

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 DMX512RX_001-14404.pdf

		
				 DMX512 Receiver Datasheet DMX512Rx V 1.0
001-14404 Rev. *G
DMX512 Receiver
Copyright © 2007-2014 Cypress Semiconductor Corporation. All Rights Reserved.
PSoC® Blocks
Resources
CY8CLED02/04/08/16,
CY8CLED0xD,
CY8CLED0xG,
CY8CLED16P01,
CY8C29x66, CY8C27x43,
CY8C24x94, CY8C21x23
Digital
2
API Memory (Bytes)
Analog CT
Analog SC
0
0
Flash
242
RAM
11
Pins (per
External I/O)
1
Features and Overview
„
„
„
„
„
250 kbps DMX512 protocol receiver
Selectable address
Selectable captured slots count
Interrupt on byte received
Interrupt on start-of-frame
The DMX512Rx User Module is used to receive data via the DMX512 bus and store it in RAM, similar to
the EzI2Cs User Module. The user module is composed of two digital blocks.
Figure 1.
DMX512Rx Block Diagram
Cypress Semiconductor Corporation
Document Number: 001-14404 Rev. *G
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised July 24, 2014
DMX512 Receiver
Functional Description
The DMX512 data stream is passed in the form of a packet that is repeated continually. This data packet
consists of the synchro preamble which informs the receiver of the start of a packet. The preamble is
followed by a serial data frame. The data frame contains the values for each channel in use. The minimum
channel count is 24. The maximum is 512. The duration of every bit for DMX512 protocol is 4 µs. If the
information is given over all 512 channels, then the maximum possible frequency of information update is
44 Hz.
Figure 2.
DMX512 Data Packet
Reference
Description
Duration
1
Space for break (reset)
min 88 µs
2
Mark after break (MAB)
8 µs - 1s
3
Slot time
44 µs
4
Mark time between slots
0 µs -1s
5
Start bit
4 µs
6
Least significant data bit
4 µs
7
Most significant data bit
4 µs
8
Stop bit
4 µs
9
Mark before break (MBB)
0 µs -1s
The DMX512Rx User Module employs two digital PSoC blocks:
„ One RX block for the data receiver
„ One Pulse Width Discriminator (PWD) for detecting the break signal
The configuration of the underlying connective hardware, the digital PSoC blocks, coordinates the
operation of the PSoC blocks as a single DMX512Rx User Module.
The RX and PWD operate independently. Each have their own registers and interrupts. They share the
same enable and input. Setting the enable bit in the RX and PWD control registers enables the
DMX512Rx User Module for operation. Use the provided API functions to enable and disable the user
module.
The DMX512Rx User Module uses different clocks for RX and PWD components. The clock frequency for
the RX must be exactly 2 MHz to meet 4 µs data bits requirement. The clock frequency for the PWD must
be between 135 kHz and 166 kHz so the PWD block can catch the space for break.
Document Number: 001-14404 Rev. *G
Page 2 of 13
DMX512 Receiver
The RX block uses the UART RX function of the communication digital block with no parity settings. The
PWD block uses CRCPRS function of the digital block with the polynomial register equal to zero and the
compare register set to 255.
The DMX512Rx User Module provides one interrupt each time space for break is detected and one
interrupt for each byte received by the RX block. When data is sent with the mark time between slots set to
zero, the interrupt occurrence frequency is equal to 44 µs. If the CPU clock is set to 24 MHz, the time
required to execute the interrupt service routine (ISR) for bytes that are included into the active slot is 5.7
µs. For this reason, a CPU clock of 12 MHz is recommended. In no case should the CPU clock be set less
than 6 MHz.
DC and AC Electrical Characteristics
Table 1.
DMX512Rx AC Electrical Characteristics
Parameter
Typical
Limit
Units
RX input frequency
--
2
MHz
PWD input frequency
--
135...166
kHz
Allowed CPU clock range
--
6...24
MHz
Conditions and Notes
Placement
The RX block of the user module may be placed in any digital communication block and the PWD block of
the user module may be placed in any digital block, but both blocks should be placed in the same digital
row. The same input source is used for both RX and PWD components.
Parameters and Resources
RX Clock
Clock source for the RX block. Choose any one of the available sources. The Global I/O buses may
be used to connect the clock input to an external pin or a clock function generated by a different PSoC
block. When using an external digital clock for the block, the row input synchronization should be
turned off for best accuracy, and sleep operation. One of the divided clocks (VC1, VC2, or VC3), or
another PSoC block output can be specified as the clock input. The clock for RX block must be equal
to 2 MHz for correct user module operations.
PWD Clock
Clock source for the PWD block. Choose any one of the available sources. The Global I/O buses may
be used to connect the clock input to an external pin or a clock function generated by a different PSoC
block. When using an external digital clock for the block, the row input synchronization should be
turned off for best accuracy, and sleep operation. One of the divided clocks (VC1, VC2, or VC3), or
another PSoC block output can be specified as the clock input. The clock for PWD block should be
set in the range of 135 to 166 kHz for correct user module operations.
Input
The input can be connected to a low, a high, the analog comparator output bus, or one of the global
buses. Using the global bus, the input can be connected to one of the external pins.
Document Number: 001-14404 Rev. *G
Page 3 of 13
DMX512 Receiver
InvertInput
This parameter gives you the ability to invert the InputDataStream.
StartSlotID
The StartSlotID parameter contains a value ranging from 1 to 512. This parameter defines first slot ID
that will be captured.
ClockSync
In the PSoC devices, digital blocks may provide clock sources in addition to the system clocks. Digital
clock sources may even be chained in ripple fashion. This introduces skew with respect to the system
clocks. This parameter may be used to control clock skew and ensure proper operation when reading
and writing PSoC block register values. Appropriate values for this parameter should be determined
from the following table.
ClockSync Value
Use
Sync to SysClk
Use this setting for any 24 MHz (SysClk) derived clock source that is divided by two or more.
Examples include VC1, VC2, VC3 (when VC3 is driven by SysClk), 32KHz, and digital PSoC
blocks with SysClk-based sources. Externally generated clock sources should also use this
value to ensure that proper synchronization occurs.
Sync to SysClk*2
Use this setting for any 48 MHz (SysClk*2) based clock unless the resulting frequency is 48
MHz (in other words, when the product of all divisors is 1).
Unsynchronized
Use when unsynchronized inputs are desired.
Application Programming Interface
The Application Programming Interface (API) routines are provided as part of the user module to allow the
designer to deal with the module at a higher level. This section specifies the interface to each function
together with related constants provided by the include files.
Note
In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X prior to the call if
those values are required after the call. This “registers are volatile? policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they
will do so in the future.
For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.
There are nine functions in this API:
„
„
„
„
„
DMX512Rx_Start
DMX512Rx_Stop
DMX512Rx_SetStartSlotID
DMX512Rx_SetRamBuffer
DMX512Rx_bGetBusActivity
Document Number: 001-14404 Rev. *G
Page 4 of 13
DMX512 Receiver
„
„
„
„
DMX512Rx_bGetSlotActivity
DMX512Rx_bGetStartCode
DMX512Rx_EnableInt
DMX512Rx_DisableInt
DMX512Rx_Start
Description:
Enables the DMX512Rx User Module for operation.
C Prototype:
void
DMX512Rx_Start(void)
Assembler:
lcall
DMX512Rx_Start
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
DMX512Rx_Stop
Description:
Disables the DMX512Rx User Module.
C Prototype:
void
DMX512Rx_Stop(void)
Assembler:
lcall
DMX512Rx_Stop
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Document Number: 001-14404 Rev. *G
Page 5 of 13
DMX512 Receiver
DMX512Rx_SetStartSlotID
Description:
Redefines first slot ID that will be captured. Call this function only after the DMX512Rx_Start() function, because the Start function sets the first slot ID to the value entered in the Device Editor parameters. This function is optional and only needed if you change the first slot ID from the value set in the
device editor. New StartSlotID value will be applied as soon as Space For Break symbol is detected
in input bitstream. This guarantees that User Buffer will remain in consistent state even when StartSlotID is altered during data reception.
C Prototype:
void
DMX512Rx_SetStartSlotID(WORD wStartSlotID)
Assembler:
mov
A, <[wStartSlotID + 1]
mov
X, >[wStartSlotID + 0]
lcall DMX512Rx_SetStartSlotID
Parameters:
wStartSlotID: A value from 1 to 512. The parameter value is passed in the A and X registers.
Return Value:
None
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
DMX512Rx_SetRamBuffer
Description:
This function sets the location and size of the RAM buffer (up to 256 bytes) that is used by DMX512
slots. This function is required and must be called before calling DMX512Rx_Start(). This function can
also be called at any time after calling DMX512Rx_Start() but if it is called during data reception
current receive operation will be immediatelly aborted to prevent memory corruption. Previous user
buffer will possibly remain in inconsistent state with partially received packet. Reception will be
resumed as soon as Space For Break symbol is detected in input bitstream.
C Prototype:
void
DMX512Rx_SetRamBuffer(BYTE bSize, (BYTE *)pAddr)
Assembler:
mov
push
mov
push
mov
push
lcall
add
A, >pAddr
A
A, <pAddr
A
A, [bSize]
A
DMX512Rx_SetRamBufer
SP,-3
Document Number: 001-14404 Rev. *G
Page 6 of 13
DMX512 Receiver
Parameters:
bSize: Size of the data structure available to DMX512 slots.
pAddr: A pointer to the data array
Return Value:
None
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
DMX512Rx_bGetBusActivity
Description:
This function returns a nonzero value if a DMX512 bus activity occurred since last time this function
was called. The activity flag is reset to zero before the function returns.
C Prototype:
BYTE
DMX512Rx_bGetBusActivity()
Assembler:
lcall DMX512Rx_bGetBusActivity
mov
[bActivityFlag],A
Parameters:
None
Return Value:
This function returns zero value if no DMX512 bus activity is detected since the last time the function
has been called. Otherwise it returns one of the following values :
Return Value
HEX Value
Meaning
DMX512Rx_SFB_RECEIVED
0x01
Space For Break sequence was detected in input bitstream.
DMX512Rx_SC_RECEIVED
0x02
StartCode was received. Use DMX512Rx_bGetStartCode function
to retrive Start Code value.
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
DMX512Rx_bGetSlotActivity
Description:
This function returns a non-zero value if a read of last required DMX512 slot occurred since last time
this function was called. The activity flag resets to zero at the end of this function call.
Document Number: 001-14404 Rev. *G
Page 7 of 13
DMX512 Receiver
C Prototype:
BYTE
DMX512Rx_bGetSlotActivity()
Assembler:
lcall DMX512Rx_bGetSlotActivity
mov
[bActivityFlag],A
Parameters:
None
Return Value:
Returns a nonzero value if a read of the last required DMX512 slot has occurred. Returns zero otherwise.
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
DMX512Rx_bGetStartCode
Description:
This function returns Start Code value retrieved from recently received DMX512 packet. Start Code
is a data byte that precedes the DMX512 slots and tells the receiver what kind of data will follow.
Return value is valid only when at least one Start Code has been received. Use
DMX512Rx_bGetBusActivity function to detect reception of Start Code.
C Prototype:
BYTE
DMX512Rx_bGetStartCode()
Assembler:
lcall DMX512Rx_bGetStartCode
mov
[bStartCode],A
Parameters:
None
Return Value:
BYTE bStartCode: Start Code retived from recently received DMX512 packet.
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
DMX512Rx_EnableInt
Description:
Enables the interrupts for the DMX512Rx RX and PWD blocks.
C Prototype:
void
DMX512Rx_EnableInt(void)
Document Number: 001-14404 Rev. *G
Page 8 of 13
DMX512 Receiver
Assembler:
lcall
DMX512Rx_EnabeInt
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
DMX512Rx_DisableInt
Description:
Disables the interrupts for the DMX512Rx RX and PWD blocks.
C Prototype:
void
DMX512Rx_DisableInt(void)
Assembler:
lcall
SSDM_DisableInt
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.
Sample Firmware Source Code
In the following examples, the correspondence between the C and assembly code is simple and direct.
The following is assembly language source that illustrates the use of the APIs.
include "PSoCAPI.inc"
; PSoC API definitions for all user modules
area bss
DMX_RAM_BUF_SIZE: equ 8
DMX_RAM_BUF: blk DMX_RAM_BUF_SIZE
export _main
area text
_main:
;;...
Document Number: 001-14404 Rev. *G
Page 9 of 13
DMX512 Receiver
M8c_EnableGInt
mov A, >DMX_RAM_BUF
push A
mov A, <DMX_RAM_BUF
push A
mov A, DMX_RAM_BUF_SIZE
push A
call DMX512Rx_SetRamBuffer
add SP, -3
call DMX512Rx_Start
call DMX512Rx_EnableInt
mov X, 0
mov A, 5
call DMX512Rx_SetStartSlotID
;Enable global interrupts
;Save MSB of RAM buffer address
;Save LSB of RAM buffer address
;Save RW size parameter
;Set buffer
;Reset Stack
;Turn on DMX512Rx user module
;Enable DMX512Rx interrupts
;Redefine StartSlotID
.MainLoop:
call DMX512Rx_bGetSlotActivity ;Waiting for data...
cmp A, 0
jz .MainLoop
;---------------------------; Now data is ready
; User code goes here
;---------------------------jmp .MainLoop
The same code in C is as follows:
#include "PSoCAPI.h"
// PSoC API definitions for all user modules
#define DMX_RAM_BUF_SIZE 8
BYTE DMX_RAM_BUF[DMX_RAM_BUF_SIZE];
// ...
void main(void){
M8C_EnableGInt;
// Enable global interrupts
DMX512Rx_SetRamBuffer(DMX_RAM_BUF_SIZE, &DMX_RAM_BUF[0]); //Set buffer
DMX512Rx_Start();
// Turn on DMX512Rx User Module
DMX512Rx_EnableInt();
// Enable DMX512Rx interrupts
DMX512Rx_SetStartSlotID(5); // Redefine StartSlotID
while(1){
while(!DMX512Rx_bGetSlotActivity()); // Wait for slot received
//---------------------------// Now data is ready
// User code goes here
//---------------------------} }
Document Number: 001-14404 Rev. *G
Page 10 of 13
DMX512 Receiver
Configuration Registers
The DMX512Rx uses two digital PSoC blocks named RX and PWD. Each block is personalized and
parameterized through registers. The following tables shows the register values as constants and the
parameters as named bit-fields with brief descriptions. Symbolic names for these registers are defined in
the user module instance C and assembly language interface files (the .h and .inc files).
Table 2.
Block RX, Function Register, Bank 1
Bit
Value
7
6
InvertInput BCEN
5
0
4
0
3
0
2
1
1
0
0
1
InvertInput allows to invert input data stream. This parameter is set in the Device Editor. BCEN gates the
output onto the row broadcast bus line. This bit field is set in the Device Editor by directly configuring the
broadcast line.
Table 3.
Block RX, Input Register , Bank 1
Bit
Value
7
6
5
4
Input
3
2
1
0
RXClock
The user module Input parameter in the Device Editor determines the value of the RXInput. RXClock
selects the clock to drive the receiver timing.
Table 4.
Block RX, Output Register, Bank 1
Bit
Value
7
6
ClockSync
5
0
4
0
3
0
2
0
1
0
0
0
The user module ClockSync parameter in the Device Editor determines the value of the ClockSync.
Table 5.
Block RX, Shift Register (DR0), Bank 0
Bit
Value
7
6
5
4
3
2
1
0
RX Shift Register
RX Shift Register: When a start bit is detected on the input, the RX state machine hardware generates a
divide-by-8 bit clock that shifts data into this register.
Table 6.
Block RX, Buffer Register (DR2), Bank 0
Bit
Value
7
6
5
4
3
2
1
0
RX Buffer Register
RX Buffer Register: Data is transferred from the RX Shift register after the stop bit has been sampled.
Table 7.
Block RX, Control Register (CR0), Bank 0
Bit
Value
7
0
6
Overrun
5
Framing
4
0
3
0
2
0
1
0
0
Start/Stop
Overrun is a flag that indicates that the RX Buffer register data is overwritten. Framing is a flag that
indicates the stop bit was properly received. Start/Stop indicates that the DMX512Rx is enabled when set.
It is modified using the DMX512RX API.
Document Number: 001-14404 Rev. *G
Page 11 of 13
DMX512 Receiver
Table 8.
Block PWD, Function Register, Bank 1
Bit
Value
7
6
InvertInput BCEN
5
1
4
0
3
0
2
0
1
1
0
0
InvertInput allows to invert input data stream. This parameter is set in the Device Editor. BCEN gates the
output onto the row broadcast bus line. This bit field is set in the Device Editor by directly configuring the
broadcast line.
Table 9.
Block PWD, Input Register , Bank 1
Bit
Value
7
6
5
4
Input
3
2
1
0
PWDClock
The user module Input parameter in the Device Editor determines the value of the Input. PWDClock
selects the clock to drive the receiver timing.
Table 10.
Block PWD, Output Register, Bank 1
Bit
Value
7
6
ClockSync
5
0
4
0
3
0
2
0
1
0
0
0
The user module ClockSync parameter in the Device Editor determines the value of the ClockSync.
Table 11.
Block PWD, Shift Register (DR0), Bank 0
Bit
Value
7
6
5
4
3
2
1
0
3
2
1
0
PWD Shift Register
PWD Shift Register is the PWD Linear Feedback Shift register.
Table 12.
Block PWD, Polynomial Register (DR1), Bank 0
Bit
Value
Table 13.
7
0
Table 14.
7
1
0
4
0
0
0
0
0
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Block PWD, Control Register (CR0), Bank 0
Bit
Value
0
5
Block PWD, Compare Register (DR2), Bank 0
Bit
Value
6
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
Start/Stop
Start/Stop indicates that the DMX512Rx is enabled when set. It is modified using the DMX512RX API.
Document Number: 001-14404 Rev. *G
Page 12 of 13
DMX512 Receiver
Version History
Version Originator
1.0
Note
DHA
Description
Initial version
PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section documents high level descriptions of the differences between the current and previous user module versions.
Document Number: 001-14404 Rev. *G
Revised July 24, 2014
Page 13 of 13
Copyright © 2007-2014 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

				

 Open as PDF

 	Similar pages
	

										ADCINC_001-13251.pdf

	

										ADCINC12_V5_3_001-13252.pdf

	

										SSDM_001-13620.pdf

	

										BB AFE1231K

	

										CRC16_V_3.2_13268.pdf

	

										PHILIPS SAA4700T

	

										PHILIPS SAA4700

	

										PHILIPS SA5752

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

