MAXIM MAX9315EVKIT

19-2280; Rev 0; 1/02
MAX9315 Evaluation Kit
Features
♦ Controlled 50Ω Microstrip Traces
♦ Input Trace Lengths Matched to <2mils
♦ Output Trace Lengths Matched to <1mil
♦ Board Frequency: Up to 1.5GHz
♦ 2.375V (VCC - VEE) Supply Voltage
♦ 20-Pin TSSOP Package
♦ Fully Assembled and Tested
Ordering Information
PART
MAX9315EVKIT
TEMP RANGE
0oC to +70oC
IC PACKAGE
20 TSSOP
Note: To evaluate the MAX9316, request a MAX9316EUP free
sample with the MAX9315EVKIT.
Component List
DESIGNATION
C1, C2
C3, C4, C5
C6–C9
C10
QTY
2
DESCRIPTION
10µF ±10%, 10V tantalum
capacitors (Case B)
AVX TAJB106K010R or
Kemet T494B106K010AS
3
0.1µF ±10%, 16V X7R ceramic
chip capacitors (0603)
Taiyo Yuden EMK107BJ104KA
or
Murata GRM39X7R104K016AD
4
0.01µF ±10%, 16V X7R ceramic
chip capacitors (0402)
Taiyo Yuden EMK105BJ103KW
or
Murata GRM36X7R103K016AD
0
DESIGNATION
QTY
DESCRIPTION
R11, R12
0
Not installed, resistor (1210)
R13–R22
10
100Ω ±1% 1/4W resistors (1210)
Digi-Key P100AACT-ND or
equivalent
Q0, Q0, Q1, Q1,
Q2, Q2, Q3, Q3,
Q4, Q4, CLK0,
CLK0, CLK1,
CLK1, VBB
15
SMA edge-mount connectors
Digi-Key J502-ND
CLKSEL
0
Not installed, SMA edge-mount
connector
MAX9315EUP (20-pin TSSOP)
U1
1
None
2
Shunts
Not installed, capacitor (0402)
None
1
MAX9315 PC board
JU1, JU2
2
3-pin jumpers
None
1
MAX9315 EV kit data sheet
R1, R2
0
Not installed, resistor (0402)
None
1
MAX9315 data sheet
R3–R10
8
49.9Ω ±1% resistors (0402)
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX9315/MAX9316
General Description
The MAX9315 evaluation kit (EV kit) includes the
MAX9315, a 1-to-5 low-skew differential clock driver
with two differential clock inputs. The MAX9315 EV kit
accepts one or two LVECL/LVPECL or HSTL differential
inputs and reproduces the selected input at five differential outputs. The EV kit operates up to 1.5GHz. Inputs
can be single ended by connecting the on-chip VBB
reference to one side of a differential input.
The MAX9315 EV kit can be modified to evaluate the
MAX9316. The MAX9316 has one differential clock input
and one single-ended input.
Evaluates: MAX9315/MAX9316
MAX9315 Evaluation Kit
Component Suppliers
SUPPLIER
PHONE
FAX
WEBSITE
www.avxcorp.com
AVX
843-946-0238
843-626-3123
Kemet
864-963-6300
864-963-6322
www.kemet.com
Murata
770-436-1300
770-436-3030
www.murata.com
Taiyo Yuden
800-348-2496
847-925-0899
www.t-yuden.com
Note: Please indicate that you are using the MAX9315/MAX9316 when contacting these component suppliers.
Quick Start
The MAX9315 EV kit is fully assembled and tested. Do
not turn on the power supplies until all connections
are completed.
Recommended Equipment
•
One 1.5GHz (min) differential signal generator (e.g.,
Agilent 8133A)
•
One 8GHz (min) bandwidth oscilloscope with internal 50Ω input termination (e.g., Tektronix 11801C
digital sampling oscilloscope with SD-24 sampling
head)
•
Two power supplies
a) One 2V ± 0.05V with 500mA current capability
b)One adjustable -1.8V to -0.375V with 500mA
current capability
•
Matched male-SMA-to-male-SMA 50Ω coax cables
a) Matched SMA 50Ω coax cables for input
CLK0 and CLK0
b)Matched SMA 50Ω coax cables for output Q0
and Q0
Evaluating the MAX9315 with One
Differential Input
1) Verify that shunts are across pins 2 and 3 of jumper
JU1 (EN), and pins 2 and 3 of jumper JU2 (CLKSEL).
2) Connect two matched coax cables to the oscilloscope. Connect the other end of the cables to Q0
and Q0 on the EV kit board.
3) Connect a 2.0V power supply to the VCC pad.
Connect the supply ground to the GND pad closest
to VCC.
4) Connect a -1.3V adjustable power supply to the
pad labeled VEE. Connect the supply ground to the
GND pad closest to VEE.
5) Adjust the differential signal generator to the following settings:
a) VIH = 1.0V
b) VIL = 0.3V
c) Duty cycle = 50%
d) Frequency = 1.5GHz
6) Connect one pair of matched coax cables to the differential signal generator. Connect the other end of
the cables to CLK0 and CLK0 on the EV kit.
7) Turn on the power supplies, enable the generator,
and verify that the output signals meet the following
specifications:
a) VOH: 0.855V < VOH < 1.135V
b)VOL: 0.055V < VOL < 0.305V
c) VOH - VOL: 550mV < (VOH - VOL) < 910mV
Notes:
1) To verify output signals other than Q0 and Q0,
remove the corresponding 50Ω output termination
resistor, and make sure the untested output signals
are terminated with 50Ω resistors.
2) For other input levels, refer to the MAX9315 and
MAX9316 data sheets, setting VCC = 2.0V.
3) To evaluate the MAX9316, see the Evaluating the
MAX9316 section.
2
_______________________________________________________________________________________
MAX9315 Evaluation Kit
Power Supply
In order to terminate outputs with 50Ω to (VCC - 2V)
using the 50Ω oscilloscope input, VCC is set to 2.0V. In
an actual application, VCC and VEE can have different
supplies; refer to the MAX9315 and MAX9316 data
sheets.
VBB is an on-chip reference output voltage. Connect
VBB to the inverting or noninverting clock input to provide a reference for single-ended operation. For VCC =
2.0V, the MAX9315 EV kit provides a VBB from 0.475V
to 0.675V.
Enable
The MAX9315 EV kit features a DC logic-level EN function using jumper JU1. Table 1 shows the EN settings
and its corresponding functions.
Clock Select
Input CLKSEL pin selects channel 0 (CLK0 and CLK0)
or channel 1 (CLK1 and CLK1). The MAX9315 EV kit
can either provide an internal DC select signal by using
jumper JU2, or accept an AC external signal from an
SMA connector CLKSEL. (Before connecting the
external signal to the CLKSEL connector, verify
there is no shunt across jumper JU2). Table 2 shows
the functions of jumper JU2.
Evaluating the MAX9316
The MAX9315 EV kit can also be used to evaluate the
MAX9316, which has one differential LVECL/LVPECL,
HSTL input, or single-ended input for scan clock. To
evaluate the MAX9316, the following modifications have
to be made:
1) Replace the MAX9315EUP with the MAX9316EUP.
2) Remove R19, R20, and C8.
3) Add 100Ω resistors on R11 and R12 and a 0.01µF
capacitor on C10.
Table 1. Jumper JU1 Functions
SHUNT
LOCATION
1 and 2
2 and 3
EN
PIN
Connect to VCC
Connect to VEE
MAX9315 FUNCTION
MAX9315 output disable
MAX9315 output enable
Table 2. Jumper JU2 Functions
SHUNT
LOCATION
1 and 2
CLKSEL
PIN
Connect to VCC
INPUT
SOURCE
CLK1 and CLK1
2 and 3
Connect to VEE
CLK0 and CLK0
No shunt
Driven by
external AC
signal
Selected by
AC signal level
_______________________________________________________________________________________
3
Evaluates: MAX9315/MAX9316
Detailed Description
Evaluates: MAX9315/MAX9316
MAX9315 Evaluation Kit
Q0
SMA
1
Q0
SMA
Q1
1
Q1
Q2
Q2
Q3
SMA
SMA
5
R5
49.9Ω
1%
1
6
R6
49.9Ω
1%
7
1
R7
49.9Ω
1%
1
8
R8
49.9Ω
1%
2
Q4
4
1
1
9
R9
49.9Ω
1%
2
Q0
EN
C3
0.1µF
C1
10µF
10V
VCC
GND
VCC
1
19
3
MAX9315
Q1
VCC
Q1
CLK1
Q2
CLK1
Q2
VBB
Q3
CLK0
CLK0
SEL
VEE
VCC
18
C4
0.1µF
17
R13
100Ω
1%
R14
100Ω
1%
1
R16
100Ω
1%
1
16
R15
100Ω
1%
CLK1 (N.C.)
SMA
2
CLK1 (SCLK)
SMA
2
VBB (CLK)
SMA
1
2
15
R11
OPEN
R12
OPEN
C8
0.01µF
CLK0 (CLK)
SMA
14
R17
100Ω
1%
R18
100Ω
1%
R19
100Ω
1%
R20
100Ω
1%
13
Q3
Q4
JU1
2
C7
0.01µF
R4
49.9Ω
1%
2
Q3
3
1
2
SMA
20
U1
R3
49.9Ω
1%
2
SMA
2
1
2
SMA
VCC
R2
OPEN
2
SMA
Q0
C6
0.01µF
2
SMA
1
R1
OPEN
2
C10
OPEN
1
VCC
1
12
R21
100Ω
1%
R22
100Ω
1%
CLK0 (VBB)
SMA
2
CLKSEL
2
1
JU2 3
SMA
2
VEE
Q4
SMA
1
2
10
R10
49.9Ω
1%
Q4
VEE
11
C9
0.01µF
C5
0.1µF
C2
10µF
10V
VEE
GND
() FOR MAX9316
Figure 1. MAX9315 EV Kit Schematic
4
_______________________________________________________________________________________
MAX9315 Evaluation Kit
1.0"
Figure 2. MAX9315 EV Kit Component Placement Guide—
Component Side
Figure 3. MAX9315 EV Kit PC Board Layout—Component Side
1.0"
Figure 4. MAX9315 EV Kit PC Board Layout—Inner Layer 2
(Ground Layer)
_______________________________________________________________________________________
5
Evaluates: MAX9315/MAX9316
1.0"
Evaluates: MAX9315/MAX9316
MAX9315 Evaluation Kit
1.0"
1.0"
Figure 5. MAX9315 EV Kit PC Board Layout—Inner Layer 3
(VCC Layer)
Figure 6. MAX9315 EV Kit PC Board Layout—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2002 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.