Features • • • • • • • • • • • 700 MHz to 2700 MHz Operating Frequency Very Low Noise Floor Performance Very Good Sideband and Carrier Suppression Supports Wideband Baseband Input Very High Linearity Very Low LO Leakage 50 Ω Impedance on RF and LO Port Low LO Drive Requirements No External IF Filter Supply Voltage 5 V Small SSOP16 Package 700 MHz 2700 MHz Direct Quadrature Modulator Applications • • • • • Infrastructure Digital Communication Systems GSM/TDMA/CDMA2000/W-CDMA/UMTS/ISM Band Transceivers RF Radio Links Wireless Modem Access Points High Performance RF Instrumentation Electrostatic sensitive device. Observe precautions for handling. T0790 Description The T0790 is a direct quadrature modulator using Atmel’s Silicon-Germanium (SiGe) process. Preliminary This modulator features a frequency range of 700 to 2700 MHz with excellent carrier and sideband suppression and a very low noise floor. It operates from a single 5 V supply and provides -11 dBm of power while requiring only 0 dBm input to the integrated LO driver. An RF and an LO amplifier are also included. The T0790 incorporates internal matching on each RF, IF and LO port to enhance ease of use and to reduce the external components required. The LO input can be driven differentially or single ended. Figure 1. Block Diagram BBQBBQ+ LO+ LO- BBI+ BBI- 16 1 4 5 0° 90° 13 12 RF+ RF- 8 9 Rev. 4555C–SIGE–11/03 Pin Configuration Figure 2. Pinning SSOP16 BBQ+ VCC GND LO+ LOGND /SD BBI+ 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 BBQVCC GND RF+ RFGND VCC BBI- Pin Description Pin Symbol Function 1 BBQ+ Baseband Q-axis positive input 2 VCC Supply voltage 3 GND Ground 4 LO_IN+ Positive local oscillator input, nominal DC voltage is 2.0 V internally biased; input should be AC-coupled 5 LO_IN- Negartive local oscillator input, nominal DC voltage is 2.0 V internally biased; input should be AC-coupled 6 GND Ground 7 /SD Shutdown control 8 BBI+ Baseband I-axis positive input 9 BBI- Baseband I-axis negative input 10 VCC Supply voltage 11 GND Ground 12 RF_IN- Negative RF output; nominal DC voltage is 2.4 Vinternally biased; input should be AC-coupled 13 RF_IN+ Positive RF output; nominal DC voltage is 2.4 V internally biased; input should be AC-coupled 14 GND Ground 15 VCC Supply voltage 16 BBQ- Baseband Q-axis negative input – Paddle Device ground and heat sink, requires good thermal path; RF reference plane Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Parameters Supply voltage, no RF applied LO input signals Input voltage Operating case temperature Storage temperature 2 Symbols Value Unit VCC 5.5 V LO_IN-, LO_IN+ +10.0 dBm BBI+, BBI-, BBQ+, BBQ- 3 V TC -40 to +85 °C TSTG -55 to +150 °C T0790 [Preliminary] 4555C–SIGE–11/03 T0790 [Preliminary] Thermal Resistance Parameters Symbols Value Unit RthJA 35 K/W Junction ambient Electrical Characteristics Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in quadrature, LO = 1960 MHz; PLO = -5 dBm No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type* Supply voltage 2, 10, 15 VCC 4.75 5.0 5.25 V A Supply current 2, 10, 15 ICC 73 82 mA A LO drive 4, 5 PLO -8 -5 -2 dBm D LO frequency 4, 5 fLO 700 2700 MHz B Matched to 50 Ω 4, 5 RLLO dB C Baseband input frequency range -3 dB bandwidth, baseband inputs, terminated with 50 Ω 1, 8, 9, 16 fBB MHz D Baseband input resistance Per pin 1, 8, 9, 16 RBB 4.4 kΩ D Baseband input capacitance Per pin 1, 8, 9, 16 CBB 4 pF D 7 ASD 60 dB D General Performance LO Input LO return loss 16 Baseband Inputs DC 500 Miscellaneous Shutdown attenuation Shutdown pin resistance At 1 MHz 7 RSD 11.9 kΩ D Shutdown pin capacitance At 1 MHz 7 CSD 5.2 pF D Shutdown disabled (normal operation) 7 3.75 VCC V D Shutdown enabled 7 0 1.5 V D Shutdown input thresholds *) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter 3 4555C–SIGE–11/03 RF Electrical Characteristics (700 to 1000 MHz) Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in quadrature, LO = 900 MHz; PLO = -5 dBm No. Parameters Test Conditions Pin Symbol Min. RF frequency 12, 13 fRF 700 Output power 12, 13 PRFout -13.0 Typ. Max. Unit Type* 1000 MHz B -9.0 RF Output Port RF return loss Matched to 50 Ω -10.5 dBm A 20 dB D 4 dBm A dBm D 12, 13 PLORL 1-dB output compression point 12, 13 P1dB LO-RF leakage 12, 13 PLORF Sideband suppression 12, 13 ASB 34 40 dB D 12, 13 AIM3 58 62 dB D Broadband noise floor 12, 13 PNOISE Quadrature phase error 12, 13 I/Q amplitude balance 12, 13 IM3 suppression Two tone baseband input at 600 mVP-P differential per tone 3 -40 -34 -154 -148 dBm/ Hz C -2 ±0.5 +2 ° B -0.2 ±0.5 +0.2 dB B *) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter RF Electrical Characteristics (1700 to 2000 MHz) Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in quadrature, LO = 1960 MHz; PLO = -5 dBm No. Parameters Test Conditions Pin Symbol Min. RF frequency 12, 13 fRF 1700 Output power 12, 13 PRFout -15.0 Typ. Max. Unit Type* 2000 MHz B -10.0 RF Output Port RF return loss Matched to 50 Ω -11.5 dBm A 16 dB D 3 dBm A dBm D 12, 13 PLORL 1-dB output compression point 12, 13 P1dB LO-RF leakage 12, 13 PLORF Sideband suppression 12, 13 ASB 34 40 dB D 12, 13 AIM3 58 62 dB D IM3 suppression Two tone baseband input at 600 mVP-P differential per tone 2 -40 -32 *) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter 4 T0790 [Preliminary] 4555C–SIGE–11/03 T0790 [Preliminary] RF Electrical Characteristics (1700 to 2000 MHz) (Continued) Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in quadrature, LO = 1960 MHz; PLO = -5 dBm No. Parameters Test Conditions Pin Broadband noise floor 12, 13 Quadrature phase error 12, 13 I/Q amplitude balance 12, 13 Symbol Min. Max. Unit Type* -155 -148 dBm/ Hz C -2 ±0.5 +2 ° B -0.2 ±0.5 +0.2 dB B PNOISE Typ. *) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter RF Electrical Characteristics (2300 to 2700 MHz) Test conditions: Unless otherwise noted, the following conditions apply to typical performance specification under static conditions: VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in quadrature, LO = 2600 MHz; PLO = -5 dBm No. Parameters Test Conditions Pin Symbol Min. Typ. Max. Unit Type* 12, 13 fRF 2300 2700 MHz B 12, 13 PRFout -18 12, 13 PLORL 15 -13 dBm A dB D 1-dB output compression point 12, 13 P1dB TBD dBm A LO-RF leakage 12, 13 PLORF -40 dBm D Sideband suppression 12, 13 ASB 40 dB D 12, 13 AIM3 TBD dB D Broadband noise floor 12, 13 PNOISE TBD dBm/ Hz C Quadrature phase error 12, 13 -2 ±0.5 +2 ° B I/Q amplitude balance 12, 13 -0.2 ±0.5 +0.2 dB B RF Output Port RF frequency Output power RF return loss IM3 suppression Matched to 50 Ω Two tone baseband input at 600 mVP-P differential per tone 34 -14.5 -32 *) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter 5 4555C–SIGE–11/03 700 MHz to 1000 MHz: Typical Device Performance Figure 3. SSB Power versus LO Frequency SSB Power vs. LO Frequency -5 SSB Power (dBm) -7 -9 -11 -13 -15 700 750 800 850 900 950 1000 950 1000 LO Frequency (MHz) Figure 4. Output P1dB versus LO Frequency Output P1dB vs. LO Frequency Output P1dB (dBm) 10 8 6 4 2 0 700 750 800 850 900 LO Frequency (MHz) Figure 5. Carrier Feedthrough versus LO Frequency Carrier Feedthrough vs. LO Frequency Carrier Feedthrough (dBm) -30 -34 -38 -42 -46 -50 700 6 750 800 850 900 LO Frequency (MHz) 950 1000 T0790 [Preliminary] 4555C–SIGE–11/03 T0790 [Preliminary] Figure 6. Sideband Suppression versus LO Frequency Sideband Suppression vs. LO Frequency Sideband Suppression (dBm) 50 46 42 38 34 30 700 750 800 850 900 950 1000 LO Frequency (MHz) Figure 7. Intermodulation Distortion versus SSB Output Power Intermodulation Distortion vs. SSB Output Power @880 MHz Output Power (dBm) 0 -20 -40 fundamental (each t one) 3rd intermod. (each tone) -60 -80 -100 -12 -10 -8 -6 -4 -2 0 2 4 6 BB Input Level (dBVp-p diff.) Figure 8. RF and LO Return Losses RF & LO Port Return Losses 0 Return Loss (dB) RFPort LO Port 10 20 30 40 700 750 800 850 900 950 1000 Frequency (MHz) 7 4555C–SIGE–11/03 1500 MHz to 2500 MHz: Typical Device Performance All tests have been done on a testboard with LO and RF matching to 2600 MHz (see “Application Bard Schematic” description on page 10). Test in a clima chamber required long cables, which added additionall loss and affected the output power. Figure 9. SSB Power versus LO Frequency 0.0 -2.0 SSB Power (dBm) -4.0 -6.0 -8.0 +25°C -10.0 -40°C -12.0 -14.0 -16.0 +85°C -18.0 -20.0 1.5 2.0 2.5 3.0 LO Frequency (GHz) Figure 10. Carrier Feedthrough versus LO Frequency 0.0 LO Leakage (dBm) -10.0 -20.0 -30.0 +25°C -40.0 +85°C -40°C -50.0 -60.0 -70.0 1.5 2.0 2.5 3.0 LO Frequency (GHz) Figure 11. Sideband Suppression versus LO Frequency Sideband Suppression (dB) 60.0 50.0 40.0 -40°C +25°C 30.0 +85°C 20.0 10.0 0.0 1.5 2.0 2.5 3.0 LO Frequency (GHz) 8 T0790 [Preliminary] 4555C–SIGE–11/03 T0790 [Preliminary] Figure 12. RF and LO Return Losses 30.0 RF port at +85°C Return Loss (dB) 25.0 LO port at +85°C RF port at +25°C 20.0 15.0 10.0 LO port at +25°C 5.0 LO port at -40°C RF port at -40°C 0.0 2.0 2.5 3.0 LO Frequency (GHz) Figure 13. Phase Error versus LO Frequency 1.4 Phase Error (°C) 1.2 1.0 +25°C -40°C 0.8 0.6 0.4 +85°C 0.2 0.0 1.5 2.0 2.5 3.0 LO Frequency (GHz) Figure 14. Amplitude Balance versus LO Frequency 0.20 Amplitude Balance (dB) 0.18 0.16 0.14 +25°C -40°C 0.12 0.10 0.08 0.06 0.04 +85°C 0.02 0.00 1.5 2.0 2.5 3.0 LO Frequency (GHz) 9 4555C–SIGE–11/03 Figure 15. Application Schematic +5V L1 VCC P1 C2 VCC VCC C5 LOin 8 C11 T1 1 5 4 C12 R1 D1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 T0790 C3 P3 P2 C4 R2 16 15 14 13 12 11 10 9 16 15 14 13 12 11 10 9 C15 C6 4 5 1 8 RFout C13 R7 R6 T2 P4 C8 C16 VCC SH1 R5 P5 P6 VCC Bill of Materials (700 MHz to 1000 MHz Evaluation Board) Reference Vendor Part Number/ Remark Direc Quadrature Modulator D1 Atmel T0790 Inductor L1 Würth Elektronik® 74476401 Resistor Component Value(1) Size/Package SSOP16 1 µH 1210 R1, R2, R6, R7 180 Ω 0402 Resistor R5 1 kΩ 0402 Capacitor C3,C16 33 pF 0402 Capacitor C4,C15 1 nF 0402 C2 10 µF Size A Capacitor C5, C6, C12, C13 10 pF 0402 Capacitor C8, C11 n.c. 0402 Electrolytic capacitor RF transformer 700 MHz to 1300 MHz RF connector Note: 10 T1, T2 Panansonic® EHF-FD1618 3216 P8, P9, P10, P11, P12, P13 Johnson Components™ 142-0711-841 SMA 1. May vary due to printed board layout and material. T0790 [Preliminary] 4555C–SIGE–11/03 T0790 [Preliminary] Bill of Materials (1700 MHz to 2500 MHz Evaluation Board) Reference Vendor Part Number/ Remark Direc Quadrature Modulator D1 Atmel T0790 Inductor L1 Würth Elektronik 74476401 Resistor R1, R2, R6, R7 Component Value(1) Size/Package SSOP16 1 µH 1210 180 Ω 0402 Resistor R5 1 kΩ 0402 Capacitor C3,C16 6.8 pF 0402 Capacitor C4,C15 1 nF 0402 C2 10 µF Size A Capacitor C5, C6, C12, C13 2.7 pF 0402 Capacitor C8, C11 n.c. 0402 Electrolytic capacitor RF transformer 1200 MHz to 2200 MHz RF connector Note: T1, T2 Panansonic EHF-FD1619 3216 P8, P9, P10, P11, P12, P13 Johnson Components 142-0711-841 SMA 1. May vary due to printed board layout and material. Bill of Materials (2500 MHz to 2700 MHz Evaluation Board) Reference Vendor Part Number/ Remark Direc Quadrature Modulator D1 Atmel T0790 Inductor L1 Würth Elektronik 74476401 Resistor R1, R2, R6, R7 Component Value(1) Size/Package SSOP16 1 µH 1210 180 Ω 0402 Resistor R5 1 kΩ 0402 Capacitor C3,C16 6.8 pF 0402 Capacitor C4,C15 1 nF 0402 C2 10 µF Size A Capacitor C5, C12 1.5 pF 0402 Capacitor C6, C13 1.8 pF 0402 Capacitor C8, C11 n.c. 0402 Electrolytic capacitor RF transformer 1200 MHz to 2200 MHz RF connector Note: T1, T2 Panansonic EHF-FD1619 3216 P8, P9, P10, P11, P12, P13 Johnson Components 142-0711-841 SMA 1. May vary due to printed board layout and material. 11 4555C–SIGE–11/03 Figure 16. Demo Test Board (Fully Assembled PCB) Figure 17. Recommended Package Footprint 1.25 3.0 0.30 0.62 0.62 0.35 3.0 φ0.25 via 0.7 0.9 6.9 all units are in mm - Indicates metalization - vias connect pad to underlying ground plane Note: 12 Only ground signal traces are allowed directly under the package. Heatslug must be soldered to GND. Plugging of the ground vias under the heat slug is also recommended to avoid soldering problems. T0790 [Preliminary] 4555C–SIGE–11/03 T0790 [Preliminary] Ordering Information Extended Type Number Package Remarks T0790-6C SSOP16 – Package Information 13 4555C–SIGE–11/03 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Literature Requests www.atmel.com/literature Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life support devices or systems. © Atmel Corporation 2003. All rights reserved. Atmel ® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries, Würth Elektronik ® is a registered trademark of Adolf Würth GmbH & Co. KG, Panasonic ® is a registered trademark of Matsushita Electric Industrial Co., Ltd., Johnson Components™ is a trademark of Emerson Electric Co. Other terms and product names may be the trademarks of others. Printed on recycled paper. 4555C–SIGE–11/03