M 62 1 74HC04D, SMD, SOIC14 U5 74HC04D 63 1 MC7805CD2T,SMD, D2PAK U6 MC7805CD2T 64 2 MC33269DT_3.3, SMD, DPAK U7,U8 MC33269DT_3.3 65 2 SFH6106, Optocoupler, SMD U21,U22 SFH6106 Freescale Semiconductor MC56F8013 Controller Board Bill of Materials C-3 MC56F8013 Controller Board Hardware User’s Manual C-4 MC56F8013 Controller Board Bill of Materials Freescale Semiconductor WCD Sample Book Template Freescale Semiconductor -1 How to Reach Us: Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted USA/Europe/Locations not listed: Freescale Semiconductor Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the Japan: Freescale Semiconductor Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu Minato-ku Tokyo 106-8573, Japan 81-3-3440-3569 suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Asia/Pacific: Freescale Semiconductor H.K. Ltd. 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T. Hong Kong 852-26668334 Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Learn More: For more information about Freescale Semiconductor products, please visit http://www.freescale.com Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2004. Rev. 1.0, 9/2005 <st-bold>