INTEGRAL IL34C86

IL34C86
Differential line receiver.
.
Microcircuit IL34C86 consists of four
differential line receivers and is a
microcircuit that meets international
standards of data transmission RS-422,
RS-423, and it is widely used in data
transmission nets, particularly in a unit for
local loop of ATS.
Functions implemented
This device carries out comparing inputs
with low differential signal of 200mV and
gives on output full signal with load
carrying capacity of ±6mÀ, and also has
hysteresis to improve noise margin.
Designation
Of microcircuit in package
IL34C86N Plastic DIP
IL34C86D SOIC
TA from minus 40
to plus 85 °C
for all packages
Truth table
Enable
input
output
L
X
Z
H
VID≥VTH (max)
H
H
VID≤VTH (max)
L
H
Open
*
H
VID – difference of inputs A2-A1, or B2-B1, or C2-C1, or D2-D1.
VTH – minimum differential input voltage.
Open* – no signals delivered to inputs.
1
IL34C86
Purpose of pins
¹ of pin
Symbol
01
02
A1
A2
A
En A/C
03
04
Purpose
Input of receiver A
Input of receiver A
Output of receiver A
input of switching outputs of A and C
receivers into the third state
Output of receiver C
2 Input of receiver C
1 Input of receiver C
General pin
1 Input of receiver D.
2 Input of receiver D.
Output of receiver D.
input of switching outputs of B and D
receivers into the third state
Output of receiver B.
12
C
C2
C1
GND
D1
D2
D
En B/D
13
B
14
B2
2 Input of receiver C
15
B1
1 Input of receiver C
16
VCC
05
06
07
08
09
10
11
Pin of power supply from source of voltage
L – Low voltage level
H – High voltage level
X – any level of voltage
Z – the third state of output .
Y3
01
16
VDD
X2
02
15
X3
Y2
03
14
B
X1
04
13
Z3
Y1
05
12
Z2
X0
06
11
Z1
Y0
07
10
Z0
VSS
08
09
A
Figure 2 Designation of pins in package
2
IL34C86
Figure 3. Block diagram of microcircuit.
GND Vcc
IN A2
IN A1
IN C2
+
-
+
Output A
IN C1
Enable
Enable IN B2
-
IN B1
-
+
Output C
IN D2
IN D1
-
+
Output B
Output D
Table 1 – Limiting and extreme parameters
Parameter
Symbol
Limiting mode
Extreme mode
Units of
measureme
nt
min
max
min
max
Supply voltage
VCC
4.50
5.50
—
7
V
Input voltage
VCM
—
—
-14
14
differential input voltage
VDIFF
—
—
-14
14
Voltage on input Enable
VIN
—
—
—
7
Output current
—
—
—
-25
+25
mÀ
transition time when
tr, tf
—
500
—
—
nñ
switching in, switching
off on input Enable
Dissapated
DIP
PD
—
—
—
1645*
mW
power
SO
—
—
—
1190*
Operation temperature
TA
-40
+85
—
—
°Ñ
Storage temperature
TSTG
—
—
-65
+150
Temperature of
TL
—
—
—
260
soldering, 4ñ
*
- at increasing temperature higher than 25°Ñ PD decreased on 13.89mW/°C for DIP package and on
9.80mW/°C for SO package.
3
IL34C86
T= -400 ÷ +850C
Table 2 -Electric parameters
parameter
Minimum differential input
voltage
input resistance
input current
symbol
conditions of
measurement
VTH
-7V < VCm < +7V
RIN
IIN
standard
units of
measure
ment
min
-200
max.
200
mV
VIN = -7V, +7V (the rest
inputs on "ground")
5.0
10
kÎhm
VIN = -10V (the rest inputs
on"ground”)
VIN = +10V (the rest inputs
on "ground")
—
+1.5
mÀ
—
-2.5
minimum output voltage of high
level
VOH
VCC = 4.5V, VDIFF = +1V,
IOUT = -6.0hmÀ
3.8
—
maximum output voltage of low
level
VOL
VCC = 5.5V, VDIFF = -1V,
IOUT = +6.0hmÀ
—
0.3
minimum input voltage of high
level on input Enable
VIH
—
2.0
—
maximum input voltage of low
level on input Enable
VIL
—
—
0.8
maximum output current of the
third state
IOZ
VOUT = VCC or 0V
—
±0.5
µÀ
maximum input current on input
Enable
II
VIN = VCC or 0V
—
±1.0
µÀ
consumption current
ICC
VCC = 5.5V, VDIFF = +1V
—
23
mÀ
time of propagation delay at
switching off, switching on
tPLH,
tPHL
CL = 50pF, VDIFF = 2.5V,
VCm = 0V
—
30
nñ
Transition time when switching
in, switching off
tRISE,
tFALL
CL = 50pF, VDIFF = 2.5V,
VCm = 0V
—
9
time of the third state
propagation delay on input
Enable
tPLZ,
tPHZ
CL = 50pF, VDIFF = 2.5V,
RL = 1000kÎhm
—
18
time of the third state
propagation delay on input
Enable
tPZL,
tPZH
CL = 50pF, VDIFF = 2.5V,
RL = 1000kÎhm
—
21
4
V
V
IL34C86
Figure 4 – Time diagram of signals at changing dynamic parameters tPLH, tPHL, tTLH,
tTHL, tPZH, tPHZ, tPZL, tPLZ
V- Input
+2.5 V
0V
V+ Input = 0 V
-2.5 V
t PHL
t PLH
90 %
90 %
VOH
50 %
Output
10 %
10 %
t TLH
.
5
t THL
VOL