ATMEL T0790

Features
•
•
•
•
•
•
•
•
•
•
•
700 MHz to 2700 MHz Operating Frequency
Very Low Noise Floor Performance
Very Good Sideband and Carrier Suppression
Supports Wideband Baseband Input
Very High Linearity
Very Low LO Leakage
50 Ω Impedance on RF and LO Port
Low LO Drive Requirements
No External IF Filter
Supply Voltage 5 V
Small SSOP16 Package
700 MHz 2700 MHz
Direct
Quadrature
Modulator
Applications
•
•
•
•
•
Infrastructure Digital Communication Systems
GSM/TDMA/CDMA2000/W-CDMA/UMTS/ISM Band Transceivers
RF Radio Links
Wireless Modem Access Points
High Performance RF Instrumentation
Electrostatic sensitive device.
Observe precautions for handling.
T0790
Description
The T0790 is a direct quadrature modulator using Atmel’s Silicon-Germanium (SiGe)
process.
Preliminary
This modulator features a frequency range of 700 to 2700 MHz with excellent carrier
and sideband suppression and a very low noise floor. It operates from a single 5 V
supply and provides -11 dBm of power while requiring only 0 dBm input to the integrated LO driver. An RF and an LO amplifier are also included.
The T0790 incorporates internal matching on each RF, IF and LO port to enhance
ease of use and to reduce the external components required. The LO input can be
driven differentially or single ended.
Figure 1. Block Diagram
BBQBBQ+
LO+
LO-
BBI+
BBI-
16
1
4
5
0°
90°
13
12
RF+
RF-
8
9
Rev. 4555C–SIGE–11/03
Pin Configuration
Figure 2. Pinning SSOP16
BBQ+
VCC
GND
LO+
LOGND
/SD
BBI+
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
BBQVCC
GND
RF+
RFGND
VCC
BBI-
Pin Description
Pin
Symbol
Function
1
BBQ+
Baseband Q-axis positive input
2
VCC
Supply voltage
3
GND
Ground
4
LO_IN+
Positive local oscillator input, nominal DC voltage is 2.0 V internally biased; input should be AC-coupled
5
LO_IN-
Negartive local oscillator input, nominal DC voltage is 2.0 V internally biased; input should be AC-coupled
6
GND
Ground
7
/SD
Shutdown control
8
BBI+
Baseband I-axis positive input
9
BBI-
Baseband I-axis negative input
10
VCC
Supply voltage
11
GND
Ground
12
RF_IN-
Negative RF output; nominal DC voltage is 2.4 Vinternally biased; input should be AC-coupled
13
RF_IN+
Positive RF output; nominal DC voltage is 2.4 V internally biased; input should be AC-coupled
14
GND
Ground
15
VCC
Supply voltage
16
BBQ-
Baseband Q-axis negative input
–
Paddle
Device ground and heat sink, requires good thermal path; RF reference plane
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Parameters
Supply voltage, no RF
applied
LO input signals
Input voltage
Operating case
temperature
Storage temperature
2
Symbols
Value
Unit
VCC
5.5
V
LO_IN-, LO_IN+
+10.0
dBm
BBI+, BBI-, BBQ+, BBQ-
3
V
TC
-40 to +85
°C
TSTG
-55 to +150
°C
T0790 [Preliminary]
4555C–SIGE–11/03
T0790 [Preliminary]
Thermal Resistance
Parameters
Symbols
Value
Unit
RthJA
35
K/W
Junction ambient
Electrical Characteristics
Test conditions:
Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:
VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in
quadrature, LO = 1960 MHz; PLO = -5 dBm
No.
Parameters
Test Conditions
Pin
Symbol
Min.
Typ.
Max.
Unit
Type*
Supply voltage
2, 10,
15
VCC
4.75
5.0
5.25
V
A
Supply current
2, 10,
15
ICC
73
82
mA
A
LO drive
4, 5
PLO
-8
-5
-2
dBm
D
LO frequency
4, 5
fLO
700
2700
MHz
B
Matched to 50 Ω
4, 5
RLLO
dB
C
Baseband input
frequency range
-3 dB bandwidth,
baseband inputs,
terminated with 50 Ω
1, 8,
9, 16
fBB
MHz
D
Baseband input
resistance
Per pin
1, 8,
9, 16
RBB
4.4
kΩ
D
Baseband input
capacitance
Per pin
1, 8,
9, 16
CBB
4
pF
D
7
ASD
60
dB
D
General Performance
LO Input
LO return loss
16
Baseband Inputs
DC
500
Miscellaneous
Shutdown
attenuation
Shutdown pin
resistance
At 1 MHz
7
RSD
11.9
kΩ
D
Shutdown pin
capacitance
At 1 MHz
7
CSD
5.2
pF
D
Shutdown disabled
(normal operation)
7
3.75
VCC
V
D
Shutdown enabled
7
0
1.5
V
D
Shutdown input
thresholds
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
3
4555C–SIGE–11/03
RF Electrical Characteristics (700 to 1000 MHz)
Test conditions:
Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:
VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in
quadrature, LO = 900 MHz; PLO = -5 dBm
No.
Parameters
Test Conditions
Pin
Symbol
Min.
RF frequency
12, 13
fRF
700
Output power
12, 13
PRFout
-13.0
Typ.
Max.
Unit
Type*
1000
MHz
B
-9.0
RF Output Port
RF return loss
Matched to 50 Ω
-10.5
dBm
A
20
dB
D
4
dBm
A
dBm
D
12, 13
PLORL
1-dB output
compression point
12, 13
P1dB
LO-RF leakage
12, 13
PLORF
Sideband
suppression
12, 13
ASB
34
40
dB
D
12, 13
AIM3
58
62
dB
D
Broadband noise
floor
12, 13
PNOISE
Quadrature phase
error
12, 13
I/Q amplitude balance
12, 13
IM3 suppression
Two tone baseband
input at 600 mVP-P
differential per tone
3
-40
-34
-154
-148
dBm/
Hz
C
-2
±0.5
+2
°
B
-0.2
±0.5
+0.2
dB
B
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
RF Electrical Characteristics (1700 to 2000 MHz)
Test conditions:
Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:
VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in
quadrature, LO = 1960 MHz; PLO = -5 dBm
No.
Parameters
Test Conditions
Pin
Symbol
Min.
RF frequency
12, 13
fRF
1700
Output power
12, 13
PRFout
-15.0
Typ.
Max.
Unit
Type*
2000
MHz
B
-10.0
RF Output Port
RF return loss
Matched to 50 Ω
-11.5
dBm
A
16
dB
D
3
dBm
A
dBm
D
12, 13
PLORL
1-dB output
compression point
12, 13
P1dB
LO-RF leakage
12, 13
PLORF
Sideband
suppression
12, 13
ASB
34
40
dB
D
12, 13
AIM3
58
62
dB
D
IM3 suppression
Two tone baseband
input at 600 mVP-P
differential per tone
2
-40
-32
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
4
T0790 [Preliminary]
4555C–SIGE–11/03
T0790 [Preliminary]
RF Electrical Characteristics (1700 to 2000 MHz) (Continued)
Test conditions:
Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:
VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in
quadrature, LO = 1960 MHz; PLO = -5 dBm
No.
Parameters
Test Conditions
Pin
Broadband noise
floor
12, 13
Quadrature phase
error
12, 13
I/Q amplitude balance
12, 13
Symbol
Min.
Max.
Unit
Type*
-155
-148
dBm/
Hz
C
-2
±0.5
+2
°
B
-0.2
±0.5
+0.2
dB
B
PNOISE
Typ.
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
RF Electrical Characteristics (2300 to 2700 MHz)
Test conditions:
Unless otherwise noted, the following conditions apply to typical performance specification under static conditions:
VCC = 5 V, Tamb = 25° C; baseband inputs: 1.9 V DC bias, 200 kHz frequency, 300 mVP-P, 600 mVP-P differential drive, I/Q signals in
quadrature, LO = 2600 MHz; PLO = -5 dBm
No.
Parameters
Test Conditions
Pin
Symbol
Min.
Typ.
Max.
Unit
Type*
12, 13
fRF
2300
2700
MHz
B
12, 13
PRFout
-18
12, 13
PLORL
15
-13
dBm
A
dB
D
1-dB output
compression point
12, 13
P1dB
TBD
dBm
A
LO-RF leakage
12, 13
PLORF
-40
dBm
D
Sideband
suppression
12, 13
ASB
40
dB
D
12, 13
AIM3
TBD
dB
D
Broadband noise
floor
12, 13
PNOISE
TBD
dBm/
Hz
C
Quadrature phase
error
12, 13
-2
±0.5
+2
°
B
I/Q amplitude balance
12, 13
-0.2
±0.5
+0.2
dB
B
RF Output Port
RF frequency
Output power
RF return loss
IM3 suppression
Matched to 50 Ω
Two tone baseband
input at 600 mVP-P
differential per tone
34
-14.5
-32
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
5
4555C–SIGE–11/03
700 MHz to
1000 MHz: Typical
Device Performance
Figure 3. SSB Power versus LO Frequency
SSB Power vs. LO Frequency
-5
SSB Power (dBm)
-7
-9
-11
-13
-15
700
750
800
850
900
950
1000
950
1000
LO Frequency (MHz)
Figure 4. Output P1dB versus LO Frequency
Output P1dB vs. LO Frequency
Output P1dB (dBm)
10
8
6
4
2
0
700
750
800
850
900
LO Frequency (MHz)
Figure 5. Carrier Feedthrough versus LO Frequency
Carrier Feedthrough vs. LO Frequency
Carrier Feedthrough (dBm)
-30
-34
-38
-42
-46
-50
700
6
750
800
850
900
LO Frequency (MHz)
950
1000
T0790 [Preliminary]
4555C–SIGE–11/03
T0790 [Preliminary]
Figure 6. Sideband Suppression versus LO Frequency
Sideband Suppression vs. LO Frequency
Sideband Suppression (dBm)
50
46
42
38
34
30
700
750
800
850
900
950
1000
LO Frequency (MHz)
Figure 7. Intermodulation Distortion versus SSB Output Power
Intermodulation Distortion vs.
SSB Output Power @880 MHz
Output Power (dBm)
0
-20
-40
fundamental (each t one)
3rd intermod. (each tone)
-60
-80
-100
-12
-10
-8
-6
-4
-2
0
2
4
6
BB Input Level (dBVp-p diff.)
Figure 8. RF and LO Return Losses
RF & LO Port Return Losses
0
Return Loss (dB)
RFPort
LO Port
10
20
30
40
700
750
800
850
900
950
1000
Frequency (MHz)
7
4555C–SIGE–11/03
1500 MHz to
2500 MHz: Typical
Device Performance
All tests have been done on a testboard with LO and RF matching to 2600 MHz (see
“Application Bard Schematic” description on page 10). Test in a clima chamber required
long cables, which added additionall loss and affected the output power.
Figure 9. SSB Power versus LO Frequency
0.0
-2.0
SSB Power (dBm)
-4.0
-6.0
-8.0
+25°C
-10.0
-40°C
-12.0
-14.0
-16.0
+85°C
-18.0
-20.0
1.5
2.0
2.5
3.0
LO Frequency (GHz)
Figure 10. Carrier Feedthrough versus LO Frequency
0.0
LO Leakage (dBm)
-10.0
-20.0
-30.0
+25°C
-40.0
+85°C
-40°C
-50.0
-60.0
-70.0
1.5
2.0
2.5
3.0
LO Frequency (GHz)
Figure 11. Sideband Suppression versus LO Frequency
Sideband Suppression (dB)
60.0
50.0
40.0
-40°C
+25°C
30.0
+85°C
20.0
10.0
0.0
1.5
2.0
2.5
3.0
LO Frequency (GHz)
8
T0790 [Preliminary]
4555C–SIGE–11/03
T0790 [Preliminary]
Figure 12. RF and LO Return Losses
30.0
RF port
at +85°C
Return Loss (dB)
25.0
LO port
at +85°C
RF port
at +25°C
20.0
15.0
10.0
LO port
at +25°C
5.0
LO port
at -40°C
RF port
at -40°C
0.0
2.0
2.5
3.0
LO Frequency (GHz)
Figure 13. Phase Error versus LO Frequency
1.4
Phase Error (°C)
1.2
1.0
+25°C
-40°C
0.8
0.6
0.4
+85°C
0.2
0.0
1.5
2.0
2.5
3.0
LO Frequency (GHz)
Figure 14. Amplitude Balance versus LO Frequency
0.20
Amplitude Balance (dB)
0.18
0.16
0.14
+25°C
-40°C
0.12
0.10
0.08
0.06
0.04
+85°C
0.02
0.00
1.5
2.0
2.5
3.0
LO Frequency (GHz)
9
4555C–SIGE–11/03
Figure 15. Application Schematic
+5V
L1
VCC
P1
C2
VCC
VCC
C5
LOin
8
C11
T1
1
5
4
C12
R1
D1
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
T0790
C3
P3
P2
C4
R2
16
15
14
13
12
11
10
9
16
15
14
13
12
11
10
9
C15
C6
4
5
1
8
RFout
C13
R7
R6
T2
P4
C8
C16
VCC
SH1
R5
P5
P6
VCC
Bill of Materials (700 MHz to 1000 MHz Evaluation Board)
Reference
Vendor
Part Number/
Remark
Direc Quadrature
Modulator
D1
Atmel
T0790
Inductor
L1
Würth
Elektronik®
74476401
Resistor
Component
Value(1)
Size/Package
SSOP16
1 µH
1210
R1, R2, R6, R7
180 Ω
0402
Resistor
R5
1 kΩ
0402
Capacitor
C3,C16
33 pF
0402
Capacitor
C4,C15
1 nF
0402
C2
10 µF
Size A
Capacitor
C5, C6, C12, C13
10 pF
0402
Capacitor
C8, C11
n.c.
0402
Electrolytic capacitor
RF transformer 700 MHz
to 1300 MHz
RF connector
Note:
10
T1, T2
Panansonic®
EHF-FD1618
3216
P8, P9, P10, P11, P12, P13
Johnson
Components™
142-0711-841
SMA
1. May vary due to printed board layout and material.
T0790 [Preliminary]
4555C–SIGE–11/03
T0790 [Preliminary]
Bill of Materials (1700 MHz to 2500 MHz Evaluation Board)
Reference
Vendor
Part Number/
Remark
Direc Quadrature
Modulator
D1
Atmel
T0790
Inductor
L1
Würth
Elektronik
74476401
Resistor
R1, R2, R6, R7
Component
Value(1)
Size/Package
SSOP16
1 µH
1210
180 Ω
0402
Resistor
R5
1 kΩ
0402
Capacitor
C3,C16
6.8 pF
0402
Capacitor
C4,C15
1 nF
0402
C2
10 µF
Size A
Capacitor
C5, C6, C12, C13
2.7 pF
0402
Capacitor
C8, C11
n.c.
0402
Electrolytic capacitor
RF transformer 1200 MHz
to 2200 MHz
RF connector
Note:
T1, T2
Panansonic
EHF-FD1619
3216
P8, P9, P10, P11, P12, P13
Johnson
Components
142-0711-841
SMA
1. May vary due to printed board layout and material.
Bill of Materials (2500 MHz to 2700 MHz Evaluation Board)
Reference
Vendor
Part Number/
Remark
Direc Quadrature
Modulator
D1
Atmel
T0790
Inductor
L1
Würth
Elektronik
74476401
Resistor
R1, R2, R6, R7
Component
Value(1)
Size/Package
SSOP16
1 µH
1210
180 Ω
0402
Resistor
R5
1 kΩ
0402
Capacitor
C3,C16
6.8 pF
0402
Capacitor
C4,C15
1 nF
0402
C2
10 µF
Size A
Capacitor
C5, C12
1.5 pF
0402
Capacitor
C6, C13
1.8 pF
0402
Capacitor
C8, C11
n.c.
0402
Electrolytic capacitor
RF transformer 1200 MHz
to 2200 MHz
RF connector
Note:
T1, T2
Panansonic
EHF-FD1619
3216
P8, P9, P10, P11, P12, P13
Johnson
Components
142-0711-841
SMA
1. May vary due to printed board layout and material.
11
4555C–SIGE–11/03
Figure 16. Demo Test Board (Fully Assembled PCB)
Figure 17. Recommended Package Footprint
1.25
3.0
0.30
0.62
0.62
0.35
3.0
φ0.25 via
0.7
0.9
6.9
all units are in mm
- Indicates metalization
- vias connect pad to underlying ground plane
Note:
12
Only ground signal traces are allowed directly under the package.
Heatslug must be soldered to GND.
Plugging of the ground vias under the heat slug is also recommended to avoid soldering problems.
T0790 [Preliminary]
4555C–SIGE–11/03
T0790 [Preliminary]
Ordering Information
Extended Type Number
Package
Remarks
T0790-6C
SSOP16
–
Package Information
13
4555C–SIGE–11/03
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.
© Atmel Corporation 2003. All rights reserved. Atmel ® and combinations thereof are the registered trademarks of Atmel Corporation or its
subsidiaries, Würth Elektronik ® is a registered trademark of Adolf Würth GmbH & Co. KG, Panasonic ® is a registered trademark of Matsushita
Electric Industrial Co., Ltd., Johnson Components™ is a trademark of Emerson Electric Co.
Other terms and product names may be the trademarks of others.
Printed on recycled paper.
4555C–SIGE–11/03