ATMEL AT32UC3A3128

Features
• High Performance, Low Power AVR®32 UC 32-Bit Microcontroller
•
•
•
•
•
•
•
•
•
•
•
•
– Compact Single-Cycle RISC Instruction Set Including DSP Instruction Set
– Read-Modify-Write Instructions and Atomic Bit Manipulation
– Performing 1.49DMIPS/MHz
• Up to 91DMIPS Running at 66MHz from Flash (1 Wait-State)
• Up to 54 DMIPS Running at 36MHz from Flash (0 Wait-State)
– Memory Protection Unit
Multi-Layer Bus System
– High-Performance Data Transfers on Separate Buses for Increased Performance
– 8 Peripheral DMA Channels (PDCA) Improves Speed for Peripheral
Communication
– 4 generic DMA Channels for High Bandwidth Data Paths
Internal High-Speed Flash
– 256KBytes, 128KBytes, 64KBytes versions
– Single-Cycle Flash Access up to 36MHz
– Prefetch Buffer Optimizing Instruction Execution at Maximum Speed
– 4 ms Page Programming Time and 8ms Full-Chip Erase Time
– 100,000 Write Cycles, 15-year Data Retention Capability
– Flash Security Locks and User Defined Configuration Area
Internal High-Speed SRAM
– 64KBytes Single-Cycle Access at Full Speed, Connected to CPU Local Bus
– 64KBytes on the Multi-Layer Bus System
Interrupt Controller
– Autovectored Low Latency Interrupt Service with Programmable Priority
System Functions
– Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator
– Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL),
– Watchdog Timer, Real-Time Clock Timer
External Memories
– Support SDRAM, SRAM, NandFlash (1-bit and 4-bit ECC), Compact Flash
– Up to 66 MHz
External Storage device support
– MultiMediaCard (MMC), Secure-Digital (SD), SDIO V1.1
– CE-ATA, FastSD, SmartMedia, Compact Flash
– Memory Stick: Standard Format V1.40, PRO Format V1.00, Micro
– IDE Interface
One Advanced Encryption System (AES) for AT32UC3A3256S, AT32UC3A3128S
and AT32UC3A364S
– 256-, 192-, 128-bit Key Algorithm, Compliant with FIPS PUB 197 Specifications
– Buffer Encryption/Decryption Capabilities
Universal Serial Bus (USB)
– High-Speed USB (480Mbit/s) Device/MiniHost with On-The-Go (OTG)
– Flexible End-Point Configuration and Management with Dedicated DMA Channels
– On-Chip Transceivers Including Pull-Ups
One 8-channel 10-bit Analog-To-Digital Converter, multiplexed with Digital IOs.
Two Three-Channel 16-bit Timer/Counter (TC)
Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
– Independent Baudrate Generator, Support for SPI, IrDA and ISO7816 interfaces
AVR®32
32-Bit
Microcontroller
AT32UC3A3256S
AT32UC3A3256
AT32UC3A3128S
AT32UC3A3128
AT32UC3A364S
AT32UC3A364
Summary
Preliminary
32072AS–AVR32–03/09
AT32UC3A3
– Support for Hardware Handshaking, RS485 Interfaces and Modem Line
• Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
• One Synchronous Serial Protocol Controller
– Supports I2S and Generic Frame-Based Protocols
• Two Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible
• On-Chip Debug System (JTAG interface)
– Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
• 110 General Purpose Input/Output (GPIOs)
– Standard or High Speed mode
– Toggle capability: up to 66MHz
• 144-pin TBGA and LQFP
• Single 3.3V Power Supply
2
32072AS–AVR32–03/09
AT32UC3A3
1. Description
The AT32UC3A3 is a complete System-On-Chip microcontroller based on the AVR32 UC RISC
processor running at frequencies up to 66MHz. AVR32 UC is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption, high code density and high performance.
The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt controller for supporting modern operating systems and real-time operating systems. Higher
computation capabilities are achievable using a rich set of DSP instructions.
The AT32UC3A3 incorporates on-chip Flash and SRAM memories for secure and fast access.
The Peripheral Direct Memory Access Controller (PDCA) enables data transfers between
peripherals and memories without processor involvement. The PDCA drastically reduces processing overhead when transferring continuous and large data streams.
The Direct Memory Access controller (DMACA) allows high bandwidth data flows between high
speed peripherals (USB, External Memories, MMC, SDIO, ...) and through high speed internal
features (AES, internal memories).
The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.
The Device includes two sets of three identical 16-bit Timer/Counter (TC) channels. Each channel can be independently programmed to perform frequency measurement, event counting,
interval measurement, pulse generation, delay timing and pulse width modulation. 16-bit channels are combined to operate as 32-bit channels.
The AT32UC3A3 also features many communication interfaces for communication intensive
applications like UART, SPI or TWI. Additionally, a flexible Synchronous Serial Controller (SSC)
and an USB are available.
The SSC provides easy access to serial communication protocols and audio standards like I2S.
The High-Speed (480 MBit/s) USB 2.0 Device interface supports several USB Classes at the
same time thanks to the rich Endpoint configuration. The On-The-Go (OTG) Host interface
allows device like a USB Flash disk or a USB printer to be directly connected to the processor.
AT32UC3A3 integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.
3
32072AS–AVR32–03/09
AT32UC3A3
2. Blockdiagram
Blockdiagram
NEXUS
CLASS 2+
OCD
USB HS
INTERFACE
ID
VBOF
INSTR
INTERFACE
DATA
INTERFACE
M
S
M
DMA
M
M
S
S
M
DMACA
32KB RAM
DMA
S
S
S
HRAM
S
S
S
M
CONFIGURATION
PB
HS
B
HSB-PB
BRIDGE B
REGISTERS BUS
HSB
PERIPHERAL
DMA
CONTROLLER
HSB-PB
BRIDGE A
PB
KPS[7..0]
NMI_N
EXTERNAL
INTERRUPT
CONTROLLER
PDC
EXTINT[7..0]
PDC
INTERRUPT
CONTROLLER
USART1
USART0
USART2
PDC
MULTIMEDIA CARD
& MEMORY STICK
INTERFACE
USART3
PDC
DATA[15..0]
PA
PB
PC
PX
DMA
CLK
CMD[1..0]
SERIAL
PERIPHERAL
INTERFACE 0/1
PDC
PBA
GENERAL PURPOSE IOs
32KB RAM
SYNCHRONOUS
SERIAL
CONTROLLER
WATCHDOG
TIMER
XOUT1
CLOCK
GENERATOR
SDA10
SDCK
SDCKE
SDCS1
SDWE
CFCE1
CFCE2
CFRW
NANDOE
NANDWE
RXD
TXD
CLK
RTS, CTS
DSR, DTR, DCD, RI
RXD
TXD
CLK
RTS, CTS
TXD
PA
PB
PC
PX
SCK
MISO, MOSI
NPCS0
NPCS[3..1]
TX_CLOCK, TX_FRAME_SYNC
TX_DATA
RX_CLOCK, RX_FRAME_SYNC
TWO-WIRE
INTERFACE 0/1
ANALOG TO
DIGITAL
CONVERTER
AUDIO
BITSTREAM
DAC
SCL
SDA
OSC0
OSC1
PLL0
CLOCK
CONTROLLER
SLEEP
CONTROLLER
PLL1
RESET_N
NCS[5..0]
NRD
NWAIT
NWE0
NWE1
NWE3
RAS
CAS
RX_DATA
PDC
XIN1
POWER
MANAGER
PDC
XIN0
XOUT0
32 KHz
OSC
DATA[15..0]
ADDR[23..0]
CLK
PDC
XIN32
XOUT32
512/256/
128/64 KB
FLASH
RXD
REAL TIME
COUNTER
115 kHz
RCOSC
64 KB
SRAM
M
HIGH SPEED
BUS MATRIX
AES
FAST GPIO
GENERAL PURPOSE IOs
VBG
VBUS
DH+,DL+
DH-,DL-
MEMORY PROTECTION UNIT
PBB
MCKO
MDO[5..0]
MSEO[1..0]
EVTI_N
EVTO_N
UC CPU
LOCAL BUS
INTERFACE
FLASH
CONTROLLER
JTAG
INTERFACE
EXTERNAL BUS INTERFACE
(SDRAM, STATIC MEMORY, COMPACT
FLASH & NAND FLASH)
TCK
TDO
TDI
TMS
MEMORY INTERFACE
Figure 2-1.
GCLK[3..0]
A[2..0]
B[2..0]
CLK[2..0]
RESET
CONTROLLER
AD[7..0]
ADVREF
DATA[1..0]
DATAN[1..0]
TIMER/COUNTER
0/1
4
32072AS–AVR32–03/09
AT32UC3A3
2.1
2.1.1
Processor and Architecture
AVR32 UC CPU
• 32-bit load/store AVR32A RISC architecture
–
–
–
–
–
15 general-purpose 32-bit registers
32-bit Stack Pointer, Program Counter and Link Register reside in register file
Fully orthogonal instruction set
Privileged and unprivileged modes enabling efficient and secure Operating Systems
Innovative instruction set together with variable instruction length ensuring industry leading
code density
– DSP extension with saturating arithmetic, and a wide variety of multiply instructions
• Three stage pipeline allows one instruction per clock cycle for most instructions
– Byte, halfword, word and double word memory access
– Multiple interrupt priority levels
• MPU allows for operating systems with memory protection
2.1.2
Debug and Test System
• IEEE1149.1 compliant JTAG and boundary scan
• Direct memory access and programming capabilities through JTAG interface
• Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+
•
•
•
•
2.1.3
– Low-cost NanoTrace supported
Auxiliary port for high-speed trace information
Hardware support for six Program and two data breakpoints
Unlimited number of software breakpoints supported
Advanced Program, Data, Ownership and Watchpoint trace supported
Peripheral DMA Controller
• Transfers from/to peripheral to/from any memory space without intervention of the processor
• Next Pointer Support, forbids strong real-time constraints on buffer management
• Eight channels and 24 Handshake interfaces
–
–
–
–
–
–
2.1.4
Two for each USART
Two for each Serial Synchronous Controller (SSC)
Two for each Serial Peripheral Interface (SPI)
One for ADC
Four for each TWI Interface
Two for each Audio Bit Stream DAC
Bus System
• High Speed Bus (HSB) matrix with 7 Masters and 10 Slaves handled
– Handles Requests from
• Masters: the CPU (Instruction and Data Fetch), PDCA, CPU SAB, USBB, DMACA
• Slaves: the internal Flash, internal SRAM, Peripheral Bus A, Peripheral Bus B, External
Bus Interface (EBI), Advanced Encrytion Standard (AES)
– Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)
– Burst breaking with Slot Cycle Limit
– One address decoder provided per master
• Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus
5
32072AS–AVR32–03/09
AT32UC3A3
3. Signals Description
The following table gives details on the signal name classified by peripheral
Table 3-1.
Signal Description List
Signal Name
Function
Type
Active
Level
Comments
Power
VDDIO
I/O Power Supply
Power
3.0 to 3.6 V
VDDANA
Analog Power Supply
Power
3.0 to 3.6 V
VDDIN
Voltage Regulator Input Supply
Power
2.7 to 3.6 V
ONREG
Voltage Regulator ON/OFF
Power
Control
VDDCORE
Voltage Regulator Output for Digital Supply
Power
Output
GNDANA
Analog Ground
Ground
GNDIO
I/O Ground
Ground
GNDCORE
DIgital Ground
Ground
GNDPLL
PLL Ground
Ground
1
2.7 to 3.6 V
1.65 to 1.95V
Clocks, Oscillators, and PLL’s
XIN0, XIN1, XIN32
Crystal 0, 1, 32 Input
Analog
XOUT0, XOUT1,
XOUT32
Crystal 0, 1, 32 Output
Analog
JTAG
TCK
Test Clock
Input
TDI
Test Data In
Input
TDO
Test Data Out
TMS
Test Mode Select
Output
Input
Auxiliary Port - AUX
MCKO
Trace Data Output Clock
Output
MDO[5:0]
Trace Data Output
Output
MSEO[1:0]
Trace Frame Control
Output
EVTI_N
Event In
Output
Low
EVTO_N
Event Out
Output
Low
Power Manager - PM
6
32072AS–AVR32–03/09
AT32UC3A3
Table 3-1.
Signal Description List
Signal Name
Function
GCLK[2:0]
Generic Clock Pins
RESET_N
Reset Pin
Type
Active
Level
Comments
Output
Input
Low
DMA Controller - DMACA (optional)
DMAACK[1:0]
DMA Acknowledge
DMARQ[1:0]
DMA Requests
Output
Input
External Interrupt Module - EIM
EXTINT[7:0]
External Interrupt Pins
Input
KPS0 - KPS7
Keypad Scan Pins
NMI_N
Non-Maskable Interrupt Pin
Output
Input
Low
General Purpose Input/Output pin - GPIOA, GPIOB, GPIOC, GPIOX
PA[31:0]
Parallel I/O Controller GPIOA
I/O
PB[11:0]
Parallel I/O Controller GPIOB
I/O
PC[5:0]
Parallel I/O Controller GPIOC
I/O
PX[59:0]
Parallel I/O Controller GPIO X
I/O
External Bus Interface - EBI
ADDR[23:0]
Address Bus
Output
CAS
Column Signal
Output
Low
CFCE1
Compact Flash 1 Chip Enable
Output
Low
CFCE2
Compact Flash 2 Chip Enable
Output
Low
CFRNW
Compact Flash Read Not Write
Output
DATA[15:0]
Data Bus
NANDOE
NAND Flash Output Enable
Output
Low
NANDWE
NAND Flash Write Enable
Output
Low
NCS[5:0]
Chip Select
Output
Low
NRD
Read Signal
Output
Low
NWAIT
External Wait Signal
Input
Low
NWE0
Write Enable 0
Output
Low
NWE1
Write Enable 1
Output
Low
I/O
7
32072AS–AVR32–03/09
AT32UC3A3
Table 3-1.
Signal Description List
Type
Active
Level
Row Signal
Output
Low
SDA10
SDRAM Address 10 Line
Output
SDCK
SDRAM Clock
Output
SDCKE
SDRAM Clock Enable
Output
SDCS
SDRAM Chip Select
Output
Low
SDWE
SDRAM Write Enable
Output
Low
Signal Name
Function
RAS
Comments
MultiMedia Card Interface - MCI
CLK
Multimedia Card Clock
Output
CMD[1:0]
Multimedia Card Command
I/O
DATA[15:0]
Multimedia Card Data
I/O
Serial Peripheral Interface - SPI0
MISO
Master In Slave Out
I/O
MOSI
Master Out Slave In
I/O
NPCS[3:0]
SPI Peripheral Chip Select
I/O
SCK
Clock
Low
Output
Synchronous Serial Controller - SSC
RX_CLOCK
SSC Receive Clock
I/O
RX_DATA
SSC Receive Data
Input
RX_FRAME_SYNC
SSC Receive Frame Sync
I/O
TX_CLOCK
SSC Transmit Clock
I/O
TX_DATA
SSC Transmit Data
Output
TX_FRAME_SYNC
SSC Transmit Frame Sync
I/O
Timer/Counter - TC0, TC1
A0
Channel 0 Line A
I/O
A1
Channel 1 Line A
I/O
A2
Channel 2 Line A
I/O
B0
Channel 0 Line B
I/O
B1
Channel 1 Line B
I/O
8
32072AS–AVR32–03/09
AT32UC3A3
Table 3-1.
Signal Description List
Signal Name
Function
Type
B2
Channel 2 Line B
CLK0
Channel 0 External Clock Input
Input
CLK1
Channel 1 External Clock Input
Input
CLK2
Channel 2 External Clock Input
Input
Active
Level
Comments
I/O
Two-wire Interface - TWI0, TWI1
SCL
Serial Clock
I/O
SDA
Serial Data
I/O
Universal Synchronous Asynchronous Receiver Transmitter - USART0, USART1, USART2, USART3
CLK
Clock
I/O
CTS
Clear To Send
DCD
Data Carrier Detect
Only USART1
DSR
Data Set Ready
Only USART1
DTR
Data Terminal Ready
Only USART1
RI
Ring Indicator
Only USART1
RTS
Request To Send
RXD
Receive Data
Input
RXDN
Inverted Receive Data
Input
TXD
Transmit Data
Output
TXDN
Inverted Transmit Data
Output
Input
Output
Low
Low
Analog to Digital Converter - ADC
AD0 - AD7
Analog input pins
Analog
input
Audio Bitstream DAC (ABDAC)
DATA0-DATA1
D/A Data out
Output
DATAN0-DATAN1
D/A Data inverted out
Output
Universal Serial Bus Device - USB
FSDM
USB Full Speed Data -
Analog
FSDP
USB Full Speed Data +
Analog
HSDM
USB High Speed Data -
Analog
9
32072AS–AVR32–03/09
AT32UC3A3
Table 3-1.
Signal Description List
Signal Name
Function
Type
HSDP
USB High Speed Data +
Analog
USB_VBIAS
USB VBIAS reference
Analog
USB_VBUS
USB VBUS for OTG feature
Output
Active
Level
Comments
Connect to the ground through a
6810ohms (+/- 0.5%) resistor
10
32072AS–AVR32–03/09
AT32UC3A3
4. Package and Pinout
4.1
Package
The device pins are multiplexed with peripheral functions as described in the Peripheral Multiplexing on I/O Line section.
Figure 4-1.
TBGA144 Pinout (top view)
1
2
3
4
5
6
7
8
9
10
11
12
A
B
C
D
E
F
G
H
J
K
L
M
Table 4-1.
BGA144 Package Pinout A1..M8
1
2
3
4
5
6
7
8
9
10
11
12
PX40
PB00
PA28
PA27
PB03
PA29
PC02
PC04
PC05
DPHS
DMHS
USB_VBUS
PX10
PB11
PA31
PB02
VDDIO
PB04
PC03
VDDIO
DMFS
GNDPLL
PA09
C
PX09
PX35
GNDIO
PB01
PX16
PX13
PA30
PB08
DPFS
GNDCORE
PA08
PA10
D
PX08
PX37
PX36
PX47
PX19
PX12
PB10
PA02
PA26
PA11
PB07
PB06
E
PX38
VDDIO
PX54
PX53
VDDIO
PX15
PB09
VDDIN
PA25
PA07
VDDCORE
PA12
F
PX39
PX07
PX06
PX49
PX48
GNDIO
GNDIO
PA06
PA04
PA05
PA13
PA16
G
PX00
PX05
PX59
PX50
PX51
GNDIO
GNDIO
PA23
PA24
PA03
PA00
PA01
H
PX01
VDDIO
PX58
PX57
VDDIO
PC01
PA17
VDDIO
PA21
PA22
VDDANA
PB05
J
PX04
PX02
PX34
PX56
PX55
PA14
PA15
PA19
PA20
TMS
TDO
RESET_N
K
PX03
PX44
GNDIO
PX46
PC00
PX17
PX52
PA18
PX27
GNDIO
PX29
TCK
L
PX11
GNDIO
PX45
PX20
VDDIO
PX18
PX43
ONREG
PX26
PX28
GNDANA
TDI
M
PX22
PX41
PX42
PX14
PX21
PX23
PX24
PX25
PX32
PX31
PX30
PX33
A
B
USB_
VBIAS
11
32072AS–AVR32–03/09
AT32UC3A3
Figure 4-2.
LQFP144 Pinout
108
73
109
72
144
37
1
Table 4-2.
36
Package Pinout
1
USB_VBUS
37
PX10
73
PX20
109
PA21
2
VDDIO
38
PX35
74
PX46
110
PA22
3
USB_VBIAS
39
PX47
75
PX50
111
PA23
4
GNDIO
40
PX15
76
PX57
112
PA24
5
DMHS
41
PX48
77
PX51
113
PA20
6
DPHS
42
PX53
78
PX56
114
PA19
7
GNDIO
43
PX49
79
PX55
115
PA18
8
DMFS
44
PX36
80
PX21
116
PA17
9
DPFS
45
PX37
81
VDDIO
117
GNDANA
10
VDDIO
46
PX54
82
GNDIO
118
VDDANA
11
PB08
47
GNDIO
83
PX17
119
PA25
12
PC05
48
VDDIO
84
PX18
120
PA26
13
PC04
49
PX09
85
PX23
121
PB05
14
PA30
50
PX08
86
PX24
122
PA00
15
PA02
51
PX38
87
PX52
123
PA01
16
PB10
52
PX39
88
PX43
124
PA05
17
PB09
53
PX06
89
PX27
125
PA03
18
PC02
54
PX07
90
PX26
126
PA04
19
PC03
55
PX00
91
PX28
127
PA06
20
GNDIO
56
PX59
92
PX25
128
PA16
21
VDDIO
57
PX58
93
PX32
129
PA13
22
PB04
58
PX05
94
PX29
130
VDDIO
23
PA29
59
PX01
95
PX33
131
GNDIO
24
PB03
60
PX04
96
PX30
132
PA12
25
PB02
61
PX34
97
PX31
133
PA07
26
PA27
62
PX02
98
PC00
134
PB06
12
32072AS–AVR32–03/09
AT32UC3A3
Table 4-2.
Package Pinout
27
PB01
63
PX03
99
PC01
135
PB07
28
PA28
64
VDDIO
100
PA14
136
PA11
29
PA31
65
GNDIO
101
PA15
137
PA08
30
PB00
66
PX44
102
GNDIO
138
PA10
31
PB11
67
PX11
103
VDDIO
139
PA09
32
PX16
68
PX14
104
TMS
140
GNDCORE
33
PX13
69
PX42
105
TDO
141
VDDCORE
34
PX12
70
PX45
106
RESET_N
142
VDDIN
35
PX19
71
PX41
107
TCK
143
ONREG
36
PX40
72
PX22
108
TDI
144
GNDPLL
4.2
Peripheral Multiplexing on I/O lines
Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C, or D. The following
table define how the I/O lines on the peripherals A, B, C, or D are multiplexed by the GPIO.
Table 4-3.
GPIO Controller Function Multiplexing
BGA144
QFP144
PIN
GPIO Pin
Function A
Function B
Function C
G11
122
PA00
GPIO 0
USART0 - RTS
TC0 - CLK1
SPI1 - NPCS[3]
G12
123
PA01
GPIO 1
USART0 - CTS
TC0 - A1
USART2 - RTS
D8
15
PA02
GPIO 2
USART0 - CLK
TC0 - B1
SPI0 - NPCS[0]
G10
125
PA03
GPIO 3
USART0 - RXD
EIC - EXTINT[4]
DAC - DATA[0]
F9
126
PA04
GPIO 4
USART0 - TXD
EIC - EXTINT[5]
DAC - DATAN[0]
F10
124
PA05
GPIO 5
USART1 - RXD
TC1 - CLK0
USB - USB_ID
F8
127
PA06
GPIO 6
USART1 - TXD
TC1 - CLK1
USB - USB_VBOF
E10
133
PA07
GPIO 7
SPI0 - NPCS[3]
DAC - DATAN[0]
USART1 - CLK
C11
137
PA08
GPIO 8
SPI0 - SCK
DAC - DATA[0]
TC1 - B1
B12
139
PA09
GPIO 9
SPI0 - NPCS[0]
EIC - EXTINT[6]
TC1 - A1
C12
138
PA10
GPIO 10
SPI0 - MOSI
USB USB_VBOF
TC1 - B0
D10
136
PA11
GPIO 11
SPI0 - MISO
USB - USB_ID
TC1 - A2
E12
132
PA12
GPIO 12
USART1 - CTS
SPI0 - NPCS[2]
TC1 - A0
F11
129
PA13
GPIO 13
USART1 - RTS
SPI0 - NPCS[1]
EIC - EXTINT[7]
J6
100
PA14
GPIO 14
SPI0 - NPCS[1]
TWIMS0 TWALM
TWIMS1 - TWCK
J7
101
PA15
GPIO 15
MCI - CMD[1]
SPI1 - SCK
TWIMS1 - TWD
F12
128
PA16
GPIO 16
MCI - DATA[11]
SPI1 - MOSI
TC1 - CLK2
H7
116
PA17
GPIO 17
MCI - DATA[10]
SPI1 - NPCS[1]
ADC - AD[7]
K8
115
PA18
GPIO 18
MCI - DATA[9]
SPI1 - NPCS[2]
ADC - AD[6]
J8
114
PA19
GPIO 19
MCI - DATA[8]
SPI1 - MISO
ADC - AD[5]
Function D
]
13
32072AS–AVR32–03/09
AT32UC3A3
Table 4-3.
GPIO Controller Function Multiplexing
J9
113
PA20
GPIO 20
EIC - EXTINT[8]
SSC RX_FRAME_SYN
C
H9
109
PA21
GPIO 21
ADC - AD[0]
EIC - EXTINT[0]
USB - USB_ID
H10
110
PA22
GPIO 22
ADC - AD[1]
EIC - EXTINT[1]
USB - USB_VBOF
G8
111
PA23
GPIO 23
ADC - AD[2]
EIC - EXTINT[2]
DAC - DATA[1]
G9
112
PA24
GPIO 24
ADC - AD[3]
EIC - EXTINT[3]
DAC - DATAN[1]
E9
119
PA25
GPIO 25
TWIMS0 - TWD
TWIMS1 TWALM
USART1 - DCD
D9
120
PA26
GPIO 26
TWIMS0 - TWCK
USART2 - CTS
USART1 - DSR
A4
26
PA27
GPIO 27
MCI - CLK
SSC - RX_DATA
USART3 - RTS
MSI - SCLK
A3
28
PA28
GPIO 28
MCI - CMD[0]
SSC RX_CLOCK
USART3 - CTS
MSI - BS
A6
23
PA29
GPIO 29
MCI - DATA[0]
USART3 - TXD
TC0 - CLK0
MSI - DATA[0]
C7
14
PA30
GPIO 30
MCI - DATA[1]
USART3 - CLK
DMACA DMAACK[0]
MSI - DATA[1]
B3
29
PA31
GPIO 31
MCI - DATA[2]
USART2 - RXD
DMACA DMARQ[0]
MSI - DATA[2]
A2
30
PB00
GPIO 32
MCI - DATA[3]
USART2 - TXD
ADC - TRIGGER
MSI - DATA[3]
C4
27
PB01
GPIO 33
MCI - DATA[4]
DAC - DATA[1]
EIC - SCAN[0]
MSI - INS
B4
25
PB02
GPIO 34
MCI - DATA[5]
DAC - DATAN[1]
EIC - SCAN[1]
A5
24
PB03
GPIO 35
MCI - DATA[6]
USART2 - CLK
EIC - SCAN[2]
B6
22
PB04
GPIO 36
MCI - DATA[7]
USART3 - RXD
EIC - SCAN[3]
H12
121
PB05
GPIO 37
USB - USB_ID
TC0 - A0
EIC - SCAN[4]
D12
134
PB06
GPIO 38
USB USB_VBOF
TC0 - B0
EIC - SCAN[5]
D11
135
PB07
GPIO 39
SPI1 - SCK
SSC TX_CLOCK
EIC - SCAN[6]
C8
11
PB08
GPIO 40
SPI1 - MISO
SSC - TX_DATA
EIC - SCAN[7]
E7
17
PB09
GPIO 41
SPI1 - NPCS[0]
SSC - RX_DATA
EBI - NCS[4]
SPI1 - MOSI
SSC RX_FRAME_SYN
C
EBI - NCS[5]
USART1 - RXD
SSC TX_FRAME_SYN
C
PM - GCLK[1]
D7
16
PB10
GPIO 42
ADC - AD[4]
B2
31
PB11
GPIO 43
K5
98
PC00
GPIO 45
H6
99
PC01
GPIO 46
A7
18
PC02
GPIO 47
B7
19
PC03
GPIO 48
A8
13
PC04
GPIO 49
A9
12
PC05
GPIO 50
G1
55
PX00
GPIO 51
EBI - DATA[10]
USART0 - RXD
USART1 - RI
H1
59
PX01
GPIO 52
EBI - DATA[9]
USART0 - TXD
USART1 - DTR
14
32072AS–AVR32–03/09
AT32UC3A3
Table 4-3.
GPIO Controller Function Multiplexing
J2
62
PX02
GPIO 53
EBI - DATA[8]
USART0 - CTS
PM - GCLK[0]
K1
63
PX03
GPIO 54
EBI - DATA[7]
USART0 - RTS
J1
60
PX04
GPIO 55
EBI - DATA[6]
USART1 - RXD
G2
58
PX05
GPIO 56
EBI - DATA[5]
USART1 - TXD
F3
53
PX06
GPIO 57
EBI - DATA[4]
USART1 - CTS
F2
54
PX07
GPIO 58
EBI - DATA[3]
USART1 - RTS
D1
50
PX08
GPIO 59
EBI - DATA[2]
USART3 - RXD
C1
49
PX09
GPIO 60
EBI - DATA[1]
USART3 - TXD
B1
37
PX10
GPIO 61
EBI - DATA[0]
USART2 - RXD
L1
67
PX11
GPIO 62
EBI - NWE1
USART2 - TXD
D6
34
PX12
GPIO 63
EBI - NWE0
USART2 - CTS
C6
33
PX13
GPIO 64
EBI - NRD
USART2 - RTS
M4
68
PX14
GPIO 65
EBI - NCS[1]
E6
40
PX15
GPIO 66
EBI - ADDR[19]
USART3 - RTS
TC0 - B0
C5
32
PX16
GPIO 67
EBI - ADDR[18]
USART3 - CTS
TC0 - A1
K6
83
PX17
GPIO 68
EBI - ADDR[17]
DMACA DMARQ[1]
TC0 - B1
L6
84
PX18
GPIO 69
EBI - ADDR[16]
DMACA DMAACK[1]
TC0 - A2
D5
35
PX19
GPIO 70
EBI - ADDR[15]
EIC - SCAN[0]
TC0 - B2
L4
73
PX20
GPIO 71
EBI - ADDR[14]
EIC - SCAN[1]
TC0 - CLK0
M5
80
PX21
GPIO 72
EBI - ADDR[13]
EIC - SCAN[2]
TC0 - CLK1
M1
72
PX22
GPIO 73
EBI - ADDR[12]
EIC - SCAN[3]
TC0 - CLK2
M6
85
PX23
GPIO 74
EBI - ADDR[11]
EIC - SCAN[4]
SSC - TX_CLOCK
M7
86
PX24
GPIO 75
EBI - ADDR[10]
EIC - SCAN[5]
SSC - TX_DATA
M8
92
PX25
GPIO 76
EBI - ADDR[9]
EIC - SCAN[6]
SSC - RX_DATA
TC0 - A0
L9
90
PX26
GPIO 77
EBI - ADDR[8]
EIC - SCAN[7]
SSC RX_FRAME_SYN
C
K9
89
PX27
GPIO 78
EBI - ADDR[7]
SPI0 - MISO
SSC TX_FRAME_SYNC
L10
91
PX28
GPIO 79
EBI - ADDR[6]
SPI0 - MOSI
SSC - RX_CLOCK
K11
94
PX29
GPIO 80
EBI - ADDR[5]
SPI0 - SCK
M11
96
PX30
GPIO 81
EBI - ADDR[4]
SPI0 - NPCS[0]
M10
97
PX31
GPIO 82
EBI - ADDR[3]
SPI0 - NPCS[1]
M9
93
PX32
GPIO 83
EBI - ADDR[2]
SPI0 - NPCS[2]
M12
95
PX33
GPIO 84
EBI - ADDR[1]
SPI0 - NPCS[3]
J3
61
PX34
GPIO 85
EBI - ADDR[0]
SPI1 - MISO
PM - GCLK[0]
C2
38
PX35
GPIO 86
EBI - DATA[15]
SPI1 - MOSI
PM - GCLK[1]
D3
44
PX36
GPIO 87
EBI - DATA[14]
SPI1 - SCK
PM - GCLK[2]
D2
45
PX37
GPIO 88
EBI - DATA[13]
SPI1 - NPCS[0]
PM - GCLK[3]
15
32072AS–AVR32–03/09
AT32UC3A3
Table 4-3.
4.2.1
GPIO Controller Function Multiplexing
E1
51
PX38
GPIO 89
EBI - DATA[12]
SPI1 - NPCS[1]
USART1 - DCD
F1
52
PX39
GPIO 90
EBI - DATA[11]
SPI1 - NPCS[2]
USART1 - DSR
A1
36
PX40
GPIO 91
EBI - SDCS
M2
71
PX41
GPIO 92
EBI - CAS
M3
69
PX42
GPIO 93
EBI - RAS
L7
88
PX43
GPIO 94
EBI - SDA10
USART1 - RI
K2
66
PX44
GPIO 95
EBI - SDWE
USART1 - DTR
L3
70
PX45
GPIO 96
EBI - SDCK
K4
74
PX46
GPIO 97
EBI - SDCKE
D4
39
PX47
GPIO 98
EBI - NANDOE
ADC - TRIGGER
MCI - DATA[11]
F5
41
PX48
GPIO 99
EBI - ADDR[23]
USB USB_VBOF
MCI - DATA[10]
F4
43
PX49
GPIO 100
EBI - CFRNW
USB - USB_ID
MCI - DATA[9]
G4
75
PX50
GPIO 101
EBI - CFCE2
TC1 - B2
MCI - DATA[8]
G5
77
PX51
GPIO 102
EBI - CFCE1
DMACA DMAACK[0]
MCI - DATA[15]
K7
87
PX52
GPIO 103
EBI - NCS[3]
DMACA DMARQ[0]
MCI - DATA[14]
E4
42
PX53
GPIO 104
EBI - NCS[2]
E3
46
PX54
GPIO 105
EBI - NWAIT
USART3 - TXD
MCI - DATA[12]
J5
79
PX55
GPIO 106
EBI - ADDR[22]
EIC - SCAN[3]
USART2 - RXD
J4
78
PX56
GPIO 107
EBI - ADDR[21]
EIC - SCAN[2]
USART2 - TXD
H4
76
PX57
GPIO 108
EBI - ADDR[20]
EIC - SCAN[1]
USART3 - RXD
H3
57
PX58
GPIO 109
EBI - NCS[0]
EIC - SCAN[0]
USART3 - TXD
G3
56
PX59
GPIO 110
EBI - NANDWE
MCI - DATA[13]
MCI - CMD[1]
Oscillator Pinout
Table 4-4.
Oscillator Pinout
pin
pin
Pad
Oscillator pin
A7
18
PC02
xin0
A8
13
PC04
xin1
K5
98
PC00
xin32
B7
19
PC03
xout0
A9
12
PC05
xout1
H6
99
PC01
xout32
16
32072AS–AVR32–03/09
AT32UC3A3
4.3
Signal Descriptions
The following table gives details on signal name classified by peripheral.
Table 4-5.
Signal Description List
Signal Name
Function
Type
Active
Level
Comments
Power
VDDIO
I/O Power Supply
Power
3.0 to 3.6V
VDDANA
Analog Power Supply
Power
3.0 to 3.6V
VDDIN
Voltage Regulator Input Supply
Power
2.7 to 3.6V
ONREG
Voltage Regulator ON/OFF
Power
Control
VDDCORE
Voltage Regulator Output for Digital Supply
Power
Output
GNDANA
Analog Ground
Ground
GNDIO
I/O Ground
Ground
GNDCORE
DIgital Ground
Ground
GNDPLL
PLL Ground
Ground
1
2.7 to 3.6 V
1.65 to 1.95 V
Clocks, Oscillators, and PLL’s
XIN0, XIN1, XIN32
Crystal 0, 1, 32 Input
Analog
XOUT0, XOUT1,
XOUT32
Crystal 0, 1, 32 Output
Analog
JTAG
TCK
Test Clock
Input
TDI
Test Data In
Input
TDO
Test Data Out
TMS
Test Mode Select
Output
Input
Auxiliary Port - AUX
MCKO
Trace Data Output Clock
Output
MDO[5:0]
Trace Data Output
Output
MSEO[1:0]
Trace Frame Control
Output
EVTI_N
Event In
Output
Low
EVTO_N
Event Out
Output
Low
Power Manager - PM
17
32072AS–AVR32–03/09
AT32UC3A3
Table 4-5.
Signal Description List
Signal Name
Function
GCLK[2:0]
Generic Clock Pins
RESET_N
Reset Pin
Type
Active
Level
Comments
Output
Input
Low
DMA Controller - DMACA (optional)
DMAACK[1:0]
DMA Acknowledge
DMARQ[1:0]
DMA Requests
Output
Input
External Interrupt Module - EIM
EXTINT[7:0]
External Interrupt Pins
Input
KPS0 - KPS7
Keypad Scan Pins
NMI_N
Non-Maskable Interrupt Pin
Output
Input
Low
General Purpose Input/Output pin - GPIOA, GPIOB, GPIOC, GPIOX
PA[31:0]
Parallel I/O Controller GPIO port A
I/O
PB[11:0]
Parallel I/O Controller GPIO port B
I/O
PC[5:0]
Parallel I/O Controller GPIO port C
I/O
PX[59:0]
Parallel I/O Controller GPIO port X
I/O
External Bus Interface - EBI
ADDR[23:0]
Address Bus
Output
CAS
Column Signal
Output
Low
CFCE1
Compact Flash 1 Chip Enable
Output
Low
CFCE2
Compact Flash 2 Chip Enable
Output
Low
CFRNW
Compact Flash Read Not Write
Output
DATA[15:0]
Data Bus
NANDOE
NAND Flash Output Enable
Output
Low
NANDWE
NAND Flash Write Enable
Output
Low
NCS[5:0]
Chip Select
Output
Low
NRD
Read Signal
Output
Low
NWAIT
External Wait Signal
Input
Low
NWE0
Write Enable 0
Output
Low
NWE1
Write Enable 1
Output
Low
I/O
18
32072AS–AVR32–03/09
AT32UC3A3
Table 4-5.
Signal Description List
Type
Active
Level
Row Signal
Output
Low
SDA10
SDRAM Address 10 Line
Output
SDCK
SDRAM Clock
Output
SDCKE
SDRAM Clock Enable
Output
SDCS
SDRAM Chip Select
Output
Low
SDWE
SDRAM Write Enable
Output
Low
Signal Name
Function
RAS
Comments
MultiMedia Card Interface - MCI
CLK
Multimedia Card Clock
Output
CMD[1:0]
Multimedia Card Command
I/O
DATA[15:0]
Multimedia Card Data
I/O
Serial Peripheral Interface - SPI0
MISO
Master In Slave Out
I/O
MOSI
Master Out Slave In
I/O
NPCS[3:0]
SPI Peripheral Chip Select
I/O
SCK
Clock
Low
Output
Synchronous Serial Controller - SSC
RX_CLOCK
SSC Receive Clock
I/O
RX_DATA
SSC Receive Data
Input
RX_FRAME_SYNC
SSC Receive Frame Sync
I/O
TX_CLOCK
SSC Transmit Clock
I/O
TX_DATA
SSC Transmit Data
Output
TX_FRAME_SYNC
SSC Transmit Frame Sync
I/O
Timer/Counter - TC0, TC1
A0
Channel 0 Line A
I/O
A1
Channel 1 Line A
I/O
A2
Channel 2 Line A
I/O
B0
Channel 0 Line B
I/O
B1
Channel 1 Line B
I/O
19
32072AS–AVR32–03/09
AT32UC3A3
Table 4-5.
Signal Description List
Signal Name
Function
Type
B2
Channel 2 Line B
CLK0
Channel 0 External Clock Input
Input
CLK1
Channel 1 External Clock Input
Input
CLK2
Channel 2 External Clock Input
Input
Active
Level
Comments
I/O
Two-wire Interface - TWI0, TWI1
SCL
Serial Clock
I/O
SDA
Serial Data
I/O
Universal Synchronous Asynchronous Receiver Transmitter - USART0, USART1, USART2, USART3
CLK
Clock
I/O
CTS
Clear To Send
DCD
Data Carrier Detect
Only USART1
DSR
Data Set Ready
Only USART1
DTR
Data Terminal Ready
Only USART1
RI
Ring Indicator
Only USART1
RTS
Request To Send
RXD
Receive Data
Input
RXDN
Inverted Receive Data
Input
TXD
Transmit Data
Output
TXDN
Inverted Transmit Data
Output
Input
Output
Low
Low
Analog to Digital Converter - ADC
AD0 - AD7
Analog input pins
Analog
input
Audio Bitstream DAC (ABDAC)
DATA0-DATA1
D/A Data out
Output
DATAN0-DATAN1
D/A Data inverted out
Output
Universal Serial Bus Device - USB
FSDM
USB Full Speed Data -
Analog
FSDP
USB Full Speed Data +
Analog
HSDM
USB High Speed Data -
Analog
20
32072AS–AVR32–03/09
AT32UC3A3
Table 4-5.
Signal Description List
Signal Name
Function
HSDP
USB High Speed Data +
Analog
USB_VBIAS
USB VBIAS reference
Analog
USB_VBUS
USB VBUS for OTG feature
Output
4.3.1
Type
Active
Level
Comments
Connect to the ground through a
6810 ohms (+/- 0.5%) resistor
JTAG Pins
TMS and TDI pins have pull-up resistors. TDO pin is an output, driven at up to VDDIO, and has
no pull-up resistor.
4.3.2
RESET_N Pin
The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.
4.3.3
TWI Pins
When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike filtering. When used as GPIO pins or used for other peripherals, the
pins have the same characteristics as other GPIO pins.
4.3.4
GPIO Pins
All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each I/O line through the I/O Controller. After reset, I/O lines default
as inputs with pull-up resistors disabled, except when indicated otherwise in the column “Reset
State” of the I/O Controller multiplexing tables.
21
32072AS–AVR32–03/09
AT32UC3A3
4.4
4.4.1
Power Considerations
Power Supplies
The AT32UC3A3 has several types of power supply pins:
•
•
•
•
VDDIO: Powers I/O lines. Voltage is 3.3V nominal
VDDANA: Powers the ADC Voltage and provides the ADVREF voltage is 3.3V nominal
VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal
VDDCORE: Output voltage from regulator for filtering purpose and provides the supply to the
core, memories, and peripherals. Voltage is 1.8V nominal
The ground pins GNDCORE are common to VDDCORE and VDDIN. The ground pin for
VDDANA is GNDANA. The ground pin for VDDIO is GNDIO.
Refer to Electrical Characteristics chapter for power consumption on the various supply pins.
4.4.2
Voltage Regulator
The AT32UC3A3 embeds a voltage regulator that converts from 3.3V to 1.8V with a load of up
to 100 mA. The regulator takes its input voltage from VDDIN, and supplies the output voltage on
VDDCORE and powers the core, memories and peripherals.
Adequate output supply decoupling is mandatory for VDDCORE to reduce ripple and avoid
oscillations.
The best way to achieve this is to use two capacitors in parallel between VDDCORE and
GNDCORE:
• One external 470pF (or 1nF) NPO capacitor (COUT1) should be connected as close to the
chip as possible.
• One external 2.2µF (or 3.3µF) X7R capacitor (COUT2).
Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop.
The input decoupling capacitor should be placed close to the chip, e.g., two capacitors can be
used in parallel (100nF NPO and 4.7µF X7R).
3.3V
VDDIN
CIN2
CIN1
ONREG
1.8V
1.8V
Regulator
VDDCORE
COUT2
COUT1
ONREG input must be tied to VDDIN.
22
32072AS–AVR32–03/09
AT32UC3A3
5. Power Considerations
5.1
Power Supplies
The AT32UC3A3 has several types of power supply pins:
•
•
•
•
VDDIO: Powers I/O lines. Voltage is 3.3V nominal
VDDANA: Powers the ADC Voltage and provides the ADVREF voltage is 3.3V nominal
VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal
VDDCORE: Output voltage from regulator for filtering purpose and provides the supply to the
core, memories, and peripherals. Voltage is 1.8V nominal
The ground pins GNDCORE are common to VDDCORE and VDDIN. The ground pin for
VDDANA is GNDANA. The ground pin for VDDIO is GNDIO
Refer to Electrical Characteristics chapter for power consumption on the various supply pins.
5.2
Voltage Regulator
The AT32UC3A3 embeds a voltage regulator that converts from 3.3V to 1.8V with a load of up
to 100 mA. The regulator takes its input voltage from VDDIN, and supplies the output voltage on
VDDCORE and powers the core, memories and peripherals.
Adequate output supply decoupling is mandatory for VDDCORE to reduce ripple and avoid
oscillations.
The best way to achieve this is to use two capacitors in parallel between VDDCORE and
GNDCORE:
• One external 470pF (or 1nF) NPO capacitor (COUT1) should be connected as close to the
chip as possible.
• One external 2.2µF (or 3.3µF) X7R capacitor (COUT2).
Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop.
The input decoupling capacitor should be placed close to the chip, e.g., two capacitors can be
used in parallel (100nF NPO and 4.7µF X7R).
3.3V
VDDIN
CIN2
CIN1
ONREG
1.8
V
1.8V
Regulator
VDDCORE
COUT2
COUT1
ONREG input must be tied to VDDIN.
23
32072AS–AVR32–03/09
AT32UC3A3
6. I/O Line Considerations
6.1
JTAG Pins
TMS and TDI pins have pull-up resistors. TDO pin is an output, driven at up to VDDIO, and has
no pull-up resistor.
6.2
RESET_N Pin
The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.
6.3
TWI Pins
When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike filtering. When used as GPIO pins or used for other peripherals, the
pins have the same characteristics as other GPIO pins.
6.4
GPIO Pins
All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each I/O line through the I/O Controller. After reset, I/O lines default
as inputs with pull-up resistors disabled, except when indicated otherwise in the column “Reset
State” of the I/O Controller multiplexing tables.
24
32072AS–AVR32–03/09
AT32UC3A3
7. Memories
7.1
Embedded Memories
• Internal High-Speed Flash
– 256KBytes (AT32UC3A3256/S)
– 128Kbytes (AT32UC3A3128/S)
– 64Kbytes (AT32UC3A364/S)
• 0 wait state access at up to 36MHz in worst case conditions
• 1 wait state access at up to 66MHz in <orst case conditions
• Pipelined Flash architecture, allowing burst reads from sequential Flash locations, hiding
penalty of 1 wait state access
• Pipelined Flash architecture typically reduces the cycle penalty of 1 wait state operation
to only 15% compared to 0 wait state operation
• 100 000 write cycles, 15-year data retention capability
• Sector lock capabilities, Bootloader protection, Security Bit
• 32 fuses, preserved during Chip Erase
• User page for data to be preserved during Chip Erase
• Internal High-Speed SRAM
– 64KBytes, Single-cycle access at full speed on CPU Local Bus and accessible through the
High Speed Bud (HSB) matrix
– 2x32KBytes, accessible independently through the High Speed Bud (HSB) matrix
7.2
Physical Memory Map
The System Bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot.
Note that AVR32UC CPU uses unsegmented translation, as described in the AVR32 Architecture Manual.
The 32-bit physical address space is mapped as follows:
Table 7-1.
AT32UC3A3 Physical Memory Map
Size
Size
Size
AT32UC3A325
6
AT32UC3A312
8
AT32UC3A36
4
Device
Start
Address
Embedded CPU SRAM
0x00000000
64KByte
64KByte
64KByte
Embedded Flash
0x80000000
256KByte
128KByte
64KByte
EBI SRAM CS0
0xC0000000
16MByte
16MByte
16MByte
EBI SRAM CS2
0xC8000000
16MByte
16MByte
16MByte
EBI SRAM CS3
0xCC000000
16MByte
16MByte
16MByte
EBI SRAM CS4
0xD8000000
16MByte
16MByte
16MByte
EBI SRAM CS5
0xDC000000
16MByte
16MByte
16MByte
EBI SRAM CS1 /SDRAM CS0
0xD0000000
128MByte
128MByte
128MByte
USB Data
0xE0000000
64KByte
64KByte
64KByte
Embedded System SRAM 0
0xFF000000
32KByte
32KByte
32KByte
25
32072AS–AVR32–03/09
AT32UC3A3
Table 7-1.
7.3
AT32UC3A3 Physical Memory Map
Size
Size
Size
AT32UC3A325
6
AT32UC3A312
8
AT32UC3A36
4
0xFF008000
32KByte
32KByte
32KByte
HSB-PB Bridge A
0xFFFF0000
64KByte
64KByte
64KByte
HSB-PB Bridge B
0xFFFE0000
64KByte
64KByte
64KByte
Device
Start
Address
Embedded System SRAM 1
Peripheral Address Map
Table 7-2.
Peripheral Address Mapping
Address
Peripheral Name
Bus
0xFF100000
DMACA
DMA Controller - DMACA
0xFF200000
RESERVED
0xFFFD0000
AES
Advanced Encryption Standard - AES
USB
USB 2.0 OTG Interface - USB
0xFFFE0000
0xFFFE1000
HMATRIX
HSB Matrix - HMATRIX
FLASHC
Flash Controller - FLASHC
0xFFFE1400
0xFFFE1C00
SMC
Static Memory Controller - SMC
0xFFFE2000
SDRAMC
SDRAM Controller - SDRAMC
ECCHRS
Error code corrector Hamming and Reed Solomon ECCHRS
BUSMON
Bus Monitor module - BUSMON
MCI
Mulitmedia Card Interface - MCI
MSI
Memory Stick Interface - MSI
0xFFFE2400
0xFFFE2800
0xFFFE4000
0xFFFE8000
0xFFFF0000
PDMA
Peripheral DMA Controller - PDMA
INTC
Interrupt controller - INTC
0xFFFF0800
26
32072AS–AVR32–03/09
AT32UC3A3
Table 7-2.
Peripheral Address Mapping
0xFFFF0C00
PM
Power Manager - PM
RTC
Real Time Counter - RTC
WDT
Watchdog Timer - WDT
EIC
External Interrupt Controller - EIC
0xFFFF0D00
0xFFFF0D30
0xFFFF0D80
0xFFFF1000
GPIO
0xFFFF1400
General Purpose Input/Output Controller - GPIO
USART0
Universal Synchronous/Asynchronous
Receiver/Transmitter - USART0
USART1
Universal Synchronous/Asynchronous
Receiver/Transmitter - USART1
USART2
Universal Synchronous/Asynchronous
Receiver/Transmitter - USART2
USART3
Universal Synchronous/Asynchronous
Receiver/Transmitter - USART3
0xFFFF1800
0xFFFF1C00
0xFFFF2000
0xFFFF2400
SPI0
Serial Peripheral Interface - SPI0
SPI1
Serial Peripheral Interface - SPI1
0xFFFF2800
0xFFFF2C00
TWIM0
Two-wire Master Interface - TWIM0
TWIM1
Two-wire Master Interface - TWIM1
0xFFFF3000
0xFFFF3400
SSC
Synchronous Serial Controller - SSC
TC0
Timer/Counter - TC0
ADC
Analog to Digital Converter - ADC
DAC
Audio Bitstream DAC - DAC
TC1
Timer/Counter - TC1
0xFFFF3800
0xFFFF3C00
0xFFFF4000
0xFFFF4400
0xFFFF4800
RESERVED
27
32072AS–AVR32–03/09
AT32UC3A3
Table 7-2.
Peripheral Address Mapping
0xFFFF4c00
RESERVED
0xFFFF5000
TWIS0
Two-wire Slave Interface - TWIS0
TWIS1
Two-wire Slave Interface - TWIS1
0xFFFF5400
7.4
CPU Local Bus Mapping
Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.
Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local busmapped GPIO registers.
The following GPIO registers are mapped on the local bus:
Table 7-3.
Local Bus Mapped GPIO Registers
Port
Register
Mode
Local Bus
Address
Access
A
Output Driver Enable Register (ODER)
WRITE
0x40000040
Write-only
SET
0x40000044
Write-only
CLEAR
0x40000048
Write-only
TOGGLE
0x4000004C
Write-only
WRITE
0x40000050
Write-only
SET
0x40000054
Write-only
CLEAR
0x40000058
Write-only
TOGGLE
0x4000005C
Write-only
Pin Value Register (PVR)
-
0x40000060
Read-only
Output Driver Enable Register (ODER)
WRITE
0x40000240
Write-only
SET
0x40000244
Write-only
CLEAR
0x40000248
Write-only
TOGGLE
0x4000024C
Write-only
WRITE
0x40000250
Write-only
SET
0x40000254
Write-only
CLEAR
0x40000258
Write-only
TOGGLE
0x4000025C
Write-only
-
0x40000260
Read-only
Output Value Register (OVR)
B
Output Value Register (OVR)
Pin Value Register (PVR)
28
32072AS–AVR32–03/09
AT32UC3A3
8. Peripherals
8.1
Clock Connections
8.1.1
Timer/Counters
Each Timer/Counter channel can independently select an internal or external clock source for its
counter:
Table 8-1.
Timer/Counter clock connections
Source
Name
Connection
Internal
TIMER_CLOCK1
32 KHz clock
TIMER_CLOCK2
PBA Clock / 2
TIMER_CLOCK3
PBA Clock / 8
TIMER_CLOCK4
PBA Clock / 32
TIMER_CLOCK5
PBA Clock / 128
XC0
See Table 8.2 on page 29
External
XC1
XC2
8.2
Peripheral Multiplexing on I/O lines
Each GPIO line can be assigned to one of 4 peripheral functions; A, B, C or D. The following
table define how the I/O lines on the peripherals A, B, C or D are multiplexed by the GPIO.
Table 8-2.
GPIO Controller Function Multiplexing
BGA144
QFP144
PIN
GPIO Pin
Function A
Function B
Function C
G11
122
PA00
GPIO 0
USART0 - RTS
TC0 - CLK1
SPI1 - NPCS[3]
G12
123
PA01
GPIO 1
USART0 - CTS
TC0 - A1
USART2 - RTS
D8
15
PA02
GPIO 2
USART0 - CLK
TC0 - B1
SPI0 - NPCS[0]
G10
125
PA03
GPIO 3
USART0 - RXD
EIC - EXTINT[4]
DAC - DATA[0]
F9
126
PA04
GPIO 4
USART0 - TXD
EIC - EXTINT[5]
DAC - DATAN[0]
F10
124
PA05
GPIO 5
USART1 - RXD
TC1 - CLK0
USB - USB_ID
F8
127
PA06
GPIO 6
USART1 - TXD
TC1 - CLK1
USB USB_VBOF
E10
133
PA07
GPIO 7
SPI0 - NPCS[3]
DAC - DATAN[0]
USART1 - CLK
C11
137
PA08
GPIO 8
SPI0 - SCK
DAC - DATA[0]
TC1 - B1
B12
139
PA09
GPIO 9
SPI0 - NPCS[0]
EIC - EXTINT[6]
TC1 - A1
C12
138
PA10
GPIO 10
SPI0 - MOSI
USB USB_VBOF
TC1 - B0
D10
136
PA11
GPIO 11
SPI0 - MISO
USB - USB_ID
TC1 - A2
E12
132
PA12
GPIO 12
USART1 - CTS
SPI0 - NPCS[2]
TC1 - A0
F11
129
PA13
GPIO 13
USART1 - RTS
SPI0 - NPCS[1]
EIC - EXTINT[7]
Function D
29
32072AS–AVR32–03/09
AT32UC3A3
Table 8-2.
GPIO Controller Function Multiplexing
J6
100
PA14
GPIO 14
SPI0 - NPCS[1]
TWIMS0 TWALM
TWIMS1 - TWCK
J7
101
PA15
GPIO 15
MCI - CMD[1]
SPI1 - SCK
TWIMS1 - TWD
F12
128
PA16
GPIO 16
MCI - DATA[11]
SPI1 - MOSI
TC1 - CLK2
H7
116
PA17
GPIO 17
MCI - DATA[10]
SPI1 - NPCS[1]
ADC - AD[7]
K8
115
PA18
GPIO 18
MCI - DATA[9]
SPI1 - NPCS[2]
ADC - AD[6]
J8
114
PA19
GPIO 19
MCI - DATA[8]
SPI1 - MISO
ADC - AD[5]
ADC - AD[4]
J9
113
PA20
GPIO 20
NMI
SSC RX_FRAME_SYN
C
H9
109
PA21
GPIO 21
ADC - AD[0]
EIC - EXTINT[0]
USB - USB_ID
H10
110
PA22
GPIO 22
ADC - AD[1]
EIC - EXTINT[1]
USB USB_VBOF
G8
111
PA23
GPIO 23
ADC - AD[2]
EIC - EXTINT[2]
DAC - DATA[1]
G9
112
PA24
GPIO 24
ADC - AD[3]
EIC - EXTINT[3]
DAC - DATAN[1]
E9
119
PA25
GPIO 25
TWIMS0 - TWD
TWIMS1 TWALM
USART1 - DCD
D9
120
PA26
GPIO 26
TWIMS0 - TWCK
USART2 - CTS
USART1 - DSR
A4
26
PA27
GPIO 27
MCI - CLK
SSC - RX_DATA
USART3 - RTS
MSI - SCLK
A3
28
PA28
GPIO 28
MCI - CMD[0]
SSC RX_CLOCK
USART3 - CTS
MSI - BS
A6
23
PA29
GPIO 29
MCI - DATA[0]
USART3 - TXD
TC0 - CLK0
MSI - DATA[0]
C7
14
PA30
GPIO 30
MCI - DATA[1]
USART3 - CLK
DMACA DMAACK[0]
MSI - DATA[1]
B3
29
PA31
GPIO 31
MCI - DATA[2]
USART2 - RXD
DMACA DMARQ[0]
MSI - DATA[2]
A2
30
PB00
GPIO 32
MCI - DATA[3]
USART2 - TXD
ADC - TRIGGER
MSI - DATA[3]
C4
27
PB01
GPIO 33
MCI - DATA[4]
DAC - DATA[1]
EIC - SCAN[0]
MSI - INS
B4
25
PB02
GPIO 34
MCI - DATA[5]
DAC - DATAN[1]
EIC - SCAN[1]
A5
24
PB03
GPIO 35
MCI - DATA[6]
USART2 - CLK
EIC - SCAN[2]
B6
22
PB04
GPIO 36
MCI - DATA[7]
USART3 - RXD
EIC - SCAN[3]
H12
121
PB05
GPIO 37
USB - USB_ID
TC0 - A0
EIC - SCAN[4]
D12
134
PB06
GPIO 38
USB USB_VBOF
TC0 - B0
EIC - SCAN[5]
D11
135
PB07
GPIO 39
SPI1 - SCK
SSC TX_CLOCK
EIC - SCAN[6]
C8
11
PB08
GPIO 40
SPI1 - MISO
SSC - TX_DATA
EIC - SCAN[7]
E7
17
PB09
GPIO 41
SPI1 - NPCS[0]
SSC - RX_DATA
EBI - NCS[4]
SPI1 - MOSI
SSC RX_FRAME_SYN
C
EBI - NCS[5]
USART1 - RXD
SSC TX_FRAME_SYN
C
PM - GCLK[1]
D7
16
PB10
GPIO 42
B2
31
PB11
GPIO 43
K5
98
PC00
GPIO 45
30
32072AS–AVR32–03/09
AT32UC3A3
Table 8-2.
GPIO Controller Function Multiplexing
H6
99
PC01
GPIO 46
A7
18
PC02
GPIO 47
B7
19
PC03
GPIO 48
A8
13
PC04
GPIO 49
A9
12
PC05
GPIO 50
G1
55
PX00
GPIO 51
EBI - DATA[10]
USART0 - RXD
USART1 - RI
H1
59
PX01
GPIO 52
EBI - DATA[9]
USART0 - TXD
USART1 - DTR
J2
62
PX02
GPIO 53
EBI - DATA[8]
USART0 - CTS
PM - GCLK[0]
K1
63
PX03
GPIO 54
EBI - DATA[7]
USART0 - RTS
J1
60
PX04
GPIO 55
EBI - DATA[6]
USART1 - RXD
G2
58
PX05
GPIO 56
EBI - DATA[5]
USART1 - TXD
F3
53
PX06
GPIO 57
EBI - DATA[4]
USART1 - CTS
F2
54
PX07
GPIO 58
EBI - DATA[3]
USART1 - RTS
D1
50
PX08
GPIO 59
EBI - DATA[2]
USART3 - RXD
C1
49
PX09
GPIO 60
EBI - DATA[1]
USART3 - TXD
B1
37
PX10
GPIO 61
EBI - DATA[0]
USART2 - RXD
L1
67
PX11
GPIO 62
EBI - NWE1
USART2 - TXD
D6
34
PX12
GPIO 63
EBI - NWE0
USART2 - CTS
C6
33
PX13
GPIO 64
EBI - NRD
USART2 - RTS
M4
68
PX14
GPIO 65
EBI - NCS[1]
E6
40
PX15
GPIO 66
EBI - ADDR[19]
USART3 - RTS
TC0 - B0
C5
32
PX16
GPIO 67
EBI - ADDR[18]
USART3 - CTS
TC0 - A1
K6
83
PX17
GPIO 68
EBI - ADDR[17]
DMACA DMARQ[1]
TC0 - B1
L6
84
PX18
GPIO 69
EBI - ADDR[16]
DMACA DMAACK[1]
TC0 - A2
D5
35
PX19
GPIO 70
EBI - ADDR[15]
EIC - SCAN[0]
TC0 - B2
L4
73
PX20
GPIO 71
EBI - ADDR[14]
EIC - SCAN[1]
TC0 - CLK0
M5
80
PX21
GPIO 72
EBI - ADDR[13]
EIC - SCAN[2]
TC0 - CLK1
M1
72
PX22
GPIO 73
EBI - ADDR[12]
EIC - SCAN[3]
TC0 - CLK2
M6
85
PX23
GPIO 74
EBI - ADDR[11]
EIC - SCAN[4]
SSC TX_CLOCK
M7
86
PX24
GPIO 75
EBI - ADDR[10]
EIC - SCAN[5]
SSC - TX_DATA
M8
92
PX25
GPIO 76
EBI - ADDR[9]
EIC - SCAN[6]
SSC - RX_DATA
EIC - SCAN[7]
SSC RX_FRAME_SYN
C
L9
90
PX26
GPIO 77
EBI - ADDR[8]
TC0 - A0
K9
89
PX27
GPIO 78
EBI - ADDR[7]
SPI0 - MISO
SSC TX_FRAME_SYN
C
L10
91
PX28
GPIO 79
EBI - ADDR[6]
SPI0 - MOSI
SSC RX_CLOCK
31
32072AS–AVR32–03/09
AT32UC3A3
Table 8-2.
8.3
GPIO Controller Function Multiplexing
K11
94
PX29
GPIO 80
EBI - ADDR[5]
SPI0 - SCK
M11
96
PX30
GPIO 81
EBI - ADDR[4]
SPI0 - NPCS[0]
M10
97
PX31
GPIO 82
EBI - ADDR[3]
SPI0 - NPCS[1]
M9
93
PX32
GPIO 83
EBI - ADDR[2]
SPI0 - NPCS[2]
M12
95
PX33
GPIO 84
EBI - ADDR[1]
SPI0 - NPCS[3]
J3
61
PX34
GPIO 85
EBI - ADDR[0]
SPI1 - MISO
PM - GCLK[0]
C2
38
PX35
GPIO 86
EBI - DATA[15]
SPI1 - MOSI
PM - GCLK[1]
D3
44
PX36
GPIO 87
EBI - DATA[14]
SPI1 - SCK
PM - GCLK[2]
D2
45
PX37
GPIO 88
EBI - DATA[13]
SPI1 - NPCS[0]
PM - GCLK[3]
E1
51
PX38
GPIO 89
EBI - DATA[12]
SPI1 - NPCS[1]
USART1 - DCD
F1
52
PX39
GPIO 90
EBI - DATA[11]
SPI1 - NPCS[2]
USART1 - DSR
A1
36
PX40
GPIO 91
EBI - SDCS
M2
71
PX41
GPIO 92
EBI - CAS
M3
69
PX42
GPIO 93
EBI - RAS
L7
88
PX43
GPIO 94
EBI - SDA10
USART1 - RI
K2
66
PX44
GPIO 95
EBI - SDWE
USART1 - DTR
L3
70
PX45
GPIO 96
EBI - SDCK
K4
74
PX46
GPIO 97
EBI - SDCKE
D4
39
PX47
GPIO 98
EBI - NANDOE
ADC - TRIGGER
MCI - DATA[11]
F5
41
PX48
GPIO 99
EBI - ADDR[23]
USB USB_VBOF
MCI - DATA[10]
F4
43
PX49
GPIO 100
EBI - CFRNW
USB - USB_ID
MCI - DATA[9]
G4
75
PX50
GPIO 101
EBI - CFCE2
TC1 - B2
MCI - DATA[8]
G5
77
PX51
GPIO 102
EBI - CFCE1
DMACA DMAACK[0]
MCI - DATA[15]
K7
87
PX52
GPIO 103
EBI - NCS[3]
DMACA DMARQ[0]
MCI - DATA[14]
E4
42
PX53
GPIO 104
EBI - NCS[2]
E3
46
PX54
GPIO 105
EBI - NWAIT
USART3 - TXD
MCI - DATA[12]
J5
79
PX55
GPIO 106
EBI - ADDR[22]
EIC - SCAN[3]
USART2 - RXD
J4
78
PX56
GPIO 107
EBI - ADDR[21]
EIC - SCAN[2]
USART2 - TXD
H4
76
PX57
GPIO 108
EBI - ADDR[20]
EIC - SCAN[1]
USART3 - RXD
H3
57
PX58
GPIO 109
EBI - NCS[0]
EIC - SCAN[0]
USART3 - TXD
G3
56
PX59
GPIO 110
EBI - NANDWE
MCI - DATA[13]
MCI - CMD[1]
Oscillator Pinout
Table 8-3.
Oscillator Pinout
pin
pin
Pad
Oscillator pin
A7
18
PC02
xin0
A8
13
PC04
xin1
32
32072AS–AVR32–03/09
AT32UC3A3
Table 8-3.
Oscillator Pinout
K5
98
PC00
xin32
B7
19
PC03
xout0
A9
12
PC05
xout1
H6
99
PC01
xout32
33
32072AS–AVR32–03/09
AT32UC3A3
8.4
8.4.1
8.4.2
Peripheral overview
Power Manager
•
•
•
•
•
•
•
•
•
•
•
•
•
Controls integrated oscillators and PLLs
Generates clocks and resets for digital logic
Supports 2 crystal oscillators 4MHZ-16MHz
Supports 2 PLLs 48-150MHz
Supports 32KHz ultra-low power oscillator
Integrated low-power RC oscillator
On-the fly frequency change of CPU, HSB, PBA, and PBB clocks
Sleep modes allow simple disabling of logic clocks, PLLs, and oscillators
Module-level clock gating through maskable peripheral clocks
Wake-up from internal or external interrupts
Generic clocks with wide frequency range provided
Automatic identification of reset sources
Controls brownout detector (BOD), RC oscillator, and bandgap voltage reference through control
and calibration registers
Real Time Counter
• 32-bit real-time counter with 16-bit prescaler
• Clocked from RC oscillator or 32KHz oscillator
• Long delays
•
•
•
•
– Max timeout 272years
High resolution: Max count frequency 16KHz
Extremely low power consumption
Available in all sleep modes except Static
Interrupt on wrap
8.4.3
Watchdog Timer
• Watchdog timer counter with 32-bit prescaler
• Clocked from the system RC oscillator (RCSYS)
8.4.4
Interrupt Controller
• Autovectored low latency interrupt service with programmable priority
– 4 priority levels for regular, maskable interrupts
– One Non-Maskable Interrupt
34
32072AS–AVR32–03/09
AT32UC3A3
• Up to 64 groups of interrupts with up to 32 interrupt requests in each
8.4.5
External Interrupts Controller
• Dedicated interrupt request for each interrupt
• Individually maskable interrupts
• Interrupt on rising or falling edge
• Interrupt on high or low level
• Asynchronous interrupts for sleep modes without clock
• Filtering of interrupt lines
• Maskable NMI interrupt
• Keypad scan support
•
8.4.6
Flash Controller
• Controls flash block with dual read ports allowing staggered reads.
• Supports 0 and 1 wait state bus access.
• Allows interleaved burst reads for systems with one wait state, outputting one 32-bit word per
clock cycle.
• 32-bit HSB interface for reads from flash array and writes to page buffer.
• 32-bit PB interface for issuing commands to and configuration of the controller.
• 16 lock bits, each protecting a region consisting of (total number of pages in the flash block / 16)
•
•
•
•
•
•
•
8.4.7
pages.
Regions can be individually protected or unprotected.
Additional protection of the Boot Loader pages.
Supports reads and writes of general-purpose NVM bits.
Supports reads and writes of additional NVM pages.
Supports device protection through a security bit.
Dedicated command for chip-erase, first erasing all on-chip volatile memories before erasing
flash and clearing security bit.
Interface to Power Manager for power-down of flash-blocks in sleep mode.
HSB Bus Matrix
•
•
•
•
•
•
•
User Interface on peripheral bus
Configurable Number of Masters (Up to sixteen)
Configurable Number of Slaves (Up to sixteen)
One Decoder for Each Master
Three Different Memory Mappings for Each Master (Internal and External boot, Remap)
One Remap Function for Each Master
Programmable Arbitration for Each Slave
– Round-Robin
– Fixed Priority
• Programmable Default Master for Each Slave
– No Default Master
– Last Accessed Default Master
– Fixed Default Master
35
32072AS–AVR32–03/09
AT32UC3A3
• One Cycle Latency for the First Access of a Burst
• Zero Cycle Latency for Default Master
• One Special Function Register for Each Slave (Not dedicated)
8.4.8
External Bus Interface
• Optimized for application memory space support
• Integrates three external memory controllers:
– Static Memory Controller (SMC)
– SDRAM Controller (SDRAMC)
– Error Corrected Code (ECCHRS) controller
• Additional logic for NAND Flash/SmartMediaTM and CompactFlashTM support
– NAND Flash support: 8-bit as well as 16-bit devices are supported
– CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are
supported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode)
are not handled.
• Optimized external bus:16-bit data bus
– Up to 24-bit Address Bus, Up to 8-Mbytes Addressable
– Optimized pin multiplexing to reduce latencies on external memories
• Up to 6 Chip Selects, Configurable Assignment:
– Static Memory Controller on Chip Select 0
– SDRAM Controller or Static Memory Controller on Chip Select 1
– Static Memory Controller on Chip Select 2, Optional NAND Flash support
– Static Memory Controller on Chip Select 3, Optional NAND Flash support
– Static Memory Controller on Chip Select 4, Optional CompactFlashTM support
– Static Memory Controller on Chip Select 5, Optional CompactFlashTM support
8.4.9
Static Memory Controller
• 6 chip selects available
• 64-Mbytes address space per chip select
• 8- or 16-bit data bus
• Word, halfword, byte transfers
• Byte write or byte select lines
• Programmable setup, pulse and hold time for read signals per chip select
• Programmable setup, pulse and hold time for write signals per chip select
• Programmable data float time per chip select
• Compliant with LCD module
• External wait request
• Automatic switch to slow clock mode
• Asynchronous read in page mode supported: page size ranges from 4 to 32 bytes
8.4.10
SDRAM Controller
• 128-Mbytes address space
• Numerous configurations supported
– 2K, 4K, 8K row address memory parts
– SDRAM with two or four internal banks
– SDRAM with 16-bit data path
• Programming facilities
– Word, halfword, byte access
– Automatic page break when memory boundary has been reached
– Multibank ping-pong access
36
32072AS–AVR32–03/09
AT32UC3A3
•
•
•
•
•
– Timing parameters specified by software
– Automatic refresh operation, refresh rate is programmable
– Automatic update of DS, TCR and PASR parameters (mobile SDRAM devices)
Energy-saving capabilities
– Self-refresh, power-down, and deep power-down modes supported
– Supports mobile SDRAM devices
Error detection
– Refresh error interrupt
SDRAM power-up initialization by software
CAS latency of one, two, and three supported
Auto Precharge command not used
8.4.11
Peripheral DMA Controller
• 8 channels
• Generates transfers to/from peripherals such as USART, SSC and SPI
• Two address pointers/counters per channel allowing double buffering
• Performance monitors to measure average and maximum transfer latency
8.4.12
DMA Controller
• 2 HSB Master Interfaces
• 4 Channels
• Software and Hardware Handshaking Interfaces
– 9 Hardware Handshaking Interfaces
• Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
• Single-block DMA Transfer
• Multi-block DMA Transfer
– Linked Lists
– Auto-Reloading
– Contiguous Blocks
• DMA Controller is Always the Flow Controller
• Additional Features
– Scatter and Gather Operations
– Channel Locking
– Bus Locking
– FIFO Mode
– Pseudo Fly-by Operation
8.4.13
General-Purpose Input/Output Controller
•
•
•
•
•
Each I/O line of the GPIO features:
Configurable pin-change, rising-edge or falling-edge interrupt on any I/O line
A glitch filter providing rejection of pulses shorter than one clock cycle
Input visibility and output control
Multiplexing of up to four peripheral functions per I/O line
Programmable internal pull-up resistor
Serial Peripheral Interface
• Compatible with an embedded 32-bit microcontroller
• Supports communication with serial external devices
– Four chip selects with external decoder support allow communication with up to 15
peripherals
37
32072AS–AVR32–03/09
AT32UC3A3
– Serial memories, such as DataFlash and 3-wire EEPROMs
– Serial peripherals, such as ADCs, DACs, LCD controllers, CAN controllers and Sensors
– External co-processors
• Master or Slave Serial Peripheral Bus Interface
– 4 - to 16-bit programmable data length per chip select
– Programmable phase and polarity per chip select
– Programmable transfer delays between consecutive transfers and between clock and data
per chip select
– Programmable delay between consecutive transfers
– Selectable mode fault detection
• Connection to Peripheral DMA Controller channel capabilities optimizes data transfers
– One channel for the receiver, one channel for the transmitter
– Next buffer support
– Four character FIFO in reception
8.4.14
Two-Wire Slave Interface
• Compatible with I²C standard
•
•
•
•
•
•
8.4.15
– 100 and 400 kbit/s transfer speeds
– 7 and 10-bit and General Call addressing
Compatible with SMBus standard
– Hardware Packet Error Checking (CRC) generation and verification with ACK response
– SMBALERT interface
– 25 ms clock low timeout delay
– 25 ms slave cumulative clock low extend time
Compatible with PMBus
DMA interface for reducing CPU load
Arbitrary transfer lengths, including 0 data bytes
Optional clock stretching if transmit or receive buffers not ready for data transfer
32-bit Peripheral Bus interface for configuration of the interface
Two-Wire Master Interface
• Compatible with I²C standard
– Multi-master support
– 100 and 400 kbit/s transfer speeds
– 7- and 10-bit and General Call addressing
• Compatible with SMBus standard
– Hardware Packet Error Checking (CRC) generation and verification with ACK control
– SMBus ALERT interface
– 25 ms clock low timeout delay
– 10 ms master cumulative clock low extend time
– 25 ms slave cumulative clock low extend time
38
32072AS–AVR32–03/09
AT32UC3A3
•
•
•
•
•
8.4.16
Compatible with PMBus
Compatible with Atmel Two-Wire Interface Serial Memories
DMA interface for reducing CPU load
Arbitrary transfer lengths, including 0 data bytes
Optional clock stretching if transmit or receive buffers not ready for data transfer
Synchronous Serial Controller
• Provides serial synchronous communication links used in audio and telecom applications
• Independent receiver and transmitter, common clock divider
• Interfaced with two Peripheral DMA Controller channels to reduce processor overhead
• Configurable frame sync and data length
• Receiver and transmitter can be configured to start automatically or on detection of different
events on the frame sync signal
• Receiver and transmitter include a data signal, a clock signa,l and a frame synchronization signal
8.4.17
Universal Synchronous Asynchronous Receiver Transmitter
• Programmable Baud Rate Generator
• 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications
•
•
•
•
•
– 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode
– Parity Generation and Error Detection
– Framing Error Detection, Overrun Error Detection
– MSB- or LSB-first
– Optional Break Generation and Detection
– By 8 or by 16 Over-sampling Receiver Frequency
– Optional Hardware Handshaking RTS-CTS
– Optional Modem Signal Management DTR-DSR-DCD-RI
– Receiver Time-out and Transmitter Timeguard
– Optional Multidrop Mode with Address Generation and Detection
RS485 with Driver Control Signal
ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards
– NACK Handling, Error Counter with Repetition and Iteration Limit
IrDA Modulation and Demodulation
– Communication at up to 115.2 Kbps
SPI Mode
– Master or Slave
– Serial Clock Programmable Phase and Polarity
– SPI Serial Clock (CLK) Frequency up to Internal Clock Frequency CLK_USART/4
LIN Mode
– Compliant with LIN 1.3 and LIN 2.0 specifications
– Master or Slave
– Processing of frames with up to 256 data bytes
– Response Data length can be configurable or defined automatically by the Identifier
– Self synchronization in Slave node configuration
– Automatic processing and verification of the “Synch Break” and the “Synch Field”
– The “Synch Break” is detected even if it is partially superimposed with a data byte
– Automatic Identifier parity calculation/sending and verification
– Parity sending and verification can be disabled
– Automatic Checksum calculation/sending and verification
– Checksum sending and verification can be disabled
– Support both “Classic” and “Enhanced” checksum types
39
32072AS–AVR32–03/09
AT32UC3A3
– Full LIN error checking and reporting
– Frame Slot Mode: the Master allocates slots to the scheduled frames automatically.
– Generation of the Wakeup signal
• Test Modes
– Remote Loopback, Local Loopback, Automatic Echo
• Supports Connection of Two Peripheral DMA Controller Channels (PDCA)
– Offers Buffer Transfer without Processor Intervention
8.4.18
USB On-The-Go Interface
• Compatible with the USB 2.0 specification
• Supports High (480Mbps), Full (12Mbps) and Low (1.5Mbps) speed communication and On-TheGo
•
•
•
•
•
•
8.4.19
nine pipes/endpoints
2368 of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
Up to 2 memory banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)
Flexible Pipe/Endpoint configuration and management with dedicated DMA channels
On-Chip UTMI transceiver including Pull-Ups/Pull-downs
On-Chip OTG pad including VBUS analog comparator
Timer/Counter
• Three 16-bit Timer Counter channels
• A wide range of functions including:
– Frequency measurement
– Event counting
– Interval measurement
– Pulse generation
– Delay timing
– Pulse width modulation
– Up/down capabilities
• Each channel is user-configurable and contains:
– Three external clock inputs
– Five internal clock inputs
– Two multi-purpose input/output signals
• Internal interrupt signal
• Two global registers that act on all three TC channels
8.4.20
Analog-to-Digital Converter
• Integrated multiplexer offering up to eight independent analog inputs
• Individual enable and disable of each channel
• Hardware or software trigger
– External trigger pin
– Timer counter outputs (corresponding TIOA trigger)
• PDC support
• Possibility of ADC timings configuration
• Sleep mode and conversion sequencer
– Automatic wakeup on trigger and back to sleep mode after conversions of all enabled
channels
40
32072AS–AVR32–03/09
AT32UC3A3
8.4.21
HSB Bus Performance Monitor
• Allows performance monitoring of High Speed Bus master interfaces
– Up to 4 masters can be monitored
– Peripheral Bus access to monitor registers
• The following is monitored
– Data transfer cycles
– Bus stall cycles
– Maximum access latency for a single transfer
• Automatic handling of event overflow
8.4.22
Multimedia Card Interface
• Compatible with Multimedia Card specification version 4.2
• Compatible with SD Memory Card specification version 2.0
• Compatible with SDIO specification version 1.1
• Compatible with CE-ATA specification 1.1
• Cards clock rate up to master clock divided by two
• High Speed mode support
• Embedded power management to slow down clock rate when not used
• Supports 2 Slots
– Each slot for either a MultiMediaCard bus (up to 30 cards) or an SD Memory Card
• Support for stream, block and multi-block data read and write
• Supports connection to DMA Controller
– Minimizes processor intervention for large buffer transfers
• Built in FIFO (from 16 to 256 bytes) with large memory aperture supporting incremental access
• Support for CE-ATA completion cignal disable command
• Protection against unexpected modification on-the-Fly of the configuration registers
8.4.23
Error Corrected Code Controller
• Hardware Error Corrected Code Generation with two methods :
•
•
•
•
– Hamming code detection and correction by software (ECC-H)
– Reed-Solomon code detection by hardware, correction by hardware or software (ECC-RS)
Supports NAND Flash and SmartMedia™ devices with 8- or 16-bit data path for ECC-H, and with
8-bit data path for ECC-RS
Supports NAND Flash and SmartMedia™ with page sizes of 528, 1056, 2112, and 4224 bytes
(specified by software)
ECC_H supports :
– One bit correction per page of 512,1024,2048, or 4096 bytes
– One bit correction per sector of 512 bytes of data for a page size of 512, 1024, 2048, or 4096
bytes
– One bit correction per sector of 256 bytes of data for a page size of 512, 1024, 2048, or 4096
bytes
ECC_RS supports :
– 4 errors correction per sector of 512 bytes of data for a page size of 512, 1024, 2048, and
4096 bytes with 8-bit data path
41
32072AS–AVR32–03/09
AT32UC3A3
8.4.24
Advanced Encryption Standart
• Compliant with FIPS Publication 197, Advanced Encryption Standard (AES)
• 128-bit/192-bit/256-bit cryptographic key
• 12/14/16 clock cycles encryption/decryption processing time with a 128-bit/192-bit/256-bit
cryptographic key
• Support of the five standard modes of operation specified in the NIST Special Publication 800-
•
•
•
•
8.4.25
38A, Recommendation for Block Cipher Modes of Operation - Methods and Techniques:
– Electronic Code Book (ECB)
– Cipher Block Chaining (CBC)
– Cipher Feedback (CFB)
– Output Feedback (OFB)
– Counter (CTR)
8-, 16-, 32-, 64- and 128-bit data size possible in CFB mode
Last output data mode allows optimized Message Authentication Code (MAC) generation
Hardware counter measures against differential power analysis attacks
Connection to DMA Controller capabilities optimizes data transfers for all operating modes
Audio Bitstream DAC
• Digital Stereo DAC
• Oversampled D/A conversion architecture
– Oversampling ratio fixed 128x
– FIR equalization filter
– Digital interpolation filter: Comb4
– 3rd Order Sigma-Delta D/A converters
• Digital bitstream outputs
• Parallel interface
• Connected to DMA Controller for background transfer without CPU intervention
8.4.26
8.4.27
On-Chip Debug
•
•
•
•
•
•
•
•
Debug interface in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+
JTAG access to all on-chip debug functions
Advanced program, data, ownership, and watchpoint trace supported
NanoTrace JTAG-based trace access
Auxiliary port for high-speed trace information
Hardware support for 6 program and 2 data breakpoints
Unlimited number of software breakpoints supported
Automatic CRC check of memory regions
JTAG and Boundary Scan
• IEEE1149.1 compliant JTAG Interface
• Boundary-Scan Chain for board-level testing
• Direct memory access and programming capabilities through JTAG interface
• On-Chip Debug access in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0)
•
42
32072AS–AVR32–03/09
AT32UC3A3
9. Boot Sequence
This chapter summarizes the boot sequence of the AT32UC3A3. The behavior after power-up is
controlled by the Power Manager. For specific details, refer to Section 8. ”Power Manager (PM)”
on page 36.
9.1
Starting of Clocks
After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the
power has stabilized throughout the device. Once the power has stabilized, the device will use
the internal RC Oscillator as clock source.
On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system receives a clock with the same frequency as the
internal RC Oscillator.
9.2
Fetching of Initial Instructions
After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset
address, which is 0x8000_0000. This address points to the first address in the internal Flash.
The code read from the internal Flash is free to configure the system to use for example the
PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.
43
32072AS–AVR32–03/09
AT32UC3A3
10. Electrical Characteristics
10.1
Absolute Maximum Ratings*
*NOTICE:
Operating Temperature.................................... -40°C to +85°C
Storage Temperature .......................................................... ....60°C to +150°C
Voltage on Input Pin
with respect to Ground ........................................-0.3V to 3.6V
Maximum Operating Voltage (VDDCORE) ..................... 1.95V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Maximum Operating Voltage (VDDIO).............................. 3.6V
Total DC Output Current on all I/O Pin
for TQFP144 packag ................................................... 370 mA
for TBGA144 package ................................................. 370 mA
10.2
DC Characteristics
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise specified and are certified for a junction temperature up to TJ = 100°C.
Symbol
Parameter
VVDDIO
DC Supply Peripheral I/Os
VIL
Max.
Units
3.0
3.6
V
Input Low-level Voltage
-0.3
+0.8
V
VIH
Input High-level Voltage
2.0
VVDDIO+0
.3
V
VOL
Output Low-level Voltage
IOL=-2mA for Pin drive x1
IOL=-4mA for Pin drive x2
IOL=-8mA for Pin drive x3
VOH
Output High-level Voltage
IOL=2mA for Pin drive x1
IOL=4mA for Pin drive x2
IOL=8mA for Pin drive x3
ILEAK
Input Leakage Current
Pullup resistors disabled
CIN
Input Capacitance
RPULLUP
Pull-up Resistance
IO
Output Current
Pin drive x1
Pin drive x2
Pin drive x3
See Table 10-1
ISC
Static Current
Condition
Min.
Typ.
0.4
VVDDIO-0.4
V
µA
7
9
On VVDDIN = 3.3V,
CPU in static mode
V
15
pF
25
Ohm
2.0
4.0
8.0
mA
TA =25°C
TBD
µA
TA =85°C
TBD
µA
44
32072AS–AVR32–03/09
AT32UC3A3
Table 10-1.
Pins drive capabilities
PIN
Drive
PIN
Drive
PIN
Drive
PA00
x3
PB05
x1
PX24
x2
PA01
x1
PB06
x1
PX25
x2
PA02
x1
PB07
x3
PX26
x2
PA03
x1
PB08
x2
PX27
x2
PA04
x1
PB09
x2
PX28
x2
PA05
x1
PB10
x2
PX29
x2
PA06
x1
PB11
x1
PX30
x2
PA07
x1
PC00
x1
PX31
x2
PA08
x3
PC01
x1
PX32
x2
PA09
x2
PC02
x1
PX33
x2
PA10
x2
PC03
x1
PX34
x2
PA11
x2
PC04
x1
PX35
x2
PA12
x1
PC05
x1
PX36
x2
PA13
x1
PX00
x2
PX37
x2
PA14
x1
PX01
x2
PX38
x2
PA15
x1
PX02
x2
PX39
x2
PA16
x1
PX03
x2
PX40
x2
PA17
x1
PX04
x2
PX41
x2
PA18
x1
PX05
x2
PX42
x2
PA19
x1
PX06
x2
PX43
x2
PA20
x1
PX07
x2
PX44
x2
PA21
x1
PX08
x2
PX45
x3
PA22
x1
PX09
x2
PX46
x2
PA23
x1
PX10
x2
PX47
x2
PA24
x1
PX11
x2
PX48
x2
PA25
x1
PX12
x2
PX49
x2
PA26
x1
PX13
x2
PX50
x2
PA27
x2
PX14
x2
PX51
x2
PA28
x1
PX15
x2
PX52
x2
PA29
x1
PX16
x2
PX53
x2
PA30
x1
PX17
x2
PX54
x2
PA31
x1
PX18
x2
PX55
x2
PB00
x1
PX19
x2
PX56
x2
PB01
x1
PX20
x2
PX57
x2
PB02
x1
PX21
x2
PX58
x2
PB03
x1
PX22
x2
PX59
x2
PB04
x1
PX23
x2
45
32072AS–AVR32–03/09
AT32UC3A3
10.3
Regulator characteristics
10.3.1
Electrical characteristics
Symbol
Parameter
VVDDIN
VVDDCORE
IOUT
10.3.2
Condition
Min.
Typ.
Max.
Units
Supply voltage (input)
2.7
3.3
3.6
V
Supply voltage (output)
1.81
1.85
1.89
V
Maximum DC output current with VVDDIN = 3.3V
100
mA
Maximum DC output current with VVDDIN = 2.7V
90
mA
Decoupling requirements
Symbol
Parameter
CIN1
Typ.
Techno.
Units
Input Regulator Capacitor 1
1
NPO
nF
CIN2
Input Regulator Capacitor 2
4.7
X7R
uF
COUT1
Output Regulator Capacitor 1
470
NPO
pF
COUT2
Output Regulator Capacitor 2
2.2
X7R
uF
10.3.3
Condition
BOD
Table 10-2.
BODLEVEL Values
BODLEVEL Value
Typ.
Units.
111111b
1.58
V
101000b
1.62
V
100000b
1.67
V
011000b
1.77
V
000000b
1.92
V
The values in Table 10-2 describes the values of the BODLEVEL in the flash FGPFRL register.
10.4
Power Consumption
The values in Table 10-3 and Table 10-4 on page 48 are measured values of power consumption with operating conditions as follows:
•VDDIO = 3.3V
•TA = 25°C, TA = 85°C
•I/Os are configured in input, pull-up enabled.
46
32072AS–AVR32–03/09
AT32UC3A3
Figure 10-1. Measurement setup
VDDANA
Amp0
VDDIO
Amp1
VDDIN
Internal
Voltage
Regulator
VDDCORE
GNDCORE
GNDPLL
47
32072AS–AVR32–03/09
AT32UC3A3
These figures represent the power consumption measured on the power supplies.
Table 10-3.
Power Consumption for Different Modes(1)
Mode
Conditions
Active
CPU running from flash.
CPU clocked from PLL0 at f MHz
Voltage regulator is on.
XIN0 : external clock. (1)
XIN1 stopped. XIN32 stopped
PLL0 running
All peripheral clocks activated.
GPIOs on internal pull-up.
JTAG unconnected with ext pull-up.
Typ : Ta = 25 °C
CPU is in static mode
GPIOs on internal pull-up.
All peripheral clocks de-activated.
DM and DP pins connected to ground.
XIN0,Xin1 and XIN2 are stopped
Static
Consumption
Typ.
Unit
f = 12 MHz
10
mA
f = 24 MHz
18
mA
f = 36MHz
27
mA
f = 50 MHz
34
mA
f = 60 MHz
42
mA
on Amp0
0
uA
on Amp1
<100
uA
1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < fpll0 < 160 MHz and
10 MHz < fxin0 < 12MHz
Table 10-4.
Power Consumption by Peripheral in Active Mode
Peripheral
10.5
Consumption
GPIO
37
SMC
10
SDRAMC
4
ADC
18
EBI
31
INTC
25
TWI
14
PDCA
30
RTC
7
SPI
13
SSC
13
TC
10
USART
35
Unit
µA/MHz
Clock Characteristics
These parameters are given in the following conditions:
• VDDCORE = 1.8V
48
32072AS–AVR32–03/09
AT32UC3A3
• Ambient Temperature = 25°C
10.5.1
CPU/HSB Clock Characteristics
Table 10-5.
Core Clock Waveform Parameters
Symbol
Parameter
1/(tCPCPU)
CPU Clock Frequency
tCPCPU
CPU Clock Period
10.5.2
Conditions
Min
Max
Units
66
MHz
15.5
ns
PBA Clock Characteristics
Table 10-6.
PBA Clock Waveform Parameters
Symbol
Parameter
1/(tCPPBA)
PBA Clock Frequency
tCPPBA
PBA Clock Period
10.5.3
Conditions
Min
Max
Units
66
MHz
15.5
ns
PBB Clock Characteristics
Table 10-7.
PBB Clock Waveform Parameters
Symbol
Parameter
1/(tCPPBB)
PBB Clock Frequency
tCPPBB
PBB Clock Period
10.5.4
Conditions
Min
Max
Units
66
MHz
15.5
ns
XIN Clock Characteristics
Table 10-8.
XIN Clock Electrical Characteristics
Symbol
Parameter
1/(tCPXIN)
XIN Clock Frequency
tCPXIN
XIN Clock Period
tCHXIN
XIN Clock High Half-period
tCLXIN
XIN Clock Low Half-period
CIN
RIN
Conditions
Min
Max
3
Units
24
20.0
MHz
ns
0.4 x tCPXIN
0.6 x tCPXIN
0.4 x tCPXIN
0.6 x tCPXIN
XIN Input Capacitance
(1)
TBD
pF
XIN Pulldown Resistor
(1)
TBD
kΩ
Note:
1. These characteristics apply only when the Main Oscillator is in bypass mode (i.e., when MOSCEN = 0 and OSCBYPASS =
1 in the CKGR_MOR register.)
10.6
Crystal Oscillator Characteristis
The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of
power supply, unless otherwise specified.
49
32072AS–AVR32–03/09
AT32UC3A3
10.6.1
32 KHz Oscillator Characteristics
Table 10-9.
32 KHz Oscillator Characteristics
Symbol
Parameter
1/(tCP32KHz)
Crystal Oscillator Frequency
CL
Equivalent Load Capacitance
Conditions
Min
Note:
Max
32 768
Duty Cycle
tST
Typ
Startup Time
RS = TBD kΩ, CL = TBD pF
Unit
Hz
6
12.5
pF
TBD
TBD
%
TBD
ms
Max
Unit
16
MHz
(1)
1. RS is the equivalent series resistance, CL is the equivalent load capacitance.
10.6.2
Main Oscillators Characteristics
Table 10-10. Main Oscillator Characteristics
Symbol
Parameter
1/(tCPMAIN)
Crystal Oscillator Frequency
CL1, CL2
Internal Load Capacitance
(CL1 = CL2)
CL
Equivalent Load Capacitance
Conditions
Startup Time
IOSC
Current Consumption
Notes:
Typ
3
Duty Cycle
tST
Min
40
12
pF
TBD
pF
50
60
%
TBD
ms
Active mode @TBD MHz
TBD
µA
Standby mode @TBD V
TBD
µA
Max
Unit
80
240
MHz
TBD
TBD
MHz
active mode
TBD
mA
standby mode
TBD
µA
1. CS is the shunt capacitance
10.6.3
PLL Characteristics
Table 10-11. Phase Lock Loop Characteristics
Symbol
Parameter
FOUT
Output Frequency
FIN
Input Frequency
IPLL
Current Consumption
Note:
Conditions
Min
Typ
1. Startup time depends on PLL RC filter. A calculation tool is provided by Atmel.
50
32072AS–AVR32–03/09
AT32UC3A3
10.7
ADC Characteristics
Table 10-12. Channel Conversion Time and ADC Clock
Parameter
Conditions
ADC Clock Frequency
ADC Clock Frequency
Startup Time
Min
Max
Units
10-bit resolution mode
5
MHz
8-bit resolution mode
8
MHz
Return from Idle Mode
20
µs
Track and Hold Acquisition Time
Typ
600
ns
Conversion Time
ADC Clock = 5 MHz
Conversion Time
ADC Clock = 8 MHz
1.25
µs
Throughput Rate
ADC Clock = 5 MHz
384(1)
kSPS
Throughput Rate
ADC Clock = 8 MHz
533(2)
kSPS
Notes:
2
µs
1. Corresponds to 13 clock cycles at 5 MHz: 3 clock cycles for track and hold acquisition time and 10 clock cycles for
conversion.
2. Corresponds to 15 clock cycles at 8 MHz: 5 clock cycles for track and hold acquisition time and 10 clock cycles for
conversion.
Table 10-13. Analog Inputs
Parameter
Min
Input Voltage Range
Typ
0
Input Leakage Current
Input Capacitance
Max
Units
VDDANA
TBD
µA
17
pF
Table 10-14. Transfer Characteristics
Parameter
Conditions
Min
Resolution
Typ
Max
10
Absolute Accuracy
f=5MHz
Integral Non-linearity
f=5MHz
Differential Non-linearity
f=5MHz
Offset Error
f=5MHz
Gain Error
f=5MHz
Units
Bit
0.8
LSB
0.35
0.5
LSB
0.3
0.5
LSB
-0.5
0.5
LSB
-0.5
0.5
LSB
51
32072AS–AVR32–03/09
AT32UC3A3
10.8
USB Transceiver Characteristics
10.8.1
Electrical Characteristics
Table 10-15. Electrical Parameters
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
TBD
V
Input Levels
VIL
Low Level
VIH
High Level
VDI
Differential Input Sensivity
VCM
Differential Input Common
Mode Range
CIN
Transceiver capacitance
Capacitance to ground on each line
I
Hi-Z State Data Line Leakage
0V < VIN < 3.3V
REXT
Recommended External USB
Series Resistor
In series with each USB pin with ±5%
VOL
Low Level Output
Measured with RL of 1.425 kΩ tied to
3.6V
TBD
TBD
V
VOH
High Level Output
Measured with RL of 14.25 kΩ tied to
GND
TBD
TBD
V
VCRS
Output Signal Crossover
Voltage
TBD
TBD
V
Max
Unit
|(D+) - (D-)|
TBD
V
TBD
V
TBD
TBD
TBD
V
TBD
pF
TBD
µA
Ω
TBD
Output Levels
10.8.2
Switching Characteristics
Table 10-16. In Low Speed
Symbol
Parameter
Conditions
Min
Typ
tFR
Transition Rise Time
CLOAD = 400 pF
TBD
TBD
ns
tFE
Transition Fall Time
CLOAD = 400 pF
TBD
TBD
ns
tFRFM
Rise/Fall time Matching
CLOAD = 400 pF
TBD
TBD
%
Max
Unit
Table 10-17. In Full Speed
Symbol
Parameter
Conditions
Min
Typ
tFR
Transition Rise Time
CLOAD = 50 pF
TBD
TBD
ns
tFE
Transition Fall Time
CLOAD = 50 pF
TBD
TBD
ns
tFRFM
Rise/Fall time Matching
TBD
TBD
%
52
32072AS–AVR32–03/09
AT32UC3A3
10.9
EBI Timings
These timings are given for worst case process, T = 85⋅C, VDDCORE = 1.65V, VDDIO = 3V and 40 pF load capacitance.
Table 10-18. SMC Clock Signal.
Symbol
Parameter
1/(tCPSMC)
SMC Controller Clock Frequency
Note:
Max(1)
Units
1/(tcpcpu)
MHz
1. The maximum frequency of the SMC interface is the same as the max frequency for the HSB.
Table 10-19. SMC Read Signals with Hold Settings
Symbol
Parameter
Min
Units
NRD Controlled (READ_MODE = 1)
SMC1
Data Setup before NRD High
SMC2
Data Hold after NRD High
12
0
SMC3
NRD High to NBS0/A0 Change
SMC4
NRD High to NBS1 Change(1)
(1)
nrd hold length * tCPSMC - 1.3
(1)
SMC5
NRD High to NBS2/A1 Change
SMC7
NRD High to A2 - A23 Change(1)
SMC8
NRD High to NCS Inactive
SMC9
NRD Pulse Width
nrd hold length * tCPSMC - 1.3
(1)
nrd hold length * tCPSMC - 1.3
ns
nrd hold length * tCPSMC - 1.3
(nrd hold length - ncs rd hold length) * tCPSMC - 2.3
nrd pulse length * tCPSMC - 1.4
NRD Controlled (READ_MODE = 0)
SMC10
Data Setup before NCS High
SMC11
Data Hold after NCS High
SMC12
NCS High to NBS0/A0 Change(1)
ncs rd hold length * tCPSMC - 2.3
SMC13
NCS High to NBS0/A0 Change
(1)
ncs rd hold length * tCPSMC - 2.3
SMC14
NCS High to NBS2/A1 Change(1)
ncs rd hold length * tCPSMC - 2.3
SMC16
NCS High to A2 - A23 Change(1)
ncs rd hold length * tCPSMC - 4
SMC17
NCS High to NRD Inactive(1)
SMC18
NCS Pulse Width
Note:
11.5
0
ns
ncs rd hold length - nrd hold length)* tCPSMC - 1.3
ncs rd pulse length * tCPSMC - 3.6
1. hold length = total cycle duration - setup duration - pulse duration. “hold length” is for “ncs rd hold length” or “nrd hold length”.
53
32072AS–AVR32–03/09
AT32UC3A3
Table 10-20. SMC Read Signals with no Hold Settings
Symbol
Parameter
Min
Units
NRD Controlled (READ_MODE = 1)
SMC19
Data Setup before NRD High
SMC20
Data Hold after NRD High
13.7
ns
1
NRD Controlled (READ_MODE = 0)
SMC21
Data Setup before NCS High
SMC22
Data Hold after NCS High
13.3
ns
0
Table 10-21. SMC Write Signals with Hold Settings
Symbol
Parameter
Min
Units
NRD Controlled (READ_MODE = 1)
SMC23
Data Out Valid before NWE High
(nwe pulse length - 1) * tCPSMC - 0.9
SMC24
Data Out Valid after NWE High(1)
nwe hold length * tCPSMC - 6
SMC25
NWE High to NBS0/A0 Change
SMC26
NWE High to NBS1 Change(1)
(1)
nwe hold length * tCPSMC - 1.9
nwe hold length * tCPSMC - 1.9
(1)
SMC29
NWE High to A1 Change
SMC31
NWE High to A2 - A23 Change(1)
ns
nwe hold length * tCPSMC - 1.9
(1)
SMC32
NWE High to NCS Inactive
SMC33
NWE Pulse Width
nwe hold length * tCPSMC - 1.7
(nwe hold length - ncs wr hold length)* tCPSMC - 2.9
nwe pulse length * tCPSMC - 0.9
NRD Controlled (READ_MODE = 0)
SMC34
Data Out Valid before NCS High
SMC35
Data Out Valid after NCS High
(1)
SMC36
NCS High to NWE Inactive(1)
Note:
(ncs wr pulse length - 1)* tCPSMC - 4.6
ncs wr hold length * tCPSMC - 5.8
ns
(ncs wr hold length - nwe hold length)* tCPSMC - 0.6
1. hold length = total cycle duration - setup duration - pulse duration. “hold length” is for “ncs wr hold length” or “nwe hold
length"
54
32072AS–AVR32–03/09
AT32UC3A3
Table 10-22. SMC Write Signals with No Hold Settings (NWE Controlled only).
Symbol
Parameter
Min
SMC37
NWE Rising to A2-A25 Valid
5.4
SMC38
NWE Rising to NBS0/A0 Valid
5
SMC39
NWE Rising to NBS1 Change
5
SMC40
NWE Rising to A1/NBS2 Change
5
SMC41
NWE Rising to NBS3 Change
5
SMC42
NWE Rising to NCS Rising
SMC43
Data Out Valid before NWE Rising
SMC44
Data Out Valid after NWE Rising
SMC45
NWE Pulse Width
Units
ns
5.1
(nwe pulse length - 1) * tCPSMC - 1.2
5
nwe pulse length * tCPSMC - 0.9
Figure 10-2. SMC Signals for NCS Controlled Accesses.
SMC16
SMC16
SMC16
SMC12
SMC13
SMC14
SMC15
SMC12
SMC13
SMC14
SMC15
A2-A25
SMC12
SMC13
SMC14
SMC15
A0/A1/NBS[3:0]
NRD
SMC17
SMC17
NCS
SMC21
SMC18
SMC18
SMC18
SMC22
SMC10
SMC11
SMC34
SMC35
D0 - D15
SMC36
NWE
55
32072AS–AVR32–03/09
AT32UC3A3
Figure 10-3. SMC Signals for NRD and NRW Controlled Accesses.
SMC37
SMC7
SMC7
SMC31
A2-A25
SMC25
SMC26
SMC29
SMC30
SMC3
SMC4
SMC5
SMC6
SMC38
SMC39
SMC40
SMC41
SMC3
SMC4
SMC5
SMC6
A0/A1/NBS[3:0]
SMC42
SMC32
SMC8
NCS
SMC8
SMC9
SMC9
NRD
SMC19
SMC20
SMC43
SMC44
SMC1
SMC23
SMC2
SMC24
D0 - D15
SMC45
SMC33
NWE
10.9.1
SDRAM Signals
These timings are given for 10 pF load on SDCK and 40 pF on other signals.
Table 10-23. SDRAM Clock Signal.
Symbol
Parameter
1/(tCPSDCK)
SDRAM Controller Clock Frequency
Note:
Max(1)
Units
1/(tcpcpu)
MHz
1. The maximum frequency of the SDRAMC interface is the same as the max frequency for the
HSB.
Table 10-24. SDRAM Clock Signal.
Symbol
Parameter
Min
Units
SDRAMC1
SDCKE High before SDCK Rising Edge
7.4
ns
SDRAMC2
SDCKE Low after SDCK Rising Edge
3.2
SDRAMC3
SDCKE Low before SDCK Rising Edge
SDRAMC4
SDCKE High after SDCK Rising Edge
2.9
SDRAMC5
SDCS Low before SDCK Rising Edge
7.5
SDRAMC6
SDCS High after SDCK Rising Edge
1.6
SDRAMC7
RAS Low before SDCK Rising Edge
7.2
SDRAMC8
RAS High after SDCK Rising Edge
2.3
SDRAMC9
SDA10 Change before SDCK Rising Edge
7.6
SDRAMC10
SDA10 Change after SDCK Rising Edge
1.9
7
56
32072AS–AVR32–03/09
AT32UC3A3
Table 10-24. SDRAM Clock Signal.
Symbol
Parameter
Min
SDRAMC11
Address Change before SDCK Rising Edge
6.2
SDRAMC12
Address Change after SDCK Rising Edge
2.2
SDRAMC13
Bank Change before SDCK Rising Edge
6.3
SDRAMC14
Bank Change after SDCK Rising Edge
2.4
SDRAMC15
CAS Low before SDCK Rising Edge
7.4
SDRAMC16
CAS High after SDCK Rising Edge
1.9
SDRAMC17
DQM Change before SDCK Rising Edge
6.4
SDRAMC18
DQM Change after SDCK Rising Edge
2.2
SDRAMC19
D0-D15 in Setup before SDCK Rising Edge
9
SDRAMC20
D0-D15 in Hold after SDCK Rising Edge
0
SDRAMC23
SDWE Low before SDCK Rising Edge
7.6
SDRAMC24
SDWE High after SDCK Rising Edge
1.8
SDRAMC25
D0-D15 Out Valid before SDCK Rising Edge
7.1
SDRAMC26
D0-D15 Out Valid after SDCK Rising Edge
1.5
Units
ns
57
32072AS–AVR32–03/09
AT32UC3A3
Figure 10-4. SDRAMC Signals relative to SDCK.
SDCK
SDRAMC1
SDRAMC2
SDRAMC3
SDRAMC4
SDCKE
SDRAMC5
SDRAMC6
SDRAMC7
SDRAMC8
SDRAMC5
SDRAMC6
SDRAMC5
SDRAMC6
SDCS
RAS
SDRAMC15 SDRAMC16
SDRAMC15 SDRAMC16
CAS
SDRAMC23 SDRAMC24
SDWE
SDRAMC9 SDRAMC10
SDRAMC9 SDRAMC10
SDRAMC9 SDRAMC10
SDRAMC11 SDRAMC12
SDRAMC11 SDRAMC12
SDRAMC11 SDRAMC12
SDRAMC13 SDRAMC14
SDRAMC13 SDRAMC14
SDRAMC13 SDRAMC14
SDRAMC17 SDRAMC18
SDRAMC17 SDRAMC18
SDA10
A0 - A9,
A11 - A13
BA0/BA1
DQM0 DQM3
SDRAMC19 SDRAMC20
D0 - D15
Read
SDRAMC25 SDRAMC26
D0 - D15
to Write
58
32072AS–AVR32–03/09
AT32UC3A3
10.10 JTAG Timings
10.10.1
JTAG Interface Signals
Table 10-25. JTAG Interface Timing specification
Symbol
JTAG0
JTAG1
JTAG2
JTAG3
JTAG4
JTAG5
JTAG6
JTAG7
JTAG8
JTAG9
JTAG10
Note:
Parameter
Conditions
Min
TCK Low Half-period
(1)
Max
6
ns
TCK High Half-period
(1)
3
ns
TCK Period
(1)
9
ns
TDI, TMS Setup before TCK High
(1)
1
ns
TDI, TMS Hold after TCK High
(1)
0
ns
TDO Hold Time
(1)
4
ns
TCK Low to TDO Valid
(1)
Device Inputs Setup Time
(1)
ns
Device Inputs Hold Time
(1)
ns
Device Outputs Hold Time
(1)
ns
TCK to Device Outputs Valid
(1)
ns
6
Units
ns
1. VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40pF
59
32072AS–AVR32–03/09
AT32UC3A3
Figure 10-5. JTAG Interface Signals
JTAG2
TCK
JTAG
JTAG1
0
TMS/TDI
JTAG3
JTAG4
JTAG7
JTAG8
TDO
JTAG5
JTAG6
Device
Inputs
Device
Outputs
JTAG9
JTAG10
10.11 SPI Characteristics
Figure 10-6. SPI Master mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)
SPCK
SPI0
SPI1
MISO
SPI2
MOSI
60
32072AS–AVR32–03/09
AT32UC3A3
Figure 10-7. SPI Master mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)
SPCK
SPI3
SPI4
MISO
SPI5
MOSI
Figure 10-8. SPI Slave mode with (CPOL=0 and NCPHA=1) or (CPOL=1 and NCPHA=0)
SPCK
SPI6
MISO
SPI7
SPI8
MOSI
Figure 10-9. SPI Slave mode with (CPOL = NCPHA = 0) or (CPOL= NCPHA= 1)
SPCK
SPI9
MISO
SPI10
SPI11
MOSI
61
32072AS–AVR32–03/09
AT32UC3A3
Table 10-26. SPI Timings
Symbol
SPI0
Parameter
MISO Setup time before SPCK rises (master)
SPI1
MISO Hold time after SPCK rises (master)
SPI2
SPCK rising to MOSI Delay (master)
Conditions
(1)
3.3V domain
(1)
3.3V domain
3.3V domain
(1)
(1)
SPI3
MISO Setup time before SPCK falls (master)
3.3V domain
SPI4
MISO Hold time after SPCK falls (master)
3.3V domain (1)
SPI5
SPCK falling to MOSI Delay (master)
3.3V domain (1)
SPI6
SPCK falling to MISO Delay (slave)
SPI7
MOSI Setup time before SPCK rises (slave)
SPI8
MOSI Hold time after SPCK rises (slave)
SPI9
SPCK rising to MISO Delay (slave)
SPI10
MOSI Setup time before SPCK falls (slave)
SPI11
Notes:
MOSI Hold time after SPCK falls (slave)
Min
Max
Units
(2)
22 + (tCPMCK)/2
ns
0
ns
7
ns
(2)
22 + (tCPMCK)/2
ns
0
ns
7
ns
26.5
ns
3.3V domain
(1)
3.3V domain
(1)
0
ns
3.3V domain
(1)
1.5
ns
3.3V domain
(1)
3.3V domain
(1)
0
ns
3.3V domain
(1)
1
ns
27
ns
1. 3.3V domain: VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40 pF.
2. tCPMCK: Master Clock period in ns.
10.12 MACB Characteristics
Table 10-27. Ethernet MAC Signals
Symbol
Parameter
Conditions
EMAC1
Setup for EMDIO from EMDC rising
Load: 20pF
EMAC2
Hold for EMDIO from EMDC rising
Load: 20pF(2)
EMAC3
EMDIO toggling from EMDC falling
Load: 20pF(2)
Notes:
Min (ns)
Max (ns)
Min (ns)
Max (ns)
(2)
1. f: MCK frequency (MHz)
2. VVDDIO from 3.0V to 3.6V, maximum external capacitor = 20 pF
Table 10-28. Ethernet MAC MII Specific Signals
Symbol
EMAC4
EMAC5
Parameter
Setup for ECOL from ETXCK rising
Hold for ECOL from ETXCK rising
Conditions
Load: 20pF
(1)
3
Load: 20pF
(1)
0
(1)
3
0
EMAC6
Setup for ECRS from ETXCK rising
Load: 20pF
EMAC7
Hold for ECRS from ETXCK rising
Load: 20pF (1)
EMAC8
EMAC9
ETXER toggling from ETXCK rising
ETXEN toggling from ETXCK rising
Load: 20pF
(1)
15
Load: 20pF
(1)
15
(1)
15
EMAC10
ETX toggling from ETXCK rising
Load: 20pF
EMAC11
Setup for ERX from ERXCK
Load: 20pF (1)
1
62
32072AS–AVR32–03/09
AT32UC3A3
Table 10-28. Ethernet MAC MII Specific Signals
Symbol
EMAC12
EMAC13
Parameter
Conditions
Hold for ERX from ERXCK
Setup for ERXER from ERXCK
Min (ns)
Load: 20pF
(1)
1.5
Load: 20pF
(1)
1
(1)
0.5
EMAC14
Hold for ERXER from ERXCK
Load: 20pF
EMAC15
Setup for ERXDV from ERXCK
Load: 20pF (1)
1.5
EMAC16
Hold for ERXDV from ERXCK
Load: 20pF (1)
1
Note:
Max (ns)
1. VVDDIO from 3.0V to 3.6V, maximum external capacitor = 20 pF
Figure 10-10. Ethernet MAC MII Mode
EMDC
EMAC1
EMAC3
EMAC2
EMDIO
EMAC4
EMAC5
EMAC6
EMAC7
ECOL
ECRS
ETXCK
EMAC8
ETXER
EMAC9
ETXEN
EMAC10
ETX[3:0]
ERXCK
EMAC11
EMAC12
ERX[3:0]
EMAC13
EMAC14
EMAC15
EMAC16
ERXER
ERXDV
63
32072AS–AVR32–03/09
AT32UC3A3
Table 10-29. Ethernet MAC RMII Specific Signals
Symbol
Parameter
Min (ns)
Max (ns)
EMAC21
ETXEN toggling from EREFCK rising
7
14.5
EMAC22
ETX toggling from EREFCK rising
7
14.7
EMAC23
Setup for ERX from EREFCK
1.5
EMAC24
Hold for ERX from EREFCK
0
EMAC25
Setup for ERXER from EREFCK
1.5
EMAC26
Hold for ERXER from EREFCK
0
EMAC27
Setup for ECRSDV from EREFCK
1.5
EMAC28
Hold for ECRSDV from EREFCK
0
Figure 10-11. Ethernet MAC RMII Mode
EREFCK
EMAC21
ETXEN
EMAC22
ETX[1:0]
EMAC23
EMAC24
ERX[1:0]
EMAC25
EMAC26
EMAC27
EMAC28
ERXER
ECRSDV
10.13 Flash Characteristics
The following table gives the device maximum operating frequency depending on the field FWS
of the Flash FSR register. This field defines the number of wait states required to access the
Flash Memory.
Table 10-30.
Flash Wait States
FWS
Read Operations
Maximum Operating Frequency (MHz)
0
1 cycle
36
1
2 cycles
66
64
32072AS–AVR32–03/09
AT32UC3A3
11. Mechanical Characteristics
11.1
11.1.1
Thermal Considerations
Thermal Data
Table 11-1 summarizes the thermal resistance data depending on the package.
Table 11-1.
11.1.2
Thermal Resistance Data
Symbol
Parameter
Condition
Package
Typ
θJA
Junction-to-ambient thermal resistance
Still Air
TQFP144
TBD
θJC
Junction-to-case thermal resistance
TQFP144
TBD
θJA
Junction-to-ambient thermal resistance
TBGA144
TBD
θJC
Junction-to-case thermal resistance
TBGA144
TBD
Still Air
Unit
°C/W
°C/W
Junction Temperature
The average chip-junction temperature, TJ, in °C can be obtained from the following:
1.
T J = T A + ( P D × θ JA )
2.
T J = T A + ( P D × ( θ HEATSINK + θ JC ) )
where:
• θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 11-1 on
page 65.
• θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in
Table 11-1 on page 65.
• θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet.
• PD = device power consumption (W) estimated from data provided in the section ”Regulator
characteristics” on page 46.
• TA = ambient temperature (°C).
From the first equation, the user can derive the estimated lifetime of the chip and decide if a
cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second
equation should be used to compute the resulting average chip-junction temperature TJ in °C.
65
32072AS–AVR32–03/09
AT32UC3A3
11.2
Package Drawings
Figure 11-1. TBGA 144 package drawing
66
32072AS–AVR32–03/09
AT32UC3A3
Figure 11-2. LQFP-144 package drawing
Table 11-2.
Device and Package Maximum Weight
TBD
Table 11-3.
mg
Package Characteristics
Moisture Sensitivity Level
Table 11-4.
TBD
Package Reference
JEDEC Drawing Reference
MS-026
JESD97 Classification
E3
67
32072AS–AVR32–03/09
AT32UC3A3
Table 11-5.
Device and Package Maximum Weight
TBD
11.3
mg
Soldering Profile
Table 11-6 gives the recommended soldering profile from J-STD-20.
Table 11-6.
Soldering Profile
Profile Feature
Green Package
Average Ramp-up Rate (217°C to Peak)
TBD
Preheat Temperature 175°C ±25°C
TBD
Temperature Maintained Above 217°C
TBD
Time within 5°C of Actual Peak Temperature
TBD
Peak Temperature Range
TBD
Ramp-down Rate
TBD
Time 25°C to Peak Temperature
TBD
Note:
It is recommended to apply a soldering temperature higher than 250°C.
A maximum of three reflow passes is allowed per component.
68
32072AS–AVR32–03/09
AT32UC3A3
12. Ordering Information
Device
AT32UC3A3256S
AT32UC3A3256
AT32UC3A3128S
AT32UC3A3128
AT32UC3A364S
AT32UC3A364
Ordering Code
Package
Conditioning
Temperature Operating
Range
AT32UC3A3256S-ALUT
144 lead LQFP
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A3256S-ALUR
144 lead LQFP
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A3256S-CTUT
144 balls TBGA
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A3256S-CTUR
144 balls TBGA
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A3256-ALUT
144 lead LQFP
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A3256-ALUR
144 lead LQFP
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A3256-CTUT
144 balls TBGA
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A3256-CTUR
144 balls TBGA
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A3128S-ALUT
144 lead LQFP
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A3128S-ALUR
144 lead LQFP
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A3128S-CTUT
144 balls TBGA
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A3128S-CTUR
144 balls TBGA
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A3128-ALUT
144 lead LQFP
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A3128-ALUR
144 lead LQFP
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A3128-CTUT
144 balls TBGA
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A3128-CTUR
144 balls TBGA
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A364S-ALUT
144 lead LQFP
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A364S-ALUR
144 lead LQFP
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A364S-CTUT
144 balls TBGA
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A364S-CTUR
144 balls TBGA
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A364-ALUT
144 lead LQFP
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A364-ALUR
144 lead LQFP
Reels
Industrial (-40⋅C to 85⋅C)
AT32UC3A364-CTUT
144 balls TBGA
Tray
Industrial (-40⋅C to 85⋅C)
AT32UC3A364-CTUR
144 balls TBGA
Reels
Industrial (-40⋅C to 85⋅C)
69
32072AS–AVR32–03/09
AT32UC3A3
13. Errata
13.1
13.1.1
Rev. E
Processor and Architecture
1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.
13.1.2
ADC
1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.
13.1.3
SPI
1. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and
NCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't
equal to 1, and CPOL=1 and CPHA=0, then an additional pulse will be generated on SCK.
Fix/workaround
When multiple CS are in use, if one of the baudrate equals 1, the other must
also equal 1 if CPOL=1 and CPHA=0.
2. SPI Disable does not work in Slave mode
Fix/workaround
Read the last received data then perform a Software reset.
13.2
13.2.1
Rev. D
Processor and Architecture
1. LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.
2. RETE instruction does not clear SREG[L] from interrupts.
The RETE instruction clears SREG[L] as expected from exceptions.
Fix/Workaround
70
32072AS–AVR32–03/09
AT32UC3A3
When using the STCOND instruction, clear SREG[L] in the stacked value of SR before
returning from interrupts with RETE.
3. Exceptions when system stack is protected by MPU
RETS behaves incorrectly when MPU is enabled and MPU is configured so that
system stack is not readable in unprivileged mode.
Fix/Workaround
Workaround 1: Make system stack readable in unprivileged mode,
or
Workaround 2: Return from supervisor mode using rete instead of rets. This requires :
1. Changing the mode bits from 001b to 110b before issuing the instruction.
Updating the mode bits to the desired value must be done using a single mtsr instruction so
it is done atomically. Even if this step is described in general as not safe in the UC technical
reference guide, it is safe in this very specific case.
2. Execute the RETE instruction.
4. Multiply instructions do not work on RevD.
All the multiply instructions do not work.
Fix/Workaround
Do not use the multiply instructions.
13.2.2
ADC
1. Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.
13.2.3
SPI
1. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and
NCPHA=0
When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't
equal to 1, and CPOL=1 and CPHA=0, then an additional pulse will be generated on SCK.
Fix/workaround
When multiple CS are in use, if one of the baudrate equals 1, the other must
also equal 1 if CPOL=1 and CPHA=0.
2. SPI Disable does not work in Slave mode
Fix/workaround
Read the last received data then perform a Software reset.
13.2.4
TWI
1. TWIM Version Register is zero
TWIM Version Register (VR) is zero instead of 0x100.
Fix/Workaround
None.
71
32072AS–AVR32–03/09
AT32UC3A3
14. Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.
14.1
Rev. A – 03/09
1.
Initial revision.
72
32072AS–AVR32–03/09
AT32UC3A3
Table of Contents
Features ..................................................................................................... 1
1
Description ............................................................................................... 3
2
Blockdiagram ........................................................................................... 4
2.1Processor and Architecture .......................................................................................5
3
Signals Description .................................................................................. 6
4
Package and Pinout ............................................................................... 11
4.1Package ...................................................................................................................11
4.2Peripheral Multiplexing on I/O lines .........................................................................13
4.3Signal Descriptions ..................................................................................................17
4.4Power Considerations .............................................................................................22
5
Power Considerations ........................................................................... 23
5.1Power Supplies ........................................................................................................23
5.2Voltage Regulator ....................................................................................................23
6
I/O Line Considerations ......................................................................... 24
6.1JTAG Pins ...............................................................................................................24
6.2RESET_N Pin ..........................................................................................................24
6.3TWI Pins ..................................................................................................................24
6.4GPIO Pins ................................................................................................................24
7
Memories ................................................................................................ 25
7.1Embedded Memories ..............................................................................................25
7.2Physical Memory Map .............................................................................................25
7.3Peripheral Address Map ..........................................................................................26
7.4CPU Local Bus Mapping .........................................................................................28
8
Peripherals .............................................................................................. 29
8.1Clock Connections ...................................................................................................29
8.2Peripheral Multiplexing on I/O lines .........................................................................29
8.3Oscillator Pinout ......................................................................................................32
8.4Peripheral overview .................................................................................................34
9
Boot Sequence ....................................................................................... 43
9.1Starting of Clocks ....................................................................................................43
9.2Fetching of Initial Instructions ..................................................................................43
i
32072AS–AVR32–03/09
AT32UC3A3
10 Electrical Characteristics ...................................................................... 44
10.1Absolute Maximum Ratings* .................................................................................44
10.2DC Characteristics .................................................................................................44
10.3Regulator characteristics .......................................................................................46
10.4Power Consumption ..............................................................................................46
10.5Clock Characteristics .............................................................................................48
10.6Crystal Oscillator Characteristis ............................................................................49
10.7ADC Characteristics ..............................................................................................51
10.8USB Transceiver Characteristics ...........................................................................52
10.9EBI Timings ...........................................................................................................53
10.10JTAG Timings ......................................................................................................59
10.11SPI Characteristics ..............................................................................................60
10.12MACB Characteristics .........................................................................................62
10.13Flash Characteristics ...........................................................................................64
11 Mechanical Characteristics ................................................................... 65
11.1Thermal Considerations ........................................................................................65
11.2Package Drawings .................................................................................................66
11.3Soldering Profile ....................................................................................................68
12 Ordering Information ............................................................................. 69
13 Errata ....................................................................................................... 70
13.1Rev. E ....................................................................................................................70
13.2Rev. D ....................................................................................................................70
14 Datasheet Revision History ................................................................... 72
14.1Rev. A – 03/09 .......................................................................................................72
Table of Contents....................................................................................... i
ii
32072AS–AVR32–03/09
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2009 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, AVR ® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
32072AS–AVR32–03/09