Features • High Performance, Low Power AVR®32 UC 32-Bit Microcontroller • • • • • • • • • • • • • • • • • • • – Compact Single-cycle RISC Instruction Set Including DSP Instruction Set – Read-Modify-Write Instructions and Atomic Bit Manipulation – Up to 66 MHz Clock Frequency with 1.24 DMIPS/MHz – Memory Protection Unit Multi-hierarchy Bus System – High-Performance Data Transfers on Separate Buses for Increased Performance – 15 Peripheral DMA Channels for Automatic Data Transfer Internal High-Speed Flash – 512K Bytes, 256K Bytes, 128K Bytes Versions – Single Cycle Access up to 30 MHz – Prefetch Buffer Optimizing Instruction Execution at Maximum Speed – 1ms Page Programming Time and 2ms Full-Chip Erase Time – 100,000 Write Cycles, 10-year Data Retention Capability – Flash Security Locks and User Defined Configuration Area Internal High-Speed SRAM, Single-Cycle Access at Full Speed – 64K Bytes (512KB and 256KB Flash), 32K Bytes (128KB Flash) External Memory Interface on AT32UC3A0 Derivatives – SDRAM / SRAM Compatible Memory Bus (16-bit Data and 24-bit Address Buses) Interrupt Controller – Autovectored Low Latency Interrupt Service with Programmable Priority System Functions – Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator – Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL) – Watchdog Timer, Real-Time Clock Timer Universal Serial Bus (USB) – Device 2.0 Full Speed and On-The-Go (OTG) Low Speed and Full Speed – Flexible End-Point Configuration and Management with Dedicated DMA Channels – On-chip Transceivers Including Pull-Ups Ethernet MAC 10/100 Mbps interface – 802.3 Ethernet Media Access Controller – Supports Media Independent Interface (MII) and Reduced MII (RMII) One Three-Channel 16-bit Timer/Counter (TC) – Three External Clock Inputs, PWM, Capture and Various Counting Capabilities One 7-Channel 16-bit Pulse Width Modulation Controller (PWM) Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART) – Independant Baudrate Generator, Support for IrDA and ISO7816 interfaces – Support for Hardware Handshaking, RS485 Interfaces and Modem Line Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals One Synchronous Serial Protocol Controller – Supports I2S and Generic Frame-Based Protocols One Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible One 8-channel 10-bit Analog-To-Digital Converter On-Chip Debug System (JTAG interface) – Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace 100-pin TQFP (69 GPIO pins), 144-pin LQFP (109 GPIO pins) 5V Input Tolerant I/Os Single 3.3V Power Supply AVR®32 32-Bit Microcontroller AT32UC3A0512 AT32UC3A0256 AT32UC3A0128 AT32UC3A1512 AT32UC3A1256 AT32UC3A1128 Preliminary Summary 32058AS–AVR32–03/07 1. Description The AT32UC3A is a complete System-On-Chip microcontroller based on the AVR32 UC RISC processor running at frequencies up to 66 MHz. AVR32 UC is a high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption, high code density and high performance. The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt controller for supporting modern operating systems and real-time operating systems. Higher computation capabilities are achievable using a rich set of DSP instructions. The AT32UC3A incorporates on-chip Flash and SRAM memories for secure and fast access. For applications requiring additional memory, an external memory interface is provided on AT32UC3A0 derivatives. The Peripheral Direct Memory Access controller enables data transfers between peripherals and memories without processor involvement. PDCA drastically reduces processing overhead when transferring continuous and large data streams between modules within the MCU. The PowerManager improves design flexibility and security: the on-chip Brown-Out Detector monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external oscillator sources, a Real-Time Clock and its associated timer keeps track of the time. The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be independently programmed to perform frequency measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation. The PWM modules provides seven independent channels with many configuration options including polarity, edge alignment and waveform non overlap control. One PWM channel can trigger ADC conversions for more accurate close loop control implementations. The AT32UC3A also features many communication interfaces for communication intensive applications. In addition to standard serial interfaces like UART, SPI or TWI, other interfaces like flexible Synchronous Serial Controller, USB and Ethernet MAC are available. The Synchronous Serial Controller provides easy access to serial communication protocols and audio standards like I2S. The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device like a USB Flash disk or a USB printer to be directly connected to the processor. The media-independent interface (MII) and reduced MII (RMII) 10/100 Ethernet MAC module provides on-chip solutions for network-connected devices. AT32UC3A integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control. 2 32058AS–AVR32–03/07 2. Configuration Summary The table below lists all AT32UC3A memory and package configurations: Device Flash SRAM Ext. Bus Interface Package AT32UC3A0512 512 Kbytes 64 Kbytes yes 144 lead LQFP AT32UC3A1512 512 Kbytes 64 Kbytes no 100 lead TQFP AT32UC3A0256 256 Kbytes 64 Kbytes yes 144 lead LQFP AT32UC3A1256 256 Kbytes 64 Kbytes no 100 lead TQFP AT32UC3A0128 128 Kbytes 32 Kbytes yes 144 lead LQFP AT32UC3A1128 128 Kbytes 32 Kbytes no 100 lead TQFP 3 32058AS–AVR32–03/07 3. Blockdiagram Blockdiagram TCK TDO TDI TMS JTAG INTERFACE USB INTERFACE DMA S M DMA M M M HIGH SPEED BUS MATRIX 512 KB FLASH DATA[15..0] S S ETHERNET MAC M S CONFIGURATION PB MDIO REGISTERS BUS HSB HSB HSB-PB BRIDGE B HSB-PB BRIDGE A PERIPHERAL DMA CONTROLLER PB REAL TIME COUNTER PDC EXTERNAL INTERRUPT CONTROLLER USART1 PDC KPS[7..0] NMI_N USART0 USART2 PDC EXTINT[7..0] USART3 PDC INTERRUPT CONTROLLER PA PB PC PX S S SERIAL PERIPHERAL INTERFACE 0/1 SYNCHRONOUS SERIAL CONTROLLER ADDR[23..0] NCS[3..0] NRD NWAIT NWE0 NWE1 NWE3 RAS CAS SDA10 SDCK SDCKE SDCS1 SDWE RXD TXD CLK RTS, CTS DSR, DTR, DCD, RI RXD TXD CLK RTS, CTS RXD WATCHDOG TIMER XOUT0 XIN1 XOUT1 CLOCK GENERATOR OSC0 OSC1 PLL0 CLOCK CONTROLLER SLEEP CONTROLLER PDC XIN0 32 KHz OSC TWO-WIRE INTERFACE PDC XIN32 XOUT32 POWER MANAGER PA PB PC PX CLK PULSE WIDTH MODULATION CONTROLLER PDC 115 kHz RCOSC TXD GENERAL PURPOSE IOs MDC, TXD[3..0], TX_CLK, TX_EN, TX_ER, SPEED M 64 KB SRAM PDC GENERAL PURPOSE IOs COL, CRS, RXD[3..0], RX_CLK, RX_DV, RX_ER DATA INTERFACE EXTERNAL BUS INTERFACE (SDRAM & STATIC MEMORY CONTROLLER) ID VBOF MEMORY PROTECTION UNIT INSTR INTERFACE PBB VBUS D+ D- UC CPU FLASH CONTROLLER NEXUS CLASS 2+ OCD MCKO MDO[5..0] MSEO[1..0] EVTI_N EVTO_N PBA Figure 3-1. ANALOG TO DIGITAL CONVERTER SCK MISO, MOSI NPCS0 NPCS[3..1] TX_CLOCK, TX_FRAME_SYNC TX_DATA RX_CLOCK, RX_FRAME_SYNC RX_DATA SCL SDA PLL1 RESET_N GCLK[3..0] A[2..0] B[2..0] CLK[2..0] RESET CONTROLLER TIMER/COUNTER PWM[6..0] AD[7..0] ADVREF 4 32058AS–AVR32–03/07 3.1 3.1.1 Processor and architecture AVR32 UC CPU • 32-bit load/store AVR32A RISC architecture. – – – – – 15 general-purpose 32-bit registers. 32-bit Stack Pointer, Program Counter and Link Register reside in register file. Fully orthogonal instruction set. Privileged and unprivileged modes enabling efficient and secure Operating Systems. Innovative instruction set together with variable instruction length ensuring industry leading code density. – DSP extention with saturating arithmetic, and a wide variety of multiply instructions. • 3 stage pipeline allows one instruction per clock cycle for most instructions. – Byte, half-word, word and double word memory access. – Multiple interrupt priority levels. • MPU allows for operating systems with memory protection. 3.1.2 Debug and Test system • IEEE1149.1 compliant JTAG and boundary scan • Direct memory access and programming capabilities through JTAG interface • Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+ • • • • 3.1.3 – Low-cost NanoTrace supported. Auxiliary port for high-speed trace information Hardware support for 6 Program and 2 data breakpoints Unlimited number of software breakpoints supported Advanced Program, Data, Ownership, and Watchpoint trace supported Peripheral DMA Controller • Transfers from/to peripheral to/from any memory space without intervention of the processor. • Next Pointer Support, forbids strong real-time constraints on buffer management. • Fifteen channels – – – – – 3.1.4 Two for each USART Two for each Serial Synchronous Controller Two for each Serial Peripheral Interface One for each ADC Two for each TWI Interface Bus system • High Speed Bus (HSB) matrix with 6 Masters and 6 Slaves handled – Handles Requests from the CPU Data Fetch, CPU Instruction Fetch, PDCA, USBB, Ethernet Controller, CPU SAB, and to internal Flash, internal SRAM, Peripheral Bus A, Peripheral Bus B, EBI. – Round-Robin Arbitration (three modes supported: no default master, last accessed default master, fixed default master) – Burst Breaking with Slot Cycle Limit – One Address Decoder Provided per Master 5 32058AS–AVR32–03/07 • Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus Figure 3-1 gives an overview of the bus system. All modules connected to the same bus use the same clock, but the clock to each module can be individually shut off by the Power Manager. The figure identifies the number of master and slave interfaces of each module connected to the High Speed Bus, and which DMA controller is connected to which peripheral. 6 32058AS–AVR32–03/07 4. Signals Description The following table gives details on the signal name classified by peripheral The signals are multiplexed with GPIO pins as described in ”Peripheral Multiplexing on I/O lines” on page 25. Table 4-1. Signal Description List Signal Name Function Type Active Level Comments Power VDDSYS Power supply for PLL and ADC Power 1.65 to 1.95 V VDDCORE Core Power Supply Power 1.65 to 1.95 V VDDIO I/O Power Supply Power 3.0 to 3.6V VDDANA Analog Power Supply Power 3.0 to 3.6V VDDIN Voltage Regulator Input Supply Power 3.0 to 3.6V VDDOUT Voltage Regulator Output Power Output 1.65 to 1.95 V GNDANA Analog Ground Ground GND Ground Ground Clocks, Oscillators, and PLL’s XIN0, XIN1, XIN32 Crystal 0, 1, 32 Input Analog XOUT0, XOUT1, XOUT32 Crystal 0, 1, 32 Output Analog JTAG TCK Test Clock Input TDI Test Data In Input TDO Test Data Out TMS Test Mode Select Output Input Auxiliary Port - AUX MCKO Trace Data Output Clock Output MDO0 - MDO5 Trace Data Output Output MSEO0 - MSEO1 Trace Frame Control Output EVTI_N Event In Output Low EVTO_N Event Out Output Low 7 32058AS–AVR32–03/07 Table 4-1. Signal Description List Signal Name Function Type Active Level Comments Power Manager - PM GCLK0 - GCLK3 Generic Clock Pins RESET_N Reset Pin Output Input Low Real Time Counter - RTC RTC_CLOCK RTC clock Output Watchdog Timer - WDT WDTEXT External Watchdog Pin Output External Interrupt Controller - EIC EXTINT0 - EXTINT7 External Interrupt Pins KPS0 - KPS7 Keypad Scan Pins NMI_N Non-Maskable Interrupt Pin Input Output Input Low Ethernet MAC - MACB COL Collision Detect Input CRS Carrier Sense and Data Valid Input MDC Management Data Clock MDIO Management Data Input/Output RXD0 - RXD3 Receive Data Input RX_CLK Receive Clock Input RX_DV Receive Data Valid Input RX_ER Receive Coding Error Input SPEED Speed TXD0 - TXD3 Transmit Data Output TX_CLK Transmit Clock or Reference Clock Output TX_EN Transmit Enable Output TX_ER Transmit Coding Error Output Output I/O External Bus Interface - HEBI - uC3015 Only ADDR0 - ADDR23 Address Bus Output CAS Column Signal Output Low 8 32058AS–AVR32–03/07 Table 4-1. Signal Description List Active Level Signal Name Function Type DATA0 - DATA15 Data Bus I/O NCS0 - NCS3 Chip Select Output Low NRD Read Signal Output Low NWAIT External Wait Signal Input Low NWE0 Write Enable 0 Output Low NWE1 Write Enable 1 Output Low NWE3 Write Enable 3 Output Low RAS Row Signal Output Low SDA10 SDRAM Address 10 Line Output SDCK SDRAM Clock Output SDCKE SDRAM Clock Enable Output SDCS0-SDCS1 SDRAM Chip Select Output Low SDWE SDRAM Write Enable Output Low Comments General Purpose Input/Output 2 - GPIOA, GPIOB, GPIOC P0 - P31 Parallel I/O Controller GPIOA I/O P0 - P31 Parallel I/O Controller GPIOB I/O P0 - P5 Parallel I/O Controller GPIOC I/O P0 - P31 Parallel I/O Controller GPIOX I/O Serial Peripheral Interface - SPI0, SPI1 MISO Master In Slave Out I/O MOSI Master Out Slave In I/O NPCS0 - NPCS3 SPI Peripheral Chip Select I/O SCK Clock Low Output Synchronous Serial Controller - SSC RX_CLOCK SSC Receive Clock I/O RX_DATA SSC Receive Data Input RX_FRAME_SYNC SSC Receive Frame Sync I/O TX_CLOCK SSC Transmit Clock I/O 9 32058AS–AVR32–03/07 Table 4-1. Signal Description List Signal Name Function Type TX_DATA SSC Transmit Data TX_FRAME_SYNC SSC Transmit Frame Sync Active Level Comments Output I/O Timer/Counter - TIMER A0 Channel 0 Line A I/O A1 Channel 1 Line A I/O A2 Channel 2 Line A I/O B0 Channel 0 Line B I/O B1 Channel 1 Line B I/O B2 Channel 2 Line B I/O CLK0 Channel 0 External Clock Input Input CLK1 Channel 1 External Clock Input Input CLK2 Channel 2 External Clock Input Input Two-wire Interface - TWI SCL Serial Clock I/O SDA Serial Data I/O Universal Synchronous Asynchronous Receiver Transmitter - USART0, USART1, USART2, USART3 CLK Clock I/O CTS Clear To Send DCD Data Carrier Detect Only USART0 DSR Data Set Ready Only USART0 DTR Data Terminal Ready Only USART0 RI Ring Indicator Only USART0 RTS Request To Send RXD Receive Data Input RXDN Inverted Receive Data Input TXD Transmit Data Output TXDN Inverted Transmit Data Output Input Only USART0, USART1 Output Only USART0, USART1 Low Low Analog to Digital Converter - ADC 10 32058AS–AVR32–03/07 Table 4-1. Signal Description List Signal Name Function Type AD0 - AD7 Analog input pins Analog input ADVREF Analog positive reference voltage input Analog input Active Level Comments 2.6 to 3.6V Pulse Width Modulator - PWM PWM0 - PWM6 PWM Output Pins Output Universal Serial Bus Device - USB DDM USB Device Port Data - Analog DDP USB Device Port Data + Analog 11 32058AS–AVR32–03/07 5. Package and Pinout The device pins are multiplexed with peripheral functions as described in ”Peripheral Multiplexing on I/O lines” on page 25. Figure 5-1. TQFP100 Pinout 75 51 76 50 100 26 1 Table 5-1. 25 TQFP100 Package Pinout 1 PB20 26 PA05 51 PA21 76 PB08 2 PB21 27 PA06 52 PA22 77 PB09 3 PB22 28 PA07 53 PA23 78 PB10 4 VDDIO 29 PA08 54 PA24 79 VDDIO 5 GND 30 PA09 55 PA25 80 GND 6 PB23 31 PA10 56 PA26 81 PB11 7 PB24 32 N/C 57 PA27 82 PB12 8 PB25 33 PA11 58 PA28 83 PA29 9 PB26 34 VDDCORE 59 VDDANA 84 PA31 10 PB27 35 GND 60 ADVREF 85 PC02 11 VDDOUT 36 PA12 61 GNDANA 86 PC03 12 VDDIN 37 PA13 62 VDDSYS 87 PB13 13 GND 38 VDDCORE 63 PC00 88 PB14 14 PB28 39 PA14 64 PC01 89 TMS 15 PB29 40 PA15 65 PB00 90 TCK 16 PB30 41 PA16 66 PB01 91 TDO 17 PB31 42 PA17 67 VDDIO 92 TDI 18 RESET_N 43 PA18 68 VDDIO 93 PC04 19 PA00 44 PA19 69 GND 94 PC05 20 PA01 45 PA20 70 PB02 95 PB15 21 GND 46 VBUS 71 PB03 96 PB16 22 VDDCORE 47 VDDIO 72 PB04 97 VDDCORE 12 32058AS–AVR32–03/07 Table 5-1. TQFP100 Package Pinout 23 PA02 48 DM 73 PB05 98 PB17 24 PA03 49 DP 74 PB06 99 PB18 25 PA04 50 GND 75 PB07 100 PB19 Figure 5-2. LQFP144 Pinout 108 73 109 72 144 37 1 Table 5-2. 36 VQFP144 Package Pinout 1 PX00 37 GND 73 PA21 109 GND 2 PX01 38 PX10 74 PA22 110 PX30 3 PB20 39 PA05 75 PA23 111 PB08 4 PX02 40 PX11 76 PA24 112 PX31 5 PB21 41 PA06 77 PA25 113 PB09 6 PB22 42 PX12 78 PA26 114 PX32 7 VDDIO 43 PA07 79 PA27 115 PB10 8 GND 44 PX13 80 PA28 116 VDDIO 9 PB23 45 PA08 81 VDDANA 117 GND 10 PX03 46 PX14 82 ADVREF 118 PX33 11 PB24 47 PA09 83 GNDANA 119 PB11 12 PX04 48 PA10 84 VDDSYS 120 PX34 13 PB25 49 N/C 85 PC00 121 PB12 14 PB26 50 PA11 86 PC01 122 PA29 15 PB27 51 VDDCORE 87 PX20 123 PA31 16 VDDOUT 52 GND 88 PB00 124 PC02 17 VDDIN 53 PA12 89 PX21 125 PC03 18 GND 54 PA13 90 PB01 126 PB13 19 PB28 55 VDDCORE 91 PX22 127 PB14 20 PB29 56 PA14 92 VDDIO 128 TMS 21 PB30 57 PA15 93 VDDIO 129 TCK 13 32058AS–AVR32–03/07 Table 5-2. VQFP144 Package Pinout 22 PB31 58 PA16 94 GND 130 TDO 23 RESET_N 59 PX15 95 PX23 131 TDI 24 PX05 60 PA17 96 PB02 132 PC04 25 PA00 61 PX16 97 PX24 133 PC05 26 PX06 62 PA18 98 PB03 134 PB15 27 PA01 63 PX17 99 PX25 135 PX35 28 GND 64 PA19 100 PB04 136 PB16 29 VDDCORE 65 PX18 101 PX26 137 PX36 30 PA02 66 PA20 102 PB05 138 VDDCORE 31 PX07 67 PX19 103 PX27 139 PB17 32 PA03 68 VBUS 104 PB06 140 PX37 33 PX08 69 VDDIO 105 PX28 141 PB18 34 PA04 70 DM 106 PB07 142 PX38 35 PX09 71 DP 107 PX29 143 PB19 36 VDDIO 72 GND 108 VDDIO 144 PX39 14 32058AS–AVR32–03/07 6. Power Considerations 6.1 Power Supplies The AT32UC3A has several types of power supply pins: • • • • • VDDIO: Powers I/O lines. Voltage is 3.3V nominal. VDDANA: Powers the ADC Voltage is 3.3V nominal. VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal. VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal. VDDSYS: Powers the PLL and ADC. Voltage is 1.8V nominal. The ground pins GND are common to VDDCORE and VDDIO. The ground pin for VDDANA and VDDSYS is GNDANA. See ”Electrical Characteristics” on page 33 for power consumption on the various supply pins. 6.2 Voltage Regulator The AT32UC3A embeds a voltage regulator that converts from 3.3V to 1.8V with a load of up to 100 mA. The regulator takes its input voltage from VDDIN, and supplies the output voltage on VDDOUT. VDDOUT should be externally connected to the 1.8V domains to be powered. Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel: one external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible. One external 2.2 µF (or 3.3 µF) X7R capacitor should be connected between VDDOUT and GND. Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. The input decoupling capacitor should be placed close to the chip. For example, two capacitors can be used in parallel: 100 nF NPO and 4.7 µF X7R. 15 32058AS–AVR32–03/07 7. I/O Line Considerations 7.1 JTAG pins TMS, TDI and TCK have pull-up resistors. TDO is an output, driven at up to VDDIO, and has no pull-up resistor. 7.2 RESET_N pin The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product. 7.3 TWI pins When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as PIO pins. 7.4 GPIO pins All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the GPIO Controllers. After reset, I/O lines default as inputs with pull-up resistors disabled, except when indicated otherwise in the column “Reset State” of the GPIO Controller multiplexing tables. 16 32058AS–AVR32–03/07 8. Memories 8.1 Embedded Memories • Internal High-Speed Flash – 512 KBytes (AT32UC3A0512, AT32UC3A1512) – 256 KBytes (AT32UC3A0256, AT32UC3A1256) – 128 KBytes (AT32UC3A1128) - 0 Wait State Access at up to 30 MHz in Worst Case Conditions - 1 Wait State Access at up to 60 MHz in Worst Case Conditions - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding penalty of 1 wait state access - Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation to only 15% compared to 0 wait state operation - 10 000 Write Cycles, 10-year Data Retention Capability - 1 ms Page Programming Time, 2 ms Chip Erase Time - Sector Lock Capabilities, Bootloader Protection, Security Bit - 64 Fuses, 32 Of Which Are Preserved During Chip Erase - User Page For Data To Be Preserved During Chip Erase • Internal High-Speed SRAM, Single-cycle access at full speed – 64 KBytes (AT32UC3A0512, AT32UC3A0, AT32UC3A0256 & AT32UC3A1256) – 32KBytes (AT32UC3A1128) 8.2 Physical Memory Map The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space is mapped as follows: Table 8-1. AT32UC3A Physical Memory Map Start Address Size Device AT32UC3A0512 AT32UC3A1512 AT32UC3A0256 AT32UC3A1256 AT32UC3A1128 0x0000_0000 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 32 Kbyte Embedded SRAM 0x8000_0000 512 Kbyte 512 Kbyte 256 Kbyte 256 Kbyte 128 Kbyte Embedded Flash 0xC000_0000 16 Mbyte - 16 Mbyte - - EBI SRAM CS0 0xC800_0000 16 Mbyte - 16 Mbyte - - EBI SRAM CS2 0xCC00_0000 16 Mbyte - 16 Mbyte - - EBI SRAM CS3 0xD000_0000 128 Mbyte - 128 Mbyte - - EBI SRAM/SDRAM CS1 0xE000_0000 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte USB Configuration 0xFFFE_0000 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte HSB-PB Bridge A 0xFFFF_0000 64 Kbyte 64 Kbyte 64 kByte 64 kByte 64 Kbyte HSB-PB Bridge B Accesses to unused areas returns an error result to the master requesting such an access. The bus matrix has the several masters and slaves. Each master has its own bus and its own decoder, thus allowing a different memory mapping per master. The master number in the table 17 32058AS–AVR32–03/07 below can be used to index the HMATRIX control registers. For example, MCFG0 is associated with the CPU Data master interface. Table 8-2. High Speed Bus masters Master 0 CPU Data Master 1 CPU Instruction Master 2 CPU SAB Master 3 PDCA Master 4 MACB DMA Master 5 USBB DMA Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is associated with the Internal SRAM Slave Interface. Table 8-3. High Speed Bus slaves Slave 0 Internal Flash Slave 1 HSB-PB Bridge 0 Slave 2 HSB-PB Bridge 1 Slave 3 Internal SRAM Slave Slave 4 USBB Slave Slave 5 EBI 18 32058AS–AVR32–03/07 9. Peripherals 9.1 Peripheral address map Table 9-1. Peripheral Address Mapping Address 0xE0000000 0xFFFE0000 0xFFFE1000 0xFFFE1400 0xFFFE1800 0xFFFE1C00 0xFFFE2000 0xFFFF0000 0xFFFF0800 0xFFFF0C00 0xFFFF0D00 0xFFFF0D30 0xFFFF0D80 0xFFFF1000 0xFFFF1400 0xFFFF1800 Peripheral Name Bus USBB USBB Slave Interface - USBB HSB USBB USBB Configuration Interface - USBB PBB HMATRIX HMATRIX Configuration Interface - HMATRIX PBB FLASHC Flash Controller - FLASHC PBB MACB Configuration Interface - MACB PBB Static Memory Controller Configuration Interface SMC PBB SDRAM Controller Configuration Interface SDRAMC PBB PDCA Peripheral DMA Interface - PDCA PBA INTC Interrupt Controller Interface - INTC PBA PM Power Manager - PM PBA RTC Real Time Clock - RTC PBA WDT WatchDog Timer - WDT PBA External Interrupt Controller - EIC PBA General Purpose IO Controller - GPIO PBA USART0 Universal Synchronous Asynchronous Receiver Transmitter - USART0 PBA USART1 Universal Synchronous Asynchronous Receiver Transmitter - USART1 PBA MACB SMC SDRAMC EIC GPIO 19 32058AS–AVR32–03/07 Table 9-1. Peripheral Address Mapping (Continued) Address 0xFFFF1C00 0xFFFF2000 0xFFFF2400 0xFFFF2800 0xFFFF2C00 0xFFFF3000 0xFFFF3400 0xFFFF3800 Bus USART2 Universal Synchronous Asynchronous Receiver Transmitter - USART2 PBA USART3 Universal Synchronous Asynchronous Receiver Transmitter - USART3 PBA SPI0 Serial Peripheral Interface - SPI0 PBA SPI1 Serial Peripheral Interface - SPI1 PBA TWI Two Wire Interface - TWI PBA PWM Pulse Width Modulation Controller - PWM PBA SSC Synchronous Serial Controller - SSC PBA Timer/Counter - TC PBA Analog To Digital Converter - ADC PBA TC 0xFFFF3C00 9.2 Peripheral Name ADC Interrupt Request Signal Map The various modules may output Interrupt request signals. These signals are routed to the Interrupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64 groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt signals in the same group share the same autovector address and priority level. Refer to the documentation for the individual submodules for a description of the semantic of the different interrupt requests. The interrupt request signals are connected to the INTC as follows. Table 9-2. Interrupt Request Signal Map Group Line 0 0 Module Peripheral DMA Controller Signal PDCA 16 20 32058AS–AVR32–03/07 Table 9-2. Interrupt Request Signal Map 0 External Interrupt Controller EIC 0 1 External Interrupt Controller EIC 1 2 External Interrupt Controller EIC 2 3 External Interrupt Controller EIC 3 4 External Interrupt Controller EIC 4 5 External Interrupt Controller EIC 5 6 External Interrupt Controller EIC 6 7 External Interrupt Controller EIC 7 8 Real Time Counter RTC 9 Power Manager PM 0 General Purpose Input/Output Controller GPIO 0 1 General Purpose Input/Output Controller GPIO 1 2 General Purpose Input/Output Controller GPIO 2 3 General Purpose Input/Output Controller GPIO 3 4 General Purpose Input/Output Controller GPIO 4 5 General Purpose Input/Output Controller GPIO 5 6 General Purpose Input/Output Controller GPIO 6 7 General Purpose Input/Output Controller GPIO 7 8 General Purpose Input/Output Controller GPIO 8 9 General Purpose Input/Output Controller GPIO 9 10 General Purpose Input/Output Controller GPIO 10 11 General Purpose Input/Output Controller GPIO 11 12 General Purpose Input/Output Controller GPIO 12 13 General Purpose Input/Output Controller GPIO 13 1 2 21 32058AS–AVR32–03/07 Table 9-2. Interrupt Request Signal Map 0 Peripheral DMA Controller PDCA 0 1 Peripheral DMA Controller PDCA 1 2 Peripheral DMA Controller PDCA 2 3 Peripheral DMA Controller PDCA 3 4 Peripheral DMA Controller PDCA 4 5 Peripheral DMA Controller PDCA 5 6 Peripheral DMA Controller PDCA 6 7 Peripheral DMA Controller PDCA 7 8 Peripheral DMA Controller PDCA 8 9 Peripheral DMA Controller PDCA 9 10 Peripheral DMA Controller PDCA 10 11 Peripheral DMA Controller PDCA 11 12 Peripheral DMA Controller PDCA 12 13 Peripheral DMA Controller PDCA 13 14 Peripheral DMA Controller PDCA 14 4 0 Flash Controller FLASHC 5 0 Universal Synchronous Asynchronous Receiver Transmitter USART0 6 0 Universal Synchronous Asynchronous Receiver Transmitter USART1 7 0 Universal Synchronous Asynchronous Receiver Transmitter USART2 8 0 Universal Synchronous Asynchronous Receiver Transmitter USART3 9 0 Serial Peripheral Interface SPI0 10 0 Serial Peripheral Interface SPI1 11 0 Two-wire Interface TWI 12 0 Pulse Width Modulation Controller PWM 13 0 Synchronous Serial Controller SSC 0 Timer/Counter TC0 1 Timer/Counter TC1 2 Timer/Counter TC2 15 0 Analog to Digital Converter ADC 16 0 Ethernet MAC MACB 17 0 USB Interface USBB 18 0 SDRAM Controller 3 14 SDRAMC 22 32058AS–AVR32–03/07 9.3 9.3.1 Clock Connections Timer/Counters Each Timer/Counter channel can independently select an internal or external clock source for its counter: Table 9-3. Timer/Counter clock connections Source Name Connection Internal TIMER_CLOCK1 clk_slow TIMER_CLOCK2 clk_pba / 4 TIMER_CLOCK3 clk_pba / 8 TIMER_CLOCK4 clk_pba / 16 TIMER_CLOCK5 clk_pba / 32 XC0 See Section 9.6 External XC1 XC2 9.3.2 USARTs Each USART can be connected to an internally divided clock: Table 9-4. USART clock connections USART Source Name Connection 0 Internal CLK_DIV clk_pba / 8 1 2 3 9.3.3 SPIs Each SPI can be connected to an internally divided clock: Table 9-5. SPI clock connections SPI Source Name Connection 0 Internal CLK_DIV clk_pba / 32 1 9.4 Nexus OCD AUX port connections If the OCD trace system is enabled, the trace system will take control over a number of pins, irrespectively of the PIO configuration. Two different OCD trace pin mappings are possible, 23 32058AS–AVR32–03/07 depending on the configuration of the OCD AXS register. For details, see the AVR32 UCTechnical Reference Manual. Table 9-6. 9.5 Nexus OCD AUX port connections Pin AXS=0 AXS=1 EVTI_N PB19 PA08 MDO[5] PB16 PA27 MDO[4] PB14 PA26 MDO[3] PB13 PA25 MDO[2] PB12 PA24 MDO[1] PB11 PA23 MDO[0] PB10 PA22 EVTO_N PB20 PB20 MCKO PB21 PA21 MSEO[1] PB04 PA07 MSEO[0] PB17 PA28 DMA handshake signals The PDMA and the peripheral modules communicate through a set of handshake signals. The following table defines the valid settings for the Peripheral Identifier (PID) in the PDMA Peripheral Select Register (PSR). Table 9-7. PDMA Handshake Signals PID Value Peripheral module & direction 0 ADC 1 SSC - RX 2 USART0 - RX 3 USART1 - RX 4 USART2 - RX 5 USART3 - RX 6 TWI - RX 7 SPI0 - RX 8 SPI1 - RX 9 SSC - TX 10 USART0 - TX 11 USART1 - TX 12 USART2 - TX 13 USART3 - TX 24 32058AS–AVR32–03/07 Table 9-7. 9.6 PDMA Handshake Signals PID Value Peripheral module & direction 14 TWI - TX 15 SPI0 - TX 16 SPI1 - TX Peripheral Multiplexing on I/O lines Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table define how the I/O lines on the peripherals A, B and C are multiplexed by the GPIO. Table 9-8. GPIO Controller Function Multiplexing TQFP100 VQFP144 PIN GPIO Pin Function A Function B Function C 19 25 PA00 GPIO 0 USART0 - RXD TC - CLK0 20 27 PA01 GPIO 1 USART0 - TXD TC - CLK1 23 30 PA02 GPIO 2 USART0 - CLK TC - CLK2 24 32 PA03 GPIO 3 USART0 - RTS EIC - EXTINT[4] 25 34 PA04 GPIO 4 USART0 - CTS EIC - EXTINT[5] 26 39 PA05 GPIO 5 USART1 - RXD PWM - PWM[4] 27 41 PA06 GPIO 6 USART1 - TXD PWM - PWM[5] 28 43 PA07 GPIO 7 USART1 - CLK PM - GCLK[0] SPI0 - NPCS[3] 29 45 PA08 GPIO 8 USART1 - RTS SPI0 - NPCS[1] EIC - EXTINT[7] 30 47 PA09 GPIO 9 USART1 - CTS SPI0 - NPCS[2] 31 48 PA10 GPIO 10 SPI0 - NPCS[0] EIC - EXTINT[6] 33 50 PA11 GPIO 11 SPI0 - MISO USBB - USB_ID 36 53 PA12 GPIO 12 SPI0 - MOSI USBB - USB_VBOF 37 54 PA13 GPIO 13 SPI0 - SCK 39 56 PA14 GPIO 14 SSC TX_FRAME_SYNC SPI1 - NPCS[0] EBI - NCS[0] 40 57 PA15 GPIO 15 SSC - TX_CLOCK SPI1 - SCK EBI - ADDR[20] 41 58 PA16 GPIO 16 SSC - TX_DATA SPI1 - MOSI EBI - ADDR[21] 42 60 PA17 GPIO 17 SSC - RX_DATA SPI1 - MISO EBI - ADDR[22] 43 62 PA18 GPIO 18 SSC - RX_CLOCK SPI1 - NPCS[1] 44 64 PA19 GPIO 19 SSC RX_FRAME_SYNC SPI1 - NPCS[2] 45 66 PA20 GPIO 20 NMI SPI1 - NPCS[3] 51 73 PA21 GPIO 21 ADC - AD[0] EIC - EXTINT[0] 52 74 PA22 GPIO 22 ADC - AD[1] EIC - EXTINT[1] 53 75 PA23 GPIO 23 ADC - AD[2] EIC - EXTINT[2] 54 76 PA24 GPIO 24 ADC - AD[3] EIC - EXTINT[3] 55 77 PA25 GPIO 25 ADC - AD[4] EIC - SCAN[0] EBI - NCS[0] 56 78 PA26 GPIO 26 ADC - AD[5] EIC - SCAN[1] EBI - ADDR[20] 25 32058AS–AVR32–03/07 Table 9-8. GPIO Controller Function Multiplexing 57 79 PA27 GPIO 27 ADC - AD[6] EIC - SCAN[2] EBI - ADDR[21] 58 80 PA28 GPIO 28 ADC - AD[7] EIC - SCAN[3] EBI - ADDR[22] 83 122 PA29 GPIO 29 TWI - SDA USART2 - RTS 84 123 PA30 GPIO 30 TWI - SCL USART2 - CTS 65 88 PB00 GPIO 32 MACB - TX_CLK USART2 - RTS 66 90 PB01 GPIO 33 MACB - TX_EN USART2 - CTS 70 96 PB02 GPIO 34 MACB - TXD[0] 71 98 PB03 GPIO 35 MACB - TXD[1] 72 100 PB04 GPIO 36 MACB - CRS 73 102 PB05 GPIO 37 MACB - RXD[0] 74 104 PB06 GPIO 38 MACB - RXD[1] 75 106 PB07 GPIO 39 MACB - RX_ER 76 111 PB08 GPIO 40 MACB - MDC 77 113 PB09 GPIO 41 MACB - MDIO 78 115 PB10 GPIO 42 81 119 PB11 82 121 87 USART3 - CLK EBI - NCS[3] MACB - TXD[2] USART3 - RXD EBI - SDCK GPIO 43 MACB - TXD[3] USART3 - TXD EBI - SDCKE PB12 GPIO 44 MACB - TX_ER TC - CLK0 EBI - RAS 126 PB13 GPIO 45 MACB - RXD[2] TC - CLK1 EBI - CAS 88 127 PB14 GPIO 46 MACB - RXD[3] TC - CLK2 EBI - SDWE 95 134 PB15 GPIO 47 MACB - RX_DV 96 136 PB16 GPIO 48 MACB - COL USBB - USB_ID EBI - SDA10 98 139 PB17 GPIO 49 MACB - RX_CLK USBB - USB_VBOF EBI - ADDR[23] 99 141 PB18 GPIO 50 MACB - SPEED ADC - TRIGGER PWM - PWM[6] 100 143 PB19 GPIO 51 PWM - PWM[0] PM - GCLK[0] EIC - SCAN[4] 1 3 PB20 GPIO 52 PWM - PWM[1] PM - GCLK[1] EIC - SCAN[5] 2 5 PB21 GPIO 53 PWM - PWM[2] PM - GCLK[2] EIC - SCAN[6] 3 6 PB22 GPIO 54 PWM - PWM[3] PM - GCLK[3] EIC - SCAN[7] 6 9 PB23 GPIO 55 TC - A0 USART1 - DCD 7 11 PB24 GPIO 56 TC - B0 USART1 - DSR 8 13 PB25 GPIO 57 TC - A1 USART1 - DTR 9 14 PB26 GPIO 58 TC - B1 USART1 - RI 10 15 PB27 GPIO 59 TC - A2 PWM - PWM[4] 14 19 PB28 GPIO 60 TC - B2 PWM - PWM[5] 15 20 PB29 GPIO 61 USART2 - RXD PM - GCLK[1] EBI - NCS[2] 16 21 PB30 GPIO 62 USART2 - TXD PM - GCLK[2] EBI - SDCS 17 22 PB31 GPIO 63 USART2 - CLK PM - GCLK[3] EBI - NWAIT 63 85 PC00 GPIO 64 64 86 PC01 GPIO 65 85 124 PC02 GPIO 66 26 32058AS–AVR32–03/07 Table 9-8. GPIO Controller Function Multiplexing 86 125 PC03 GPIO 67 93 132 PC04 GPIO 68 94 133 PC05 GPIO 69 1 PX00 GPIO 100 EBI - DATA[10] 2 PX01 GPIO 99 EBI - DATA[9] 4 PX02 GPIO 98 EBI - DATA[8] 10 PX03 GPIO 97 EBI - DATA[7] 12 PX04 GPIO 96 EBI - DATA[6] 24 PX05 GPIO 95 EBI - DATA[5] 26 PX06 GPIO 94 EBI - DATA[4] 31 PX07 GPIO 93 EBI - DATA[3] 33 PX08 GPIO 92 EBI - DATA[2] 35 PX09 GPIO 91 EBI - DATA[1] 38 PX10 GPIO 90 EBI - DATA[0] 40 PX11 GPIO 109 EBI - NWE1 42 PX12 GPIO 108 EBI - NWE0 44 PX13 GPIO 107 EBI - NRD 46 PX14 GPIO 106 EBI - NCS[1] 59 PX15 GPIO 89 EBI - ADDR[19] 61 PX16 GPIO 88 EBI - ADDR[18] 63 PX17 GPIO 87 EBI - ADDR[17] 65 PX18 GPIO 86 EBI - ADDR[16] 67 PX19 GPIO 85 EBI - ADDR[15] 87 PX20 GPIO 84 EBI - ADDR[14] 89 PX21 GPIO 83 EBI - ADDR[13] 91 PX22 GPIO 82 EBI - ADDR[12] 95 PX23 GPIO 81 EBI - ADDR[11] 97 PX24 GPIO 80 EBI - ADDR[10] 99 PX25 GPIO 79 EBI - ADDR[9] 101 PX26 GPIO 78 EBI - ADDR[8] 103 PX27 GPIO 77 EBI - ADDR[7] 105 PX28 GPIO 76 EBI - ADDR[6] 107 PX29 GPIO 75 EBI - ADDR[5] 110 PX30 GPIO 74 EBI - ADDR[4] 112 PX31 GPIO 73 EBI - ADDR[3] 114 PX32 GPIO 72 EBI - ADDR[2] 118 PX33 GPIO 71 EBI - ADDR[1] 120 PX34 GPIO 70 EBI - ADDR[0] 135 PX35 GPIO 105 EBI - DATA[15] 27 32058AS–AVR32–03/07 Table 9-8. 9.7 GPIO Controller Function Multiplexing 137 PX36 GPIO 104 EBI - DATA[14] 140 PX37 GPIO 103 EBI - DATA[13] 142 PX38 GPIO 102 EBI - DATA[12] 144 PX39 GPIO 101 EBI - DATA[11] Oscillator Pinout The oscillators are not mapped to the normal A,B or C functions and their muxings are controlled by registers in the Power Manager (PM). Please refer to the power manager chapter for more information about this. Table 9-9. 9.8 9.8.1 Oscillator pinout TQFP100 pin VQFP144 pin Pad Oscillator pin 85 124 PC02 xin0 93 132 PC04 xin1 63 85 PC00 xin32 86 125 PC03 xout0 94 133 PC05 xout1 64 86 PC01 xout32 Peripheral overview External Bus Interface • Optimized for Application Memory Space support • Integrates Two External Memory Controllers: – Static Memory Controller – SDRAM Controller • Optimized External Bus: – 16-bit Data Bus – 24-bit Address Bus, Up to 16-Mbytes Addressable – Optimized pin multiplexing to reduce latencies on External Memories • 4 SRAM Chip Selects, 1SDRAM Chip Select: – Static Memory Controller on NCS0 – SDRAM Controller or Static Memory Controller on NCS1 – Static Memory Controller on NCS2 – Static Memory Controller on NCS3 28 32058AS–AVR32–03/07 9.8.2 Static Memory Controller 9.8.3 • 5 Chip Selects Available • 64-Mbyte Address Space per Chip Select • 8-, 16-bit Data Bus • Word, Halfword, Byte Transfers • Byte Write or Byte Select Lines • Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select • Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select • Programmable Data Float Time per Chip Select • Compliant with LCD Module • External Wait Request • Automatic Switch to Slow Clock Mode • Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes SDRAM Controller • Numerous Configurations Supported • • • – 2K, 4K, 8K Row Address Memory Parts – SDRAM with Two or Four Internal Banks – SDRAM with 16- or 32-bit Data Path Programming Facilities – Word, Half-word, Byte Access – Automatic Page Break When Memory Boundary Has Been Reached – Multibank Ping-pong Access – Timing Parameters Specified by Software – Automatic Refresh Operation, Refresh Rate is Programmable Energy-saving Capabilities – Self-refresh, Power-down and Deep Power Modes Supported – Supports Mobile SDRAM Devices Error Detection – Refresh Error Interrupt SDRAM Power-up Initialization by Software CAS Latency of 1, 2, 3 Supported Auto Precharge Command Not Used 9.8.4 • • • USB Controller 9.8.5 • USB 2.0 Compliant, Full-/Low-Speed (FS/LS) and On-The-Go (OTG), 12 Mbit/s • 7 Pipes/Endpoints • 960 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints • Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint) • Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels • On-Chip Transceivers Including Pull-Ups Serial Peripheral Interface • Supports communication with serial external devices – Four chip selects with external decoder support allow communication with up to 15 peripherals – Serial memories, such as DataFlash and 3-wire EEPROMs – Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors – External co-processors 29 32058AS–AVR32–03/07 • Master or slave serial peripheral bus interface – 8- to 16-bit programmable data length per chip select – Programmable phase and polarity per chip select – Programmable transfer delays between consecutive transfers and between clock and data per chip select – Programmable delay between consecutive transfers – Selectable mode fault detection • Very fast transfers supported – Transfers with baud rates up to MCK – The chip select line may be left active to speed up transfers on the same device 9.8.6 Two-wire Interface • • • • 9.8.7 High speed up to 400kbit/s Compatibility with standard two-wire serial memory One, two or three bytes for slave address Sequential read/write operations USART • Programmable Baud Rate Generator • 5- to 9-bit full-duplex synchronous or asynchronous serial communications • • • • 9.8.8 – 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode – Parity generation and error detection – Framing error detection, overrun error detection – MSB- or LSB-first – Optional break generation and detection – By 8 or by-16 over-sampling receiver frequency – Hardware handshaking RTS-CTS – Receiver time-out and transmitter timeguard – Optional Multi-drop Mode with address generation and detection – Optional Manchester Encoding RS485 with driver control signal ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards – NACK handling, error counter with repetition and iteration limit IrDA modulation and demodulation – Communication at up to 115.2 Kbps Test Modes – Remote Loopback, Local Loopback, Automatic Echo Serial Synchronous Controller • Provides serial synchronous communication links used in audio and telecom applications (with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.) • Contains an independent receiver and transmitter and a common clock divider • Offers a configurable frame sync and data length • Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal • Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal 9.8.9 Timer Counter • Three 16-bit Timer Counter Channels • Wide range of functions including: – Frequency Measurement 30 32058AS–AVR32–03/07 – Event Counting – Interval Measurement – Pulse Generation – Delay Timing – Pulse Width Modulation – Up/down Capabilities • Each channel is user-configurable and contains: – Three external clock inputs – Five internal clock inputs – Two multi-purpose input/output signals • Two global registers that act on all three TC Channels 9.8.10 Pulse Width Modulation Controller • 7 channels, one 16-bit counter per channel • Common clock generator, providing Thirteen Different Clocks – A Modulo n counter providing eleven clocks – Two independent Linear Dividers working on modulo n counter outputs • Independent channel programming – Independent Enable Disable Commands – Independent Clock – Independent Period and Duty Cycle, with Double Bufferization – Programmable selection of the output waveform polarity – Programmable center or left aligned output waveform 9.8.11 Ethernet 10/100 MAC • • • • • • • • • • • • Compatibility with IEEE Standard 802.3 10 and 100 Mbits per second data throughput capability Full- and half-duplex operations MII or RMII interface to the physical layer Register Interface to address, data, status and control registers DMA Interface, operating as a master on the Memory Controller Interrupt generation to signal receive and transmit completion 28-byte transmit and 28-byte receive FIFOs Automatic pad and CRC generation on transmitted frames Address checking logic to recognize four 48-bit addresses Support promiscuous mode where all valid frames are copied to memory Support physical layer management through MDIO interface control of alarm and update time/calendar data 31 32058AS–AVR32–03/07 10. Boot Sequence This chapter summarizes the boot sequence of the AT32UC3A. The behaviour after power-up is controlled by the Power Manager. For specific details, refer to Section 13. ”Power Manager (PM)” on page 47. 10.1 Starting of clocks After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the power has stabilized throughout the device. Once the power has stabilized, the device will use the internal RC Oscillator as clock source. On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have a divided frequency, all parts of the system recieves a clock with the same frequency as the internal RC Oscillator. 10.2 Fetching of initial instructions After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset address, which is 0x8000_0000. This address points to the first address in the internal Flash. The code read from the internal Flash is free to configure the system to use for example the PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the clocks to unused peripherals. 32 32058AS–AVR32–03/07 11. Electrical Characteristics 11.1 Absolute Maximum Ratings* Operating Temperature.................................... -40°C to +85°C Storage Temperature .......................................................... ....60°C to +150°C Voltage on any Pin except RESET_N with respect to Ground ............................-TBDV to VCC+TBDV Voltage on RESET_N with respect to Ground-TBDV to +TBDV *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum Operating Voltage (VDDCORE, VDDSYS) .... 1.95V Maximum Operating Voltage (VDDIO).............................. 3.6V DC Current per I/O Pin ............................................... TBD mA DC Current VCC and GND Pins.................................. TBD mA 33 32058AS–AVR32–03/07 11.2 DC Characteristics The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise specified and are certified for a junction temperature up to TJ = 100°C. Symbol Parameter Condition Min. Typ. Max. Units VVDDCOR DC Supply Core 1.65 1.95 VVDDBU DC Supply Backup 1.65 1.95 VVDDOSC DC Supply Oscillator 1.65 1.95 VVDDPLL DC Supply PLL 1.65 1.95 VVDDUSB DC Supply USB 1.65 1.95 VVDDIO DC Supply Peripheral I/Os 3.0 3.6 VREF Analog reference voltage 2.6 3.6 VIL Input Low-level Voltage -0.3 +0.8 VIH Input High-level Voltage 2.0 VVDDIO+0.3 VOL Output Low-level Voltage VOH Output High-level Voltage VVDDIO= VVDDIOM or VVDDIOP ILEAK Input Leakage Current Pullup resistors disabled TBD CIN Input Capacitance TQFP100 Package TBD RPULLUP Pull-up Resistance IO Output Current E ISC 11.3 0.4 VVDDIO-0.4 TBD TBD Static Current On VVDDCORE = 1.8V, CPU = 0 Hz, CPU is in static mode TA =25°C All inputs driven; RESET_N=1, CPU is in static mode TA =85°C TBD TBD Power Consumption The values in Table 11-1 and Table 11-2 on page 35 are measured values of power consumption with operating conditions as follows: •VDDIO = 3.3V •VDDCORE = VDDSYS = 1.8V •TA = 25°C •I/Os are inactive 34 32058AS–AVR32–03/07 These figures represent the power consumption measured on the power supplies. Table 11-1. Power Consumption for Different Modes(1) Mode Conditions Active Core/HSB clock is 66 MHz. PBA clock is 30 MHz. PBB clock is 66 MHz. All peripheral clocks activated. Measured while the processor is executing a recursive Fibonacci algorithm. Table 11-2. Consumption Unit 40 mA Power Consumption by Peripheral in Active Mode Peripheral Consumption GPIO TBD USART TBD USBB TBD MACB TBD SMC TBD SDRAMC TBD ADC TBD TWI TBD PWM TBD SPI TBD SSC TBD Timer Counter Channels TBD Unit mA 35 32058AS–AVR32–03/07 11.4 Clock Characteristics These parameters are given in the following conditions: •VDDCORE = 1.8V •Ambient Temperature = 25°C 11.4.1 CPU/HSB Clock Characteristics Table 11-3. Core Clock Waveform Parameters Symbol Parameter 1/(tCPCPU) CPU Clock Frequency tCPCPU CPU Clock Period 11.4.2 Conditions Max Units 66 MHz 15,15 ns PBA Clock Characteristics Table 11-4. PBA Clock Waveform Parameters Symbol Parameter 1/(tCPPBA) PBA Clock Frequency tCPPBA PBA Clock Period 11.4.3 Conditions Min Max Units 33 MHz 30,30 ns PBB Clock Characteristics Table 11-5. PBB Clock Waveform Parameters Symbol Parameter 1/(tCPPBB) PBB Clock Frequency tCPPBB PBB Clock Period 11.4.4 Conditions Min Max Units 66 MHz 15,15 ns XIN Clock Characteristics Table 11-6. XIN Clock Electrical Characteristics Symbol Parameter 1/(tCPXIN) XIN Clock Frequency tCPXIN XIN Clock Period tCHXIN XIN Clock High Half-period tCLXIN XIN Clock Low Half-period Conditions Min Max 3 Units 24 20.0 CIN XIN Input Capacitance (1) RIN XIN Pulldown Resistor (1) Note: Min MHz ns 0.4 x tCPXIN 0.6 x tCPXIN 0.4 x tCPXIN 0.6 x tCPXIN TBD pF TBD kΩ 1. These characteristics apply only when the Main Oscillator is in bypass mode (i.e., when MOSCEN = 0 and OSCBYPASS = 1 in the CKGR_MOR register.) 36 32058AS–AVR32–03/07 11.5 Crystal Oscillator Characteristis The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C and worst case of power supply, unless otherwise specified. 11.5.1 32 KHz Oscillator Characteristics Table 11-7. 32 KHz Oscillator Characteristics Symbol Parameter 1/(tCP32KHz) Crystal Oscillator Frequency Conditions Min Note: Max 32 768 Duty Cycle tST Typ TBD Startup Time RS = TBD kΩ, CL = TBD pF (1) Unit Hz TBD % TBD ms Max Unit 16 MHz 1. RS is the equivalent series resistance, CL is the equivalent load capacitance. 11.5.2 Main Oscillators Characteristics Table 11-8. Main Oscillator Characteristics Symbol Parameter Conditions 1/(tCPMAIN) Crystal Oscillator Frequency CL1, CL2 Internal Load Capacitance (CL1 = CL2) TBD pF CL Equivalent Load Capacitance TBD pF Startup Time IOSC Current Consumption Notes: TBD TBD TBD % TBD ms Active mode @TBD MHz TBD µA Standby mode @TBD V TBD µA Max Unit 80 240 MHz TBD TBD MHz active mode TBD mA standby mode TBD µA 1. CS is the shunt capacitance 11.5.3 PLL Characteristics Table 11-9. Phase Lock Loop Characteristics Symbol Parameter FOUT Output Frequency FIN Input Frequency IPLL Current Consumption Note: Typ 0.45 Duty Cycle tST Min Conditions Min Typ 1. Startup time depends on PLL RC filter. A calculation tool is provided by Atmel. 37 32058AS–AVR32–03/07 11.6 USB Transceiver Characteristics 11.6.1 Electrical Characteristics Table 11-10. Electrical Parameters Symbol Parameter Conditions Min Typ Max Unit TBD V Input Levels VIL Low Level VIH High Level VDI Differential Input Sensivity VCM Differential Input Common Mode Range CIN Transceiver capacitance Capacitance to ground on each line I Hi-Z State Data Line Leakage 0V < VIN < 3.3V REXT Recommended External USB Series Resistor In series with each USB pin with ±5% VOL Low Level Output Measured with RL of 1.425 kΩ tied to 3.6V TBD TBD V VOH High Level Output Measured with RL of 14.25 kΩ tied to GND TBD TBD V VCRS Output Signal Crossover Voltage Measure conditions described in Figure 11-1 TBD TBD V Max Unit |(D+) - (D-)| TBD V TBD V TBD TBD TBD V TBD pF TBD µA Ω TBD Output Levels 11.6.2 Switching Characteristics Table 11-11. In Low Speed Symbol Parameter Conditions Min Typ tFR Transition Rise Time CLOAD = 400 pF TBD TBD ns tFE Transition Fall Time CLOAD = 400 pF TBD TBD ns tFRFM Rise/Fall time Matching CLOAD = 400 pF TBD TBD % Max Unit Table 11-12. In Full Speed Symbol Parameter Conditions Min Typ tFR Transition Rise Time CLOAD = 50 pF TBD TBD ns tFE Transition Fall Time CLOAD = 50 pF TBD TBD ns tFRFM Rise/Fall time Matching TBD TBD % 38 32058AS–AVR32–03/07 Figure 11-1. USB Data Signal Rise and Fall Times 11.7 AC Characteristics - TBD 11.8 EBI Timings - TBD 39 32058AS–AVR32–03/07 40 32058AS–AVR32–03/07 12. Mechanical Characteristics 12.1 12.1.1 Thermal Considerations Thermal Data Table 12-1 summarizes the thermal resistance data depending on the package. Table 12-1. 12.1.2 Thermal Resistance Data Symbol Parameter Condition Package Typ θJA Junction-to-ambient thermal resistance Still Air TQFP100 TBD θJC Junction-to-case thermal resistance TQFP100 TBD θJA Junction-to-ambient thermal resistance LQFP144 TBD θJC Junction-to-case thermal resistance LQFP144 TBD Still Air Unit °C/W °C/W Junction Temperature The average chip-junction temperature, TJ, in °C can be obtained from the following: 1. T J = T A + ( P D × θ JA ) 2. T J = T A + ( P D × ( θ HEATSINK + θ JC ) ) where: • θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 12-1 on page 41. • θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 12-1 on page 41. • θHEAT SINK = cooling device thermal resistance (°C/W), provided in the device datasheet. • PD = device power consumption (W) estimated from data provided in the section ”Power Consumption” on page 34. • TA = ambient temperature (°C). From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature TJ in °C. 41 32058AS–AVR32–03/07 12.2 Package Drawings Figure 12-1. TQFP-100 package drawing Table 12-2. Device and Package Maximum Weight TBD Table 12-3. mg Package Characteristics Moisture Sensitivity Level Table 12-4. TBD Package Reference JEDEC Drawing Reference MS-026 JESD97 Classification E3 42 32058AS–AVR32–03/07 Figure 12-2. LQFP-144 package drawing Table 12-5. Device and Package Maximum Weight TBD Table 12-6. mg Package Characteristics Moisture Sensitivity Level Table 12-7. TBD Package Reference JEDEC Drawing Reference MS-026 JESD97 Classification E3 43 32058AS–AVR32–03/07 12.3 Soldering Profile Table 12-8 gives the recommended soldering profile from J-STD-20. Table 12-8. Soldering Profile Profile Feature Green Package Average Ramp-up Rate (217°C to Peak) TBD Preheat Temperature 175°C ±25°C TBD Temperature Maintained Above 217°C TBD Time within 5°C of Actual Peak Temperature TBD Peak Temperature Range TBD Ramp-down Rate TBD Time 25°C to Peak Temperature TBD Note: It is recommended to apply a soldering temperature higher than 250°C. A maximum of three reflow passes is allowed per component. 44 32058AS–AVR32–03/07 13. Ordering Information Ordering Code Package Conditioning Temperature Operating Range AT32UC3A0512 AT32UC3A0512-ALUT 144 lead LQFP Tray Industrial (-40°C to 85°C) AT32UC3A1512 AT32UC3A1512-AUT 100 lead TQFP Tray Industrial (-40°C to 85°C) AT32UC3A0256 AT32UC3A0256-ALUT 144 lead LQFP Tray Industrial (-40°C to 85°C) AT32UC3A1256 AT32UC3A1256-AUT 100 lead TQFP Tray Industrial (-40°C to 85°C) AT32UC3A0128 AT32UC3A0128-ALUT 100 lead TQFP Tray Industrial (-40°C to 85°C) AT32UC3A1128 AT32UC3A1128-AUT 100 lead TQFP Tray Industrial (-40°C to 85°C) Device 14. Errata 14.1 Rev. E 1. SPI FDIV option does not work Selecting clock signal using FDIV = 1 does not work as specified. Fix/Workaround Do not set FDIV = 1. 2. PWM counter restarts at 0x0001 The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle. Fix/Workaround - The first period is 0x0000, 0x0001, ..., period - Consecutive periods are 0x0001, 0x0002, ..., period 3. PWM channel interrupt enabling triggers an interrupt When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled. Fix/Workaround When using center aligned mode, enable the channel and read the status before channel interrupt is enabled. 4. PWM update period to a 0 value does not work It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD). Fix/Workaround Do not update the PWM_CUPD register with a value equal to 0. 5. PWM channel status may be wrong if disabled before a period has elapsed Before a PWM period has elapsed, the read channel status may be wrong. The CHIDx-bit for a PWM channel in the PWM Enable Register will read '1' for one full PWM period even if the channel was disabled before the period elapsed. It will then read '0' as expected. Fix/Workaround 45 32058AS–AVR32–03/07 Reading the PWM channel status of a disabled channel is only correct after a PWM period has elapsed. 6. SSC does not trigger RF when data is low The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or RCMR respectively. Fix/Workaround Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the PIO. 7. SSC Data is not sent unless clock is set as output The SSC cannot transmit or receive data when CKS = CKDIV and CKO = none, in TCMR or RCMR respectively. Fix/Workaround Set CKO to a value that is not "none" and bypass the output of the TK/RK pin with the PIO. 8. USB No end of host reset signaled upon disconnection In host mode, in case of an unexpected device disconnection whereas a usb reset is being sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at the end of the reset. Fix/Workaround A software workaround consists in testing (by polling or interrupt) the disconnection (UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid being stuck. 9. Incorrect Processor ID The processor ID reads 0x01 and not 0x02 as it should. Fix/Workaround None. 10. Bus error should be masked in Debug mode If a bus error occurs during debug mode, the processor will not respond to debug commands through the DINST register. Fix/Workaround A reset of the device will make the CPU respond to debug commands again. 11. Code execution from external SDRAM does not work Code execution from SDRAM does not work. Fix/Workaround Do not run code from SDRAM. 12. Read Modify Write (RMW) instructions on data outside the internal RAM does not work. Read Modify Write (RMW) instructions on data outside the internal RAM does not work. Fix/Workaround Do not perform RMW instructions on data outside the internal RAM. 46 32058AS–AVR32–03/07 13. USART Manchester Encoder Not Working Manchester encoding/decoding is not working. Fix/Workaround Do not use manchester encoding. 14. USART RXBREAK problem when no timeguard In asynchronous mode the RXBREAK flag is not correctly handled when the timeguard is 0 and the break character is located just after the stop bit. Fix/Workaround If the NBSTOP is 1, timeguard should be different from 0. 15 USART Handshaking: 2 characters sent / CTS rises when TX If CTS switches from 0 to 1 during the TX of a character, if the Holding register is not empty, the TXHOLDING is also transmitted. Fix/Workaround None. 16. USART PDC and TIMEGUARD not supported in MANCHESTER Manchester encoding/decoding is not working. Fix/Workaround Do not use manchester encoding. 17. Voltage regulator input and output is connected to VDDIO and VDDCORE inside the device The voltage regulator input and output is connected to VDDIO and VDDCORE respectively inside the device. Fix/Workaround Do not supply VDDCORE externally, as this supply will work in paralell with the regulator. 18. ADC possible miss on DRDY when disabling a channel The ADC does not work properly when more than one channel is enabled. Fix/Workaround Do not use the ADC with more than one channel enabled at a time. 19. ADC OVRE flag sometimes not reset on Status Register read The OVRE flag does not clear properly if read simultaneously to an end of conversion. Fix/Workaround None. 20. CRC calculation of a locked device will calculate CRC for 512 kB of flash memory, even though the part has less flash. Fix/Workaround The flash address space is wrapping, so it is possible to use the CRC value by calculating CRC of the flash content concatenated with itself N times. Where N is 512 kB/flash size. 21. SDRAM SDCKE rise at the same time as SDCK while exiting self-refresh mode 47 32058AS–AVR32–03/07 SDCKE rise at the same time as SDCK while exiting self-refresh mode. Fix/Workaround None. 22. PCx pins go low in stop mode In sleep mode stop all PCx pins will be controlled by GPIO module instead of oscillators. This can cause drive contention on the XINx in worst case. Fix/Workaround Before entering stop mode set all PCx pins to input and GPIO controlled. 23. Need two NOPs instruction after instructions masking interrupts The instructions following in the pipeline the instruction masking the interrupt through SR may behave abnormally. Fix/Workaround Place two NOPs instructions after each SSRF or MTSR instruction setting IxM or GM in SR. 48 32058AS–AVR32–03/07 15. Datasheet Revision History Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision. 15.1 Rev. A 03/07 1. Initial revision. 49 32058AS–AVR32–03/07 1 Description ............................................................................................... 2 2 Configuration Summary .......................................................................... 3 3 Blockdiagram ........................................................................................... 4 3.1Processor and architecture .......................................................................................5 4 Signals Description ................................................................................. 7 5 Package and Pinout ............................................................................... 12 6 Power Considerations ........................................................................... 15 6.1Power Supplies .......................................................................................................15 6.2Voltage Regulator ....................................................................................................15 7 I/O Line Considerations ......................................................................... 16 7.1JTAG pins ................................................................................................................16 7.2RESET_N pin ..........................................................................................................16 7.3TWI pins ..................................................................................................................16 7.4GPIO pins ................................................................................................................16 8 Memories ................................................................................................ 17 8.1Embedded Memories ..............................................................................................17 8.2Physical Memory Map .............................................................................................17 9 Peripherals ............................................................................................. 19 9.1Peripheral address map ..........................................................................................19 9.2Interrupt Request Signal Map ..................................................................................20 9.3Clock Connections ..................................................................................................23 9.4Nexus OCD AUX port connections .........................................................................23 9.5DMA handshake signals ..........................................................................................24 9.6Peripheral Multiplexing on I/O lines .........................................................................25 9.7Oscillator Pinout ......................................................................................................28 9.8Peripheral overview .................................................................................................28 10 Boot Sequence ....................................................................................... 32 10.1Starting of clocks ...................................................................................................32 10.2Fetching of initial instructions ................................................................................32 11 Electrical Characteristics ...................................................................... 33 11.1Absolute Maximum Ratings* .................................................................................33 11.2DC Characteristics ................................................................................................34 11.3Power Consumption ..............................................................................................34 I 32058AS–AVR32–03/07 11.4Clock Characteristics .............................................................................................36 11.5Crystal Oscillator Characteristis ............................................................................37 11.6USB Transceiver Characteristics ...........................................................................38 11.7AC Characteristics - TBD ......................................................................................39 11.8EBI Timings - TBD .................................................................................................39 12 Mechanical Characteristics ................................................................... 41 12.1Thermal Considerations ........................................................................................41 12.2Package Drawings ................................................................................................42 12.3Soldering Profile ....................................................................................................44 13 Ordering Information ............................................................................. 45 14 Errata ....................................................................................................... 45 14.1Rev. E ....................................................................................................................45 15 Datasheet Revision History .................................................................. 49 15.1Rev. A 03/07 ..........................................................................................................49 Headquarters Operations Atmel Corporation Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 Microcontrollers International Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3 France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex France Tel: (33) 4-76-58-47-50 Fax: (33) 4-76-58-47-60 Zone Industrielle 13106 Rousset Cedex France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are ®, AVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 32058AS–AVR32–03/07