Features • High Performance, Low Power AVR® 8-Bit Microcontroller • Advanced RISC Architecture • • • • • • • • – 130 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz – On-Chip 2-cycle Multiplier High Endurance Non-volatile Memory segments – 16K Bytes of In-System Self-programmable Flash program memory – 512 Bytes EEPROM – 1K Bytes Internal SRAM – Write/Erase cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85°C/100 years at 25°C(1) – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – Programming Lock for Software Security JTAG (IEEE std. 1149.1 compliant) Interface – Boundary-scan Capabilities According to the JTAG Standard – Extensive On-chip Debug Support – Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface Peripheral Features – Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Real Time Counter with Separate Oscillator – Four PWM Channels – 8-channel, 10-bit ADC – Programmable Serial USART – Master/Slave SPI Serial Interface – Universal Serial Interface with Start Condition Detector – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator – Interrupt and Wake-up on Pin Change Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated Oscillator – External and Internal Interrupt Sources – Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby I/O and Packages – 54 Programmable I/O Lines – 64-lead TQFP, 64-pad QFN/MLF and 64-pad DRQFN Speed Grade: – ATmega165PA: 0 - 16 MHz @ 1.8 - 5.5V Temperature range: – -40°C to 85°C Industrial Ultra-Low Power Consumption – Active Mode: 1 MHz, 1.8V: 215 µA 32 kHz, 1.8V: 8 µA (including Oscillator) – Power-down Mode: 0.1 µA at 1.8V – Power-save Mode: 0.6 µA at 1.8V (Including 32 kHz RTC) 8-bit Microcontroller with 16K Bytes In-System Programmable Flash ATmega165PA Preliminary Summary Rev 8298AS–AVR–03/10 ATmega165PA 1. Pin Configurations Pinout - TQFP and QFN/MLF DNC 1 (RXD/PCINT0) PE0 2 49 PA2 50 PA1 51 PA0 52 VCC 53 GND 54 PF7 (ADC7/TDI) 55 PF6 (ADC6/TDO) 56 PF5 (ADC5/TMS) 57 PF4 (ADC4/TCK) 58 PF3 (ADC3) 59 PF2 (ADC2) 60 PF1 (ADC1) AREF 62 61 PF0 (ADC0) GND 63 64A (TQFP)and 64M1 (QFN/MLF) Pinout ATmega165PA AVCC Figure 1-1. 64 1.1 48 PA3 47 PA4 INDEX CORNER 8 41 PC6 (CLKO/PCINT7) PE7 9 40 PC5 (SS/PCINT8) PB0 10 39 PC4 (SCK/PCINT9) PB1 11 38 PC3 (MOSI/PCINT10) PB2 12 37 PC2 (MISO/PCINT11) PB3 13 36 PC1 (OC0A/PCINT12) PB4 14 35 PC0 (OC1A/PCINT13) PB5 15 34 PG1 (OC1B/PCINT14) PB6 16 33 PG0 Note: PD7 32 (DO/PCINT6) PE6 PD6 31 42 PC7 PD5 30 7 PD4 29 (DI/SDA/PCINT5) PE5 PD3 28 43 PG2 PD2 27 6 (INT0) PD1 26 (USCK/SCL/PCINT4) PE4 (ICP1) PD0 25 44 PA7 (TOSC1) XTAL1 24 5 (TOSC2) XTAL2 23 (AIN1/PCINT3) PE3 GND 22 45 PA6 VCC 21 4 RESET/PG5 20 (XCK/AIN0/PCINT2) PE2 (T0) PG4 19 46 PA5 (T1) PG3 18 3 (OC2A/PCINT15) PB7 17 (TXD/PCINT1) PE1 The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board. 2 8298AS–AVR–03/10 ATmega165PA 2. Overview The ATmega165PA is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega165PA achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block Diagram Block Diagram PF0 - PF7 PA0 - PA7 XTAL2 Figure 2-1. XTAL1 2.1 PC0 - PC7 VCC GND PORTA DRIVERS PORTF DRIVERS DATA DIR. REG. PORTF DATA REGISTER PORTF PORTC DRIVERS DATA DIR. REG. PORTA DATA REGISTER PORTA DATA REGISTER PORTC DATA DIR. REG. PORTC 8-BIT DATA BUS AVCC CALIB. OSC INTERNAL OSCILLATOR ADC AREF OSCILLATOR JTAG TAP PROGRAM COUNTER STACK POINTER WATCHDOG TIMER ON-CHIP DEBUG PROGRAM FLASH SRAM MCU CONTROL REGISTER BOUNDARYSCAN INSTRUCTION REGISTER TIMING AND CONTROL TIMER/ COUNTERS GENERAL PURPOSE REGISTERS INSTRUCTION DECODER CONTROL LINES + - INTERRUPT UNIT ALU EEPROM STATUS REGISTER AVR CPU ANALOG COMPARATOR Z Y RESET X PROGRAMMING LOGIC USART UNIVERSAL SERIAL INTERFACE DATA REGISTER PORTE DATA DIR. REG. PORTE PORTE DRIVERS PE0 - PE7 SPI DATA REGISTER PORTB DATA DIR. REG. PORTB PORTB DRIVERS PB0 - PB7 DATA REGISTER PORTD DATA DIR. REG. PORTD DATA REG. PORTG DATA DIR. REG. PORTG PORTD DRIVERS PORTG DRIVERS PD0 - PD7 PG0 - PG4 3 8298AS–AVR–03/10 ATmega165PA The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega165PA provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM, 53 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, Onchip Debugging support and programming, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Powersave mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega165PA is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega165PA AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits. 4 8298AS–AVR–03/10 ATmega165PA 2.2 2.2.1 Pin Descriptions VCC Digital supply voltage. 2.2.2 GND Ground. 2.2.3 Port A (PA7:PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the ATmega165PA as listed on ”Alternate Functions of Port B” on page 69. 2.2.4 Port B (PB7:PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B has better driving capabilities than the other ports. Port B also serves the functions of various special features of the ATmega165PA as listed on ”Alternate Functions of Port B” on page 69. 2.2.5 Port C (PC7:PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C also serves the functions of special features of the ATmega165PA as listed on ”Alternate Functions of Port D” on page 72. 2.2.6 Port D (PD7:PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega165PA as listed on ”Alternate Functions of Port D” on page 72. 2.2.7 Port E (PE7:PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source 5 8298AS–AVR–03/10 ATmega165PA capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the ATmega165PA as listed on ”Alternate Functions of Port E” on page 73. 2.2.8 Port F (PF7:PF0) Port F serves as the analog inputs to the A/D Converter. Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs. Port F also serves the functions of the JTAG interface, see ”Alternate Functions of Port F” on page 75. 2.2.9 Port G (PG5:PG0) Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port G also serves the functions of various special features of the ATmega165PA as listed on page 77. 2.2.10 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 27-3 on page 298. Shorter pulses are not guaranteed to generate a reset. 2.2.11 XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. 2.2.12 XTAL2 Output from the inverting Oscillator amplifier. 2.2.13 AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. 2.2.14 AREF This is the analog reference pin for the A/D Converter. 6 8298AS–AVR–03/10 ATmega165PA 3. Resources A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. 4. Data Retention Note: 1. Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 7 8298AS–AVR–03/10 ATmega165PA 5. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xFF) Reserved – – – – – – – – (0xFE) Reserved – – – – – – – – (0xFD) Reserved – – – – – – – – (0xFC) Reserved – – – – – – – – (0xFB) Reserved – – – – – – – – (0xFA) Reserved – – – – – – – – (0xF9) Reserved – – – – – – – – (0xF8) Reserved – – – – – – – – (0xF7) Reserved – – – – – – – – (0xF6) Reserved – – – – – – – – (0xF5) Reserved – – – – – – – – (0xF4) Reserved – – – – – – – – (0xF3) Reserved – – – – – – – – (0xF2) Reserved – – – – – – – – (0xF1) Reserved – – – – – – – – (0xF0) Reserved – – – – – – – – (0xEF) Reserved – – – – – – – – (0xEE) Reserved – – – – – – – – (0xED) Reserved – – – – – – – – (0xEC) Reserved – – – – – – – – (0xEB) Reserved – – – – – – – – (0xEA) Reserved – – – – – – – – (0xE9) Reserved – – – – – – – – (0xE8) Reserved – – – – – – – – (0xE7) Reserved – – – – – – – – (0xE6) Reserved – – – – – – – – (0xE5) Reserved – – – – – – – – (0xE4) Reserved – – – – – – – – (0xE3) Reserved – – – – – – – – (0xE2) Reserved – – – – – – – – (0xE1) Reserved – – – – – – – – (0xE0) Reserved – – – – – – – – (0xDF) Reserved – – – – – – – – (0xDE) Reserved – – – – – – – – (0xDD) Reserved – – – – – – – – (0xDC) Reserved – – – – – – – – (0xDB) Reserved – – – – – – – – (0xDA) Reserved – – – – – – – – (0xD9) Reserved – – – – – – – – (0xD8) Reserved – – – – – – – – (0xD7) Reserved – – – – – – – – (0xD6) Reserved – – – – – – – – (0xD5) Reserved – – – – – – – – (0xD4) Reserved – – – – – – – – (0xD3) Reserved – – – – – – – – (0xD2) Reserved – – – – – – – – (0xD1) Reserved – – – – – – – – (0xD0) Reserved – – – – – – – – (0xCF) Reserved – – – – – – – – (0xCE) Reserved – – – – – – – – (0xCD) Reserved – – – – – – – – (0xCC) Reserved – – – – – – – – (0xCB) Reserved – – – – – – – – (0xCA) Reserved – – – – – – – – (0xC9) Reserved – – – – – – – – (0xC8) Reserved – – – – – – – – (0xC7) Reserved – – – – – – – – (0xC6) UDR0 (0xC5) UBRR0H (0xC4) UBRR0L (0xC3) Reserved (0xC2) (0xC1) (0xC0) USART0 I/O Data Register 181 USART0 Baud Rate Register High 185 USART0 Baud Rate Register Low – – UCSR0C – UCSR0B RXCIE0 UCSR0A RXC0 Page 185 – – – – – – UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 182 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 181 183 8 8298AS–AVR–03/10 ATmega165PA Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xBF) Reserved – – – – – – – – Page (0xBE) Reserved – – – – – – – – (0xBD) Reserved – – – – – – – – (0xBC) Reserved – – – – – – – – (0xBB) Reserved – – – – – – – – (0xBA) USIDR (0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 194 (0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 195 (0xB7) Reserved – – – – – – – USI Data Register 194 (0xB6) ASSR – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB (0xB5) Reserved – – – – – – – – 145 (0xB4) Reserved – – – – – – – – (0xB3) OCR2A Timer/Counter2 Output Compare Register A 144 (0xB2) TCNT2 Timer/Counter2 (8-bit) 144 (0xB1) Reserved – – – – – – – – (0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 (0xAF) Reserved – – – – – – – – 142 (0xAE) Reserved – – – – – – – – (0xAD) Reserved – – – – – – – – (0xAC) Reserved – – – – – – – – (0xAB) Reserved – – – – – – – – (0xAA) Reserved – – – – – – – – (0xA9) Reserved – – – – – – – – (0xA8) Reserved – – – – – – – – (0xA7) Reserved – – – – – – – – (0xA6) Reserved – – – – – – – – (0xA5) Reserved – – – – – – – – (0xA4) Reserved – – – – – – – – (0xA3) Reserved – – – – – – – – (0xA2) Reserved – – – – – – – – (0xA1) Reserved – – – – – – – – (0xA0) Reserved – – – – – – – – (0x9F) Reserved – – – – – – – – (0x9E) Reserved – – – – – – – – (0x9D) Reserved – – – – – – – – (0x9C) Reserved – – – – – – – – (0x9B) Reserved – – – – – – – – (0x9A) Reserved – – – – – – – – (0x99) Reserved – – – – – – – – (0x98) Reserved – – – – – – – – (0x97) Reserved – – – – – – – – (0x96) Reserved – – – – – – – – (0x95) Reserved – – – – – – – – (0x94) Reserved – – – – – – – – (0x93) Reserved – – – – – – – – (0x92) Reserved – – – – – – – – (0x91) Reserved – – – – – – – – (0x90) Reserved – – – – – – – – (0x8F) Reserved – – – – – – – – (0x8E) Reserved – – – – – – – – (0x8D) Reserved – – – – – – – – (0x8C) Reserved – – – – – – – – (0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 122 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 122 (0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 122 (0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 122 (0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 123 (0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 123 (0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 122 (0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 122 (0x83) Reserved – – – – – – – (0x82) TCCR1C FOC1A FOC1B – – – – – – 121 (0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 120 118 – (0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 (0x7F) DIDR1 – – – – – – AIN1D AIN0D 201 (0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 219 9 8298AS–AVR–03/10 ATmega165PA Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0x7D) Reserved – – – – – – – – (0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 215 (0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 200, 219 (0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 (0x79) ADCH ADC Data Register High byte Page 217 218 (0x78) ADCL (0x77) Reserved – – – ADC Data Register Low byte – – – – – 218 (0x76) Reserved – – – – – – – – (0x75) Reserved – – – – – – – – (0x74) Reserved – – – – – – – – (0x73) Reserved – – – – – – – – (0x72) Reserved – – – – – – – – (0x71) Reserved – – – – – – – – (0x70) TIMSK2 – – – – – – OCIE2A TOIE2 145 (0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 123 (0x6E) TIMSK0 – – – – – – OCIE0A TOIE0 95 (0x6D) Reserved – – – – – – – – (0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 59 (0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 60 (0x6A) Reserved – – – – – – – – (0x69) EICRA – – – – – – ISC01 ISC00 (0x68) Reserved – – – – – – – – (0x67) Reserved – – – – – – – – (0x66) OSCCAL (0x65) Reserved – – – – – – – – Oscillator Calibration Register 58 34 (0x64) PRR – – – – PRTIM1 PRSPI PRUSART0 PRADC (0x63) Reserved – – – – – – – – 41 (0x62) Reserved – – – – – – – – (0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 34 (0x60) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 50 0x3F (0x5F) SREG I T H S V N Z C 9 0x3E (0x5E) SPH – – – – – SP10 SP9 SP8 12 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12 0x3C (0x5C) Reserved 0x3B (0x5B) Reserved 0x3A (0x5A) Reserved 0x39 (0x59) Reserved 261 0x38 (0x58) Reserved 0x37 (0x57) SPMCSR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 0x36 (0x56) Reserved – – – – – – – – 0x35 (0x55) MCUCR JTD – – PUD – – IVSEL IVCE 56, 79, 246 0x34 (0x54) MCUSR – – – JTRF WDRF BORF EXTRF PORF 246 0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 41 0x32 (0x52) Reserved – – – – – – – – 0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 226 0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 200 – – – – – – – – 0x2F (0x4F) Reserved 0x2E (0x4E) SPDR 0x2D (0x4D) SPSR SPIF WCOL – 0x2C (0x4C) SPCR SPIE SPE DORD 0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 0x29 (0x49) Reserved – – – 0x28 (0x48) Reserved – – – 0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit) 0x25 (0x45) Reserved – – – – – – 0x24 (0x44) TCCR0A FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 93 0x23 (0x43) GTCCR TSM – – – – – PSR2 PSR10 127, 146 – – – – – – – EEAR8 24 SPI Data Register 156 – – – – SPI2X 155 MSTR CPOL CPHA SPR1 SPR0 154 25 25 – – – – – – – – – – 95 95 – – 0x22 (0x42) EEARH 0x21 (0x41) EEARL EEPROM Address Register Low Byte 24 0x20 (0x40) EEDR EEPROM Data Register 24 0x1F (0x3F) EECR 0x1E (0x3E) GPIOR0 – – – – 0x1D (0x3D) EIMSK – – PCIE1 PCIE0 0x1C (0x3C) EIFR – – PCIF1 PCIF0 EERIE EEMWE EEWE EERE 24 – – – INT0 58 – – – INTF0 59 General Purpose I/O Register 0 25 10 8298AS–AVR–03/10 ATmega165PA Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x1B (0x3B) Reserved – – – – – – – – Page 0x1A (0x3A) Reserved – – – – – – – – 0x19 (0x39) Reserved – – – – – – – – 0x18 (0x38) Reserved – – – – – – – – 0x17 (0x37) TIFR2 – – – – – – OCF2A TOV2 145 0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 124 0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 96 0x14 (0x34) PORTG – – PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 81 0x13 (0x33) DDRG – – DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 81 0x12 (0x32) PING – – PING5 PING4 PING3 PING2 PING1 PING0 81 0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 81 0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 81 0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 81 0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 80 0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 80 0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 81 0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 80 0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 80 0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 80 0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 80 0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 80 0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 80 0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 79 0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 79 0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 79 0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 79 0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 79 0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 79 Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega165PA is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. 11 8298AS–AVR–03/10 ATmega165PA 6. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 1 COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← 0xFF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2 MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2 FMULS Rd, Rr Fractional Multiply Signed R1:R0 ¬ (Rd x Rr) << 1 Z,C 2 FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ¬ (Rd x Rr) << 1 Z,C 2 2 BRANCH INSTRUCTIONS RJMP k IJMP Relative Jump PC ← PC + k + 1 None Indirect Jump to (Z) PC ← Z None 2 JMP k Direct Jump PC ← k None 3 RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3 Indirect Call to (Z) PC ← Z None 3 Direct Subroutine Call PC ← k None 4 RET Subroutine Return PC ← STACK None 4 RETI Interrupt Return PC ← STACK I 4 ICALL CALL k CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 1/2/3 1 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2 12 8298AS–AVR–03/10 ATmega165PA Mnemonics Operands Description Operation Flags #Clocks BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2 LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1 ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1 BSET s Flag Set SREG(s) ← 1 SREG(s) 1 BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T ← Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) ← T None 1 SEC Set Carry C←1 C 1 CLC Clear Carry C←0 C 1 SEN Set Negative Flag N←1 N 1 CLN Clear Negative Flag N←0 N 1 SEZ Set Zero Flag Z←1 Z 1 CLZ Clear Zero Flag Z←0 Z 1 SEI Global Interrupt Enable I←1 I 1 CLI Global Interrupt Disable I←0 I 1 SES Set Signed Test Flag S←1 S 1 CLS Clear Signed Test Flag S←0 S 1 SEV Set Twos Complement Overflow. V←1 V 1 CLV Clear Twos Complement Overflow V←0 V 1 SET Set T in SREG T←1 T 1 CLT Clear T in SREG T←0 T 1 SEH CLH Set Half Carry Flag in SREG Clear Half Carry Flag in SREG H←1 H←0 H H 1 1 Rd ← Rr Rd+1:Rd ← Rr+1:Rr None 1 None 1 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers MOVW Rd, Rr Copy Register Word LDI Rd, K Load Immediate Rd ← K None LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 2 LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None LD Rd, Y Load Indirect Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2 LD Rd, Z Load Indirect Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd ← (k) None 2 ST X, Rr Store Indirect (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2 ST Y, Rr Store Indirect (Y) ← Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2 ST Z, Rr Store Indirect (Z) ← Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2 STS k, Rr Store Direct to SRAM (k) ← Rr None 2 Load Program Memory R0 ← (Z) None 3 LPM LPM Rd, Z Load Program Memory Rd ← (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3 Store Program Memory (Z) ← R1:R0 None - IN Rd, P In Port Rd ← P None 1 OUT P, Rr Out Port P ← Rr None 1 SPM 13 8298AS–AVR–03/10 ATmega165PA Mnemonics Operands Description Operation Flags #Clocks PUSH Rr Push Register on Stack STACK ← Rr None 2 POP Rd Pop Register from Stack Rd ← STACK None 2 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR BREAK Watchdog Reset Break (see specific descr. for WDR/timer) For On-chip Debug Only None None 1 N/A 14 8298AS–AVR–03/10 ATmega165PA 7. Ordering Information Speed (MHz)(3) 16 Notes: Power Supply 1.8 - 5.5V Ordering Code Package(1)(2) Operation Range ATmega165PA-AU ATmega165PA-AUR(4) ATmega165PA-MU ATmega165PA-MUR(4) 64A 64A 64M1 64M1 Industrial (-40°C to 85°C) 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 27-1 on page 297. 4. Tape & Reel Package Type 64A 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 15 8298AS–AVR–03/10 ATmega165PA 8. Packaging Information 8.1 64A PIN 1 PIN 1 B PIN 1 IDENTIFIER B PIN 1 IDENTIFIER e e E1 E E1 E D1 D1 DD C C 0°~7° 0°~7° A1 A1 A2 A2 AA LL COMMON DIMENSIONS COMMON DIMENSIONS (Unit of of Measure = mm) (Unit Measure = mm) SYMBOL SYMBOL – A1 0.05 – A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 A1 A2 D D1 E 3. Lead coplanarity is 0.10 mm maximum. NOM MAX NOTE NOTE NOM MAX A A Notes: Notes:1.This package conforms to JEDEC reference MS-026, Variation AEB. 2. Dimensions D1 and E1 not include mold MS-026, protrusion. Allowable 1.This package conforms to do JEDEC reference Variation AEB. protrusionD1 is 0.25 pernot side. Dimensions D1 and E1 are maximum 2. Dimensions and mm E1 do include mold protrusion. Allowable plastic body sizemm dimensions moldD1 mismatch. protrusion is 0.25 per side.including Dimensions and E1 are maximum 3. Leadbody coplanarity is 0.10 mmincluding maximum. plastic size dimensions mold mismatch. MIN MIN E E1 E1 – – 0.05 0.95 15.75 13.90 15.75 15.75 13.90 0.15 1.00 16.00 14.00 16.00 16.00 14.00 13.90 1.05 16.25 Note 2 14.10 16.25 Note 2 14.10 0.30 – 0.45 CB 0.30 0.09 – – 0.200.45 LC 0.09 0.45 – – 0.20 0.75 eL 0.45 0.80 TYP – 2325 Orchard Parkway 64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, San Jose, CA 95131 TITLE 2325 Orchard Parkway 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) 64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) Note 2 0.75 0.80 TYP R Note 2 16.25 14.10 14.00 TITLE San Jose, CA 95131 1.20 0.15 – B e R 1.20 – 10/5/2001 DRAWING NO.10/5/2001 REV. DRAWING NO. BREV. 64A 64A B 16 8298AS–AVR–03/10 ATmega165PA 8.2 64M1 D Marked Pin# 1 ID E C SEATING PLANE A1 TOP VIEW A K 0.08 C L Pin #1 Corner D2 1 2 3 Option A SIDE VIEW Pin #1 Triangle COMMON DIMENSIONS (Unit of Measure = mm) E2 Option B K Option C b e Pin #1 Chamfer (C 0.30) Pin #1 Notch (0.20 R) BOTTOM VIEW Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD. 2. Dimension and tolerance conform to ASMEY14.5M-1994. SYMBOL MIN A 0.80 0.90 1.00 A1 – 0.02 0.05 b 0.18 0.25 0.30 D 8.90 9.00 9.10 D2 5.20 5.40 5.60 E 8.90 9.00 9.10 E2 5.20 5.40 5.60 e NOM MAX NOTE 0.50 BSC L 0.35 0.40 0.45 K 1.25 1.40 1.55 5/25/06 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, 5.40 mm Exposed Pad, Micro Lead Frame Package (MLF) DRAWING NO. 64M1 REV. G 17 8298AS–AVR–03/10 ATmega165PA 9. Errata 9.1 ATmega165PA Rev. G No known errata. 9.2 ATmega165PA Rev. A to F Not sampled. 18 8298AS–AVR–03/10 ATmega165PA 10. Datasheet Revision History Please note that the referring page numbers in this section are referring to this document. The referring revisions in this section are referring to the document revision. 10.1 8289A – 03/10 1. Initial revision (Based on the ATmega165P/V datasheet 8019I-AVR-08/07). 2. Changes done compared to ATmega165P/V datasheet 8019I-AVR-08/07: – New EIMSK and EIFR register overview – New graphics in “Typical Characteristics ” on page 343. – Ordering Information includes Tape & Reel – New “Ordering Information” on page 379. 19 8298AS–AVR–03/10 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2010 Atmel Corporation. All rights reserved. Atmel ®, Atmel logo and combinations thereof, AVR®, AVR ® logo, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 8298AS–AVR–03/10